Doc# OMA-BCAST-2006-0318R01-backwards-compatible-BCRO.doc[image: image4.jpg]"sOMaQa

Open Mobile Alliance

Change Request

Doc# OMA-BCAST-2006-0318R01-backwards-compatible-BCRO.doc
Change Request

Change Request

	Title:
	OMA-BCAST-2006-0318R01-backwards-compatible-BCRO
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	BAC BCAST and DLDRM

	Doc to Change:
	OMA-TS-DRM-XBS-V1_0-20060321-D

	Submission Date:
	3 May 2006

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	John Bernsen, john.ac.bernsen@philips.com

	Replaces:
	n/a

1 Reason for Change

We found an inconsistency for:

OMA-BCAST-2006-0055R01-efficient-BCRO-addressing-to-subscriber-groups.zip

The changes to the BCRO are not compatible with the BCRO as specified by DVB-CBMS (SPP specification)

The way to make the proposed compression of 055R01 compatible with the DVBSPP specification

is to use one of the reserved addressing modes (e.g. 0x5).

This means that the first 8 bytes cannot be compressed, but we don't think that gaining another

0.1% bandwidth efficiency is worth it to give up compatibility.

The first version of this CR is made as a CR against a previous version of the XBS document for simplicity reasons. This version is against the version of the XBS document that is under review.
The specification for the compressed bitmask can be taken over from 055.

2 Impact on Backward Compatibility

This CR restores backwards compatibility

3 Impact on Other Specifications

None

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

Members are kindly asked to agree with the indicated changes in 6.

6 Detailed Change Proposal

6.1.3 Broadcast registration

6.1.3.1 Theory of operation

Note: This protocol is also known as the “1-pass PDR protocol”, short for Push Device Registration protocol.

[image: image1.wmf][1] send registr. data

ROT / PKI+CRL

Service Provider /

RI

Customer / Device

Figure 1: 1-pass PDR protocol – (first) device registration

Note: Transmission of registration data is performed on-line via the broadcast channel. The registration data (device_registration_response() message) is specified in section 6.1.3.2
Explanation of the protocol:

· The RI SHALL use the 1-pass binary Push Device Registration data (a.k.a. PDR) protocol to send registration data over the network [1]. The registration data can be the device_registration_response() message (refer to section 6.1.3.2) or the domain_registration_response() message (refer to section Error! Reference source not found.). The RI SHALL use the RI mechanisms described in section Error! Reference source not found. to address the message to a device. The RI SHALL include a valid keyset in the message.

· A device listening for device_registration_response() (or domain_registration_response()) messages SHALL look for messages with the corresponding message_tag. On every message with a matching message_tag the device SHALL check the long_form_udn parameter. If this matches (any of) the devices local UDN(s) the device SHALL start validating the signature and check the RI certificate (chain.). If both (UDN and signature) are valid the device detects this message is really addressed to it. The device SHALL start processing the message and SHALL start trying to decrypt the secret data in it. If the message is correct, the device SHALL store the new keyset with key(s). The devise SHALL delete the old keyset (if applicable).

· After a timeout the device SHALL leave the registration mode and stops listening for device_registration_response() messages.

6.1.3.2 Registration data – device_registration_response message

6.1.3.2.1 device_registration_response message description

Using the 1-pass PDR protocol the RI SHALL send a device_registration_response() message with the registration data to the device as specified below:

Table 1: device_registration_response message description

	Device_Registration_Response()

	Parameter name
	(M)andatory / (O)ptional

	remark

	message_tag
	M
	global, not encrypted

	protocol_version
	M
	global, not encrypted

	sign_bcros_flag
	O
	global, not encrypted

	longform_udn()
	M
	global, not encrypted

	status
	M
	device specific, not encrypted

	certificate_version
	M
	global, not encrypted

	ri_certificate_counter
	M
	global, not encrypted

	c_length
	M
	global, not encrypted

	ri_certificate
	M
	global, not encrypted

	ocsp_response_counter
	M
	global, not encrypted

	r_length
	M
	global, not encrypted

	ocsp_response
	M
	global, not encrypted

	local_time_offset_flag
	M
	device specific, not encrypted

	time_stamp_flag
	M
	device specific, not encrypted

	subscriber_group_key_flag
	M
	device specific, not encrypted

	signature_type_flag
	M
	global, not encrypted

	short_udn_flag
	M
	device specific, not encrypted

	surplus_block_flag
	M
	device specific, not encrypted

	keyset_block_length
	M
	device specific, not encrypted

	unique_group_key
	O
	device specific, encrypted

	subscriber_group_key
	O
	device specific, encrypted

	unique_device_key
	O
	device specific, encrypted

	unique_device_filter
	M
	device specific, encrypted

	ri_authentication_key
	M
	device specific, encrypted

	compressed_subscriber_group
	O
	device specific, encrypted

	local_domain_key
	O
	device specific, encrypted

	shortform_domain_id
	M
	device specific, encrypted

	drm_time
	M
	device specific, not encrypted

	local_time_offset
	O
	device specific, not encrypted

	registration_timestamp_start
	O
	device specific, not encrypted

	registration_timestamp_end
	O
	device specific, not encrypted

	shortform_udn
	O
	device specific, not encrypted

	signature_block
	M
	device specific, not encrypted

message_tag - This parameter identifies the type of the message. Refer to section Error! Reference source not found.for the value of the message_tag.

protocol_version - This parameter indicates the protocol_version of this message. The device SHALL ignore messages that have a protocol_version number it doesn’t support. The value of the protocol_version of this message is set to 0x0 (i.e. the original format).

If set to 0x0 the format specified in the this version of the specification is used. If set to anything else than 0x0, then the format is beyond the scope of this version of the specification

sign_bcros_flag: This (OPTIONAL) flag is turned ON if the BCROs will be signed. If this flag is present, the reserved_for_use flag is reduced to 3 bits.

longform_udn() - The long form of the UDN. Refer to section Error! Reference source not found. for details.

status - The status parameter SHALL indicate one of the values explained in the following table. The device SHALL ignore messages with other error values.

Table 2: Status values

	status value
	meaning

	Success
	The registration request was executed successfully and the RI completed all data. The device SHALL process the message.

	UnknownError
	The RI encountered an unknown error after receiving the registration request. The device MAY put forward a subsequent registration request to the RI (context).

	NotSupported
	The RI does not support the registration request.

	AccessDenied
	The RI decided that the device will not be granted access to the service and stops the registration. The RI will stop listening to future registration requests of this device. The device is forced to refrain from future registration and SHALL suppress broadcast and/or mixed-mode registration requests to the particular RI (context).

	NotFound
	The RI decided that the device could not be found (offline UDN and/or UaProf). The device MAY put forward a subsequent registration request to the RI (context).

	MalformedRequest
	The RI decided that the registration request was malformed and will force the device to execute a (re)-registration at once. The device SHALL enter (re)registration mode.

Note: refer to section Error! Reference source not found. for the value of the error codes.

certificate_version - is a numerical representation of the version of the RI certificate. Using the certificate_version parameter the device can decide if it is needed to update the RI certificate (if it was stored before).

Table 3: description of certificate_version parameter

	Parameter Fieldname
	Field Value (h)
	supports

	major_version_number
	0x0,..,0xA
	MSB4(certificate_version)

	minor_version_number
	0x0,..,0xA
	LSB4(certificate_version)

The parameter is divided 2 fields of 4 bits, whereas the first 4 bits (MSB left) express the Major number and the last four bits (LSB right) express the Minor version. The major and minor number encode in bslbf format. 16 Major and 16 Minor versions are supported. For example: Major.Minor version <1.2> is expressed as 0001 0010b.

ri_certificate_counter - This parameter indicates the depth of the RI certificate chain.

	number of certificate in chain
	Value (h)
	remark

	0
	0x0
	will signal absence of ri_certificate e.g. on error status to save bandwidth.

	1
	0x1
	

	2
	0x2
	

	3
	0x3
	

	4
	0x4
	

	5
	0x5
	

	6
	0x6
	

	7
	0x7
	

Note: The certificate chain can have a depth of up to 7 RI certificates.

c_length - This parameter indicates the length in bytes of the ri_certificate.

ri_certificate() - This parameter SHALL be present. When present, the value of a ri_certificate parameter SHALL be a certificate chain including the RI’s certificate. The chain SHALL NOT include the root certificate. The RI certificate SHALL come first in the list. Each following certificate SHALL directly certify the one preceding it.

The Device MAY store RI certificate verification data indicating that an RI certificate chain has been verified. The purpose of this is to avoid repeated verification of the same certificate chain. The RI certificate verification data stored in this way SHALL uniquely identify the RI certificate and SHALL be integrity protected. The Device SHOULD check if the RI certificate chain received in this parameter corresponds to the stored certificate verification data for this RI. If so, the Device NEED NOT verify the RI certificate chain again, otherwise the Device SHALL verify the RI certificate chain.
 If an RI certificate is received that is not in the stored certificate verification data for this RI, and if the Device can determine (in the case of Broadcast Devices that support DRM Time) that the expiry time of the received RI certificate is later than the RI Context for this RI, and the certificate status of the RI certificate as indicated in the OCSP response is good (see [OCSP-MP]), then the Device SHALL verify the complete chain and SHOULD replace the stored RI certificate verification data with the received RI certificate data and set the RI context expiry time to that of the received RI certificate expiry time.
However, if the Device does store RI certificate verification data in this way it SHALL store the expiry period of the RI’s certificate (as indicated by the notAfter field within the certificate) and SHALL compare the Device’s current DRM Time with the stored RI certificate expiry time whenever verifying the signature on signed messages from the RI. If the Device’s current DRM Time is after the stored RI certificate expiry time then the Device SHALL abandon processing the RI message and SHALL initiate the registration protocol.

ocsp_response_counter - This parameter indicates the depth of the OCSP response chain.

	number of responses in chain
	Value (h)
	remark

	0
	0x0
	will signal absence of ocsp_response e.g. on error status to save bandwidth.

	1
	0x1
	

	2
	0x2
	

	3
	0x3
	

	4
	0x4
	

	5
	0x5
	

	6
	0x6
	

	7
	0x7
	

Note: The certificate chain can have a depth of up to 7 OCSP responses.

r_length - This parameter indicates the length in bytes of the ocsp_response.

ocsp_response() - This parameter, when present, SHALL be a complete set of valid OCSP responses for the RI's certificate chain. The Device SHALL NOT fail due to the presence of more than one OCSP response element. A Device SHALL check that an OCSP response is present in the received message. If no OCSP response is present in the device_registration_response() message, then the Device SHALL abort the registration protocol.

local_time_offset_flag - Binary flag to signal presence of the parameter it describes:

	local_time_offset_flag
	Value (h)
	remark

	data absent
	0x0
	

	data present
	0x1
	

time_stamp_flag - Binary flag to signal presence of the parameter it describes:

	time_stamp_flag
	Value (h)
	remark

	data absent
	0x0
	

	data present
	0x1
	

subscriber_group_key_flag - The flag expresses how many subscriber_group_keys (a.k.a. SGK) are delivered with the registration data. When zero message broadcast is used, a set of 8 keys will support a group size of 256. A set of 9 keys will support a group size of 512. Other values or larger group sizes are not supported. A value larger than zero indicates that the registration data message delivers a set of zero message subscriber_group_key (s) to the device and that the device needs to use zero message broadcast style encryption to deduce the decryption key to decrypt the SEK.

	subscriber_group_key_flag
	Value (h)
	remark

	data absent
	0x0
	will signal absence of keyset_block e.g. on error status to save bandwidth.

	reserved for future use
	0x1-0x7
	not used in this version of the specification

	set of (8) subscriber_group_key
	0x8
	

	set of (9) subscriber_group_key
	0x9
	

	reserved for future use
	0xA-0xF
	not used in this version of the specification

signature_type_flag - A flag to signal type of signature algorithm used:

	signature_type_flag
	Value (h)
	remark

	RSA 1024
	0x0
	

	RSA 2048
	0x1
	CMLA requirement (2004-2007)

	RSA 4096
	0x2
	

	reserved for future use
	0x3
	not used in this version of the specification

short_udn_flag - Binary flag to signal presence of the parameter it describes:

	short_udn_flag
	Value (h)
	remark

	data absent
	0x0
	

	data present
	0x1
	

surplus_block_flag - Binary flag to signal the presence of the parameter it describes:

	surplus_block_flag
	Value (h)
	remark

	data absent
	0x0
	

	data present
	0x1
	

keyset_block_length - This parameter indicates the length in bits of the total keyset_block. That is the part in the sessionkey_block() plus the optional second part from the surplus_block().
unique_group_key - An symmetric AES encryption key to address a unique group. This key is also known as UGK. The key length SHALL be 128 bit.

Note: This key is wrapped into the keyset_block. (Refer to Error! Reference source not found.).

subscriber_group_key - An (set of) AES symmetric encryption key(s) which are used for the zero message subscriber_group_key deduction of the key needed to decrypt the SEK and/or PEK. These subscriber_group_key is also known as SGK. The key length SHALL be 128 bit.

Note: This key is wrapped into the keyset_block. (Refer to Error! Reference source not found.).

unique_device_key - An AES symmetric key to address a unique device. This key is also known as UDK. The key length SHALL be 128 bit.

Note: This key is wrapped into the keyset_block. (Refer to Error! Reference source not found.).

unique_device_filter - A [EUROCRYPT] style addressing scheme used to filter for messages like BCROs. A device address consists of 5 bytes and is unique within an operation. The shared address is defined as the 4 most significant bytes of the unique address. The least significant byte (byte 5) defines the position (0….255) in the group that shares an address. This means that each group consists of 256 members. An access mask, in an entitlement, is used to identify individual members. So if for a particular group only member 5 and 100 are allowed to have access to a service then their corresponding bits are set in the access mask. Take the device_id_mask equal to 252 (1111 1100b) then the least significant byte of the device_id is masked and thereby creating a shared address. This address is also known as UDF.

Note: This address is wrapped into the keyset_block. (Refer to Error! Reference source not found.).
ri_authentication_key - An AES symmetric key to verify MACs on BCRO and KSM messages. This key is also known as RIAK. The key length SHALL be 128 bit.

Note: This key is wrapped into the keyset_block. (Refer to Error! Reference source not found.).
compressed_subscriber_group – This is the concatenated log2_subscriber_group_size, group_address, position_in_group and compressed_subscriber_group_keys (CGS, see also Annex A.8.
Note: This dataset is wrapped into the keyset_block. (Refer to Error! Reference source not found.).
local_domain_key - An AES symmetric key to address a unique device. This key is also known as LDK. The key length SHALL be 128 bit.

Note: This key is wrapped into the keyset_block. (Refer to Error! Reference source not found.).
longform_domain_id() – This parameter is also known as the Longform Local Domain Filter (LLDF). Please refer to section A.8.3 for the definition. The longform_domain_id() is used for mixed-mode operation. Note: This address is wrapped into the keyset_block. (Refer to Error! Reference source not found.).
shortform_domain_id – This parameter is also known as the Shortform Local Domain Filter (SLDF). Please refer to Error! Reference source not found.. An addressing scheme used to filter for messages like BCROs. The shortform_domain_id is used for broadcast mode of operation.

Note: This address is wrapped into the keyset_block. (Refer to Error! Reference source not found.).
drm_time - This parameter defines the time in Universal Time Coordinated (UTC). This 40-bit field contains the current time and date in UTC and MJD. Refer to A.4 for calculation of the UTC and Modified Julian Date (MJD). This field is coded as 16 bits giving the 16 LSBs of MJD followed by 24 bits coded as 6 digits in 4-bit BCD.

EXAMPLE: 93/10/13 12:45:00 is coded as “0xC079124500”.

local_time_offset - This parameter indicates the local time offset from the (UTC) drm_time as explained in Annex A.4.

registration_timestamp_start - Indicates from what time onwards the registration data is valid. This is an extra mechanism above the expiration date of the RI certificate. (Note: please note that this parameter can also be used against replay attacks.)

registration_timestamp_end - Indicates from what time onwards the registration data is expires. This is an extra mechanism above the expiration date of the RI certificate. (Note: please note that this parameter can also be used against replay attacks.)

shortform_udn - This parameter allows the RI to give an own defined short number identifying the device. This number can be used as a shorter alternative to the UDN during offline notifications. The shortform_udn is coded in BCD format.

signature_block - The signature SHALL enable a single source authenticity check on the message. The algorithm used for the signature is RSA-1024 or RSA-2048 or RSA-4096. The signature will apply to the implementation guidelines of PCKS#1, as outlined in Error! Reference source not found..

Note Message result:

The stored RI Context SHALL at a minimum contain:

· RI ID, Unique device filter (UDF).

· following keys:

· UGK, BGK1..n and/or UDK

· RIAK.

· SK

· If domain addressing via an OMA DRM 2.0 domain is required the keyset SHALL (additionally to the standard addressing above) include following keys:

· LDK.

· Shortform Local Domain Filter (SLDF). A.k.a. “shortform_domain_id”. Refer to A.8.1.

· For mixed-mode devices domain context SHALL additionally contain:

· Longform Local Domain Filter (LLDF). A.k.a. “longform_domain_id()”. Refer to A.8.3.

· A Device MAY have several Domain Contexts with an RI.

· The RI Context SHALL also contain an RI Context Expiry Time, which is defined to be the timestamp of the registration data if that was send and otherwise the expiration of the RI certificate.

· The RI Context MAY also contain RI certificate validation data.

· If the RI Context has expired, the Device SHALL NOT execute any other protocol than the 1-pass binary device data registration protocol with the associated RI (context), and upon detection of RI Context expiry the Device SHOULD initiate the offline notification of detailed device data protocol using the RI_ID stored in the RI Context. Depending on the implementation a dialogue will be shown to the user and the offline NDD protocol will be executed.

· Accessing an ESG for purchase is still allowed, as this will require a registration first.

· The device SHALL be rendered inoperable for any purchase protocol or playback of future content. The device MAY use stored BCROs to play old content for which the device obtained GROs, but SHALL NOT use these BCROs for new content received after the re-registration request until the device is re-registered with the RI.

Requirements:

· The Device SHALL have at most one RI Context with each RI. An existing RI Context SHALL be replaced with a newly established RI Context after successful re-registration with the same RI.

· The device SHALL support at least 6 RI context for broadcast mode of operation.

· For standard addressing the keyset SHALL include a valid set of :

· UGK, BGK1..n and/or UDK keys

· RIAK key. A single RIAK key is bound to a single Subscriber Group (e.g. 256 or 512 members).
· Unique device filter (UDF).

· If domain addressing via an OMA DRM 2.0 domain is required the keyset SHALL (additionally to the standard addressing above) include a valid set of :

· LDK key.

· Shortform Local Domain Filter (SLDF). A.k.a. “shortform_domain_id”. Refer to A.8.1.

And in case of mixed-mode operation devices the keyset SHALL contain:

· A Longform Local Domain Filter (LLDF, a.k.a. “longform_domain_id()”) that matches the SLDF. Refer to A.8.3.

6.2 Format of the Broadcast Rights Object

6.2.3 Format of the OMADRMBroadcastRightsObject class

The OMADRMAsset, OMADRMPermission and OMADRMConstraint object correspond in their meaning to their counterparts in OMA-DRM-REL-V2_0. The OMADRMAction object corresponds to the allowed elements in the permissions element from the same specification. The MAC protected BCRO (OMADRMBroadcastRightsObject class) is mandatory for devices supporting BCROs. The Signature protected BCRO (OMADRMBroadcastRightsObjectSigned class) is optional for devices supporting BCROs.

align(8) class OMADRMBroadcastRightsObjectBase

{

int i;

bit(8)
message_tag;

bit(4)
version;

bit(12)
bcro_length;

bit(1)
group_size_flag;

bit(1)
timestamp_flag;

bit(1)
stateful_flag;

bit(1)
refresh_time_flag;

bit(3)
address_mode;

bit(1)
rights_issuer_flag;

bit(32)
address;

if (address_mode == 0x1)

{

if (group_size_flag == 0)

{

bit(256)
bit_access_mask;

}

else

{

bit(512)
bit_access_mask;

}

}

else if (address_mode&0x6 == 0x2)

{

bit(8)
position_in_group;

}

else if (address_mode == 0x4)

{

bit(6)
domain_id_extension;

bit(10)
domain_generation;

}

else if (address_mode == 0x5)

{

bit(xx) compressed_bit_mask_length (if required);

OMABitAccessMask
compressed_bit_access_mask;

}

if (rights_issuer_flag == 1)

{

bit(160)
rights_issuer_id;

}

if (timestamp_flag == 1)

{

bit(40)
bcro_timestamp;

}

if (refresh_time_flag == 1)

{

bit(40)
refresh_time;

}

bit(1)
permissions_flag;

bit(7)
rekeying_period_number;

bit(32)
purchase_item_id;

bit(8)
number_of_assets;

for (i=0; i<number_of_assets; i++)

{

OMADRMAsset
asset[i];

}

if (permissions_flag == 1)

{

bit(8)
number_of_permissions;

for (i=0; i<number_of_permissions; i++)

{

OMADRMPermission permission[i];

}

}

}

align(8) class OMADRMBroadcastRightsObject

{

OMADRMBroadcastRightsObjectBase roBase;

bit(96)
MAC;

// MAC is computed over roBase

}

align(8) class OMADRMBroadcastRightsObjectSigned

{

OMADRMBroadcastRightsObjectBase roBase;

bit(2) signature_type_flag;

bit(6) reserved_for_future_use;

// signature is computed over all preceding fields.

if(signature_type_flag == 0x0{

bit(1024)
signature;

} else if (signature_type_flag == 0x01 {

bit(2048)
signature;

} else if (signature_type_flag == 0x02 {

bit(4096)
signature;

}

}

message_tag: Tag identifying this message as a BCRO. The value for this field is defined in Error! Reference source not found..
version: 3-bit flag which indicates the version of the BCRO message format. If set to 0 the original format is used. Devices SHALL ignore BCROs with versions it does not support.
bcro_length: 12-bit field indicating the length in bytes of the BCRO starting immediately after this field (excluding locally added information). The size of an BCRO SHALL NOT exceed 4096 bytes. Note however that other restrictions, e.g. the UDP packet size can restrict the size of an BCRO even more.

Note: the fields up to and including ‘length’ are not protected by a MAC. All following fields up to but not including the MAC field will be protected by a MAC.

group_size_flag: 1-bit field indicating the group size used. 0 – a maximum group size 256 is used, 1 – a maximum group size of 512 is used

timestamp_flag: 1-bit field indicating that the BCRO is timestamped.
stateful_flag: 1-bit flag indicating that when set to 1 the BCRO contains stateful information.

refresh_time_flag: 1-bit flag indicating that a refresh_time for the BCRO is contained in this BCRO

address_mode: 3-bit field indicating the addressing mode used by this BCRO.

	Field: address_mode
	Description

	0x0
	addressing whole of unique group

	0x1
	addressing of Subscription group using a bit_mask size of 256 or 512 bit depending on group_size_flag (subset of unique group)

	0x2-0x3
	addressing of unique device

	0x4
	addressing of OMA domain. Address field concatenated with the domain_id_extension will be the domain id in this case

	0x5
	addressing of Subscription group using a compressed bit mask (subset of unique group)

	0x6-0x7
	reserved for future use

	
	

	
	

	
	

	
	

	
	

rights_issuer_flag: 1-bit flag indicating that the rights issuer id is listed in this BCRO. Normally this information is given via a dedicated BCRO stream. This flag will only be set if BCROs from different rights issuers are carried in the same stream.

rights_issuer_id: The ID of the rights issuer. This is the 160-bit SHA1 hash of the DER encoded public key of the RI. See X509PKISHash in OMA.

address: 4-byte group address. Each rights issuer has its own address space. If the group_size is 512 then the group address is made of the first 31 bit of the address field. If the BCRO is addressed to a unique device in a group then the LSB of the address field is the MSB of the group position.

bit_access_mask: If the BCRO addresses a subset of a unique group (address_mode 0x1) than the bit_access_mask defines to which receivers in the group this BCRO is addressed to. Receivers not listed in the bit_access_mask cannot decrypt the key material in this BCRO as zero message Broadcast encryption is used for the encryption of the key material. The size of the bit_access_mask is given by the address mode

position_in_group: If the BCRO addresses a unique device then this field specifies the position of the unique device in the given Subscription group. If group_size_flag is 0 than the position in the group is directly given by the position_in_group field. If group_size_flag is 1 then 9 bit are used to identify the position in the group. If group_size_flag is 1then bit 0 (the LSB) from the address_mode is used as the 9th bit, the MSB. The real position in the group is then given by:

int real_position_in_group;

if(address_mode&0x6==0x2)

{

if(group_size_flag == 0)

{

//maximum size of 256 devices in group.

real_position_in_group = position_in_group;

}

else

{

//maximum size of 512 devices in group;

real_position_in_group =

((address_mode&0x1)<<8)|position_in_group;

}

}

domain_id_extension: The domain_id is given by the address field concatenated with the domain_id_extension to form a 38 bit id:

domain_id = (address<<6)|domain_id_extension

domain_generation: This 10 bit field specifies the generation of the domain.
compressed_bit_mask_length: specifies the length of the compressed_bit_mask (if it is required at all)

compressed_bit_access_mask: If the BCRO addresses a subset of a unique group (address_mode 0x5) then the compressed_bit_access_mask defines to which receivers in the group this BCRO is addressed to. Receivers not listed in the bit_access_mask cannot decrypt the key material in this BCRO as zero message Broadcast encryption is used for the encryption of the key material. See Section XXX (Note to editor: to be provided by Fraunhofer or taken from CR055) for the coding of compressed_bit_access_mask.

bcro_timestamp: Field containing a timestamp at the point of issuing of the BCRO. This 40-bit field contains the time and date of the moment of issuing of the BCRO in Universal Time, Co-ordinated (UTC) and Modified Julian Date (MJD). This field is coded as 16 bits giving the 16 LSBs of MJD followed by 24 bits coded as 6 digits in 4-bit Binary Coded Decimal (BCD).

EXAMPLE 1: 93/10/13 12:45:00 is coded as "0xC079124500".

refresh_time: The refresh_time specifies the time when the terminal should acquire a new BCRO. It does not specifies when the keys in the BCRO expire. This field is a hint to a receiver to acquire a new BCRO for the content listed in the BCRO before the keys in the BCRO expires. The encoding is similar to that of the bcro_timestamp field.

permissions_flag: 1-bit flag indicating that the BCRO contains at least 1 permission.

rekeying_period_number: 7-bit counter used to differentiate between different GROs with the same purchase_item_id.
purchase_item_id: 32-bit field specifying the purchase ID this GRO is associated with

number_of_assets: This field specifies the number of assets (see below) in this BCRO. Each asset listed in this BCRO has an internal id which is equal to the index of the asset in this BCRO. In other words the first asset listed in this BCRO has the internal asset id (index) of 0, the second of 1 etc. This internal id or index is used by permissions objects (see below) to identify the assets it addresses.

number_of_permissions:This field specifies the number of permissions (see below) in this BCRO.

MAC: This is the authentication code calculated over all bytes before this field in the BCRO using HMAC-SHA-1-96 (see [RFC 2104]). The MAC is only present in the OMADRMBroadcastRightsObject class.

The MAC is used to authenticate and check the integrity of the BCRO. The key used to create the MAC is the BCRO authentication key BAK as described in Error! Reference source not found..

signature_type_flag: The signature_type_flag is as defined in Section 6.1.3.2.1, reproduced below:

	signature_type_flag
	Value (h)
	remark

	RSA 1024
	0x0
	

	RSA 2048
	0x1
	CMLA requirement (2004-2007)

	RSA 4096
	0x2
	

	reserved for future use
	0x3
	not used in this version of the specification

signature: The signature is calculated over all bytes before this field with the exception of the first two bytes in the BCRO using RSA-1024, RSA-2048 or RSA-4096. This is only present in the optional OMADRMBroadcastRightsObjectSigned class.

6.2.4 Format of bit_access_mask

An addressing bitmask is a string of bits, where each bit corresponds to one particular device. When a device is addressed, its bit in the addressing bit mask is set to 1, otherwise to 0.

The field bit_access_mask contains the coded addressing bitmask. The addressing bitmask is split up into subblocks, each of which is coded separately. Depending on the characteristics of the subblock the coding method is chosen. The format of bit_access_mask is as follows:

class OMADRMBitAccessMask

{

do {

bit(2) subblock_coding_type;

if(subblock_coding_type == 0x1)

{

OMADRMBitmappedBitmask bitmapped_bitmask;

} else if(subblock_coding_type == 0x2)

OMADRMBlockCompressedBitmask;

{

} else if(subblock_coding_type == 0x3)

OMADRMOutlierCompressedBitmask;

}

} while(subblock_coding_type != 0x0)

}

subblock_coding_type: 2-bit value indicating how the subblock is coded.

	Field: subblock_coding_type
	Description

	0x0
	indicates the end of the bitmask

	0x1
	the subblock is not compressed, but coded by the method as described in Section 7.2.1.1.

	0x2
	the subblock is coded using the Block Compression Method as described in Section 7.2.1.2.

	0x3
	the subblock is coded using the Outlier Compression Method as described in Section 7.2.1.3.

7.2.1.1
Bitmapped Bitmask

The bitmapped_bitmask field contains a non-compressed subblock. It consists of an indicator for the length of the subblock followed by the subblock. The bitmapped_bitmask field has the following format:

class OMABitmappedBitmask

{

OMADRMBlockLength
block_length;

bit(block_length+1)
bit_map;

}

block_length: indicates the length of the subblock. For a subblock of length k, block_length contains the value k-1. See Section 7.2.2.4 for more details on the coding of the field block_length.

bit_map: field of block_length+1 bits, that codes the subblock.

For EXAMPLE, a subblock 0010100101011010 has a length of 16 bits, therefore block_length contains a value 15 and is coded as 10 1011 (see Section 7.2.2.4). It is followed by the 16 bits 0010100101011010.

7.2.1.2
Block Compression Method

The Block Compression Method is used when the subblock consists of alternating blocks of ones and zeros. The lengths of these blocks are specified. The block_compressed_bit_access_mask has the following format:

class OMABlockCompressedBitmap

{

bit(1) firstbit;

OMADRMNole nole;

OMADRMBlockLength(nole+1) block_length;

}

firstbit: indicates the value of the first bit.

nole (number of list entries): indicates the number of blocks that follow. If k blocks follow, nole contains a value k-1. This value is coded as indicated in Section 7.2.2.3.

block_length: an array that indicates the lengths of the blocks. For a block of length k, the corresponding field block_length contains a value k-1.

EXAMPLE of coding a subblock using the Block Compression Method:

Let us consider the following 512 bit subblock:

20 x '0', 15 x '1', 2 x '0', 80 x '1', 92 x '0',100 x '1', 203 x '0'.

It starts with a '0', therefore firstbit contains a 0.

There are 7 blocks; therefore nole contains the value 6 and is coded as 00 0110 (see Section 7.2.2.3).

Block 1 has a length of 20, therefore its block_length contains the value 19 and is coded as 10 1111, where 1111 is the binary representation of 15=19-4 (see Section 7.2.2.4).

Block 2 has a length of 15; its block_length is coded as 10 1010.

Block 3 has a length of 2; its block_length is coded as 0 01.

Block 4 has a length of 80; its block_length is coded as 110 0111011.

Block 5 has a length of 92; its block_length is coded as 110 1000111.

Block 6 has a length of 100; its block_length is coded as 110 1001111.

Block 7 has a length of 203, its block_length is coded as 1110 00000110110

In this example 67 bits are needed in order to specify the subblock.

7.2.1.3
Outlier Compression Method

The Outlier Compression Method exploits the fact that a subblock can have a sparse amount of '1's or '0's. The outlier_compressed_bit_access_mask has the following format:

class OMAOutlierCompressedBitmap

{

bit(1) range_flag

OMADRMNole nole

OMADRMBlockLength(nole+2) block_length

}

range_flag: indicates the coding type. When it is equal to 0, we have single '1's separated by blocks of '0's. When it equals 1, we have single '0's separated by blocks of '1's. A bit set to the value that is in a minority is called 'outlier'.

nole (number of list entries): indicates the number of blocks. The amount of blocks is one more than the amount of outliers (since the coding starts with a block before the first outlier and ends with a block behind the last outlier). If there are k blocks, nole contains a value of k-2. See Section 7.2.2.3 for the coding of nole.

block_length: an array that indicates the lengths of the blocks. The first block_length defines the length of the block in front of the first outlier, whilst the last block_length defines the length of the block behind the last outlier. Notice that a length 0 is coded as 0. See Section 7.2.2.4 for more details on the coding of block_length.

EXAMPLE of coding a subblock using the Outlier Compression Method:

Let us consider the following 512-bit bit_access_mask:

1x'0', 90 x '1', 1 x '0', 80 x '1', 2 x '0', 338 x '1'.

range_flag is equal to 1, since we have only 4 '0's in the bit_access_mask.

There are 4 '0's covered by 5 blocks, therefore nole contains 00 0011. Notice that 0011 is the binary representation of 3 = 5-2 (see Section 7.2.2.3).

Since the 4 '0's are covered by 5 blocks of '1's (although two of these blocks have length 0), five block_length fields follow:

The first '0' occurs at the first position, so it is considered to be preceded by a block of length 0. Therefore the first block_length contains 0 and is coded as 0 00.

The second '0' occurs after 90 '1's, therefore the second block_length contains the value 90 and is coded as 110 1000110.

The third block_length contains the value 80 and is coded as 110 0111100.

The third block is followed by two adjacent zeros.

The fourth block_length contains the value 0 and is coded as 0 00.

The fifth block_length contains the value 338, and is coded as 1110 00010111110.

In this example 48 bits are needed in order to specify the bit_access_mask.

7.2.2
Efficient Coding Tables

Efficient Coding Tables are used to code values in such a way that low values require a small number of bits, whilst extra bits are included for the higher values. In general they have the following form:

class

{

OMADRMEfficientCodingIndicator indicator;

OMADRMEfficientCodingTranslatedValue translated_value;

}

indicator: bit string of variable length indicating the amount of bits that are used to code the translated_value field.

translated_value: contains the binary representation of the relative position of the value in the value range as can be found in the corresponding Efficient Coding Table. This means that a value X is coded as X-L, where L is the lower bound of the value range that contains X.

7.2.2.1
OMABCROLength

	indicator
	amount of bits for value
	value range

	0
	9
	0 – 511

	10
	11
	512 – 2 559

	110
	14
	2 560 – 18 943

	1110
	20
	18 944 – 1 067 519

	1111
	32
	1 067 520 – 4 296 034 815

For EXAMPLE, the value 1200 is coded as 10 01010110000, where 01010110000 is the binary representation of 688=1200-512.

7.2.2.2
OMAGroupAddress

	indicator
	amount of bits for value
	value range

	0
	6
	0 – 63

	10
	11
	64 – 2 111

	110
	16
	2 112 – 67 647

	1110
	20
	67 648 – 1 116 223

	1111
	32
	1 116 224 - 4 296 083 519

For EXAMPLE, the value 1200 is coded as 10 10001110000, where 10001110000 is the binary representation of 1136=1200-64.

7.2.2.3
OMADRMNole

	indicator
	amount of bits for value
	value range

	00
	4
	0 – 15

	01
	8
	16 – 271

	10
	16
	272 – 65 807

	11
	20
	65 808 – 1 114 383

For EXAMPLE, the value 18 is coded as 01 00000010, where 00000010 is the binary representation of 2=18-16.

7.2.2.4
OMADRMBlockLength

	indicator
	amount of bits for value
	value range

	0
	2
	0 – 3

	10
	4
	4 – 19

	110
	7
	20 – 147

	1110
	11
	148 – 2 195

	11110
	16
	2 196 – 67 731

	11111
	22
	67 732 – 4 262 035

For EXAMPLE, the value 16 is coded as 10 1100, where 1100 is the binary representation of 12=16-4.

A.8 Tag Length Format for keyset_block

A.8.1 Syntax definition

A Tag Length Format (TLF) is defined to identify the keyset_items in the keyset_block. A keyset_item is identified by following syntax:

<tag> [optional <clarifier>] <length> <keyset_item>

Following values are defined and SHALL be used:

tag values:

This is a 4 bit field (bslbf) indicating the tag that uniquely identifies the keyset item.

Table 1: defined tag values

	Keyset_item
	Tag (b)
	remark

	UGK
	0000
	

	SGK
	0001
	

	UDK
	0010
	

	UDF
	0011
	

	LDK
	0100
	

	SLDF
	0101
	shortform_domain_id

	LLDF
	0110
	

	RIAK
	0111
	

	TDK
	1000
	

	CSG
	1001
	

	reserved for future use
	1000-1111
	not used in this version of the spec

Note:

· The keyset items SHALL be included in the order of the table above.

· The keyset SHALL include only one instance of the following keys: UGK, UDK, UDF, RIAK and TDK.

· If included the BGKs (8 or 9) SHALL follow in fashion BGK1..n.

· The keyset MAY include zero or more domain sets (LDK, SLDF, LLDF). If included the SLDF SHALL follow the LDK it belongs to, followed by the optional LLDF that belongs to the aforementioned SLDF.
clarifier (optional):

This is a 10 bit field (bslbf) can be used to indicate the following possible values:

· in case the preceding <tag> value indicates a SGK, this field represents the position of a SGK in the Fiat Naor tree.

· in case the preceding <tag> value indicates a LLDF this field represents the length on the LLDF in bytes
· .in case the preceding <tag> value indicates CSG this field represents the length on the CSG in bytes

describing the use of the clarifier field for position of SGK:

If keyset_item == 001 (i.e. SGK) then the optional field “clarifier” SHALL indicate the position of the SGK as a node in the [FIAT NOAR] tree. When m = groupsize, then n = 2 log (m), where n is number of BGKs in tree. Possible positions for the BGKs in the tree are 2(n+1) -1 . Therefore parameter “position” is expressed with 10 bits to express 1023 nodes in a tree. First MSB left will be used as binary indicator to indicate if the SGK position is a node (0, zero) or a leaf (1, one). Bit positions 2..10 (from left to right LSB) are used in binary format as an indication of the node and leaf position. Nodes and leafs SHALL be numbered according to following Figure 1:

[image: image2.wmf]i

2i+2

2i+1

Parent

node

Right

child

node

Left

child

node

Figure 1: node numbering

Key:

The root key R is numbered zero. Node keys NK are sequentially numbered per “level” in a breadth-first manner from left to right, starting from the root node with number 0

describing the use of the clarifier for length of LLDF:

If LLDF is included the optional field “clarifier” describes the variable length of the LLDF in bits, as described in A.8.3.

length values:

This is a 3 bit field (bslbf) indicating the length of a keyset item. This field SHALL be present for all keyset items except for the LLDF keyset item.
Table 4: defined length values

	(key)length prescriber
	Length (b)
	remark

	128 bit AES
	000
	

	192 bit AES
	001
	

	256 bit AES
	010
	

	5 byte Eurocrypt
	011
	

	6 byte
	100
	SLDF

	reserved for future use
	101-110
	not used in this version of the specification

	nil field
	111
	

	NOTE The nil field MAYbe used in future extensions to ensure that future codecs can be parsed by legacy devices,

Note: In case of the LLDF there is no extra length field, since the length value is indicated by the clarifier.
In case of the CGS, the CGS may be longer than can be indicted with 10 bits. The CGS is then split into 1023 byte parts and the remaning part. The first parts are indicated with clarifier field set to 1023 and the length field to 0b000, 0b001, etc. The remaining part is indicated with clarifier field set to the langth of the remaining part and the length field set one higher to the last one used for the CGS.
A.8.2 TLF examples

E.g.1: A 5 byte Eurocrypt address implementing the UDF will be coded like:

<0011> <011> <UDF>

E.g.2: A 48 bits SLDF address will be coded like:

<0101> <100> <SLDF>

E.g.3: A LLDF address of 105 bytes will be coded like:

<0110> <1101001000> <LLDF>

E.g.4: A 128 but AES key implementing the UGK will be coded like:

<0000> <000> <UGK>

[image: image3.wmf]R

NK1

D1

D0

NK2

NK3

D3

D2

NK4

D5

D4

NK5

D7

D6

NK6

NK10

NK14

NK13

NK12

NK11

NK9

NK8

NK7

Figure 2: sample tree with correct node and device numbering.

E.g.5: A 128 bit AES key implementing the SGK on node position NK5 in Figure 2 will be coded like:

<0001> <0000000101> <000> <SGK>

E.g.6: A 128 bit AES key implementing the SGK on node position NK7 (i.e. D0) in Figure 2 will be coded like:

<0001> <1000000001> <000> <SGK>

A.8.3 LLDF syntax

In OMA DRM 2.0 the domain ID can be 1 to 17 characters (any) followed by 3 digit characters.

The string that forms the identifier is encoded normally in ROAP messages using UTF-8 [RFC 3629]. UTF-8 character encoding for ASCII characters is 'efficient' with 1 byte per character. On the other hand, there are characters that are encoded using 6 bytes (Asian languages).

The 17 XML UTF-8 characters are translated into bytes as follows:

Longest OMA DRM 2.0 domain identifier encoded as bytes is 6*17+3 bytes = 105 bytes.

Shortest domain identifier is 4 bytes.

� key: (O)ptional means that the user of the message MAY include the parameter in the message, but the device MUST support the interpretation of the parameter. (M)andatory means that the user of the message SHALL include the parameter in the message.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 20)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20060101-I]

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 9 (of 20)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20060101-I]

_1179063040.vsd
text�

�

�

�

�

R�

NK1�

D1�

D0�

NK2�

NK3�

�

�

D3�

D2�

NK4�

�

�

�

D5�

D4�

NK5�

�

�

�

D7�

D6�

NK6�

NK10�

NK14�

NK13�

NK12�

NK11�

NK9�

NK8�

NK7�

�

�

�

_1179506636.vsd
�

[1] send registr. data�

ROT / PKI+CRL�

Service Provider / RI�

Customer / Device�

_1174919035.vsd
text�

�

�

�

Parent node�

Right
child
node�

i�

2i+2�

2i+1�

Left child
node�

