Doc# OMA-BCAST-2006-0715R01-Session-key-length-computation.doc[image: image6.jpg]
Change Request

Doc# OMA-BCAST-2006-0715R01-Session-key-length-computation.doc
Change Request

Change Request

	Title:
	OMA-BCAST-2006-0715-Session-key-length-computation
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	BAC BCAST and DLDRM

	Doc to Change:
	OMA-TS-DRM-XBS-V1_0-20060321-D

	Submission Date:
	22 August 2006

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	John Bernsen, john.ac.bernsen@philips.com

	Replaces:
	n/a

1 Reason for Change

This CR is a proposal for solving something that resulted from the discussion of the review comment DX118

on OMA-TS-DRM-XBS-V1_0-20060321-D:
It is unclear from the current XBS document how to compute the length of the session key in a received device_registration_response and domain_registration_response message. This CR proposes this explanation in the form of an appendix.
Furthermore, R01 proposes in change 2 a solution to comment DX121:
“Note (*1) is missing the section to which it refers to.

Proposed resolution:

Fixed reference.”
2 Impact on Backward Compatibility

This CR restores backwards compatibility

3 Impact on Other Specifications

None

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

Members are kindly asked to agree with the indicated changes in 6.

6 Detailed Change Proposal

Change 1

Appendix X
 Session_key length and surplus_block length computation

The session_key is used in two registration messages (device_registration_response, domain_registration_response). The surplus_block is used in the device_registration_response message. This section provides details on the computation of their lengths during message generation and consumption.
The following are definitions of parameters that are used in these computations.

SKlen

= length of session_key in bits (128, 196 or 256 bit)

SKBlen

= length of encrypted sessionkey_block in bits (1024, 2048 or 4096 bit)

SKBPLlen
= length of payload of sessionkey_block in bits (= length of unencrypted sessionkey_block)

SPBlen

= length of encrypted surplus_block in bits

UKSBlen
= length of unencrypted keyset_block in bits

KSBlen

= length of encrypted keyset_block using NIST key-wrap in bits

Computation of surplus_block length during message generation

Using AES key wrap, encryption of n 64-bit plaintext blocks yields n+1 64-bit ciphertext blocks. Therefore:

KSBlen
= (UKSBlen / 64) * 64 + 64 bit

The sessionkey_block uses PKCS#1 encryption, using the RSAES-OAEP algorithm and the SHA-1 hash. This means that a sessionkey_block with length SKBlen bits has a payload of:

SKBPLlen
= SKBlen – 2*80 – 2*8 bit = SKBlen – 176 bit

Therefore, the length of the surplus_block in bits is:

SPBlen
= 0

if (SKlen + KSBlen) ≤ SKBlen – 176

SPBlen
= SKlen + KSBlen – (SKBlen – 176)
if (SKlen + KSBlen) > SKBlen – 176

Computation of the session_key length during reception

The presence or absence of the surplus_block is signalled by the flag surplus_block_flag in the device_registration_response message. The following two paragraphs specify the computation of the length of the session key in both cases.

Surplus_block not present (SPBlen equal to 0)

PKCS#1 using the RSAES-OAEP algorithm accepts a byte string as input. If the number of bytes is less than the payload, byte padding occurs during the encryption process. The decryption process removes this byte padding, so the length in bytes of the input for encryption is known after decoding. Since SKBlen + KSBlen is always a multiple of 64 bits, this means that the exact value of SKBlen + KSBlen is known after PKCS#1 decryption. The registration message contains the key_set_block parameter, which is equal to KSBlen. With a simple subtraction, the length of the session key (Sklen) can be retrieved.

Surplus_block is present (SPBlen unequal to 0)

The total length of the registration message can be retrieved from the RI stream that carried the specific message, see section 11.5.2 RI Stream Packet Format
. From the total length, the length of the surplus_block can be retrieved (SPBlen). The registration message contains the key_set_block parameter, which is equal to KSBlen. The length of the session_key can be computed as follows:

Sklen

= SKBPLlen + SPBlen – KSBlen = SKBlen – 176 + SPBlen – KSBlen

See also the following figure.

[image: image1.emf]surplus_block

sessionkey_block

keyset_block = E

AES-WRAP

{SK}(concatenated keyset || padding)

KSBlen (keysetblock_length)

SK

(session

Key)

SPBlen (surplus_block length)

SK

length

SK length = sessionkey_block length –176 –(keysetblock_length -surplus_block length) bit

SKBlen (sessionkey_block length)

UKSBlen

PKCS#1

overhead

(176 bit)

keyset_block

taglengthitemtaglengthitemtaglengthitemtaglengthitempadding

lengthitemtaglengthitemtaglengthitemtaglengthitempaddingtag

Figure X
: Diagram of keyset_block, session_key_block and surplus_block
Change 2

6.1.3.2.2
Protection of the (device registration) keyset

The device_registration_response() message is split in two parts: device specific (time bound) data and global (not time bound) data.

[image: image2.wmf]Device global data

(in the clear)

Device specific data

Key material

(encrypted)

Other device data

(in the clear)

Longform_udn

signature

Message_tag

Signature over

complete

message

Figure 6: device_registration_response() message

The device global data SHALL be in the clear. The device specific data contains the keyset for the device. This key material SHALL be encrypted, whereas the rest of the device specific data SHALL be in the clear. The key material SHALL be protected by encryption. The RI SHALL use the device’s public key to encrypt all key material in the device specific data part of the message.

The RI SHALL use his private key to sign the complete message data. Upon reception the device SHALL verify the RI signature, by using the issuer’s public key from the RI certificate. The device SHALL make sure that this message is correct by using a valid and correct RI certificate.

The complete message SHALL be authenticated by a signature from the RI.

Creation of the encrypted message SHALL adhere to the following rules:

1. Generate a (128 or 192 or 256) bit AES key to be used as session key (SK) for the device_registration_response() message.

2. Concatenate the keyset (UGK, BGK1..n, UDK, RIAK, UDF and/or LDK, SLDF plus optional LLDF if applicable) under rules of [FIPS_197] and the Tag Length Format described in section A.8.

3. Encrypt the keyset using [AES_WRAP] using the generated SK as (AES-WRAP style) KEK. This will produce the keyset_block.

4. Calculate the part of the keyblock that would fit into the RSA block (depending on the size of RSA used, be that 1024, 2048 or 4096), including the SK and under implementation rules of the PCKS#1. If the keyset_block fits into one RSA block continue at step 5. Else continue at step 4.

5. If the SK plus keyset_block including PCKS#1 header, aligning, etc did not fit into one RSA block, then keep the remainder part as surplus_block().

6. Encrypt SK plus the (part of the)keyset_block that fits into the RSA block with the public key of the target device using RSA (1024 or 2048 or 4096) under implementation guidelines of [PKCS#1]. This will produce the sessionkey_block().

7. Concatenate the (non encrypted) parameters that were not used in the key_block and create the message “header” from this. Refer to 6.1.3.2.3 for details. (for reason of completeness: of course the sessionkey_block(), the (optional) surplus_block() and the signature_block are not part of the message header)

8. Concatenate the message “header” and the sessionkey_block() . If the SK plus keyset_block including PCKS#1 header, aligning, etc did not fit into one RSA block, then also concatenate surplus_block() part. Hash the result under implementation guidelines of [PKCS#1]. Please refer to section A.6. This will produce the signature_input_data.

9. Sign the signature_input_data with RSA (1024 or 2048 or 4096) using the private key of the RI. The signature will apply to the implementation guidelines of PCKS#1, as outlined in A.6. This will produce the signature_block.

10. The device_registration_response() message comprises of the message “header” plus sessionkey_block(), optionally the surplus_block() and the signature_block.

[image: image3.wmf]surplus_block

(AES encrypted)

Sessionkey_block

(RSA encrypted)

Signature_block

(RSA signature)

SK (plus part of

keyset_block that fits into

RSA block (size)

RSA signature

Message “header”

(in the clear)

All but input for keyblocks

below

(optional) Remainder of

keyset_block that did not fit

into RSA block

Keyset_block

(AES encrypted)

Figure 7: structure of device_registration_response() message.

Concluding: The number of RSA blocks used should be kept to a minimum. The AES surplus_block() is present if and when the keyset does not completely fit into the sessionkey_block() given the RSA block size used. If present the AES surplus_block() contains those keys that did not fit into one RSA block (i.e. the sessionkey_block()). The complete keyset needed for operation after registration is included in the encrypted keyset_block, which is concatenated from the first part in the sessionkey_block() and optionally the surplus_block(). Refer to appendix for calculations on the surplus_block_size.

Decryption of the encrypted message SHALL adhere to the following rules:

1. Locate the message via message_tag

2. Verify if the message is intended for this device by comparing the long_form_udn with the UDN stored in the device.

3. Verify the signature_block of the message by using the public key from the RI.

4. Locate the sessionkey_block() and decrypt the block with the private key of the local device. Locate the session key (SK) from the header and (eventual) padding (according to PCKS#1). Then locate the keyset_block part from the header and (eventual) padding (according to PCKS#1). See Appendix X for the determination of the session key length.
5. (Optionally) If there is a surplus_block() concatenate this part to the keyset_block. This will complete the keyset_block.

6. Use the SK to decrypt the keyset_block.

7. Allocate the individual keyset_items from the keyset_block according to [AES_WRAP] and the Tag Length Format described in section A.8.

Note: The SK SHALL be stored into protected storage. The AES encrypted keyset_block MAY be stored as is into unprotected storage and decrypted by the device upon use. If the keyset_block is not stored but the decrypted keys from that block are stored instead, the device SHALL store all key data safely. The keys SHALL NOT leak outside the device.

6.1.2.1.1 device_registration_response message syntax

Table 7: device_registration_response message syntax

	fields
	length
	type

	device_registration_response(){
	
	

	/* signature protected part starts here */
	
	

	/* message header starts here */
	
	

	message_tag
	8
	bslbf

	protocol_version
	4
	bslbf

	sign_bcros_flag
	1
	bslbf

	reserved_for_future_use
	3
	bslbf

	longform_udn()
	80
	bslbf

	status
	8
	bslbf

	flags {
	
	

	ri_certificate_counter
	3
	bslbf

	ocsp_response_counter
	3
	bslbf

	local_time_offset_flag
	1
	bslbf

	time_stamp_flag
	1
	bslbf

	subscriber_group_key_flag
	4
	bslbf

	short_udn_flag
	1
	bslbf

	signature_type_flag
	2
	bslbf

	surplus_block_flag
	1
	bslbf

	keyset_block_length
	16
	uimsbf

	}
	
	

	certificate_version
	8
	bslbf

	for(cnt1=0; cnt1 < ri_certificate_counter ;cnt1++){
	
	

	c_length
	16
	uimsbf

	ri_certificate()
	8*c_length
	bslbf

	}
	
	

	for(cnt2=0; cnt2 < ocsp_response_counter ;cnt2++){
	
	

	r_length
	16
	uimsbf

	ocsp_response()
	8*r_length
	bslbf

	}
	
	

	drm_time
	40
	mjdutc

	if (local_time_offset_flag == 0x1) {
	
	

	local_time_offset
	16
	bslbf

	}
	
	

	if (time_stamp_flag == 0x1) {
	
	

	registration_timestamp_start
	40
	mjdutc

	registration_timestamp_end
	40
	mjdutc

	}
	
	

	if (short_udn_flag == 0x1) {
	
	

	short_udn
	32
	bslbf

	}
	
	

	/* message header ends here */
	
	

	if (signature_type_flag == 0x0){
	
	

	sessionkey_block()
	1024
	bslbf

	} else if (signature_type_flag == 0x1)
	
	

	sessionkey_block()
	2048
	bslbf

	} else if (signature_type_flag == 0x2)
	
	

	sessionkey_block()
	4096
	bslbf

	}
	
	

	if (surplus_block_flag == 0x1){
	
	

	surplus_block()
	(*1)
	bslbf

	padding_bits
	(*2)
	bslbf

	}
	
	

	/* signature protected part ends here */
	
	

	if (signature_type_flag == 0x0){
	
	

	signature_block
	1024
	bslbf

	} else if (signature_type_flag == 0x1)
	
	

	signature_block
	2048
	bslbf

	} else if (signature_type_flag == 0x2)
	
	

	signature_block
	4096
	bslbf

	}
	
	

	}
	
	

key:

(*1) for details please refer to NOTE TO EDITOR: refer here to appendix X introduced in change 1 of this CR.
(*2) (surplus_block() length) mod 8
Change 3

6.4.3.1.2
Protection of the (domain registration) keyset

The domain_registration_response() message is split in two parts: device specific (time bound) data and global (not time bound) data.

[image: image4.wmf]Device global data

(in the clear)

Device specific data

Key material

(encrypted)

Other device data

(in the clear)

Longform_udn

signature

Message_tag

Signature over

complete

message

Figure 7: domain_registration_response() message

The device global data SHALL be in the clear. The device specific data contains the keyset for the device. This key material SHALL be encrypted, whereas the rest of the device specific data SHALL be in the clear. The key material SHALL be protected by encryption. The RI SHALL use the device’s public key to encrypt all key material in the device specific data part of the message.

The RI SHALL use his private key to sign the complete message data. Upon reception the device SHALL verify the RI signature, by using the issuer’s public key from the RI certificate. The device SHALL make sure that this message is correct by using a valid and correct RI certificate.

The complete message SHALL be authenticated by a signature from the RI.

Creation of the encrypted message SHALL adhere to the following rules:

1. Generate a (128 or 192 or 256) bit AES key to be used as session key (SK) for the domain_registration_response() message.

2. Concatenate the keyset (LDK, SLDF plus optional LLDF if applicable) under rules of [FIPS_197] and the Tag Length Format described in section A.8. More than one context is allowed up to the RSA blocksize.

3. Encrypt the keyset using [AES_WRAP] using the generated SK as (AES-WRAP style) KEK. This will produce the keyset_block.

4. Calculate the part of the keyblock that would fit into the RSA block (depending on the size of RSA used, be that 1024, 2048 or 4096), including the SK and under implementation rules of the PCKS#1.

5. Encrypt SK plus the keyset_block with the public key of the target device using RSA (1024 or 2048 or 4096) under implementation guidelines of [PKCS#1]. This will produce the sessionkey_block().

6. Concatenate the (non encrypted) parameters that were not used in the key_block and create the message “header” from this. Refer to 6.4.3.1.3 for details. (for reason of completeness: of course the sessionkey_block() and the signature_block are not part of the message header)

7. Concatenate the message “header” and the sessionkey_block() . Hash the result under implementation guidelines of [PKCS#1]. Please refer to section A.6. This will produce the signature_input_data.

8. Sign the signature_input_data with RSA (1024 or 2048 or 4096) using the private key of the RI. The signature will apply to the implementation guidelines of PCKS#1, as outlined in A.6. This will produce the signature_block.

9. The domain_registration_response() message comprises of the message “header” plus sessionkey_block() and the signature_block.

[image: image5.wmf]Sessionkey_block

(RSA encrypted)

Signature_block

(RSA signature)

SK (plus keyset_block that

fits into RSA block (size)

RSA signature

Message “header”

(in the clear)

All but input for keyblocks

below

Keyset_block

(AES encrypted)

Figure 8: structure of domain_registration_response() message.

Decryption of the encrypted message SHALL adhere to the following rules:

1. Locate the message via message_tag

2. Verify if the message is intended for this device by comparing the long_form_udn with the UDN stored in the device.

3. Verify the signature_block of the message by using the public key from the RI.

4. Locate the sessionkey_block() and decrypt the block with the private key of the local device. Locate the session key (SK) from the header and (eventual) padding (according to PCKS#1). Then locate the keyset_block part from the header and (eventual) padding (according to PCKS#1). See Appendix X for the determination of the session key length.
5. Use the SK to decrypt the keyset_block.

6. Allocate the individual keyset_items from the keyset_block according to [AES_WRAP] and the Tag Length Format described in section A.8.

Note: The SK SHALL be stored into protected storage. The AES encrypted keyset_block MAY be stored as is into unprotected storage and decrypted by the device upon use. If the keyset_block is not stored but the decrypted keys from that block are stored instead, the device SHALL store all key data safely. The keys SHALL NOT leak outside the device.

�Note to editor, please select an appropriate place for this appendix.

�Note to editor: insert correct reference.

�Note to editor: insert correct figure number.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 8)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20060101-I]

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 8 (of 8)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20060101-I]

_1171444797.vsd
surplus_block
(AES encrypted)�

Sessionkey_block
(RSA encrypted)�

Signature_block
(RSA signature)�

(optional) Remainder of keyset_block that did not fit into RSA block�

SK (plus part of keyset_block that fits into RSA block (size)�

RSA signature�

Message �header�
(in the clear)�

All but input for keyblocks below�

Keyset_block
(AES encrypted)�

_1217425305.vsd
sessionkey_block

keyset_block

tag

length

item

tag

length

item

keyset_block = E AES-WRAP {SK}(concatenated keyset || padding)

tag

length

item

KSBlen (keysetblock_length)

PKCS#1 overhead (176 bit)

surplus_block

tag

length

SK
(session
Key)

item

tag

SPBlen (surplus_block length)

tag

length

item

length

item

tag

length

SK
length

SK length = sessionkey_block length – 176 – (keysetblock_length - surplus_block length) bit

SKBlen (sessionkey_block length)

padding

UKSBlen

item

tag

length

item

padding

_1175965624.vsd
Sessionkey_block
(RSA encrypted)�

Signature_block
(RSA signature)�

SK (plus keyset_block that fits into RSA block (size)�

RSA signature�

Message �header�
(in the clear)�

All but input for keyblocks below�

Keyset_block
(AES encrypted)�

_1170257600.vsd
Device global data
(in the clear)�

Device specific data
�

�

Key material (encrypted)�

Other device data (in the clear)�

Longform_udn�

signature�

Message_tag�

Signature over complete message�

