Doc# OMA-BCAST-2006-0748R02-CR_MKIFIX.doc[image: image1.jpg]
Change Request

Doc# OMA-BCAST-2006-0748R02-CR_MKIFIX.doc
Change Request

Change Request

	Title:
	SRTP STKM Consistency Update
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	SEC/BCAST

	Doc to Change:
	OMA-TS-BCAST_SvcCntProtection-V1_0-20060412-D

	Submission Date:
	11 September 2006

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Alexander Medvinsky, Motorola, smedvinsky@motorola.com
David Castleford, Orange, david.castleford@orange-ft.com

	Replaces:
	n/a

1 Reason for Change

The current STKM definition assumes that the next value of MKI (SRTP Master Key identifier) is always implicitly calculated as the current MKI +1. This creates an incompatibility with the Smart Card profile as well as with 3GPP MBMS in the scenarios where we would like to have a single SRTP-encrypted content stream and have the same Traffic Keys delivered both in STKMs and in MIKEY messages used by the Smart Card profile.

In 3GPP MBMS the MKI is constructed as a concatenation of a 4-byte MSK ID (MBMS Service Key Identifier) and a 2-byte MTK ID (MBMS Traffic Key Identifier). In this case, the next MKI cannot always be current+1. Even if the MTK ID for the same service could be assumed to always increment by 1 for the next traffic key, it could still wrap around from 0xFFFF to 0x0000. In this example, the MKI value will not wrap around – since it is constructed from both the MSK ID and MTK ID, only the last 2 bytes of the MKI will wrap around.
Similarly, the Smart Card profile defines the MKI to be 4 zero-bytes followed by the MBMS MTK ID. If the next MKI were always current+1, then after enough key changes on the same service the 4 leftmost bytes of the MKI would no longer be all zero.

This incompatibility can be fixed by specifying the next MKI value directly inside an STKM – the same way as it is done for the SPI value used by IPsec.
Changes in Revision R02:

Moved the master_key_index_length and master_key_index fields to the beginning of the SRTP section in the STKM message description. Also, rearranged the descriptions below the STKM table, so that it is in the same order as the table itself.
2 Impact on Backward Compatibility

N/A
3 Impact on Other Specifications

N/A.
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

Authors kindly ask BCAST Group to agree the CR to be added to the latest Service and Content Protection Specification.
6 Detailed Change Proposal

5.5 Layer 3: Short Term Key Message - STKM
STKM SHALL be encapsulated in exactly 1 UDP packet.

In order to keep access times low for devices that start accessing a service, a STKM SHALL be transmitted periodically.

The STKM SHALL be transported over the same network stack as the media streams that are protected with the traffic keys contained in the STKM. The STKM stream MAY be transported in an own session, e.g., an RTP session.

	Short_Term_Key_Message_Description
	Length
	Type

	short_term_key_message() {
	
	

	
selectors_and_flags {
	
	

	

protocol_version
	4
	uimsbf

	

protection_after_reception
	2
	uimsbf

	

terminal_binding_flag
	1
	bslbf

	

access_criteria_flag
	1
	uimsbf

	

traffic_protection_protocol
	3
	uimsbf

	

traffic_authentication_flag
	1
	uimsbf

	

next_traffic_key_flag
	1
	uimsbf

	

timestamp_flag
	1
	uimsbf

	

programme_flag
	1
	uimsbf

	

service_flag
	1
	uimsbf

	
}
	
	

	
if (traffic_protection_protocol == TKM_ALGO_IPSEC) {
	
	

	

security_parameter_index
	32
	uimsbf

	

if (next_traffic_key_flag == KSM_FLAG_TRUE) {
	
	

	

next_security_parameter_index
	32
	uimsb

	

}
	
	

	
}
	
	

	
if (traffic_protection_protocol == TKM_ALGO_SRTP) {
	
	

	

master_key_index_length
	8
	uimsbf

	

master_key_index
	8*master_key_index_length
	uimsbf

	 reserved_for_future_use
	5
	bslbf

	 next_master_key_index_flag
	1
	uimsbf

	 next_master_salt_flag
	1
	uimsbf

	 master_salt_flag
	1
	uimsbf

	
	
	

	
	
	

	if (master_salt_flag == TKM_FLAG_TRUE) {
	
	

	master_salt
	112
	bslbf

	 }
	
	

	

if (next_traffic_key_flag == KSM_FLAG_TRUE) {
	
	

	 if (next_master_key_index_flag == KSM_FLAG_TRUE) {
	
	

	 next_master_key_index
	8*master_key_index_length
	uimsbf

	 }
	
	

	 if (next_master_salt_flag == TKM_FLAG_TRUE) {
	
	

	 next_master_salt
	112
	bslbf

	 }
	
	

	

}
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
}
	
	

	
if (traffic_protection_protocol == TKM_ALGO_ISMACRYP) {
	
	

	

key_indicator
	8*key_indicator_length
	uimsbf

	

if (next_traffic_key_flag == TKM_FLAG_TRUE) {
	
	

	

key_indicator
	8*key_indicator_length
	uimsbf

	

}
	
	

	
}
	
	

	
if (traffic_protection_protocol == TKM_ALGO_DCF) {
	
	

	

key_identifier_length
	8
	uimsbf

	

key_identifer
	8*key_identifier_length
	bit string

	
}
	
	

	
encrypted_traffic_key_material_length
	8
	uimsbf

	
encrypted_traffic_key_material
	8*encrypted_traffic_key_material_length
	bslbf

	
if (next_traffic_key_flag == TKM_FLAG_TRUE) {
	
	

	

next_encrypted_traffic_key_material
	8*encrypted_traffic_key_material_length
	bslbf

	
}
	
	

	
reserved_for_future_use
	4
	bslbf

	
traffic_key_lifetime
	4
	uimsbf

	
if (timestamp_flag == TKM_FLAG_TRUE) {
	
	

	

Timestamp
	40
	mjdutc

	
}
	
	

	
if (access_criteria_flag == TKM_FLAG_TRUE) {
	
	

	

reserved_for_future_use
	8
	bslbf

	

number_of_access_criteria_descriptors
	8
	uimsbf

	

access_criteria_descriptor_loop() {
	
	

	

access_criteria_descriptor()
	
	

	

}
	
	

	
}
	
	

	
if (programme_flag == TKM_FLAG_TRUE) {
	
	

	

programme_selectors_and_flags {
	
	

	

reserved_for_future_use
	6
	bslbf

	

permissions_flag
	1
	uimsbf

	

}
	
	

	

if (permissions_flag == TKM_FLAG_TRUE) {
	
	

	

permissions_category
	8
	uimsbf

	

}
	
	

	

if (service_flag == TKM_FLAG_TRUE) {
	
	

	

encrypted_PEK
	128
	bslbf

	

}
	
	

	

programme_CID_extension
	32
	uimsbf

	

programme_MAC
	96
	bslbf

	
}
	
	

	
if (service_flag == TKM_FLAG_TRUE) {
	
	

	

service_CID_extension
	32
	uimsbf

	

service_MAC
	96
	bslbf

	
}
	
	

	}
	
	

Descriptors for access_criteria_descriptor_loop
	Tag
	8
	uimsbf

	Length
	8
	uimsbf

	Value
	8xlength
	bit string

The access criteria descriptor loop is an extension mechanism to allow the addition of new access criteria in the future versions of this specification. The device SHALL ignore access criteria descriptors that it doesn’t support.

A single access criteria descriptor can carry one or more access criteria.

The following access criteria descriptors have been defined:

parental_rating – is the parental rating of the programme. The descriptor tag for this descriptor is 1. The value for this descriptor is encoded as follows:

Table 1: parental_rating Access Criteria Descriptor

	parental_rating descriptor
	Length
	Type

	rating_type
	7
	uimsbf

	country_code_flag
	1
	uimsbf

	rating_value
	8
	uimsbf

	if (country_code_flag == KSM_FLAG_TRUE) {
	
	

	
number_of_country_codes
	8
	uimsbf

	
for (i = 0; i < number_of_country_codes; i++) {
	
	

	

country_code
	16
	uimsbf

	
}
	
	

	}
	
	

The optional list of country_code specifies that the rating is for a specific list of one or more countries, which is analogous to the MPEG-7 definition of the ParentalGuidanceType. Each country code is a 2-character value that must be compliant with ISO-3166.

The rating_type with values 0 through 8 specifies one of the content rating systems that are defined by MPEG-7 and rating value is an integer with the meaning that is dependent on the rating_type. The rating values for rating type 0 through 8 are exactly as they had been defined by MPEG-7. Rating type 9 is for the parental rating for the German system.
	rating_type
	Name
	Description
	rating_value

	0
	N/A
	ETSI EN 300 468 for the parental_rating_descriptor in DVB systems
	Minimum allowable age.

	1
	JapaneseAdmCommMotionPictureCodeEthicsParentalRatingCS
	Japanese Motion Picture Parental Rating
	1=PG12
2=R-15
3=R-18
4=None

	2
	ICRAParentalRatingCS
	Internet Content Rating Association Parental Rating
	1=Level4
2=Level3
3=Level2

	3
	MPAAParentalRatingCS
	MPAA Parental Rating
	1=G
2=PG
3=PG-13
4=R
5=NC-17
6=NR

	4
	ICRAParentalRatingNudityCS
	Internet Content Rating Association Parental Rating for Nudity
	1=Level4
2=Level3
3=Level2
4=Level1
5=Level0
6=None

	5
	RIAAParentalRatingCS
	RIAA Parental Rating
	1=Parental advisory
2=None

	6
	ICRAParentalRatingSexCS
	Internet Content Rating Association Parental Rating for Sex
	1=Level4
2=Level3
3=Level2
4=Level1
5=Level0
6=None

	7
	MPAAParentalRatingTVCS
	MPAA Parental Rating for TV
	1=TVY
2=TVY7
3=TVG
4=TVPG
5=TV14
6=TVMA
7=None

	8
	ICRAParentalRatingViolence
	
	1=Level4
2=Level3
3=Level2
4=Level1
5=Level0
6=None

	9
	GermanyFSK
	German Freiwillige Selbstkontrolle der Filmwirtschaft Rating System
	1=0 (Freigegeben ohne Altersbeschränkung)
2=6 (Freigegeben ab 6 Jahren)
3=12 (Freigegeben ab 12 Jahren)
4=16 (Freigegeben ab 16 Jahren)
5=18 (Keine Jugendfreigabe)

Constant Values

TKM_ALGO_IPSEC
0

TKM_ALGO_SRTP
1

TKM_ALGO_ISMACRYP
2

TKM_ALGO_DCF

TKM_FLAG_FALSE
0

TKM_FLAG_TRUE
1

Coding and Semantics of Attributes

protocol_version – indicates the protocol version of this key stream message.

The device SHALL ignore messages that have a protocol_version number it doesn’t support. The value of the protocol_version of this message is set to 0x0 (i.e. the original format).

Note: If set to 0x0 the format specified in this version of the specification is used. If set to anything else than 0x0, then the format is beyond the scope of this version of the specification.

protection_after_reception – 2-bit field defining the required protection after the removal of the service protection, according to the following table:

Table 2: Protection_after_Reception Values

	Value
	Description

	0x00
	Content protection

Device has to protect all content against access in the clear.

Only the explicitly allowed types of consumption as defined in Rights Objects that the device has for this service or programme are permitted,

An example permission is 'Access' for the immediate rendering of the service or programme.

	0x01
	Implicit rendering permission; ROs may provide additional rights

Device has to protect all content against access in the clear, but:
Direct rendering is implicitly allowed; no Rights Object is required in the device for this, or an RO with only the service or programme key but without any permissions is sufficient,
The device needs to have an RO with the appropriate permissions (and possibly constraints) for any other type of consumption.

	0x02
	Render and recording play back only

Device has to protect all content against access in the clear, but implicitly, two types of consumption are allowed:

· Direct rendering, and
· Play back of protected recordings of this service or programme, which are made by the device itself
.

Apart from the above two types, no consumption is allowed, not even any consumption granted with Rights Object(s).

The above two types of consumption may also be made available over appropriately protected digital links.

	0x03
	Service Protection

This specification does not impose any protection measures for the content after the removal of service protection.

Note that for e.g. legal or other reasons, the device still might have to protect the content in some way.

terminal_binding_flag – indicates whether or not terminal binding is required for the smartcard profile. 0 indicates it is not required, 1 indicates it is required.

traffic_protection_protocol – defines the protocol used for the encryption and authentication of traffic:

	TKM_ALGO_IPSEC
	IPsec ESP (transport mode; encryption: AES-128-CBC [key length 128]; authentication: HMAC-SHA1-96 [key length 160] or NULL).

	TKM_ALGO_SRTP
	SRTP (encryption: AES-128-CTR [key length 128]; authentication: HMAC-SHA1-80 [key length 160] or NULL).

	TKM_ALGO_ISMACRYP
	AU encryption (encryption: AES-128-CTR [key length 128]; SRTP authentication: HMAC-SHA1-80 [key length 128] or NULL).

	TKM_ALGO_DCF
	DCF encryption (encryption: AES-128-CBC [key length 128]; authentication: HMAC-SHA1-80 [key length 160])

	Other values
	Reserved for future use

Whether or not authentication is used depends on <traffic_authentication_flag>.

traffic_authentication_flag – defines whether or not the traffic is authenticated:

	TKM_FLAG_FALSE
	Traffic authentication is not used.

	TKM_FLAG_TRUE
	Traffic authentication is used, and the algorithm depends on <traffic_protection_protocol>.

next_traffic_key_flag – indicates whether or not the Short Term Key Message contains the next traffic key material:

	TKM_FLAG_FALSE
	The Short Term Key Message contains only the current traffic key material.

	TKM_FLAG_TRUE
	The Short Term Key Message contains both the current and the next traffic key material.

The next traffic key material SHALL be be included at least 1 second before it becomes current. This is to enable the devices to process the traffic key material and put the necessary security associations in place before the media packets that are encrypted with the next traffic encryption key start arriving.

The next traffic key material SHALL NOT be included earlier than 1 minute before it becomes current. This is to limit the effect on pay-per-view enforcement that is caused by sending the next traffic key material encrypted with the encryption key of a program that may end before the next traffic key becomes current to maximally 1 minute.

The above times SHALL be relative to the moment of transmission of the key stream messages.

timestamp_flag – indicates whether or not the key stream message contains a timestamp:

	TKM_FLAG_FALSE
	The key stream message does not contain a timestamp.

	TKM_FLAG_TRUE
	The key stream message contains a timestamp.

program_flag – indicates whether or not the program key layer is present in the Short Term Key Message:

	TKM_FLAG_FALSE
	The PEK is not present, i.e. the optional program key layer is not used for the service.

	TKM_FLAG_TRUE
	The PEK is present, i.e. the optional program key layer is used for the service.

<program_flag> and <service_flag> SHALL NOT both be 0. All other combinations are allowed, indicating that either one or both of the key layers are present.

service_flag – indicates whether or not the service block is present in the Short Term Key Message:

	TKM_FLAG_FALSE
	The SEK is not present, i.e. the optional service key layer is not used for the service.

	TKM_FLAG_TRUE
	The SEK is present, i.e. the optional service key layer is used for the service.

<program_flag> and <service_flag> SHALL NOT both be 0. All other combinations are allowed, indicating that either one or both of the key layers are present.

security_parameter_index – provides the link to the IPsec ESP header:

Upon reception of a protected IP packet, the terminal SHALL use the security parameter index (SPI) to identify (look up) the correct security association and thereby find the decryption and authentication keys to be used for the received IPsec ESP packet. The SPI value SHALL be in the range 0x00000100 – 0xFFFFFFFF. An incoming ESP packet containing the SPI value specified in this field SHALL use the keymaterial provided in the encrypted traffic key material field as keymaterial for the decryption operation.

next_security_parameter_index – provides the link to the IPsec ESP header:

This field is present in the packet only if next traffic key flag is set to true. This field then contains the IPSec SPI value corresponding to the next_encrypted traffic key material field. The value of the SPI SHALL be in the range 0x00000100 – 0xFFFFFFFF. An incoming ESP packet containing the SPI value specified in this field SHALL use the keymaterial provided in the next encrypted traffic key material field as keymaterial for the decryption operation.
master_key_index_length – provides the length of the master_key_index field

This field gives the length of the master_key_index field in bytes.
master_key_index – provides the link to the SRTP header:

Upon reception of a protected RTP packet, the terminal SHALL use the master key index (MKI) to identify (look up) the correct security association and thereby find the decryption and authentication keys to be used for a received SRTP packet.

This field is a sequence of 8-bit values. The sequence consists of master_key_index_length bytes. The bytes are in the same order that they will be in an SRTP packet and SHALL be in SRTP [RFC3711] network byte-order when extracting the MKI value.

next_master_key_index_flag – specifies if the master key index (MKI) for the next TEK is explicitly included in the SRTP parameters (as the next_master_key_index field). In the case that the next_master_key_index is not present in the message, the value of current MKI+1 SHALL be assumed. In the case when the next_traffic_key_flag is false there is no information related to the next traffic key included in the message and this parameter does not apply.
next_master_salt_flag – specifies if the next SRTP master salt value corresponding to the next TEK is explicitly included in the SRTP parameters (as the next_master_salt field). In the case that the next_master_salt is not present in the message, the same value as for the current master salt SHALL be assumed. In the case when the next_traffic_key_flag is false there is no information related to the next traffic key included in the message and this parameter does not apply.
master_salt_flag – specifies if the master salt is included in the SRTP parameters. In the case that the master salt is not present in the message, a NULL value consisting of 112 0-bits SHALL be assumed.

master_salt – SRTP master salt that is used along with the master key to derive SRTP session keys as defined by SRTP [RFC3711].

next_master_key_index – provides the link to the SRTP header:
This field is present in the packet only if the next_traffic_key_flag and the next_master_key_index_flag are both set to true. This field then contains the SRTP MKI value corresponding to the next_encrypted traffic key material field. An incoming protected RTP packet containing the MKI value specified in this field SHALL use the key material provided in the next encrypted traffic key material field as key material for the decryption operation.
next_master_salt – next value of the SRTP master salt that is used along with the next master key to derive SRTP session keys as defined by SRTP [RFC3711].
This field is present in the packet only if the next_traffic_key_flag and the next_master_salt_flag are both set to true. This field then contains the SRTP master salt value corresponding to the next_encrypted traffic key material field. An incoming protected RTP packet containing the next MKI value SHALL use the next master salt value provided in this field during the SRTP session key derivation.

key_indicator – value of the KeyIndicator used to identify the TEK transported in the STKM. This is used to identify the particular TEK key needed to decrypt AUs (as indicated in the OMADRMAUheader). The key_indicator_length parameter is part of the Session Description Protocol (SDP) and is described in Section Error! Reference source not found..

key_identifier_length – indicates the length in bytes of the key_identifier.

key_identifier – value of the identifier used to identify the TEK key transported in the traffic key stream message. This is used to identify the particular TEK needed to decrypt DCF encoded files.

encrypted_traffic_key_material_length – is the length in bytes of the encrypted traffic key material.

The length of the traffic key material depends on the encryption and authentication algorithm, and is obtained by adding the respective key sizes. Encryption MAY require the clear-text key material to be padded.

encrypted_traffic_key_material – is the key material currently used for encryption and optional authentication of the traffic, encrypted using AES-128-CBC, with fixed IV 0, and with 0 padding in the last block, if needed.

If <programme_flag> == TKM_FLAG_TRUE, the traffic key material is encrypted with the Programme Encryption Key (PEK).

If <programme_flag> == TKM_FLAG_FALSE and <service_flag> == TKM_FLAG_TRUE, the traffic key material is encrypted with the Service Encryption Key (SEK).

After decryption (and discarding any padding), the Traffic Encryption Key (TEK) and the Traffic Authentication Key (TAK) are obtained in a way that depends on the protocol used for traffic protection:

IPsec: If no traffic authentication is used, the TEK is identical to the decrypted traffic key material (16 bytes).
If traffic authentication is used, TEK and Traffic Authentication Seed (TAS) are obtained by splitting the decrypted traffic key material into two parts, where the TEK is identical to the first 16 bytes, and the TAS is identical to the second 16 bytes. The TAK (20 bytes) is derived from the TAS, as described in Section Error! Reference source not found..

SRTP: The master key is identical to the decrypted traffic key material and SHALL always be a 16-byte key. How the TEK and TAK are derived from the master key is defined by SRTP.
ISMACRYP: If no traffic authentication is used, the decrypted traffic key material is identical to the key used for the AES-CTR decryption and its length is 16 bytes. If authentication is used, the first 16 bytes of the decrypted traffic key material are the TEK, while the remaining16 bytes are the key used for authentication as described by STRP.

next_encrypted_traffic_key_material – is the encrypted key material used for encryption and optional authentication of the traffic after the current crypto period is over and the next crypto period starts. The structure of this attribute is the same as for the encrypted_traffic_key_material attribute.
traffic_key_lifetime – is the lifetime in seconds of the Traffic Encryption Key, relative to the first occurrence of an SPI or MKI.

If <traffic_key_lifetime> is n, then the actual lifetime is 2n seconds, as presented in the following table:

Table 3: Traffic Key Lifetime

	value of traffic_key_lifetime attribute
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15

	actual lifetime of traffic key material (seconds)
	1
	2
	4
	8
	16
	32
	64
	128
	256
	512
	1024
	2048
	4096
	8192
	16384
	32768

Note: Although the allowed values for the traffic_key_lifetime span from seconds to hours, service providers should not use TKM key material to realize long term key functionality. The TKM messages should be considered and used strictly for short-term key signalling. Also, the lifetime of traffic keys should be considerably shorter than the lifetime of service keys and program keys, to avoid users receiving the service or PPV event (encrypted with traffic keys) even after their service key or current program key has expired.
The following scenario may help in explaining the note. The field "next_encrypted_traffic_key_material" maybe present in the STKM. The field is encrypted with the current Service Key or current Program Key. If someone subscribes to a service, or someone purchases a PPV event, then the person obtains both the current TEK and the next TEK. At the end of the service period, or the end of a PPV event, this means that the person has also a TEK for the next service period or the next PPV event. If the person stops subscription at the end of the current service period or the end of the current PPV event, then the person still has access to the first TEK of the next service period or next PPV event. When the maximum TEK lifetime is 1.5 minutes, a subscriber can at most have 1.5 minutes of unauthorized content, which may not be considered to be excessive. If the traffic_key_lifetime becomes 2 hours, then the subscriber may have excessive access to unauthorized conetnt, especially in the case of PPV events, because the person now may have 2 hours of unauthorized content.

The TEK can be changed frequently to mitigate the risk of end-users posting the key via the interactive channel so that non-members can download that key. The cost of the attack, i.e., extracting the key, and uploading and downloading the key should be made to be more expensive than the cost of BCAST service/content. The frequency of change depends on the value of the BCAST service/content. For high-value PPV content, the TEK SHOULD be changed frequently whereas for low-value content, the TEK MAY be changed infrequently. The exact frequency is a configurable value and does not have impact on interoperability. The option to include two consecutive keys into one STKM, using next_encrypted_traffic_key_material, should be executed with care, since it allows the end user in any case to access service for 2*traffic_key_lifetime.

In the case when a Program Event is available either through subscription or as a PPV event, a STKM containing the next TEK at the end of a PPV program would allow a PPV user to view part of the next PPV event that corresponds to the next TEK. In this case, if next_encrypted_traffic_key_material is used, it SHOULD be utilized with sufficiently short Traffic Key lifetimes so as not to provide PPV users with free access to a PPV event that has not yet been purchased.
The actual duration of the crypto period SHALL be strictly shorter than the defined lifetime of the traffic key material. Typically, an SPI or MKI appears for the first time implicitly, when the “next” traffic key material is included in a STKM. Any safety margins to cope with network and transmission delays SHALL be added by the network. A typical value for the lifetime could be three times the crypto period.

The maximal value for the crypto period duration is in practice slightly shorter than the TEK lifetime, because the TKM will include the “current” and “next” traffic key material before a change of crypto period, to allow the devices to set up the security associations.

After the lifetime has expired, the security association containing the TEK can be safely deleted by the terminal. This may help managing the security association database in the terminal or enable other optimizations.

The maximum value for the TEK lifetime is defined mainly in order to have a strict upper bound for the effect of the “sneak post view” problem: the next traffic key material is distributed under the current PEK, and allows viewers to view a programme during the next crypto period. Should this possibility still be of a concern, the network MAY choose a shorter crypto period than the maximum value, or, during the crypto period where the current programme ends and a new programme starts, choose to distribute the current and the next traffic key material in separate STKMs, encrypted with their respective PEKs.

timestamp – Field containing a timestamp at the point of sending the key stream message. The timestamp SHALL be used as a reliable time of reception of the associated media stream for post-acquisition permissions. The device SHALL not use the timestamp as a reliable source for DRM time.

The format of the 40-bit mjdutc field is specified in Section Error! Reference source not found.. This 40-bit field contains the timestamp of the key stream message in Universal Time, Co-ordinated (UTC) and Modified Julian Date (MJD). This field is coded as 16 bits giving the 16 LSBs of MJD followed by 24 bits coded as 6 digits in 4-bit Binary Coded Decimal (BCD).

As an example, 93/10/13 12:45:00 is coded as "0xC079124500".

access_criteria_flag – indicates whether or not access criteria are defined for the program:

	TKM_FLAG_FALSE
	No access criteria are defined, implying that the terminal is allowed to access program without further restrictions (provided the necessary keys are available to the terminal).

	TKM_FLAG_TRUE
	Access criteria are defined, implying that the terminal is allowed to access the program only if the specified access criteria are met.

Access criteria cannot change during a program, i.e. as long a PEK is valid.
permissions_flag – indicates whether or not permissions category is defined for the programme:

	KSM_FLAG_FALSE
	No permissions category is defined.

	KSM_FLAG_TRUE
	Permissions category is defined.

number_of_access_criteria_descriptors – indicates the number of access criteria descriptors.
permissions_category – indicates the permissions category for the programme:

	0x00
	No permissions category, RO applies as such,

	0x01...0x3F
	Permissions_category is included in the post- acquisition permissions lookup.

	0x40...0xFF
	Reserved for future standardization.

If permissions_category is in the range 0x01...0x3F,

· In case of ICRO, the device SHALL use as service_CID for post-acquisition permissions lookup the text string

service_CID = bsdaID + "#S" + serviceBaseCID + "@" + hex(service_CID_extension) + "_" + hex(permissions_category)
and then apply the permissions specified in the service ICRO for this asset.
· In case of BCRO, the device SHALL look up the permissions specified in the service BCRO for the asset that has a matching permissions_category field.

If permissions_category is in the (reserved for future standardization) range 0x40...0xFF, and the device does not support it, the device SHALL drop (i.e. ignore) all post-acquisition permissions (like play, redistribute etc.) indicated in the service RO, or if the device cannot do such permissions dropping, allow real-time rendering of the streaming content only (i.e. refuse to record the content, or to redistribute it in real time). Permissions_category has no impact on a Programme RO. The permissions delivered in a Programme RO apply as such.

encrypted_PEK – is the Programme Encryption Key (PEK) used within the current STKM to decrypt the traffic key material, encrypted using AES-128-CBC with a fixed IV equal to 0. The PEK is encrypted with the SEK.

program_CID_extension – is the extension of the program_CID which allows to identify the program key material that has been delivered to the device within a LTKM for a program.

Note that for BCRO, a binary, fixed-size version of the content ID (CID) is needed. This ID is called BCI in this specification.

The CID/BCI of the service key is constructed as:

program_CID = bsdaID + "#P" + serviceBaseCID + "@" + hex(program_CID_extension)

program_BCI = hash(bsdaID + "#P" + serviceBaseCID + "@") + program_CID_extension

The bsdaID and serviceBaseCID are string values and are expected to be part of the service guide. Upon receiption of a STKM, the terminal can assemble the program_CID/BCI and look up the PEK (wrapped inside a LTKM).

The hex() function is a hexadecimal presentation of the parameter containing hexadecimal characters 0-9 and a-f (in lowercase) with possible preceding zeros. As an example, for a 16 bit value 2748, hex() returns "0abc". Note that two characters are always generated for each byte.
The hash function for the construction of program_BCI is SHA1-64. It doesn’t depend on the contents of the STKM, and can thus be pre-computed.

If the permissions_category field is present and has a nonzero value, the Service_CID of the service is constructed as specified above (at description of the permissions_category field).

bsdaID is the globally co-ordinated ID of the broadcast service distribution/adaptation center.

program_MAC – is the HMAC-SHA-1-96 according to [RFC2104] and [RFC2404] calculated over all preceding fields of the Short Term Key Message. It is used to authenticate the relevant part of the STKM in case of pay-per-view, where a PEK from a LTKM for a program is used to directly decrypt the traffic key material.

In case the terminal is accessing the STKM with a LTKM for a program, the terminal SHALL compute the program MAC, and drop the message if authentication fails. In this case, <program_MAC> MAY also be used to detect and drop duplicates (it can be expected that a particular STKM is repeated multiple times, in order to keep access times short for terminals that newly start receiving a broadcast transmission).

In case the terminal is accessing the STKM with a LTKM for a service, it will not be able to compute the program MAC, and there is no need for it to do so.

service_CID_extension – is the extension of the service_CID which allows to identify the service key material that has been delivered to the device within a LTKM for a service.

Note that for BCRO, a binary, fixed-size version of the content ID (CID) is needed. This ID is called BCI in this specification.

The CID/BCI of the service key is constructed as:

service_CID ::= bsdaID + "#S" + serviceBaseCID + "@" + ascii(service_CID_extension)

service_BCI ::= hash(bsdaID + "#S" + serviceBaseCID + "@") + service_CID_extension

The bsdaID and serviceBaseCID are string values and are expected to be part of the service guide. Upon reception of a STKM, the terminal can assemble the service_CID/BCI and look up the SEK (wrapped inside a LTKM).

The hash function for the construction of service_BCI is SHA1-64. It doesn’t depend on the contents of the STKM, and can thus be pre-computed.

bsdaID is the globally co-ordinated ID of the broadcast service distribution center.

service_MAC – is the HMAC-SHA-1-96 according to [RFC2104] and [RFC2404] calculated over all preceding fields of the Short Term Key Message. It is used to authenticate the STKM with SAK in case of subscription, where a SEK from a LTKM for a service is used to decrypt the PEK and further decrypt the traffic key material.

In case the terminal is accessing the STKM with a LTKM for a service, the terminal SHALL compute the service MAC, and drop the message if authentication fails, i.e. if the computed MAC doesn’t correspond to <service_MAC>. In this case, <service_MAC> MAY also be used to detect and drop duplicates (it can be expected that a particular traffic key message is repeated multiple times, in order to keep access times short for terminals that newly start receiving a broadcast transmission).

In case the terminal is accessing the STKM with a LTKM for a program, it need not to compute the service MAC.

� In principle, any device that has the service or programme key should be allowed to play back these recordings. However, present OMA DRM specifications require that an OMA DRM V2 agent has the appropriate Rights Objects for being allowed to play back (P)DCF files. The constraint “which are made by the device itself” can be relaxed once play back of (P)DCF files when having just a service or programme key has been standardised.

�Incorporated from CR OMA-BCAST-2006-0506R01

�Incorporated from CR OMA-BCAST-2006-0506R01

�Incorporated from CR OMA-BCAST-2006-0506R01

�Incorporated from CR OMA-BCAST-2006-0506R01

�Incorporated from CR OMA-BCAST-2006-0506R01

�Incorporated from CR OMA-BCAST-2006-0506R01

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 13)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20050824-I]

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Page 12 (of 12)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20050824-I]

