OMA-BCAST-2006-1002-CR_XBS_Introduction_for_Broadcast_Device_and_Domain_Management[image: image15.jpg].doc
Change Request

Doc# OMA-Template-ChangeRequest-20060101-I.doc
Change Request

Change Request

	Title:
	XBS Introduction for Broadcast Device and Domanin Management
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	OMA BCAST

	Doc to Change:
	OMA-TS-DRM-XBS-V1_0-20060321-DC

	Submission Date:
	15. November 2006

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Bert Greevenbosch, Fraunhofer IIS, bert.greevenbosch@iis.fraunhofer.de
Mercè Serra, Fraunhofer IIS, merce.serra@iis.fraunhofer.de

	Replaces:
	n/a

1 Reason for Change

This CR addresses comments DX096, DX037 and DX038 of the XBS CONRR.
	DX096
	
	N
	6
	Source: Aram Perez, QUALCOMM

Form: OMA-BCAST-2006-0xxx

Comment:

There are several fields that are common to many messages. Yet, every time they are used in a message, they are fully described again. These fields include the following: message_tag, protocol_version, longform_udn, device_nonce, status, certificate_version, ri_certificate_counter, c_length, ocsp_response, etc.

Proposed resolution:

Have a “Common Field” section and describe the fields only once.
	Status: OPEN

AP Bert: Write a CR with a small introduction for section 6 (e.g. this section refers to Layer 1 etc..). This introduction should describe the "Common Fields" of the whole section. The description of these "common fields" along the section should refer to these common description on the introduction.
Addressed by document OMA-BCAST-2006-1002 (Fraunhofer IIS)

	DX037
	
	N
	6
	Source: Orange

From: <INP doc, mtg, confcall

Comment:

This refers to layer 1? Would help to say so?

Proposed Resolution:
	Status: OPEN

Will be solved by resolution proposed in comment DX096.
Addressed by document OMA-BCAST-2006-1002 (Fraunhofer IIS)

	DX038
	
	N
	6
	Source: Orange

From: <INP doc, mtg, confcall

Comment:

No introductory text, would this not be helpful for chapter 6?

Proposed Resolution:
	Status: OPEN

Will be solved by resolution proposed in comment DX096
Addressed by document OMA-BCAST-2006-1002 (Fraunhofer IIS)

This CR adds an introduction to the section “Broadcast Device and Domain Management”. It reorganises the common fields of the different messages of this section to a “Common Fields” subsection.

2 Impact on Backward Compatibility

None
3 Impact on Other Specifications

None
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

For the BCAST and DLDRM group to agree this proposal
6 Detailed Change Proposal

Change 1: Add an introduction to section “Broadcast Device and Domain Management”.
Reorganise the common fields in this section to a new subsection “Common fields”.
7. Broadcast Device and Domain Management
In section 7.2, the process of Device registration is described. This process corresponds to the delivery of the Layer 1 (Registration Layer) Keys, which are used for authentication and decryption purposes. For Broadcast Devices, which do not have a return channel to the RI, this process consists of the offline notification of the Device data to the RI and of the notification of the registration data from the RI to the Device. A Mixed-Mode Device or a Broadcast Device connecting via a connected Device may register using the ROAP protocol. This on-line registration, which is based on the OMA DRM v2.0 ROAP protocol, contains some extensions needed for the transmission of Subscriber Group information.

The RI has the possibility to send the registered Device a 1-pass message updating important data as RI certificate, DRM Time, contact number or domain information. There are also messages defined for the delivery of tokens or for forcing a device to join or leave a domain. These 1-pass messages are described in section 7.3.

Section 7.4. is about the token handling. It describes how a Device can request the RI to purchase tokens and how these tokens are delivered to the Device. It also describes how a Device reports his token consumption to the RI when requested.

Furthermore, Section 7.5 handles the Domain Management. OMA DRM v2.0 Domains and Broadcast Domains and the protocols needed for their management are described.
7.1 Common fields

The various messages described in the following sections have some fields in common. These fields are described here:

message_tag: this parameter identifies the type of the message. Refer to section A.10 for the value of the message_tag.

protocol_version: this parameter indicates the protocol_version of this message. The Device SHALL ignore messages that have a protocol_version number it doesn’t support. Refer to section A.10 for the value of this parameter.

bcd_udn(): the BCD form of the UDN. Refer to section 7.2.1.2.1 for details.

status: the status parameter SHALL indicate one of the values explained in the following table. The Device SHALL ignore messages with other error values.
certificate_version: is a numerical representation of the version of the RI certificate. Using the certificate_version parameter the Device can decide if it is needed to update its local copy of the RI certificate (if it was cached).
Table 1: Description of certificate_version parameter

	Parameter field name
	Value (h)
	Supports

	major_version_number
	0x0,..,0xA
	MSB4(certificate_version)

	minor_version_number
	0x0,..,0xA
	LSB4(certificate_version)

The parameter is divided into 2 fields of 4 bits, whereas the first 4 bits (MSB left) express the major number and the last four bits (LSB right) express the minor version. The major and minor number are encoded in bslbf format. 16 major and 16 minor versions are supported. For example: major.minor version <1.2> is expressed as 0001 0010b.
ri_certificate_counter: this parameter indicates the depth of the RI certificate chain.

	Number of certificate in chain
	Value (h)
	Remark

	0
	0x0
	will signal absence of ri_certificate e.g. on error status to save bandwidth.

	1
	0x1
	

	2
	0x2
	

	3
	0x3
	

	4
	0x4
	

	5
	0x5
	

	6
	0x6
	

	7
	0x7
	

Note: The certificate chain can have a depth of up to 7 RI certificates.
c_length: this parameter indicates the length in bytes of the ri_certificate.
ri_certificate: when present, the value of a ri_certificate parameter SHALL be a certificate chain including the RI’s certificate. The chain SHALL NOT include the root certificate. The RI certificate SHALL come first in the list. Each following certificate SHALL directly certify the one preceding it.
signature_type_flag: A flag to signal type of signature algorithm used:

	signature_type_flag
	Value (h)
	Remark

	RSA 1024
	0x0
	

	RSA 2048
	0x1
	

	RSA 4096
	0x2
	

	reserved for future use
	0x3
	not used in this version of the specification

Refer to Appendix A.6 for further details.
signature_block: the signature SHALL enable a single source authenticity check on the message. The algorithm used for the signature is RSA-1024 or RSA-2048 or RSA-4096. The signature will apply to the implementation guidelines of PKCS#1, as outlined in A.6.
ocsp_response_counter: This parameter indicates the depth of the OCSP response chain.

	Number of responses in chain
	Value (h)
	Remark

	0
	0x0
	will signal absence of ocsp_response e.g. on error status to save bandwidth.

	1
	0x1
	

	2
	0x2
	

	3
	0x3
	

	4
	0x4
	

	5
	0x5
	

	6
	0x6
	

	7
	0x7
	

Note: The certificate chain can have a depth of up to 7 OCSP responses.

ocsp_response(): this parameter, when present, SHALL be a complete set of valid OCSP responses for the RI's certificate chain. The Device SHALL NOT fail due to the presence of more than one OCSP response element. A Device SHALL check that an OCSP response is present in the received message.
local_time_offset_flag: Binary flag to signal presence of the local_time_offset parameter:

	local_time_offset_flag
	Value (h)
	remark

	data absent
	0x0
	local_time_offset absent

	data present
	0x1
	local_time_offset_present

local_time_offset: this parameter indicates the local time offset from the (UTC) drm_time as explained in Annex A.4.
device_nonce: the device_nonce is the nonce which was present in the request (using the offline NSD protocol) to which this message is a response. This nonce is encoded in BCD.
time_stamp_flag: binary flag to signal presence of both parameter registration_timestamp_start and registration_timestamp_end or domain_timestamp_start and domain_timestamp_end. The signalling is as follows:
	time_stamp_flag
	Value (h)
	remark

	data absent
	0x0
	

	data present
	0x1
	

drm_time: this parameter defines the time in Universal Time Coordinated (UTC). This 40-bit field contains the current time and date in UTC and MJD. Refer to A.4 for calculation of the UTC and Modified Julian Date (MJD). This field is coded as 16 bits giving the 16 LSBs of MJD followed by 24 bits coded as 6 digits in 4-bit BCD.

EXAMPLE: 93/10/13 12:45:00 is coded as "0xC079124500".
7.2 Device Registration

To register the device data has to be notified to the RI. There are two cases for the notification of device data to the RI:

Case 1: The device has never been registered before and is activated by the user.

There are two possibilities in which the device has no direct communication back channel to contact the RI but needs to report device data to the RI:

· The device has no interaction channel or the interaction channel is not able to make a connection to the RI, but the device is able to create an other connection to a connected OMA device. This device is called an unconnected device, and is covered in [DRM-v2] section 14.

· The device has no interaction channel and is unable to make a connection to an interactive device. This device is called a broadcast (only) device. In this case the 1-pass binary push registered device protocol is used, as is specified in this document.

Case 2: The device has been registered at the RI before and needs to be re-registered.

· In this case the RI uses the 1-pass binary inform registered device protocol to send a message ordering the device to re-register, as is specified in this document.

Following sequence chart explains the registration for broadcast only mode of operation.

[image: image1.wmf][1] notify device data

[2] wait

[3] cert. & cap. request

[4] valid?

[5] cert. & cap. data

[6] 1-pass PDR

ROT / PKI+CRL

Service Provider /

RI

Customer / Device

Figure 1: Registration for broadcast mode of operation with one ROT

Note: Notification of device data to the Rights Issuer is performed off-line. Transmission of the registration data from the RI to the device is performed on-line via the broadcast channel.

Explanation of the protocol:

· Once the Rights Issuer has the device data from the device [1] via the protocol described in section 7.2.1, the RI contacts the Root of Trust (ROT) [3], while the device is entered into registration mode and awaits the registration data [2].

· The Root of Trust decides whether the requested device data is valid or not and whether or not the requested certificate and capabilities data can be passed to the RI.

· If the RI received the requested certificate and capabilities from the ROT [5], the RI SHALL send back a registration data message to the device [6].

· The RI uses the 1-pass binary Push Device Registration data (a.k.a. PDR) protocol to send the registration data over the broadcast network. The PDR protocol is described in section 7.2.3, together with the registration data (in the format of the device_registration_response() message). The RI MAY decide to send an error status with the message or send valid registration data containing the data required to create an RI context.

· A device listening for device_registration_response() messages will look for messages with the corresponding message_tag. On every message with a matching message_tag the device will check the bcd_udn() parameter. If this matches (any of) the device’s local UDN(s), the device will process the message and will start trying to decrypt the secret data in it.

· If the device does not receive registration data within a timeout, the device leaves the registration mode and stops listening for device_registration_response() messages.

· Subsequent distribution of Right Objects at regular intervals is done with a message send as an inform message using the 1-pass Inform Registered Device protocol.

7.2.1 Offline Notification of Detailed Device Data

7.2.1.1 Theory of Operation

The offline Notification of Detailed Data protocol is also known as the "offline NDD protocol". The notification of the device data is performed off-line. The device data (device_data_inform() message) is defined in section 7.2.1.3.1.

[image: image2.wmf][

1

]

notify device data

Service Provider

/

RI

Customer

/

Device

[

2

]

enter reg

.

mode

Figure 2: Offline NDD protocol

Explanation of the protocol:

· The purpose of this protocol is to transfer device data somehow to the RI, in case the device does not support a return channel to the RI. After the user has let the device know that he/she wants to register at an RI, the device produces the device_data_inform() message (refer to section 7.2.1.3.1 for details) and make this data available to the user.

· The data of the device_data_inform() message consists of a several series of decimal digits and possibly an alphanumeric character. The user needs to transfer these series somehow to the RI. In order to aid the user in this, the device MAY display a dialogue with instructions. Notifying the device data can be done in various ways, for example by showing the user of the device a dialogue on the screen of the device, displaying the device data and a telephone number to call for vocal notification of the device data. Another example is to display instructions to send an SMS message via a mobile phone to the RI.

An example of a displayed message follows, where the following information is reported back to the RI. Please note that when using displays like in the examples, it is useful to present the numeric fields in the order shown
:

[image: image3.wmf]In order to start service with this device

 please contact customer service at:

XXXX-XXX-XXXXXXX

Unique Device Number (UDN):

XXXX XXXX XXXX XXXX XXXX

short UDN:

XXXX XXXX

In order to start service with this device

 please send an SMS with the UDN below to the

following phone number:

XXXX-XXX-XXXXXXX

Unique Device Number (UDN):

XXXX XXXX XXXX XXXX XXXX

short UDN:

XXXX XXXX

An example dialogue showing instructions for

vocal notification of UDN to callcenter

An example dialogue showing instructions for

notification of UDN per SMS to callcenter

Figure 3: Examples of notification displays

· If the device does not support a return channel to the RI, the device data (device_data_inform() message) SHALL be notified off-line, using the offline Notification of Detailed Devicedata protocol. The device data to notify SHALL be reduced by a special protocol (refer to section 7.2.1.2).

· After the notification of the device data, user needs to put the device into registration mode [2]. When put into registration mode, device SHOULD start to listen for the device registration data for a limited time.

7.2.1.2 Unique Device Number (UDN) protocol

To reduce the amount of data that is to be notified to the RI, the device data protocol takes care of data reduction. To ease the detection of errors during the registration process, the device data protocol will also allow detection of errors in the notified device data.

Following data format SHALL be used to construct a Unique Device Number (a.k.a. UDN):

[image: image4.wmf]Device serial number

Checksum

ROT ID

Figure 4: Unique Device Number

Table 2: UDN explanation

	Field
	Length (digits)
	supporting up to

	rot_id
	3
	1000 ROT

	device_serial_number
	14
	10,000 Billion devices

	checksum
	3
	

This totals to 20 digits. The fields are explained below:

rot_id: The first 3 digits in the UDN identify the ROT. Every ROT has an own unique ID.

device_serial_number: There are 10,000 billion (1014) possible device_serial_numbers. This range MAY be subdivided in subranges from which separate entities may issue device serial numbers independently.

checksum: The final digits of the device ID number are check digits, akin to a checksum. The 3 digits allow 1 out of 103 possible errors to remain undetected. Please refer to appendix A.3.2 for an explanation of the algorithm.

7.2.1.2.1 Message Syntax

The 20 digits of the UDN are encoded in BCD format into the bcd_udn(). The message syntax is specified below:

Table 3: longorm_udn
	fields
	length (bits)
	type

	bcd_udn(){
	
	

	rot_id
	12
	bslbf

	device_serial_number
	56
	bslbf

	checksum
	12
	bslbf

	}
	
	

Note: The UDN SHALL be constructed according to the above mentioned message syntax. When the UDN is displayed or in other ways presented to the end user, a(ny) checksum digit with value "10" SHALL be represented by an alphanumeric character different from {0..9}, for example X or Z. This ensures the RI will always receive 20 "characters" from the end user notification, providing an easy way to count if the information is complete.

7.2.1.3 Device Data – device_data_inform Message

7.2.1.3.1 device_data_inform Message Description

The Device data SHALL be unique. In a one way case the device notifies this device data, yet the length of the unique device data SHOULD remain concise.

Because devices can be uniquely identified by the PKI, it is not needed to incorporate unique data like the device certificate into the (device specific) registration data. The OMA DRM 2.0 certificate is global and the link between the manufacturer and the device can be requested from the PKI, based on the device ID.

Table 4: Notify device data message parameters
	device_data_inform()

	parameter
	(M)andatory / (O)ptional

	Remark

	version
	M
	

	contact_nr
	O
	

	bcd_udn()
	M
	

version: a <major> representation of the highest ROAP version number supported by the Device. For this version of the protocol, the version field SHALL be set to value "1".

contact_nr: the number to be contacted in order to register the device. It can be a phone number or an SMS number. This number MAY have been entered into the device at production time and if so MAY be shown in the registration display (refer to section 5.1.1.1for an example). This number could also be provided in human readable form in other ways.

bcd_udn(): identifies the unique_device_number to the RI. The UDN SHALL be part of the credentials entered into the device, like the private key and the certificate. Refer to section 7.2.1.2 for details.

7.2.1.3.2 Message Syntax

Since this is an offline protocol the device data is not really formed into a message that can be transmitted. The device data is decimal and formatted as follows:

Table 5: Device data

	Parameter
	Format and length
	Description

	version
	1 byte
	

	contact_number
	15 bytes
	dependent on target telco network

	bcd_udn
	20 bytes
	UDN protocol

7.2.2 Offline Notification of Short Device Data

The end user of a device might wish to formulate a particular request to the RI. He/She uses following specified behaviour:

[image: image5.wmf][1] notify "request"

[2] wait

[3] check

[4] send data

Customer / Device

Service Operator /

RI

Figure 4: Action request round trip

Explanation of the protocol:

· The end user of the device formulates a request and notifies this request to the user [1] as specified in subsequent sections.

· The end user waits after the request has been notified to the Customer Operations Centre in a successful way [2].

· The RI might execute additional checks and composes the data [3].

· The RI MAY send a data message to the device to update data in the device, start the execution of a particular action to produce a desired result or to inform an error status. [4].
7.2.2.1 Theory of Operation

Note: This protocol is also known as the "offline NSD protocol", short for offline Notification of Short Data protocol.

[image: image6.wmf][1] notify "request"

Service Provider /

RI

Customer / Device

Figure 5: Offline NSD protocol

Note: Notification of device data is performed off-line. Refer to Fehler! Verweisquelle konnte nicht gefunden werden. for an overview of the possible "requests".

Explanation of the protocol:

· The user may notify a short decimal code called the action request code (ARC) to the RI via offline methods (e.g. telephone call or SMS or else). The code SHALL be constructed as follows:

	Short_udn
	Action_code
	Checksum

Figure 6: Action Request Code (ARC)

Note that for some of the ARCs (e.g. the ARC token_consumption_report), the user MAY have to notify more digits to the RI than the ones of the ARC.

Table 6: NSD action request code fields

	ARC fields
	Length (digits)
	supporting up to

	short_udn
	8
	100 Million devices

	action_code
	2
	99 action codes

	checksum
	2
	

This totals to 12 digits. The fields are explained below:

short_udn: the offline notification can be performed faster if the long form UDN is not used, but a shorter form instead. After first time notification of the device data to the RI, the RI MAY issue a short version of the full UDN (called short_form_udn) that is carried in the device_registration_response() message. The short_form_udn number is used to speed up the offline interaction with the RI. If this number is stored into the device, subsequent "requests" by the user of the device can be notified offline much quicker by using the short_form_udn number concatenated by a standardised action code.

Please note: In cases where the device needs to be identified uniquely in another network than its home network where it was registered, the short_udn cannot be used because the (new / different) RI does not have the short_udn in its database. In this case the only possibility for the hosting RI to identify the device uniquely would be via the long_udn. It is the responsibility of the device to decide when it is appropriate to use the long_udn instead, for example by comparing the Service Operations Centre (SOC) ID received with the SOC ID remembered from registration.

action_code: following the short_udn the user of the device can notify an action code to the RI. The NSD protocol defined in this specification SHALL use following action_codes to construct the ARC:

Table 7: NSD action types

	action type
	action_code
	described in section

	re-registration (only at same RI)
	01
	7.2.2.1.1

	resend BCRO
	02
	12.9

	reserved for future use
	03 - 09
	

	join domain
	10 - 19
	7.2.2.1.2

	leave domain
	20 - 29
	7.2.2.1.3

	token_consumption_report
	31 - 39
	7.2.2.1.4

	reserved for future use
	40 - 49
	

	token_request
	50 - 59
	7.2.2.1.4

	reserved for future use
	60 - 69
	

	notify DRM time drift
	70 - 89
	7.2.2.1.7

	reserved for future use
	90 - 99
	

checksum: the constructed short_udn and action_code is appended by checksum digits. Please refer to A.3.1 for an explanation of the algorithm.

An example: In order to request to re-register, a sample NSD action request code could look like:
"1660 8731 0112". An example of a displayed message follows, where the following information is reported back to the RI
:

[image: image7.wmf]In order to start the requested action

 please contact customer service at:

XXXX-XXX-XXXXXXX

action request code:

XXXX XXXX XXXX

An example dialogue showing instructions for

vocal notification of ARC to callcenter

In order to start the requested action

 please send an SMS with the short request

code (NSD) below to the following phone

number:

XXXX-XXX-XXXXXXX

action request code:

XXXX XXXX XXXX

An example dialogue showing instructions for

notification of ARC per SMS to callcenter

Figure 7: Samples of notification displays showing an ARC message

7.2.2.1.1 Request Re-Registration (Only at Same RI)

After sending this ARC the user will wait until he/she receives the confirmation of the RI in the form of a device_registration_response() message. Refer to 7.2.3.2.

7.2.2.1.2 Request Join Domain

The Action Request Code (ARC) for the NSD protocol is formed according to the following rules:

· the first digit is used to notify the join domain action

· the second digit is used as a device nonce to help the device to keep track of join domain requests

After notifying the ARC to the RI the user MAY notify a particular domain group number identifying a domain where the device is to be entered. The RI SHALL incorporate the device nonce from the request in the response message.

7.2.2.1.3 Request Leave Domain

The Action Request Code (ARC) for the NSD protocol is formed according to the following rules:

· the first digit is used to notify the join domain action

· the second digit is used as a device nonce to help the device to keep track of leave domain requests.

After notifying the ARC to the RI, the user needs to notify a particular domain group number identifying a domain where the device is to be removed from. The device SHALL display a domain ID. The RI SHALL incorporate the device nonce from the request in the response message.

7.2.2.1.4 Token Consumption Report

The Action Request Code (ARC) for the NSD protocol is formed according to following rules:

· the first digit is used to notify the token consumption report.

· the second digit is used as a device_nonce to help the device to keep track of token consumption reports.

After notifying the ARC to the RI the user should notify the token consumption data. The device SHALL display the token consumption data e.g. to the left of or below the digits of the ARC for the token consumption report. The RI SHALL incorporate the device nonce from the request in the response message.

An example of a displayed message follows, where the following information is reported back to the RI
:

[image: image8.wmf]In order to start the requested action

 please contact customer service at:

XXXX-XXX-XXXXXXX

action request code:

XXXX XXXX XXXX

token consumption data:

XXXX XXXX XXXX XXXX XXXX

Figure 8: Samples of notification displays showing an ARC message

7.2.2.1.5 Token Consumption Data Definition

The token consumption data are defined below:

Table 8: Token consumption data

	Field
	Length (digits)
	Supporting up to

	tokens_consumed
	4
	9999 tokens to be reported

	report_authentication_code
	13
	

	checksum
	3
	

This totals 20 digits. The fields are explained below:

tokens_consumed: this field contains the amount of tokens the device wished to report as consumed to the RI. See section A.13 for more information.

report_authentication_code: this field contains the authentication code for the value in the tokens_consumed field and the value of the device nonce (second digit of the action code of the ARC of this message). See A.12 for the computation of the report_authentication_code.

checksum: the final digits of the device ID number are check digits, akin to a checksum. The 3 digits allow 1 out of 103 possible errors to remain undetected. The checksum algorithm used is the UDN checksum, see section A.3.2.

7.2.2.1.6 Token Request

The Action Request Code (ARC) for the NSD protocol is formed according to following rules:

the first digit is used to notify the token request;

the second digit is used as a device_nonce to help the Device to keep track of token requests.

After notifying the ARC to the RI the user SHOULD notify the number of tokens desired and the RI MAY request additional data (such as e.g. a bookable account). The RI SHALL incorporate the device_nonce from the request in the token_delivery_response message.

7.2.2.1.7 Notify DRM Time Drift

Time drift is expressed in minutes and rounded up to next multiple of 5 minutes. The range is 0..100 minutes, whereas value 89 will decode as timedrift >= 100. Some examples of valid ARC codes are given below:

E.g. 1: Device notifies 4 minute timedrift from newly received DRM time message: action code is 71.

E.g. 2: Device notifies 38 minutes timedrift from newly received DRM time message: action code is 78.

E.g. 3: Device notifies 235 minutes timedrift from newly received DRM time message: action code is 89.
The time drift SHALL be measured by a Device when an Update DRM time message is received by the Device with status 'Success' or 'DeviceTimeError'. The 'Notify DRM time drift display' SHALL be available in the Device for the user and SHOULD be shown when an Update DRM time message is received by the Device with status 'DeviceTimeError'. The latter message may be useful e.g. when checking a customer complaint, or when collecting statistics on time drift. This option should be used with great care since it involves user interaction. See also section 7.3.3.1.
7.2.2.1.8 Token Request

The Action Request Code (ARC) for the NSD protocol is formed according to following rules:
the first digit is used to notify the token request;
the second digit is used as a device_nonce to help the device to keep track of token requests.

After notifying the ARC to the RI the user SHOULD notify the number of tokens desired. The RI SHALL incorporate the device_nonce from the request in the response message.
7.2.3 Broadcast Registration

7.2.3.1 Theory of Operation

Note: This protocol is also known as the "1-pass PDR protocol", short for Push Device Registration protocol.

[image: image9.wmf][1] send registr. data

ROT / PKI+CRL

Service Provider /

RI

Customer / Device

Figure 5: 1-pass PDR protocol – (first) device registration

Note: Transmission of registration data is performed on-line via the broadcast channel. The registration data (device_registration_response() message) is specified in section 7.2.3.2
Explanation of the protocol:

· The RI SHALL use the 1-pass binary Push Device Registration data (a.k.a. PDR) protocol to send registration data over the network [1]. The registration data can be the device_registration_response() message (refer to section 7.2.3.2) or the domain_registration_response() message (refer to section 7.5.3.1). The RI SHALL use the RI mechanisms described in section 12 to address the message to a device. The RI SHALL include a valid keyset in the message.

· A device listening for device_registration_response() (or domain_registration_response()) messages SHALL look for messages with the corresponding message_tag. On every message with a matching message_tag the device SHALL check the long_form_udn parameter. If this matches (any of) the devices local UDN(s) the device SHALL start validating the signature and check the RI certificate (chain.). If both (UDN and signature) are valid the device detects this message is really addressed to it. The device SHALL start processing the message and SHALL start trying to decrypt the secret data in it. If the message is correct, the device SHALL store the new keyset with key(s). The devise SHALL delete the old keyset (if applicable).

· After a timeout the device SHALL leave the registration mode and stops listening for device_registration_response() messages.

7.2.3.2 Registration Data – device_registration_response Message

7.2.3.2.1 device_registration_response Message Description

Using the 1-pass PDR protocol the RI SHALL send a device_registration_response() message with the registration data to the device as specified below:

Table 9: device_registration_response message description

	device_registration_response()

	Parameter name
	(M)andatory / (O)ptional

	remark

	message_tag
	M
	global, not encrypted

	protocol_version
	M
	global, not encrypted

	sign_bcros_flag
	O
	global, not encrypted

	bcd_udn()
	M
	global, not encrypted

	status
	M
	device specific, not encrypted

	certificate_version
	M
	global, not encrypted

	ri_certificate_counter
	M
	global, not encrypted

	c_length
	M
	global, not encrypted

	ri_certificate
	M
	global, not encrypted

	ocsp_response_counter
	M
	global, not encrypted

	r_length
	M
	global, not encrypted

	ocsp_response
	M
	global, not encrypted

	local_time_offset_flag
	M
	device specific, not encrypted

	time_stamp_flag
	M
	device specific, not encrypted

	subscriber_group_type
	M
	device specific, not encrypted

	signature_type_flag
	M
	global, not encrypted

	short_udn_flag
	M
	device specific, not encrypted

	surplus_block_flag
	M
	device specific, not encrypted

	keyset_block_length
	M
	device specific, not encrypted

	unique_group_key
	O
	device specific, encrypted

	subscriber_group_key
	O
	device specific, encrypted

	unique_device_key
	O
	device specific, encrypted

	unique_device_filter
	M
	device specific, encrypted

	flexible_device_data
	O
	device specific, encrypted

	ri_authentication_key
	M
	device specific, encrypted

	token_delivery_key
	O
	device specific, encrypted

	local_domain_key
	O
	device specific, encrypted

	shortform_domain_id
	M
	device specific, encrypted

	drm_time
	M
	device specific, not encrypted

	local_time_offset
	O
	device specific, not encrypted

	registration_timestamp_start
	O
	device specific, not encrypted

	registration_timestamp_end
	O
	device specific, not encrypted

	shortform_udn
	O
	device specific, not encrypted

	signature_block
	M
	device specific, not encrypted

message_tag: this parameter identifies the type of the message. Refer to section A.10 for the value of the message_tag.

protocol_version: this parameter indicates the protocol_version of this message. See Section 7.1 for more details.
sign_bcros_flag: this (OPTIONAL) flag is turned ON if the BCROs will be signed. If this flag is present, the reserved_for_use flag is reduced to 3 bits.

bcd_udn(): the BCD form of the UDN. Refer to section 7.2.1.2.1 for details.

status: the status parameter SHALL indicate one of the values explained in the following table. The device SHALL ignore messages with other error values.

Table 10: Status values

	status value
	meaning

	Success
	The registration request was executed successfully and the RI completed all data. The device SHALL process the message.

	UnknownError
	The RI encountered an unknown error after receiving the registration request. The device MAY put forward a subsequent registration request to the RI (context).

	NotSupported
	The RI does not support the registration request.

	AccessDenied
	The RI decided that the device will not be granted access to the service and stops the registration. The RI will stop listening to future registration requests of this device. The device is forced to refrain from future registration and SHALL suppress broadcast and/or mixed-mode registration requests to the particular RI (context).

	NotFound
	The RI decided that the device could not be found (offline UDN and/or UaProf). The device MAY put forward a subsequent registration request to the RI (context).

	MalformedRequest
	The RI decided that the registration request was malformed and will force the device to execute a (re)-registration at once. The device SHALL enter (re)registration mode.

Note: refer to section A.4 for the value of the error codes.

certificate_version: a numerical representation of the version of the RI certificate. See Section 7.1 for more details.Using the certificate_version parameter the device can decide if it is needed to update the RI certificate (if it was stored before).

Table 11: Description of certificate_version parameter

	Parameter Fieldname
	Field Value (h)

	version_number
	0x00, ..., 0xFF

The value in this field is created by the RI. The RI can start at any value. As soon as something changes in the certificate chain, the RI increases the value in this field by 1. This saves the devices the time to go through the complete certificate chain every time they see a message with a certificate chain, which is the same as the one in the previous message(s).

ri_certificate_counter: This parameter indicates the depth of the RI certificate chain. See Section 7.1 for more details.
	number of certificate in chain
	Value (h)
	remark

	0
	0x0
	will signal absence of ri_certificate e.g. on error status to save bandwidth.

	1
	0x1
	

	2
	0x2
	

	3
	0x3
	

	4
	0x4
	

	5
	0x5
	

	6
	0x6
	

	7
	0x7
	

c_length: this parameter indicates the length in bytes of the ri_certificate.

ri_certificate(): this parameter SHALL be present. See Section 7.1 for more details.
The Device MAY store RI certificate verification data indicating that an RI certificate chain has been verified. The purpose of this is to avoid repeated verification of the same certificate chain. The RI certificate verification data stored in this way SHALL uniquely identify the RI certificate and SHALL be integrity protected. The Device SHOULD check if the RI certificate chain received in this parameter corresponds to the stored certificate verification data for this RI. If so, the Device NEED NOT verify the RI certificate chain again, otherwise the Device SHALL verify the RI certificate chain.
If an RI certificate is received that is not in the stored certificate verification data for this RI, and if the Device can determine (in the case of Broadcast Devices that support DRM Time) that the expiry time of the received RI certificate is later than the RI Context for this RI, and the certificate status of the RI certificate as indicated in the OCSP response is good (see [OCSP-MP]), then the Device SHALL verify the complete chain and SHOULD replace the stored RI certificate verification data with the received RI certificate data and set the RI context expiry time to that of the received RI certificate expiry time.
However, if the Device does store RI certificate verification data in this way it SHALL store the expiry period of the RI’s certificate (as indicated by the notAfter field within the certificate) and SHALL compare the Device’s current DRM Time with the stored RI certificate expiry time whenever verifying the signature on signed messages from the RI. If the Device’s current DRM Time is after the stored RI certificate expiry time then the Device SHALL abandon processing the RI message and SHALL initiate the registration protocol.

ocsp_response_counter: This parameter indicates the depth of the OCSP response chain. See Section 7.1 for more details.
	number of responses in chain
	Value (h)
	remark

	0
	0x0
	will signal absence of ocsp_response e.g. on error status to save bandwidth.

	1
	0x1
	

	2
	0x2
	

	3
	0x3
	

	4
	0x4
	

	5
	0x5
	

	6
	0x6
	

	7
	0x7
	

r_length: this parameter indicates the length in bytes of the ocsp_response.

ocsp_response(): this parameter, when present, SHALL be a complete set of valid OCSP responses for the RI's certificate chain. See Section 7.1 for more details. If no OCSP response is present in the device_registration_response() message, then the Device SHALL abort the registration protocol.

local_time_offset_flag: binary flag to signal presence of the local_time_offset parameter. See Section 7.1 for more details.

	local_time_offset_flag
	Value (h)
	remark

	data absent
	0x0
	

	data present
	0x1
	

time_stamp_flag: binary flag to signal presence of both parameter registration_timestamp_start and registration_timestamp_end. See Section 7.1 for more details.
	time_stamp_flag
	Value (h)
	remark

	data absent
	0x0
	

	data present
	0x1
	

subscriber_group_type: This field indicates whether the Device is assigned to a Fixed Subscriber Group of size 256 or 512 Devices, or to a Flexible Subscriber Group. See Table 5 for more details.

Table 12: The meaning of subscriber_group_type

	subscriber_group_type
	Value (h)
	remark

	data absent
	0x0
	will signal absence of keyset_block e.g. on error status to save bandwidth.

	reserved for future use
	0x1-0x7
	not used in this version of the specification

	set of 8 SGKs
	0x8
	indicates a Fixed Subscriber Group size of 256 Devices

	set of 9 SGKs
	0x9
	indicates a Fixed Subscriber Group size of 512 Devices

	reserved for future use
	0xA-0xE
	not used in this version of the specification

	flexible group size, set of FSGKs
	0xF
	indicates a Flexible Subscriber Group size

signature_type_flag: a flag to signal type of signature algorithm used. See Section 7.1 for more details.
	signature_type_flag
	Value (h)
	remark

	RSA 1024
	0x0
	

	RSA 2048
	0x1
	

	RSA 4096
	0x2
	

	reserved for future use
	0x3
	not used in this version of the specification

short_udn_flag: binary flag to signal presence of the short_udn field.
	short_udn_flag
	Value (h)
	remark

	data absent
	0x0
	

	data present
	0x1
	

surplus_block_flag: Binary flag to signal the presence of the surplus_block field.
	surplus_block_flag
	Value (h)
	remark

	data absent
	0x0
	

	data present
	0x1
	

keyset_block_length: this parameter indicates the length in bits of the total keyset_block. That is the part in the sessionkey_block() plus the optional second part from the surplus_block().
unique_group_key: an symmetric AES encryption key to address a unique group. This key is also known as UGK. The key length SHALL be 128 bit.

Note: This key is wrapped into the keyset_block. (Refer to 7.2.3.2.2).

subscriber_group_key: a set of AES symmetric encryption keys used for the deduction of the zero message Subscriber Group key (DEK), which is needed to decrypt the SEK and/or PEK. These keys are also known as Subscriber Group Keys (SGKs). The key length SHALL be 128 bit.

Note: this field is only present in the case of assignment of the Device to a fixed Subscriber Group of size 256 or 512 Devices. It is then wrapped into the keyset_block. (Refer to 7.2.3.2.2).

flexible_subscriber_group_key: a set of AES symmetric encryption keys used for the deduction of the zero message Subscriber Group key (DEK), which is needed to decrypt the SEK and/or PEK. These keys are also known as Flexibe Subscriber Group Keys (FSGKs). The key length SHALL be 128 bit.

Note: this field is only used in the case that a device is assigned to a Flexible Subscriber Group. When the field is present, it is wrapped into the keyset_block.(Refer to 7.2.3.2.2).

unique_device_key: An AES symmetric key to address a unique device. This key is also known as UDK. The key length SHALL be 128 bit.

Note: This key is wrapped into the keyset_block. (Refer to 7.2.3.2.2).

unique_device_filter: This 40-bit address is used as a unique identifier of the device for a specific RI (each RI has its own address space). The Unique Device Filter is also known as UDF. This address is wrapped into the keyset_block. (Refer to 6.1.3.2.2).

In case of Fixed Suscriber Group addressing, the following applies. In the case of a group size of 256 devices, the first 32 bits contain the fixed_group_address field, whilst the last 8 bits contain the fixed_position_in_group field. In the case of 512 devices, the first 31 bits contain the fixed_group_address field whilst the last 9 bits contain the fixed_position_in_group field.

In the case of Flexible Subscriber Group addressing, this field contains a 40-bit unique address.

Note: An RI can decide to use both Flexible Subscriber Groups and Fixed Subscriber Groups. In this case the RI has to take care that the Group Address of a Fixed Subscriber Group does not equal the first 31 or 32 bits of a UDF of a device in a Flexible Subscriber Group. To ensure this it is recommended that if the RI supports both Subcriber Group types, the MSB of the UDF indicates whether the Device is assigned to a Flexible Subscriber Group or to a Fixed Subscriber Group.

flexible_group_address: the address of the Subscriber Group in the case that the Device was assigned to a Flexible Subscriber Group.

Note: this field is only present in the case that the device is assigned to a Flexible Subscriber Group. It is then wrapped in the flexible_device_data structure in the keyset_block. (Refer to 7.2.3.2.2 and A.8).

flexible_position_in_group: the position of the Device in its Flexible Subscriber Group.

Note: this field is only present in the case that the device is assigned to a Flexible Subscriber Group. It is then wrapped in the flexible_device_data structure in the keyset_block. (Refer to 7.2.3.2.2 and A.8).

flexible_group_size_indicator: this 5-bit field indicates the size of the Flexible Subscriber Group. When flexible_group_size_indicator contains a value k, the Subscriber Group has a size of 2k devices.

Note: this field is only present in the case that the device is assigned to a Flexible Subscriber Group. It is then wrapped in the flexible_device_data structure in the keyset_block (Refer to 7.2.3.2.2 and A.8).

ri_authentication_key: an AES symmetric key to verify MACs on BCRO and KSM messages. This key is also known as RIAK. The key length SHALL be 128 bit.

Note: This key is wrapped into the keyset_block. (Refer to 7.2.3.2.2).

token_delivery_key: this is the Token Delivery Key (TDK), which is used in section 7.4.4.1.

Note: This key is wrapped into the keyset_block (Refer to 7.2.3.2.2).

local_domain_key: an AES symmetric key to address local domain. This key is also known as LDK. The key length SHALL be 128 bit.

Note: This key is wrapped into the keyset_block. (Refer to 7.2.3.2.2).

longform_domain_id(): this parameter is also known as the Longform Local Domain Filter (LLDF). Please refer to section A.8.2 for the definition. The longform_domain_id() is used for mixed-mode operation. Note: This address is wrapped into the keyset_block. (Refer to 7.2.3.2.2).
shortform_domain_id: this parameter is also known as the Shortform Local Domain Filter (SLDF). Please refer to 7.2.3.2.2. An addressing scheme used to filter messages like BCROs. The shortform_domain_id is used for broadcast mode of operation.

Note: This address is wrapped into the keyset_block. (Refer to 7.2.3.2.2).
drm_time: this parameter defines the time in Universal Time Coordinated (UTC). See Section 7.1 for more details.

local_time_offset: this parameter indicates the local time offset from the (UTC) drm_time as explained in Annex A.4.

registration_timestamp_start: indicates from what time onwards the registration data is valid. This is an extra mechanism above the expiration date of the RI certificate. (Note: please note that this parameter can also be used against replay attacks.)

registration_timestamp_end: indicates from what time onwards the registration data is expires. This is an extra mechanism above the expiration date of the RI certificate. (Note: please note that this parameter can also be used against replay attacks.)

shortform_udn: this parameter allows the RI to give an own defined short number identifying the device. This number can be used as a shorter alternative to the UDN during offline notifications. The shortform_udn is coded in BCD format.

signature_block: the signature SHALL enable a single source authenticity check on the message. See Section 7.1 for more details.
Note Message result:

The stored RI Context SHALL at a minimum contain:

· RI ID, Unique device filter (UDF).

· In the case the Device is assigned to a Flexible Subscriber Group: the size of the Subscriber Group, flexible_group_address and flexible_position_in_group.

· following keys:

· UGK.

· UDK.

· SGK1..n or FSGK1..m depending on the type of Subscriber Group.

· RIAK.

· SK

· If domain addressing via an OMA DRM 2.0 domain is required the keyset SHALL (additionally to the standard addressing above) include following keys:

· LDK.

· Shortform Local Domain Filter (SLDF). A.k.a. "shortform_domain_id". Refer to A.8.1.

· For mixed-mode devices domain context SHALL additionally contain:

· Longform Local Domain Filter (LLDF). A.k.a. "longform_domain_id()". Refer to A.8.2.

· A Device MAY have several Domain Contexts with an RI.

· The RI Context SHALL also contain an RI Context Expiry Time, which is defined to be the timestamp of the registration data if that was send and otherwise the expiration of the RI certificate.

· The RI Context MAY also contain RI certificate validation data.

· If the RI Context has expired, the Device SHALL NOT execute any other protocol than the 1-pass binary device data registration protocol with the associated RI (context), and upon detection of RI Context expiry the Device SHOULD initiate the offline notification of detailed device data protocol using the RI_ID stored in the RI Context. Depending on the implementation a dialogue will be shown to the user and the offline NDD protocol will be executed.

· Accessing an OMA BCAST Service Guide for purchase is still allowed, as this will require a registration first.

· The device SHALL be rendered inoperable for any purchase protocol or playback of future content. The device MAY use stored BCROs to play old content for which the device obtained GROs, but SHALL NOT use these BCROs for new content received after the re-registration request until the device is re-registered with the RI.

Requirements:

· The Device SHALL have at most one RI Context with each RI. An existing RI Context SHALL be replaced with a newly established RI Context after successful re-registration with the same RI.

· The device SHALL support at least 6 RI context for broadcast mode of operation.

· For standard addressing the keyset SHALL include a valid set of :

· UDK and/or UGK.

· RIAK key. A single RIAK key is bound to a single Subscriber Group or to a single Device if no SGKs, nor FSGKs, nor UGK are issued to the Device.
· Unique device filter (UDF).

· SGK1..n (if the Device is assigned to a Fixed Subscriber Group of size 256 or 512 Devices).

· FSGK1..m and flexible_device_data (if the Device is assigned to a Flexible Subscriber Group).
· If domain addressing via an OMA DRM 2.0 domain is required the keyset SHALL (additionally to the standard addressing above) include a valid set of :

· LDK key.

· Shortform Local Domain Filter (SLDF). A.k.a. "shortform_domain_id". Refer to A.8.1.

And in case of mixed-mode operation devices the keyset SHALL contain:

· A Longform Local Domain Filter (LLDF, a.k.a. "longform_domain_id()") that matches the SLDF. Refer to A.8.2.

7.2.3.2.2 Protection of the (Device Registration) Keyset

The device_registration_response() message is split in two parts: device specific (time bound) data and global (not time bound) data.

[image: image10.wmf]Device global data

(

in the clear

)

Device specific data

Key material

„keyset“

(

encrypted

)

Other device data

(

in the clear

)

Longform

_

udn

signature

Message

_

tag

Signature over

complete

message

Figure 6: device_registration_response() message

The device global data SHALL be in the clear. The device specific data contains the keyset for the device. The key material SHALL be protected by encryption.

The RI SHALL use its private key to sign the complete message data. Upon reception the device SHALL verify the RI signature, by using the issuer’s public key from the RI certificate. The device SHALL make sure that this message is correct by using a valid and correct RI certificate.

The complete message SHALL be authenticated by a signature from the RI.

Creation of the encrypted message SHALL adhere to the following rules:

1. Generate a (128 or 192 or 256) bit AES key to be used as session key (SK) for the device_registration_response() message.

2. For Fixed Subscriber Group addressing, concatenate the following fields to form the keyset: UGK, SGK1..n, UDK, UDF, LDK, SLDF, LLDF (if applicable), RIAK, TDK under rules of [FIPS 197] and the Tag Length Format described in section A.8.

For Flexible Subscriber Group addressing, concatenate the following fields to form the keyset: UGK, UDK, UDF, LDK, SLDF, LLDF (if applicable), RIAK, TDK, flexible_device_data, FSGK1..m under rules of [FIPS 197] and the Tag Length Format described in section A.8.

3. Encrypt the keyset using [AES_WRAP] using the generated SK as (AES-WRAP style) KEK. This will produce the keyset_block.

4. Calculate the part of the keyblock that would fit into the RSA block (depending on the size of RSA used, be that 1024, 2048 or 4096), including the SK and under implementation rules of the PKCS#1. If the keyset_block fits into one RSA block continue at step 6. Else continue at step 5.

5. If the SK plus keyset_block including PKCS#1 header, aligning, etc did not fit into one RSA block, then keep the remainder part as surplus_block().

6. Encrypt SK plus the (part of the)keyset_block that fits into the RSA block with the public key of the target device using RSA (1024 or 2048 or 4096) under implementation guidelines of [PKCS#1]. This will produce the sessionkey_block().

7. Concatenate the (non encrypted) parameters that were not used in the key_block and create the message "header" from this. Refer to 7.2.3.2.3 for details. (for reason of completeness: of course the sessionkey_block(), the (optional) surplus_block() and the signature_block are not part of the message header)

8. Concatenate the message "header" and the sessionkey_block() . If the SK plus keyset_block including PKCS#1 header, aligning, etc did not fit into one RSA block, then also concatenate surplus_block() part. Hash the result under implementation guidelines of [PKCS#1]. Please refer to section A.6. This will produce the signature_input_data.

9. Sign the signature_input_data with RSA (1024 or 2048 or 4096) using the private key of the RI. The signature will apply to the implementation guidelines of PKCS#1, as outlined in A.6. This will produce the signature_block.

10. The device_registration_response() message comprises of the message "header" plus sessionkey_block(), optionally the surplus_block() and the signature_block.

[image: image11.wmf]surplus_block

(AES encrypted)

Sessionkey_block

(RSA encrypted)

Signature_block

(RSA signature)

SK (plus part of

keyset_block that fits into

RSA block (size)

RSA signature

Message “header”

(in the clear)

All but input for keyblocks

below

(optional) Remainder of

keyset_block that did not fit

into RSA block

Keyset_block

(AES encrypted)

Figure 7: Structure of device_registration_response() message.

Concluding: The number of RSA blocks used should be kept to a minimum. The AES surplus_block() is present if and when the keyset does not completely fit into the sessionkey_block() given the RSA block size used. If present the AES surplus_block() contains those keys that did not fit into one RSA block (i.e. the sessionkey_block()). The complete keyset needed for operation after registration is included in the encrypted keyset_block, which is concatenated from the first part in the sessionkey_block() and optionally the surplus_block(). Refer to appendix for calculations on the surplus_block_size.

Decryption of the encrypted message SHALL adhere to the following rules:

1. Locate the message via message_tag

2. Verify if the message is intended for this device by comparing the long_form_udn with the UDN stored in the device.

3. Verify the signature_block of the message by using the public key from the RI.

4. Locate the sessionkey_block() and decrypt the block with the private key of the local device. Locate the session key (SK) from the header and (eventual) padding (according to PKCS#1). Then locate the keyset_block part from the header and (eventual) padding (according to PKCS#1). See Appendix A.9 for the determination of the session key length.
5. (Optionally) If there is a surplus_block() concatenate this part to the keyset_block. This will complete the keyset_block.

6. Use the SK to decrypt the keyset_block.

7. Allocate the individual keyset_items from the keyset_block according to [AES_WRAP] and the Tag Length Format described in section A.8.

Note: The SK SHALL be stored into protected storage of the Device. The AES encrypted keyset_block MAY be stored as is into unprotected storage and decrypted by the Device upon use. If the encrypted keyset_block is not stored but the decrypted keys from that block are stored instead, the Device SHALL store all key data safely. In either case, the Device SHOULD use integrity protection of what is stored in unprotected storage to prevent tampering of the keys. The keys SHALL NOT leak outside the Device.

7.2.3.2.3 device_registration_response Message Syntax

Table 1: device_registration_response message syntax

	fields
	length
	type

	device_registration_response(){
	
	

	/* signature protected part starts here */
	
	

	/* message header starts here */
	
	

	message_tag
	8
	bslbf

	protocol_version
	4
	bslbf

	sign_bcros_flag
	1
	bslbf

	reserved_for_future_use
	3
	bslbf

	bcd_udn()
	80
	bslbf

	status
	8
	bslbf

	flags {
	
	

	ri_certificate_counter
	3
	bslbf

	ocsp_response_counter
	3
	bslbf

	local_time_offset_flag
	1
	bslbf

	time_stamp_flag
	1
	bslbf

	subscriber_group_type
	4
	bslbf

	short_udn_flag
	1
	bslbf

	signature_type_flag
	2
	bslbf

	surplus_block_flag
	1
	bslbf

	keyset_block_length
	16
	uimsbf

	}
	
	

	certificate_version
	8
	bslbf

	for(cnt1=0; cnt1 < ri_certificate_counter ;cnt1++){
	
	

	c_length
	16
	uimsbf

	ri_certificate()
	8*c_length
	bslbf

	}
	
	

	for(cnt2=0; cnt2 < ocsp_response_counter ;cnt2++){
	
	

	r_length
	16
	uimsbf

	ocsp_response()
	8*r_length
	bslbf

	}
	
	

	drm_time
	40
	mjdutc

	if (local_time_offset_flag == 0x1) {
	
	

	local_time_offset
	16
	bslbf

	}
	
	

	if (time_stamp_flag == 0x1) {
	
	

	registration_timestamp_start
	40
	mjdutc

	registration_timestamp_end
	40
	mjdutc

	}
	
	

	if (short_udn_flag == 0x1) {
	
	

	short_udn
	32
	bslbf

	}
	
	

	/* message header ends here */
	
	

	if (signature_type_flag == 0x0){
	
	

	sessionkey_block()
	1024
	bslbf

	} else if (signature_type_flag == 0x1)
	
	

	sessionkey_block()
	2048
	bslbf

	} else if (signature_type_flag == 0x2)
	
	

	sessionkey_block()
	4096
	bslbf

	}
	
	

	if (surplus_block_flag == 0x1){
	
	

	surplus_block()
	(*1)
	bslbf

	padding_bits
	(*2)
	bslbf

	}
	
	

	/* signature protected part ends here */
	
	

	if (signature_type_flag == 0x0){
	
	

	signature_block
	1024
	bslbf

	} else if (signature_type_flag == 0x1)
	
	

	signature_block
	2048
	bslbf

	} else if (signature_type_flag == 0x2)
	
	

	signature_block
	4096
	bslbf

	}
	
	

	}
	
	

key:

(*1) for details please refer to section A.9.
(*2) (surplus_block() length) mod 8
7.2.4 On-line Registration

A broadcast enabled device may register using the ROAP protocol, either directly in case it is a connected device, or via a connected device that acts as a proxy.

Extensions to the ROAP are required to allow transfer of all subscriber group key material and the authentication key for BCROs.

7.2.4.1 Registration Request

Rights issuers can derive from the device capabilities in the device certificate the modes of operation supported by the registering device. From this information it should be possible to determine whether to include the extensions (defined in the next section) in the registration response or not. To avoid possible confusion, an extension is defined for the <roap:RegistrationRequest> to allows a rights issuer to determine directly whether or not to include the broadcast extensions in <roap:RegistrationResponse>.

Extensions: The following extensions are defined for the ROAP-RegistrationRequest message in addition to the extensions already defined.

Broadcast Registration Request: This extension allows a device to indicate to a broadcast enabled Rights Issuer to use the broadcast extensions in the registration response.

The following schema fragment defines the Broadcast Registration extension to the ROAP schema:

<complexType name="roap:BroadcastRegistrationRequest">

 <complexContent>

 <extension base="roap:Extension">

 </extension>

 </complexContent>

</complexType>

When included in a <roap:RegistrationRequest>, this extension MUST be marked as critical.

7.2.4.2 Registration Response

A Rights Issuer that receives a <roap:RegistrationRequest> including the <roap:BroadcastRegistrationRequest> extension and that does not support the broadcast extensions MUST abort the registration procedure and respond accordingly. A Rights Issuer that does support broadcast extensions MUST respond with a <roap:RegistrationRequest> including the following defined <roap:BroadcastRegistration> extension.

Extensions: The following extensions are defined for the ROAP-RegistrationResponse message in addition to the extensions already defined.

Broadcast Registration: This extension allows an RI to securely transfer broadcast group key material and addressing information as well as the authentication key to use to verify authenticity of BCROs.

The following schema fragment defines the Broadcast Registration extension to the ROAP schema:

<complexType name="roap:SubscriberGroupKey">

 <complexContent>

 <extension base="ds:KeyInfo"/>

 <attribute name="node" type="hexBinary"/>

 </complexContent>

</complexType>

<simpleType name="roap:ShortUniqueDeviceNumber">

 <restriction base="string">

 <pattern value="\d{8}"
 </restriction>

</simpleType>

<complexType name="roap:SubscriberGroupRegistration">

 <complexContent>

 <sequence>

 <element name="subscriberGroupAddress" type="roap:SubscriberGroupIdentifier"/>

 <element name="uniqueGroupKey" type="ds:KeyInfo"/>

 <element name="uniqueDeviceKey" type="ds:KeyInfo" minOccurs="0"/>

 <element name="subscriberGroupKey" type="roap:SubscriberGroupKey" minOccurs="0" maxOccurs="unbounded"/>

 <element name="shortUniqueDeviceNumber" type="roap:ShortUniqueDeviceNumber"/>

 </sequence>

 </complexContent>

</complexType>

<complexType name="roap:BroadcastRegistration">

 <complexContent>

 <extension base="roap:Extension">

 <sequence>

 <element name="subscriberGroupregistration" type="roap:SubscriberGroupRegistration" minOccurs="0"/>

 <element name="rightsIssuerAuthenticationKey" type="ds:KeyInfo" minOccurs="0"/>

 <element name="encKey" type="xenc:EncryptedKeyType"/>
 </sequence>

 </extension>

 </complexContent>

</complexType>

Subscriber Group Registration

The optional <subscriberGroupRegistration> element holds all information regarding the subscriber group feature: subscriber group address, device position and key material.

The <subscriberGroupAddress> element MUST contain the subscriber group base address and the device position. It SHALL NOT contain an access mask.

The <uniqueGroupKey> element holds an <xenc:EncryptedKey> element. This MUST hold a <ds:KeyInfo> element, an empty <xenc:EncryptionMethod> element and an <xenc:CipherData> element. The <ds:KeyInfo> element MUST contains a <ds:RetrievalMethod> element of which the URI attribute references the key used to encrypt the subscriber group’s unique group key (UGK). The <xenc:EncryptedKey> element MUST also hold an empty <xenc:EncryptionMethod> element of which the Algorithm attribute identified the algorithm used to protect the UGK. This algorithm MUST be AES-128 Key Wrap, and the value of the Algorithm attribute MUST be "http://www.w3.org/2001/04/xmlenc#kw-aes128". The <xenc:CipherData> element contains the <xenc:CipherValue> element that holds the base64 encoded value of the encrypted UGK.

The optional <uniqueDeviceKey> element holds an <xenc:EncryptedKey> element. This MUST hold a <ds:KeyInfo> element, an empty <xenc:EncryptionMethod> element and an <xenc:CipherData> element. The <ds:KeyInfo> element MUST contains a <ds:RetrievalMethod> element of which the URI attribute references the key used to encrypt the subscriber group’s unique device key (UDK). The <xenc:EncryptedKey> element MUST also hold an empty <xenc:EncryptionMethod> element of which the Algorithm attribute identified the algorithm used to protect the UDK. This algorithm MUST be AES-128 Key Wrap, and the value of the Algorithm attribute MUST be "http://www.w3.org/2001/04/xmlenc#kw-aes128". The <xenc:CipherData> element contains the <xenc:CipherValue> element that holds the base64 encoded value of the encrypted UDK.

The optional <subscriberGroupKey> elements each hold one key associated with the binary tree of key nodes from the subscriber group. Each <subscriberGroupKey> is of type <roap:DerivationKey> which extends the <ds:KeyInfo> type with a single node attribute. The value of the node attribute is the hexBinary encoded node number of the node associated with the derivation key contained by the <subscriberGroupKey> element. Each <subscriberGroupKey> element MUST hold a <ds:KeyInfo> element, an empty <xenc:EncryptionMethod> element and an <xenc:CipherData> element. The <ds:KeyInfo> element MUST contains a <ds:RetrievalMethod> element of which the URI attribute references the key used to encrypt the subscriber group’s node key of node i (NKi). The <xenc:EncryptedKey> element MUST also hold an empty <xenc:EncryptionMethod> element of which the Algorithm attribute identified the algorithm used to protect the NKi. This algorithm MUST be AES-128 Key Wrap, and the value of the Algorithm attribute MUST be "http://www.w3.org/2001/04/xmlenc#kw-aes128". The <xenc:CipherData> element contains the <xenc:CipherValue> element that holds the base64 encoded value of the encrypted NKi.

The device MUST check the consistency relations between the node keys and its subscriber position as defined by the broadcast extension.

The <shortDeviceUniqueNumber> MUST be included in the RI Context, and MAY be used at a later moment to receive binary push (re)registration messages over the broadcast interface.

Authentication Key

The <rightsIssuerAuthenticationKey> holds an <xenc:EncryptedKey> element. This MUST hold a <ds:KeyInfo> element, an empty <xenc:EncryptionMethod> element and an <xenc:CipherData> element. The <ds:KeyInfo> element MUST contains a <ds:RetrievalMethod> element of which the URI attribute references the key used to encrypt the rights issuer’s authentication key (RIAK). The <xenc:EncryptedKey> element MUST also hold an empty <xenc:EncryptionMethod> element of which the Algorithm attribute identified the algorithm used to protect the RIAK. This algorithm MUST be AES-128 Key Wrap, and the value of the Algorithm attribute MUST be "http://www.w3.org/2001/04/xmlenc#kw-aes128". The <xenc:CipherData> element contains the <xenc:CipherValue> element that holds the base64 encoded value of the encrypted RIAK.

The <encKey> element is of type xenc:EncryptedKeyType from [XMLEnc]. It consists of a wrapped broadcast registration encryption key, KBRK. The Id attribute of this element SHALL be present and SHALL have the same value as the value of the URI attribute of the <ds:RetrievalMethod> element in any <ds:KeyInfo> elements inside the subscriber group registration extension. The <ds:KeyInfo> child element of the <encKey> element SHALL identify the wrapping key. The child of the <ds:KeyInfo> element SHALL be of type roap:X509SPKIHash, identifying a particular DRM Agent's public key through the (SHA-1) hash of the DER-encoded subjectPublicKeyInfo value in its certificate.

7.3 Inform Registered Device Protocol

7.3.1 Theory of Operation

Note: This protocol is also known as the "1-pass IRD protocol", short for Inform Registered Device protocol.

[image: image12.wmf][1] data message

ROT / PKI+CRL

Service Provider /

RI

Customer / Device

Figure 8: 1-pass IRD protocol – RI initiated message to device.

Explanation of the protocol:

· The 1-pass IRD protocol is designed to meet the messaging push case. Its successful execution assumes the device to have an existing RI context with the sending RI.

· Several messages are defined for the IRD protocol.

Table 2: Messages of the 1-pass IRD protocol

	message name
	for msg syntax refer to section
	remark

	force to re-register
	
	

	update RI certificate
	7.3.2
	

	update DRM Time
	7.3.3
	In BCRO carousel

	update contact number
	0
	In BCRO carousel

	update domain
	
	

	force to join domain
	
	

	force to leave domain
	
	

	token delivery
	7.4.4.1
	

Note: The processing of each message will be discussed in following sections.

7.3.2 Update RI Certificate

The RI can use this message to update the RI certificate in one or more devices.

· The RI SHALL enter a valid RI certificate in the message.

· The RI MAY enter a rooted RI certificate chain in the message. The root certificate is to be excluded.

· The RI SHALL use the mechanisms described in section 12.6 to address the message to a device.

· The device SHALL filter on the message_tag to identify the message. Then it SHALL filter for the UDN and compare it to the local UDN of the device. If those match the device SHALL start validating the signature and check the RI certificate (chain.). If both are valid the device detects this message is really addressed to it, and the device SHALL start to perform the intended action.

· If the message is correct, the device SHALL save the new RI certificate in the message after the signature of the message has been verified correctly. The old RI certificate SHALL be made obsolete.

7.3.2.1 Update RI Certificate - update_ri_certificate_msg() Message

Using the 1-pass IRD protocol (refer to 7.3) the RI sends a update_ri_certificate_msg() message, forcing the device to update its RI certificate chain.

This update_ri_certificate_msg() trigger is almost identical to the re_register_msg() message described in section 7.3.5, with the following adaptations:

· being that the message_tag is different. Refer to A.10 for the value of the message_tag.

· Status/Error code is Succes or NotSupported. Refer to A.4 for the value of the error codes.

7.3.3 Update DRM Time

The RI can use this message to update the DRM time.

· The RI SHALL enter a valid DRM time in the message.

· The RI MAY put a time offset in the message. The timeoffset SHALL be valid.

· The RI SHALL use the mechanisms described in section 12.6 to address the message to a device.

· The device SHALL filter on the message_tag to identify the message. Then the device SHALL start validating the signature and check the RI certificate (chain.). If both are valid the device detects this message is really addressed to it, and the device SHALL start to perform the intended action.

· If the message successfully validated and the RI certificate is valid, the device SHALL save the new DRM time into the device.
7.3.3.1 Updating the DRM Time - update_drmtime_msg() Message

7.3.3.1.1 Update DRM Time Message Description

Using the 1-pass IRD protocol (refer to 7.3) the RI sends a update_drmtime trigger message with the drmtime to the device as specified below:

Table 13: Update DRM time message description

	update_drmtime_msg()

	Parameter name
	(M)andatory / (O)ptional

	Remark

	message_tag
	M
	

	protocol_version
	M
	

	status
	M
	

	signature_type_flag
	M
	

	local_time_offset_flag
	M
	

	drm_time
	M
	

	local_time_offset
	O
	

	signature_block
	M
	

message_tag - This parameter identifies the type of the message. Refer to A.10 for the value of the message_tag.

protocol_version - This parameter indicates the protocol_version of this message. See Section 7.1 for more details.
status - The status parameter SHALL indicate one of the values explained in the following table. The device SHALL ignore messages with other error values.

Table 14: Status values

	status value
	meaning

	Success
	The message contains valid DRM time RI.

	NotSupported
	The RI does not support the sending of DRM time request. The device will use other means to update DRM time.

	DeviceTimeError
	The RI concluded that the DeviceTime might be false and forces the device to update its time. As an extra result the device will determine the eventual clock drift and notify this to the RI per ARC (offline notification of short device data; refer to7.2.2).Please note: this capability should be used with great care.)

Note: Refer to A.4 for the value of the error codes.

local_time_offset_flag: Binary flag to signal presence of the local_time_offset parameter. See Section 7.1 for more details.
	local_time_offset_flag
	Value (h)
	remark

	data absent
	0x0
	

	data present
	0x1
	

signature_type_flag: A flag to signal type of signature algorithm used. See Section 7.1 for more details.
	signature_type_flag
	Value (h)
	remark

	RSA 1024
	0x0
	

	RSA 2048
	0x1
	

	RSA 4096
	0x2
	

	reserved for future use
	0x3
	not used in this version of the specification

drm_time: This parameter defines the time in Universal Time Coordinated (UTC). See Section 7.1 for more details.

local_time_offset: This parameter indicates the local time offset from the (UTC) drm_time as explained in Annex A.4.

signature_block: The signature SHALL enable a single source authenticity check on the message. See Section 7.1 for more details.
7.3.3.1.2 Update DRM Time - Message Syntax

Table 15: Update DRM time message syntax

	fields
	length
	type

	update_drmtime_msg(){
	
	

	/* signature protected part starts here */
	
	

	message_tag
	8
	bslbf

	protocol_version
	4
	bslbf

	reserved_for_future_use
	4
	bslbf

	Status
	8
	bslbf

	flags {
	
	

	local_time_offset_flag
	1
	bslbf

	signature_type_flag
	2
	bslbf

	reserved for future use
	5
	bslbf

	}
	
	

	drm_time
	40
	mjdutc

	if (local_time_offset_flag == 0x1) {
	
	

	local_time_offset
	16
	bslbf

	}
	
	

	/* signature protected part ends here */
	
	

	if (signature_type_flag == 0x0){
	
	

	signature_block
	1024
	bslbf

	} else if (signature_type_flag == 0x1)
	
	

	signature_block
	2048
	bslbf

	} else if (signature_type_flag == 0x2)
	
	

	signature_block
	4096
	bslbf

	}
	
	

	}
	
	

7.3.4 Update Contact Number

The RI can use this message to update the contact number that the device should contact during the offline notification processes (both for use with the NDD or NSD protocols):

· The message SHALL contain (a) valid telephone number(s) to contact.

· The RI SHALL use the mechanisms described in section 12.6 to address the message to a device.

· The device SHALL filter on the message_tag to identify the message. Then the device SHALL start validating the signature and check the RI certificate (chain.). If both are valid the device detects this message is really addressed to it, and the device SHALL start to perform the intended action.

· If the message is correct, the device SHALL store the new contact number(s) and delete the old one(s).
7.3.4.1 Update the Contact Number – update_contact_number_msg() Message

7.3.4.1.1 Update Contact Number Message Description

Using the 1-pass IRD protocol (refer to 7.3.1) the RI sends a update_contact_number_msg() message with a (set of) contact number(s) to the device as specified below:

Table 16: Update contact number message description

	update_contact_number_msg()

	Parameter name
	(M)andatory / (O)ptional

	Remark

	message_tag
	M
	

	protocol_version
	M
	

	Status
	M
	

	signature_type_flag
	M
	

	ri_certificate_counter
	M
	

	c_length
	M
	

	ri_certificate
	M
	

	ocsp_response_counter
	M
	

	r_length
	M
	

	ocsp_response
	M
	

	contact_counter
	M
	

	contact
	O
	

	signature_block
	M
	

message_tag: this parameter identifies the type of the message. Refer to section A.10 for the value of the message_tag.

protocol_version: this parameter indicates the protocol_version of this message. See Section 7.1 for more details.
status: the status parameter SHALL indicate one of the values explained in the following table. The device SHALL ignore messages with other error values.

Table 17: Status values

	status value
	meaning

	Success
	The message contains valid contact numbers from the RI.

	NotSupported
	The RI does not support the sending of contact numbers. The device will use other means to use contact numbers (e.g. via OMA BCAST Service Guide).

Note: refer to A.4 for the value of the error codes.

signature_type_flag: a flag to signal type of signature algorithm used. See Section 7.1 for more details.
	signature_type_flag
	Value (h)
	remark

	RSA 1024
	0x0
	

	RSA 2048
	0x1
	

	RSA 4096
	0x2
	

	reserved for future use
	0x3
	not used in this version of the specification

certificate_version: is a numerical representation of the version of the RI certificate. See Section 7.1 for more details.

Table 18: Description of certificate_version parameter

	Parameter Fieldname
	Field Value (h)
	supports

	major_version_number
	0x0,..,0xA
	MSB4(certificate_version)

	minor_version_number
	0x0,..,0xA
	LSB4(certificate_version)

ri_certificate_counter: this parameter indicates the depth of the RI certificate chain. See Section 7.1 for more details.
	number of certificate in chain
	Value (h)
	remark

	0
	0x0
	will signal absence of ri_certificate e.g. on error status to save bandwidth.

	1
	0x1
	

	2
	0x2
	

	3
	0x3
	

	4
	0x4
	

	5
	0x5
	

	6
	0x6
	

	7
	0x7
	

c_length: this parameter indicates the length in bytes of the ri_certificate.

ri_certificate(): this parameter SHALL be present. See Section 7.1 for more details.
If an RI certificate is received that is not in the stored certificate verification data for this RI, and if the Device can determine (in the case of Broadcast Devices that support DRM Time) that the expiry time of the received RI certificate is later than the RI Context for this RI, and the certificate status of the RI certificate as indicated in the OCSP response is good (see [OCSP-MP]), then the Device SHALL verify the complete chain.
ocsp_response_counter: this parameter indicates the depth of the OCSP response chain. See Section 7.1 for more details.
	number of responses in chain
	Value (h)
	remark

	0
	0x0
	will signal absence of ocsp_response e.g. on error status to save bandwidth.

	1
	0x1
	

	2
	0x2
	

	3
	0x3
	

	4
	0x4
	

	5
	0x5
	

	6
	0x6
	

	7
	0x7
	

r_length: this parameter indicates the length in bytes of the ocsp_response.

ocsp_response(): this parameter, when present, SHALL be a complete set of valid OCSP responses for the RI's certificate chain. See Section 7.1 for more details. If no OCSP response is present in the device_registration_response() message, then the Device SHALL abort the registration protocol.

contacts_counter: this parameter indicates the number of contacts carried in the message.

contact: this object specifies the contact. Please refer to 7.3.4.1.3.

signature_block: the signature SHALL enable a single source authenticity check on the message. See Section 7.1 for more details.
7.3.4.1.2 Update Contact Number Message Syntax

Table 19: Update contact number message syntax

	fields
	length
	type

	update_contact_number_msg() {
	
	

	/* signature protected part starts here */
	
	

	message_tag
	8
	bslbf

	protocol_version
	4
	bslbf

	reserved_for_future_use
	4
	bslbf

	status
	8
	bslbf

	flags {
	
	

	contacts_counter
	4
	bslbf

	reserved_for_future_use
	4
	

	signature_type_flag
	2
	bslbf

	ri_certificate_counter
	3
	bslbf

	ocsp_response_counter
	3
	bslbf

	}
	
	

	certificate_version
	8
	bslbf

	for(cnt1=0; cnt1 < ri_certificate_counter ;cnt1++){
	
	

	c_length
	16
	uimsbf

	ri_certificate()
	8*c_length
	bslbf

	}
	
	

	for(cnt2=0; cnt2 < ocsp_response_counter ;cnt2++){
	
	

	r_length
	16
	uimsbf

	ocsp_response()
	8*r_length
	bslbf

	}
	
	

	for(cnt3=0; cnt3 < contacts_counter ;cnt3++){
	
	

	contact()
	
	

	}
	
	

	/* signature protected part ends here */
	
	

	if (signature_type_flag == 0x0){
	
	

	signature_block
	1024
	bslbf

	} else if (signature_type_flag == 0x1)
	
	

	signature_block
	2048
	bslbf

	} else if (signature_type_flag == 0x2)
	
	

	signature_block
	4096
	bslbf

	}
	
	

	}
	
	

7.3.4.1.3 Format of the Contact Object

Table 20: Contact object format

	Field
	length
	type

	contact(){
	
	

	contact_type
	4
	uimsbf

	reserved for future use
	4
	bslbf

	contact_length
	8
	uimsbf

	contactdata
	8*contact_length
	bslbf

	}
	
	

contact_type: this field specifies the type of action as listed in Table 21.

Table 21: Contact type

	contact_type
	description
	comments
	max length (chars)

	0x00
	local_ri_phone_number
	The number the user of the device needs to contact to start service provision.
	20

	0x01
	int_ri_phone_number
	The number the user of the device needs to contact to start service provision when he/she would call from abroad.
	20

	0x02
	ri_sms_number
	The SMS number the user of the device needs to contact to start service provision.
	20

	0x03
	ri_url
	The URL address the user of the device needs to contact to start service provision.
	30

	0x04
	local_home_coc_phone_number
	The number the user of the device needs to contact to start service provision.
	20

	0x05
	int_home_coc_phone_number
	The number the user of the device needs to contact to start service provision when he/she would call from abroad.
	20

	0x06
	home_coc_sms_number
	The SMS number the user of the device needs to contact to start service provision.
	20

	0x07
	home_coc_url
	The URL address the user of the device needs to contact start service provision.
	30

	0x08
	local_reporting_phone_number
	The number the user of the device needs to contact to report token consumption.
	20

	0x09
	int_reporting_phone_number
	The number the user of the device needs to contact to report token consumption when he/she would call from abroad.
	20

	0x0A
	reporting_sms_number
	The SMS number the user of the device needs to contact to report token consumption.
	20

	0x0B
	reporting_url
	The URL address the user of the device needs to contact to report token consumption.
	30

	0x0C-0x0F
	reserved for future use
	
	

contact_length - This parameter indicates the length in bytes of the contact field. Maximum length of the contacts is specified in Table 21.

UTF-8 [RFC 3629] character encoding for ASCII characters is 'efficient' with 1 byte per character. On the other hand, there are characters that are encoded using 6 bytes (Asian languages).

For example: a URL is limited to 30 characters. The 30 URL UTF-8 characters are translated into bytes as follows:

E.g.: "Western" languages - character is 1 byte - Longest URL encoded as bytes is 1*30 characters = 30 bytes.

E.g.: Asian languages - character is 6 bytes - Longest URL encoded as bytes is 6*30 characters = 180 bytes.

contactdata: the value in this field specifies any of the contact_type possibilities the user of the device needs to contact (via other means) to start service provision.

	contact types
	contactdata encoding rules

	phone numbers
	The phone number is encoded as alphabetic, supporting telephone numbers like: "0800-123456789" but also for example: "0800-philips". The string that forms the phone number is encoded using UTF-8.

	SMS numbers
	The SMS number is encoded as hexadecimal, supporting telephone numbers like: "0800-123456789" but also for example: "philips+subscribe". The string that forms the SMS number is encoded using UTF-8.

	URLs
	The URL is encoded as hexadecimal, according to [RFC 1738], supporting URLs like: www.philips.com/start. The string that forms the URL is encoded using UTF-8.

7.3.5 Force Re-Registration

· In this case the RI is sending a message to the device to get it into registration mode.

· The RI SHALL use the mechanisms described in section 12.6 to address the message to a device.

· The device SHALL filter on the message_tag to identify the message. Then it SHALL filter for the UDN and compare it to the local UDN of the device. If those match the device SHALL start validating the signature and check the RI certificate (chain.). If both (UDN and signature) are valid the device detects this message is really addressed to it, and the device SHALL start to perform the intended action.

· If the message is correct, the reception of this message SHALL start the (re-) registration process. The device will be rendered inoperable, but only in relation with the associated RI (context) as described below:

· Accessing an OMA BCAST SERVICE GUIDE for purchase is still allowed, as this will require a registration first.

· The device SHALL be rendered inoperable for any purchase protocol or playback of future content. The device MAY use stored BCROs to play old content for which the device obtained GROs, but SHALL NOT use these BCROs for new content received after the re-registration request until the device is re-registered with the RI.

· Depending on the implementation a dialogue will be shown to the user and the offline NDD protocol will be executed, using the RI_ID stored in the RI Context.
7.3.5.1 (Force to) Re-Register - re_register_msg() Message

7.3.5.1.1 Re-Register Message Description

Using the 1-pass IRD protocol (refer to 7.3.1) the RI sends a register_msg message, indirectly triggering a (re)registration . The message is specified as follows:

Table 22: Re-register message description

	re_register_msg()

	Parameter name
	(M)andatory / (O)ptional

	Remark

	message_tag
	M
	

	protocol_version
	M
	

	bcd_udn
	M
	

	status
	M
	

	signature_type_flag
	M
	

	certificate_version
	M
	

	ri_certificate_counter
	M
	

	c_length
	M
	

	ri_certificate
	M
	

	ocsp_response_counter
	M
	

	r_length
	M
	

	ocsp_response
	M
	

	signature_block
	M
	

message_tag: this parameter identifies the type of the message. Refer to A.10 for the value of the message_tag.

protocol_version: This parameter indicates the protocol_version of this message. See Section 7.1 for more details.
bcd_udn(): the BCD form of the UDN. Refer to section 7.2.1.2.1 for details.

status: The status parameter SHALL indicate one of the values explained in the following table. The device SHALL ignore messages with other error values.

Table 23: Status values

	status value
	meaning

	Success
	The message contains valid reregistration message and cancels any preceding forced channel usage restrictions.

	ForceInteractiveChannel
	If the device is a mixed mode device the (re)registration will be possible via OOB and/or the interactive channel. By using this status code the RI can indicate to the device that the device SHALL direct subsequent (re)registrations to the RI over the device’s interactive channel only. When the device receives this status code it will also exclusively use the interaction channel for all other messages. When the interactive channel of the device is not able to connect to the RI the mixed mode device MAY revert back to the OOB re-registration dialogue. Please note that a mixed mode device will remain to have full broadcast reception capabilities after receiving this status code.

	ForceOobChannel
	If the device is a mixed mode device the (re)registration will be possible via OOB and/or the interactive channel. By using this status code the RI can indicate to the device that the device SHALL direct subsequent (re)registrations to the RI over the device’s OOB channel. When the device receives this status code it will also exclusively use the OOB channel for all other messages. Please note that a mixed mode device will remain to have full interactive channel capabilities after receiving this status code, but will not use the interactive channel.

Note: Refer to A.4 for the value of the error codes.

signature_type_flag: a flag to signal type of signature algorithm used. See Section 7.1 for more details.
	signature_type_flag
	Value (h)
	remark

	RSA 1024
	0x0
	

	RSA 2048
	0x1
	

	RSA 4096
	0x2
	

	reserved for future use
	0x3
	not used in this version of the specification

certificate_version: a numerical representation of the version of the RI certificate. See Section 7.1 for more details.

Table 24: Description of certificate_version parameter

	Parameter Fieldname
	Field Value (h)
	supports

	major_version_number
	0x0,..,0xA
	MSB4(certificate_version)

	minor_version_number
	0x0,..,0xA
	LSB4(certificate_version)

ri_certificate_counter: This parameter indicates the depth of the RI certificate chain. See Section 7.1 for more details.
	number of certificate in chain
	Value (h)
	remark

	0
	0x0
	will signal absence of ri_certificate e.g. on error status to save bandwidth.

	1
	0x1
	

	2
	0x2
	

	3
	0x3
	

	4
	0x4
	

	5
	0x5
	

	6
	0x6
	

	7
	0x7
	

c_length: This parameter indicates the length in bytes of the ri_certificate.

ri_certificate: this parameter SHALL be present. See Section 7.1 for more details.
If an RI certificate is received that is not in the stored certificate verification data for this RI, and if the Device can determine (in the case of Broadcast Devices that support DRM Time) that the expiry time of the received RI certificate is later than the RI Context for this RI, and the certificate status of the RI certificate as indicated in the OCSP response is good (see [OCSP-MP]), then the Device SHALL verify the complete chain.
ocsp_response_counter: This parameter indicates the depth of the OCSP response chain. See Section 7.1 for more details.
	number of responses in chain
	Value (h)
	remark

	0
	0x0
	will signal absence of ocsp_response e.g. on error status to save bandwidth.

	1
	0x1
	

	2
	0x2
	

	3
	0x3
	

	4
	0x4
	

	5
	0x5
	

	6
	0x6
	

	7
	0x7
	

r_length: This parameter indicates the length in bytes of the ocsp_response.

ocsp_response(): this parameter, when present, SHALL be a complete set of valid OCSP responses for the RI's certificate chain. See Section 7.1 for more details. If no OCSP response is present in the device_registration_response() message, then the Device SHALL abort the registration protocol.

signature_block: the signature SHALL enable a single source authenticity check on the message. See Section 7.1 for more details.
7.3.5.1.2 Re-Register Message Syntax

Table 25: Re-register message syntax

	fields
	length
	Type

	re_register_msg() {
	
	

	/* signature protected part starts here */
	
	

	message_tag
	8
	bslbf

	protocol_version
	4
	bslbf

	reserved _for_future_use
	4
	bslbf

	bcd_udn()
	80
	bslbf

	flags {
	
	

	signature_type_flag
	2
	bslbf

	ri_certificate_counter
	3
	bslbf

	ocsp_response_counter
	3
	bslbf

	reserved for future use
	8
	bslbf

	}
	
	

	certificate_version
	8
	bslbf

	for(cnt1=0; cnt1 < ri_certificate_counter ;cnt1++){
	
	

	c_length
	16
	uimsbf

	ri_certificate()
	8*c_length
	bslbf

	}
	
	

	for(cnt2=0; cnt2 < ocsp_response_counter ;cnt2++){
	
	

	r_length
	16
	uimsbf

	ocsp_response()
	8*r_length
	bslbf

	}
	
	

	/* signature protected part ends here */
	
	

	if (signature_type_flag == 0x0){
	
	

	signature_block
	1024
	bslbf

	} else if (signature_type_flag == 0x1)
	
	

	signature_block
	2048
	bslbf

	} else if (signature_type_flag == 0x2)
	
	

	signature_block
	4096
	bslbf

	}
	
	

	}
	
	

7.4 Token Handling

7.4.1 Protocol Overview

The theory of operation (refer to section A.13) results in the specification of several protocols:

· offline protocols (from device to RI)

	Protocol
	section
	purpose

	token request protocol
	7.4.2
	request to purchase tokens

	token reporting protocol
	7.4.3
	protocol to report the consumption of tokens

· 1-pass protocols (from RI to device)

	Protocol
	section
	purpose

	1-pass binary Push Device Registration protocol
	7.2.3
	transmit registration data to device

	1-pass binary Inform Registered Device protocol
	7.3
	inform device via messages.

The protocols interrelate in following way (roundtrip):

	kicking off action…
	…results in

	token request protocol

(request to purchase tokens)
	token delivery response message

(transmit tokens to device)

	token reporting protocol

(report the consumption of tokens)
	token delivery response message

(transmit tokens to device)

7.4.2 Token Request Protocol

When the user of a device wants to obtain tokens, he/she uses the NSD protocol with the token_request action type. (refer to section 7.2.2.1.6).

7.4.3 Token Reporting Protocol

When the user of a device is instructed by his/her device to report token consumption, he/she uses the NSD protocol with the token_consumption_message action type in order to send a token consumption report. (refer to section 7.2.2.1.4).

7.4.4 Binary Messages

7.4.4.1 Delivering Tokens – token_delivery_response() Message

7.4.4.1.1 Token Delivery Response Message Description

Using the 1-pass IDR protocol (refer to section 7.3.1) the RI sends a token_delivery_response() message, informing the device of the delivery of new tokens. The message is specified below:

Table 26: Token delivery response message description

	token_delivery_response()

	Parameter name
	(M)andatory / (O)ptional

	remark

	message_tag
	M
	not encrypted

	protocol_version
	M
	not encrypted

	message_length
	M
	not encrypted

	group_size_flag
	M
	not encrypted

	address_mode
	M
	not encrypted

	One
	M
	not encrypted

	rights_issuer_id
	M
	not encrypted

	Status
	M
	not encrypted

	device_nonce
	M
	not encrypted

	response_flag
	M
	not encrypted

	token_reporting_flag
	M
	not encrypted

	earliest_reporting_time_flag
	M
	not encrypted

	latest_reporting_time_flag
	M
	not encrypted

	token_quantity_flag
	M
	not encrypted

	token_delivery_response_id
	M
	not encrypted

	latest_consumption_time
	O
	not encrypted

	earliest_reporting_time
	O
	not encrypted

	latest_reporting_time_flag
	O
	not encrypted

	encrypted_token_quantity
	O
	encrypted

	encrypted_report_authentication_key
	O
	encrypted

	MAC
	M
	not encrypted

message_tag: this parameter identifies the type of the message. Refer to A.10 for the value of the message_tag.

protocol_version: this parameter indicates the protocol_version of this message. See Section 7.1 for more details.

message_length: 12-bit field indicating the length in bytes of the message starting immediately after this field.

group_size_flag: in the case of Fixed Subscriber Group sizes, this 1-bit field indicates the group size used. If set to 0 a Subscriber Group size of 256 Devices is used. If set to 1 a Subscriber Group size of 512 Devices is used. In the case of a Flexible Subscriber Group, this flag has no meaning and MUST be ignored.

address_mode: 3-bit field indicating the addressing mode used by this message. The meaning of address_mode is the same as in the BCRO. However for the token_delivery_response message only the addressing of a unique device is allowed. Therefore address_mode MUST contain either the value 0x2 or the value 0x3.

one: 1-bit flag which SHALL have the value 0x1 in this version of the specification. This field MAY have value 0x0 in future versions of the specification

udf: this 40-bit field contains a Unique Device Filter and is used to address a unique device.

In case of Fixed Suscriber Group addressing, the following applies. In the case of a group size of 256 devices, the first 32 bits of the udf contain the fixed_group_address field, whilst the last 8 bits contain the fixed_position_in_group field. In the case of 512 devices, the first 31 bits contain the fixed_group_address field whilst the last 9 bits contain the fixed_position_in_group field.

In the case of Flexible Subscriber Group addressing, the udf contains a 40 bit unique address.

rights_issuer_id(): the ID of the rights issuer. This is the 160-bit SHA-1 hash of the public key of the RI. See X509PKISHash in [DRM-v2].

status: the status parameter SHALL indicate one of the values explained in the following table. The device SHALL ignore messages with other error values.

Table 27: Message error codes

	status value
	meaning

	Success
	The message contains valid token delivery data from the RI.

	NotSupported
	The RI does not support the sending of tokens from the RI. In this message, the RI SHALL set the value of token_quantity to zero or SHALL set the token_quantity_flag to 0x0.

	TokenConsumptionMessageError
	The RI did receive a token consumption message, but it was erroneous and the device should redo the last token consumption message.

In this token delivery response message, the RI SHALL set the value of token_quantity to zero or SHALL set the token_quantity_flag to 0x0. The RI SHALL use a token_reporting_flag of value 0x1. The RI SHALL use the device_nonce of the last token consumption message that the RI successfully processed or set the response_flag to 0x0 in case no token consumption messages have been successfully processed. The device SHALL generate a token consumption message, reporting on the token consumption from the time of the generation of the token consumption message with the same device_nonce as the device_nonce in this token delivery response message, or from first start-up in case the response_flag was set to 0x0.

	NoTokenConsumptionMessage
	The RI did not receive a token consumption message yet, but was expecting one, because the present date/time is later than the last latest_token_consumption_time sent to the device in a token delivery response message.

In this token delivery response message, the RI SHALL set the value of token_quantity to zero or SHALL set the token_quantity_flag to 0x0. The RI SHALL use a token_reporting_flag of value 0x1. The RI SHALL use the device_nonce of the last token consumption message that the RI successfully processed or set the response_flag to 0x0 in case no token consumption messages have been successfully processed. The device SHALL generate a token consumption message, reporting on the token consumption from the time of the generation of the token consumption message with the same device_nonce as the device_nonce in this token delivery response message, or from first start-up in case the response_flag was set to 0x0.

Note: refer to A.4 for the value of the error codes.

device_nonce: if the response_flag equals 0x1, see Section 7.1 for more details. If the response_flag field equals 0x0, this token delivery response message does not refer to any request from the device to the RI and the device_nonce MAY be ignored.
response_flag: if this flag equals 0x1, this token delivery response message is a response to a message from the device to the RI and the device_nonce in this token delivery response message is taken from that message. If this flag equals 0x0, this token delivery response message does not refer to any message from the device to the RI and the device_nonce can be any value.

token_reporting_flag: if this flag equals 0x1, the device has to report to the RI the consumption of the tokens received with this token delivery response message. If this flag equals 0x0, the device can consume all tokens delivered with this token delivery response message, as well as any other previously delivered tokens which are still not consumed, without ever having to report their consumption.

earliest_reporting_time_flag: binary flag to signal presence of the parameter it describes:

	earliest_reporting_time field
	Value (h) of earliest_reporting_time_flag
	remark

	data absent
	0x0
	

	data present
	0x1
	

latest_reporting_time_flag: binary flag to signal presence of the parameter it describes:

	latest_reporting_time field
	Value (h) of latest_reporting_time_flag
	remark

	data absent
	0x0
	

	data present
	0x1
	

token_quantity_flag: binary flag to signal presence of the parameter it describes:

	token_quantity field
	Value (h) of token_quantity_flag
	remark

	data absent
	0x0
	

	data present
	0x1
	

token_delivery_response_id: this is the ID of the token delivery response message. The RI SHALL use the same token_delivery_response_id when retransmitting a token delivery response message. The RI SHALL generate a random number using a sufficiently good pseudo random number generator for every new token delivery response message. Devices SHALL discard token delivery response messages with a token_delivery_response_id identical to the one in an already received token delivery response message.

latest_token_consumption_time: after the date/time indicated in the latest_token_consumption_time field, the device SHALL NOT use any tokens, which have been received after the last token delivery response message that had the token_reporting_flag set to 0x0, for the consumption of protected content controlled by the RI. The device SHALL use the date/time in the latest_token_consumption_time field, if present, of the last received token delivery response message, regardless of the value of the field status.

earliest_reporting_time: if the device reports the consumption of tokens before the date/time indicated in the earliest_reporting_time field, the RI NEED NOT change the latest_token_consumption_time in its subsequent token delivery response message.

latest_reporting_time: the purpose of this field is to make uninterrupted token consumption possible. If the device reports the token consumption before the date/time indicated in the latest_reporting_time field, the RI SHALL send the next token delivery response message before the latest_token_consumption_time, unless the RI wishes to interrupt or disable the token consumption.

encrypted_token_quantity: a 4-byte field, containing the encrypted token_quantity. token_quantity is a signed, two’s complement 32-bit number. If the value of token_quantity is positive, it specifies the number of tokens the device receives from the RI. If the value of token_quantity is negative, it specifies how many tokens the RI removes from the device. If the field encrypted_token_quantity is not present, no tokens are received from the RI and no tokens are removed from the device by this token delivery response message. The token_quantity is encrypted using AES-128-CBC, with fixed IV 0 and with 0 padding in the last block if needed. The key used for the encryption of the token_quantity is the Token Delivery Key.encrypted_report_authentication_key: this field contains the encrypted Report Authentication Key. The Report Authentication Key a 128 bit key to authenticate the reported number of tokens with in the next token consumption message. The encrypted_report_authentication_key field is only present if the token_reporting_flag has the value 0x1. The RI SHALL generate a random number using a sufficiently good pseudo random number generator for the value of every newly required Report Authentication Key. The Report Authentication Key is encrypted using AES-128-CBC, with fixed IV 0 and with 0 padding in the last block if needed. The key used for the encryption of the Report Authentication Key is the Token Delivery Key.

MAC: this is the authentication code calculated over all bytes before this field in this message using HMAC-SHA1-96 (see [RFC 2104]). The MAC is used for integrity check of this message. The key used to create the MAC is the token delivery response message authentication key TDRMAK as defined in A.11.5. Devices SHALL NOT use token delivery response messages with an invalid MAC.
Note Message result:

· More information on device actions after the reception of this message can be found in section A.13.2.

7.4.4.1.2 Token Delivery Response Message Syntax

Table 28: Token delivery response message syntax

	fields
	length
	type

	token_delivery_response(){
	
	

	/* MAC protected part starts here */
	
	

	message_tag
	8
	bslbf

	protocol_version
	4
	bslbf

	message_length
	12
	uimsbf

	group_size_flag
	1
	bslbf

	reserved for future use
	3
	bslbf

	address_mode
	3
	uimsbf

	one
	1
	bslbf

	udf
	40
	uimsbf

	rights_issuer_id()
	160
	bslbf

	status
	8
	bslbf

	device_nonce
	4
	bslbf

	flags {
	
	

	response_flag
	1
	bslbf

	token_reporting_flag
	1
	bslbf

	earliest_reporting_time_flag
	1
	bslbf

	latest_reporting_time_flag
	1
	bslbf

	token_quantity_flag
	1
	bslbf

	reserved for future use
	7
	bslbf

	}
	
	

	token_delivery_response_id
	96
	bslbf

	if (token_reporting_flag == 0x1) {
	
	

	latest_token_consumption_time
	40
	mjdutc

	if (earliest_reporting_time_flag == 0x1) {
	
	

	
earliest_reporting_time
	40
	mjdutc

	}
	
	

	if (latest_reporting_time_flag == 0x1) {
	
	

	
latest_reporting_time
	40
	mjdutc

	}
	
	

	}
	
	

	/* encrypted part starts here
	
	

	if(token_quantity_flag == 1){
	
	

	

encrypted_token_quantity
	32
	bslbf

	}
	
	

	encrypted_report_authentication_key
	128
	bslbf

	/* encrypted part ends here
	
	

	/* MAC protected part ends here */
	
	

	MAC
	96
	bslbf

	}
	
	

Note that all reserved for future use fields SHALL have the value 0 for token delivery response messages created according to this version of the specification.

7.5 Domain Management

7.5.1 Domain Joining and Leaving

Interactive devices will adhere to [DRM-v2].

· Interactive devices will therefore use OMA DRM 2.0 domain ID.

Broadcast devices will adhere to the mechanisms as described in this section.

· Broadcast devices will use "shortform_domain_id" a.k.a. SLDF.

Mixed-mode SHALL have the "interoperability" requirement to support both domain ID formats of interactive and broadcast devices:

· Mixed-mode device will receive:

· "longform_domain_id()", a.k.a. LLDF, which is a translation of OMA DRM 2.0 domain ID.

· "shortform_domain_id" a.k.a. SLDF.

· mixed-mode devices registered for both interactive and broadcast operations MAY pass either domain ID format to other mixed-mode devices in the domain.

· interactive only devices SHALL pass longform_domain_id() format to other devices in the domain. The mixed-mode device will understand this, while broadcast does not understand.

· broadcast devices SHALL pass shortform_domain_id format to other devices in the domain. The mixed-mode device will understand this, while interactive does not understand.

7.5.2 Protocol Overview

The theory of operation results in the specification of several protocols:

· offline protocols (from device to RI)

	protocol
	section
	purpose

	offline Domain Join Request protocol
	7.5.2.1
	request to join a domain

	offline Domain Leave Request protocol
	7.5.2.2
	request to leave a domain

· 1-pass protocols (from RI to device)

	protocol
	section
	purpose

	1-pass binary Push Device Registration protocol
	7.2.3
	transmit registration data to device

	1-pass binary Inform Registered Device protocol
	7.3
	inform device via messages

The protocols interrelate in following way (roundtrip):

	kicking off action…
	…results in

	offline domain join request.

(request to join a domain).
	domain_registration_response() message

(transmit registration data to device)

	offline domain leave request

(request to leave a domain)
	domain_update_response() message

(inform device via messages)

	join_domain_msg()

(inform device via messages)
	offline domain join request, which on it’s turn may result in domain_registration_response() as listed above

	leave_domain_msg()

(inform device via messages)
	offline domain leave request, which on it’s turn may result in domain_update_response() as listed above

7.5.2.1 Offline Domain Join Request

When the user of a device might want to join a particular domain, he/she uses the NSD protocol with the destined action code range (refer to 7.2.2.1).

7.5.2.2 Offline Domain Leave Request

When the user of a device might want to leave a particular domain, he/she uses the NSD protocol with the destined action code range. (refer to 7.2.2.1).

7.5.3 Binary messages

7.5.3.1 Domain Data - domain_registration_response() Message

7.5.3.1.1 Domain Registration Response Message Description

Using the 1-pass PDR protocol (see 7.2.3.1) the RI sends a domain_registration_response() message, informing the device of a new domain keyset. The message is specified below:

Table 29: Message description

	domain_registration_response()

	Parameter name
	(M)andatory / (O)ptional

	remark

	message_tag
	M
	global, not encrypted

	protocol_version
	M
	global, not encrypted

	bcd_udn
	M
	global, not encrypted

	device_nonce
	M
	device specific, not encrypted

	status
	M
	device specific, not encrypted

	time_stamp_flag
	M
	device specific, not encrypted

	certificate_version
	M
	global, not encrypted

	ri_certificate_counter
	M
	global, not encrypted

	c_length
	M
	global, not encrypted

	ri_certificate
	M
	global, not encrypted

	ocsp_response_counter
	M
	global, not encrypted

	r_length
	M
	global, not encrypted

	ocsp_response
	M
	global, not encrypted

	domain_timestamp_start
	O
	device specific, not encrypted

	domain_timestamp_end
	O
	device specific, not encrypted

	signature_type_flag
	M
	global, not encrypted

	keyset_block_length
	M
	device specific, not encrypted

	local_domain_key
	M
	device specific, encrypted

	longform_domain_id()
	O
	device specific, encrypted

	shortform_domain_id
	M
	device specific, encrypted

	signature_block
	M
	device specific, not encrypted

message_tag: this parameter identifies the type of the message. Refer to A.10 for the value of the message_tag.

protocol_version: this parameter indicates the protocol_version of this message. See Section 7.1 for more details.
bcd_udn(): the BCD form of the UDN. Refer to section 7.2.1.2 for details.

status - The status parameter SHALL indicate one of the values explained in the following table. The device SHALL ignore messages with other error values.

Table 30: Status values

	status value
	meaning

	Success
	The message contains valid domain registration data from the RI.

	NotSupported
	The RI does not support the sending of domain registration data from the RI. The RI SHALL NOT include any valid keyset in the message. The device will use other means to obtain valid domain registration data from the RI.

	InvalidDomain
	The RI could not recognize the domain identifier that was used in the join domain request or decided that the domain identifier is invalid. The RI SHALL NOT include any valid keyset in the message.

	DomainFull
	The RI indicates that no more devices are allowed to join the domain. The RI SHALL NOT include any valid keyset in the message.

Note: refer to A.4 for the value of the error codes.

device_nonce: the nonce which was present in the request (using the offline NSD protocol). See Section 7.1 for more details.
time_stamp_flag: binary flag to signal presence of the presence of absence of the domain_timestamp_start and domain_timestamp_end. See Section 7.1 for more details.
	time_stamp_flag
	Value (h)
	remark

	data absent
	0x0
	

	data present
	0x1
	

certificate_version: a numerical representation of the version of the RI certificate. See Section 7.1 for more details.
Table 31: Description of certificate_version parameter

	Parameter Fieldname
	Field Value (h)

	version_number
	0x00, ..., 0xFF

ri_certificate_counter: this parameter indicates the depth of the RI certificate chain. See Section 7.1 for more details.
	number of certificate in chain
	Value (h)
	remark

	0
	0x0
	will signal absence of ri_certificate e.g. on error status to save bandwidth.

	1
	0x1
	

	2
	0x2
	

	3
	0x3
	

	4
	0x4
	

	5
	0x5
	

	6
	0x6
	

	7
	0x7
	

c_length: this parameter indicates the length in bytes of the ri_certificate.

ri_certificate(): this parameter SHALL be present. When present, the value of a ri_certificate parameter SHALL be a certificate chain including the RI’s certificate. The chain SHALL NOT include the root certificate. The RI certificate SHALL come first in the list. Each following certificate SHALL directly certify the one preceding it.

The Device MAY store RI certificate verification data indicating that an RI certificate chain has been verified. The purpose of this is to avoid repeated verification of the same certificate chain. The RI certificate verification data stored in this way SHALL uniquely identify the RI certificate and SHALL be integrity protected. The Device SHOULD check if the RI certificate chain received in this parameter corresponds to the stored certificate verification data for this RI. If so, the Device NEED NOT verify the RI certificate chain again, otherwise the Device SHALL verify the RI certificate chain.
 If an RI certificate is received that is not in the stored certificate verification data for this RI, and if the Device can determine (in the case of Broadcast Devices that support DRM Time) that the expiry time of the received RI certificate is later than the RI Context for this RI, and the certificate status of the RI certificate as indicated in the OCSP response is good (see [OCSP-MP]), then the Device SHALL verify the complete chain and SHOULD replace the stored RI certificate verification data with the received RI certificate data and set the RI context expiry time to that of the received RI certificate expiry time.
However, if the Device does store RI certificate verification data in this way it SHALL store the expiry period of the RI’s certificate (as indicated by the notAfter field within the certificate) and SHALL compare the Device’s current DRM Time with the stored RI certificate expiry time whenever verifying the signature on signed messages from the RI. If the Device’s current DRM Time is after the stored RI certificate expiry time then the Device SHALL abandon processing the RI message and SHALL initiate the registration protocol.

ocsp_response_counter: this parameter indicates the depth of the OCSP response chain. See Section 7.1 for more details.
	number of responses in chain
	Value (h)
	remark

	0
	0x0
	will signal absence of ocsp_response e.g. on error status to save bandwidth.

	1
	0x1
	

	2
	0x2
	

	3
	0x3
	

	4
	0x4
	

	5
	0x5
	

	6
	0x6
	

	7
	0x7
	

r_length: this parameter indicates the length in bytes of the ocsp_response.

ocsp_response(): this parameter, when present, SHALL be a complete set of valid OCSP responses for the RI's certificate chain. See Section 7.1 for more details.. If no OCSP response is present in the domain_registration_response() message, then the Device SHALL abort the registration protocol.

domain_timestamp_start: indicates from what time onwards the registration data for the domain is valid. This is an extra mechanism above the expiration date of the RI certificate. (Note: please note that this parameter can also be used against replay attacks.)

domain_timestamp_end: indicates from what time onwards the registration data for the domain expires. This is an extra mechanism above the expiration date of the RI certificate. (Note: please note that this parameter can also be used against replay attacks.)

signature_type_flag: a flag to signal type of signature algorithm used. See Section 7.1 for more details.
	signature_type_flag
	Value (h)
	remark

	RSA 1024
	0x0
	

	RSA 2048
	0x1
	

	RSA 4096
	0x2
	

	reserved for future use
	0x3
	not used in this version of the specification

keyset_block_length: this parameter indicates the length in bits of the total keyset_block. That is the part in the sessionkey_block().
local_domain_key: an AES symmetric key to address a unique device. This key is also known as LDK. The key length SHALL be 128 bit.

Note: This key is wrapped into the keyset_block. (Refer to 7.5.3.1.2).

longform_domain_id(): this parameter is also known as the Longform Local Domain Filter (LLDF). Please refer to A.8.2 for the definition. The longform_domain_id() is used for mixed-mode operation. Note: This address is wrapped into the keyset_block. (Refer to 7.5.3.1.2).
shortform_domain_id: this parameter is also known as the Shortform Local Domain Filter (SLDF). Please refer to A.8.1. An addressing scheme used to filter for messages like BCROs. The shortform_domain_id is used for broadcast mode of operation.

Note: This address is wrapped into the keyset_block. (Refer to 7.5.3.1.2).

signature_block: the signature SHALL enable a single source authenticity check on the message. See Section 7.1 for more details.
Note Message result:

The stored domain context SHALL at a minimum contain:

· Following keys:

· LDK.

· Shortform Local Domain Filter (SLDF). A.k.a. "shortform_domain_id". Refer to A.8.1.

· For mixed-mode operation, devices’ domain context SHALL additionally contain:

· Longform Local Domain Filter (LLDF). A.k.a. "longform_domain_id()". Refer to A.8.2.

· A Device MAY have several Domain Contexts with an RI.

· If the domain context has expired, the Device SHALL NOT execute any other protocol than the 1-pass binary device data registration protocol with the associated RI (context), and upon detection of domain context expiry the Device SHOULD initiate the offline notification of short device data protocol using the correct ARC. Depending on the implementation a dialogue will be shown to the user and the offline NSD protocol will be executed.

· Accessing an OMA BCAST SERVICE GUIDE for purchase is still allowed, as this will require a (domain) registration first.

· The device SHALL be rendered inoperable for any purchase protocol or playback of future content. The device MAY use stored BCROs to play old content for which the device obtained GROs, but SHALL NOT use these BCROs for new content received after the re-registration request until the device is re-registered with the RI.

Requirements:

· If domain addressing via an OMA DRM 2.0 domain is required the keyset SHALL include a valid set of :

· LDK key.

· Shortform Local Domain Filter (SLDF). A.k.a. "shortform_domain_id". Refer to A.8.1.

And in case of mixed-mode operation devices the keyset SHALL contain:

· A Longform Local Domain Filter (LLDF, a.k.a. "longform_domain_id()") that matches the SLDF. Refer to A.8.2.

7.5.3.1.2 Protection of the (Domain Registration) Keyset

The domain_registration_response() message is split in two parts: device specific (time bound) data and global (not time bound) data.

[image: image13.wmf]Device global data

(

in the clear

)

Device specific data

Key material

„keyset“

(

encrypted

)

Other device data

(

in the clear

)

Longform

_

udn

signature

Message

_

tag

Signature over

complete

message

Figure 9: domain_registration_response() message

The device global data SHALL be in the clear. The device specific data contains the keyset for the device.

The RI SHALL use its private key to sign the complete message data. Upon reception the device SHALL verify the RI signature, by using the issuer’s public key from the RI certificate. The device SHALL make sure that this message is correct by using a valid and correct RI certificate.

The complete message SHALL be authenticated by a signature from the RI.

Creation of the encrypted message SHALL adhere to the following rules:

1. Generate a (128 or 192 or 256) bit AES key to be used as session key (SK) for the domain_registration_response() message.

2. Concatenate the keyset (LDK, SLDF plus optional LLDF if applicable) under rules of [FIPS 197] and the Tag Length Format described in section A.8. More than one context is allowed up to the RSA blocksize.

3. Encrypt the keyset using [AES_WRAP] using the generated SK as (AES-WRAP style) KEK. This will produce the keyset_block.

4. Calculate the part of the keyset_block that would fit into the RSA block (depending on the size of RSA used, be that 1024, 2048 or 4096), including the SK and under implementation rules of the PKCS#1.

5. Encrypt SK plus the keyset_block with the public key of the target device using RSA (1024 or 2048 or 4096) under implementation guidelines of [PKCS#1]. This will produce the sessionkey_block().

6. Concatenate the (non encrypted) parameters that were not used in the key_block and create the message "header" from this. Refer to 7.5.3.1.3 for details. (for reason of completeness: of course the sessionkey_block() and the signature_block are not part of the message header)

7. Concatenate the message "header" and the sessionkey_block() . Hash the result under implementation guidelines of [PKCS#1]. Please refer to section A.6. This will produce the signature_input_data.

8. Sign the signature_input_data with RSA (1024 or 2048 or 4096) using the private key of the RI. The signature will apply to the implementation guidelines of PKCS#1, as outlined in A.6. This will produce the signature_block.

9. The domain_registration_response() message comprises of the message "header" plus sessionkey_block() and the signature_block.

[image: image14.wmf]Sessionkey_block

(RSA encrypted)

Signature_block

(RSA signature)

SK (plus keyset_block that

fits into RSA block (size)

RSA signature

Message “header”

(in the clear)

All but input for keyblocks

below

Keyset_block

(AES encrypted)

Figure 10: Structure of domain_registration_response() message.

Decryption of the encrypted message SHALL adhere to the following rules:

1. Locate the message via message_tag

2. Verify if the message is intended for this device by comparing the long_form_udn with the UDN stored in the device.

3. Verify the signature_block of the message by using the public key from the RI.

4. Locate the sessionkey_block() and decrypt the block with the private key of the local device. Locate the session key (SK) from the header and (eventual) padding (according to PKCS#1). Then locate the keyset_block part from the header and (eventual) padding (according to PKCS#1).

5. Use the SK to decrypt the keyset_block.

6. Allocate the individual keyset_items from the keyset_block according to [AES_WRAP] and the Tag Length Format described in section A.8.

Note: The SK SHALL be stored into protected storage. The AES encrypted keyset_block MAY be stored as is into unprotected storage and decrypted by the device upon use. If the keyset_block is not stored but the decrypted keys from that block are stored instead, the device SHALL store all key data safely. The keys SHALL NOT leak outside the device.

7.5.3.1.3 Domain Registration Response Message Syntax

Table 32: Domain registration response message syntax

	fields
	length
	type

	domain_registration_response(){
	
	

	/* signature protected part starts here */
	
	

	/* message header starts here /*
	
	

	message_tag
	8
	bslbf

	protocol_version
	4
	bslbf

	reserved_for_future_use
	4
	bslbf

	unique_device_number
	80
	bslbf

	reserved_for_future_use
	4
	bslbf

	device_nonce
	4
	bslbf

	Status
	8
	bslbf

	flags {
	
	

	ri_certificate_counter
	3
	bslbf

	ocsp_response_counter
	3
	bslbf

	signature_type_flag
	2
	bslbf

	time_stamp_flag
	1
	bslbf

	reserved for future use
	7
	bslbf

	keyset_block_length
	16
	uimsbf

	}
	
	

	certificate_version
	8
	bslbf

	for(cnt1=0; cnt1 < ri_certificate_counter ;cnt1++){
	
	

	c_length
	16
	uimsbf

	ri_certificate()
	8*c_length
	bslbf

	}
	
	

	for(cnt2=0; cnt2 < ocsp_response_counter ;cnt2++){
	
	

	r_length
	16
	uimsbf

	ocsp_response()
	8*r_length
	bslbf

	}
	
	

	if (time_stamp_flag == 0x1) {
	
	

	domain_timestamp_start
	40
	mjdutc

	domain_timestamp_end
	40
	mjdutc

	}
	
	

	/* message header ends here /*
	
	

	if (signature_type_flag == 0x0){
	
	

	sessionkey_block()
	1024
	bslbf

	} else if (signature_type_flag == 0x1)
	
	

	sessionkey_block()
	2048
	bslbf

	} else if (signature_type_flag == 0x2)
	
	

	sessionkey_block()
	4096
	bslbf

	}
	
	

	/* signature protected part ends here */
	
	

	if (signature_type_flag == 0x0){
	
	

	signature_block
	1024
	bslbf

	} else if (signature_type_flag == 0x1)
	
	

	signature_block
	2048
	bslbf

	} else if (signature_type_flag == 0x2)
	
	

	signature_block
	4096
	bslbf

	}
	
	

	}
	
	

7.5.3.2 Updating a Domain - domain_update_response() Message

7.5.3.2.1 Domain Update Response Message Description

Using the 1-pass IRD protocol (see 7.3), the RI sends a domain_update_response() message, informing the device that it left a particular domain. The message is specified below:

Table 33: Domain update response message description

	domain_update_response()

	Parameter name
	(M)andatory / (O)ptional

	remark

	message_tag
	M
	global, not encrypted

	protocol_version
	M
	global, not encrypted

	bcd_udn
	M
	global, not encrypted

	Status
	M
	device specific, not encrypted

	device_nonce
	M
	device specific, not encrypted

	certificate_version
	M
	global, not encrypted

	ri_certificate_counter
	M
	global, not encrypted

	c_length
	M
	global, not encrypted

	ri_certificate
	M
	global, not encrypted

	ocsp_response_counter
	M
	global, not encrypted

	r_length
	M
	global, not encrypted

	ocsp_response
	M
	global, not encrypted

	shortform_domain_id
	M
	device specific, not encrypted

	signature_type_flag
	M
	global, not encrypted

	signature_block
	M
	device specific, not encrypted

message_tag: this parameter identifies the type of the message. Refer to A.10 for the value of the message_tag.

protocol_version: this parameter indicates the protocol_version of this message. See Section 7.1 for more details.
bcd_udn(): the BCD form of the UDN. Refer to section 7.2.1.2.1 for details.

status: the status parameter SHALL indicate one of the values explained in the following table. The device SHALL ignore messages with other error values. In all cases except when the status is NotSupported, the Device SHALL remove the Domain keyset that was associated to the particular Domain.s
Table 34: Status values

	status value
	meaning

	Success
	The message informs the device that the RI has removed this device from the domain it was registered in.

	NotSupported
	The RI does not support the request to leave a domain. The device will use other means to notify the RI that it wants to leave a particular domain.

	InvalidDomain
	The RI is unable to support the request to leave a domain, because the domain is invalid

	
	

Note: refer to A.4 for the value of the error codes.

device_nonce: the nonce which was present in the request (using the offline NSD protocol). Section 7.1 for more details.
certificate_version: is a numerical representation of the version of the RI certificate. See Section 7.1 for more details.
Table 35: Description of certificate_version parameter

	Parameter Fieldname
	Field Value (h)
	supports

	major_version_number
	0x0,..,0xA
	MSB4(certificate_version)

	minor_version_number
	0x0,..,0xA
	LSB4(certificate_version)

ri_certificate_counter: this parameter indicates the depth of the RI certificate chain. See Section 7.1 for more details.
	number of certificate in chain
	Value (h)
	remark

	0
	0x0
	will signal absence of ri_certificate e.g. on error status to save bandwidth.

	1
	0x1
	

	2
	0x2
	

	3
	0x3
	

	4
	0x4
	

	5
	0x5
	

	6
	0x6
	

	7
	0x7
	

c_length: This parameter indicates the length in bytes of the ri_certificate.

ri_certificate(): this parameter SHALL be present. When present, the value of a ri_certificate parameter SHALL be a certificate chain including the RI’s certificate. The chain SHALL NOT include the root certificate. The RI certificate SHALL come first in the list. Each following certificate SHALL directly certify the one preceding it.

The Device MAY store RI certificate verification data indicating that an RI certificate chain has been verified. The purpose of this is to avoid repeated verification of the same certificate chain. The RI certificate verification data stored in this way SHALL uniquely identify the RI certificate and SHALL be integrity protected. The Device SHOULD check if the RI certificate chain received in this parameter corresponds to the stored certificate verification data for this RI. If so, the Device need not verify the RI certificate chain again, otherwise the Device SHALL verify the RI certificate chain.
 If an RI certificate is received that is not in the stored certificate verification data for this RI, and if the Device can determine (in the case of Broadcast Devices that support DRM Time) that the expiry time of the received RI certificate is later than the RI Context for this RI, and the certificate status of the RI certificate as indicated in the OCSP response is good (see [OCSP-MP]), then the Device SHALL verify the complete chain and SHOULD replace the stored RI certificate verification data with the received RI certificate data and set the RI context expiry time to that of the received RI certificate expiry time.
However, if the Device does store RI certificate verification data in this way it SHALL store the expiry period of the RI’s certificate (as indicated by the notAfter field within the certificate) and SHALL compare the Device’s current DRM Time with the stored RI certificate expiry time whenever verifying the signature on signed messages from the RI. If the Device’s current DRM Time is after the stored RI certificate expiry time then the Device SHALL abandon processing the RI message and SHALL initiate the registration protocol.

ocsp_response_counter: this parameter indicates the depth of the OCSP response chain. See Section 7.1 for more details.
	number of responses in chain
	Value (h)
	remark

	0
	0x0
	will signal absence of ocsp_response e.g. on error status to save bandwidth.

	1
	0x1
	

	2
	0x2
	

	3
	0x3
	

	4
	0x4
	

	5
	0x5
	

	6
	0x6
	

	7
	0x7
	

r_length: this parameter indicates the length in bytes of the ocsp_response.

ocsp_response(): this parameter, when present, SHALL be a complete set of valid OCSP responses for the RI's certificate chain. See Section 7.1 for more details. If no OCSP response is present in the domain_registration_response() message, then the Device SHALL abort the registration protocol.

shortform_domain_id: the shortform_domain_id is the SLDF.
signature_type_flag: a flag to signal type of signature algorithm used. See Section 7.1 for more details.
	signature_type_flag
	Value (h)
	remark

	RSA 1024
	0x0
	

	RSA 2048
	0x1
	

	RSA 4096
	0x2
	

	reserved for future use
	0x3
	not used in this version of the specification

signature_block: the signature SHALL enable a single source authenticity check on the message. See Section 7.1 for more details.
7.5.3.2.2 Domain Update Response Message Syntax

Table 36: Domain update response message syntax

	fields
	length
	type

	domain_update_response(){
	
	

	/* signature protected part starts here */
	
	

	message_tag
	8
	bslbf

	protocol_version
	4
	bslbf

	reserved_for_future_use
	4
	bslbf

	bcd_udn()
	80
	bslbf

	reserved_for_future_use
	4
	bslbf

	device_nonce
	4
	bslbf

	status
	8
	bslbf

	flags {
	
	

	ri_certificate_counter
	3
	bslbf

	ocsp_response_counter
	3
	bslbf

	signature_type_flag
	2
	bslbf

	}
	
	

	certificate_version
	8
	bslbf

	for(cnt1=0; cnt1 < ri_certificate_counter ;cnt1++){
	
	

	c_length
	16
	uimsbf

	ri_certificate()
	8*c_length
	bslbf

	}
	
	

	for(cnt2=0; cnt2 < ocsp_response_counter ;cnt2++){
	
	

	r_length
	16
	uimsbf

	ocsp_response()
	8*r_length
	bslbf

	}
	
	

	shortform_domain_id
	48
	uimsbf

	/* signature protected part ends here */
	
	

	if (signature_type_flag == 0x0){
	
	

	signature_block
	1024
	bslbf

	} else if (signature_type_flag == 0x1)
	
	

	signature_block
	2048
	bslbf

	} else if (signature_type_flag == 0x2)
	
	

	signature_block
	4096
	bslbf

	}
	
	

	}
	
	

7.5.3.3 (Force to) Join a Domain - join_domain_msg() Message

Using the 1-pass IRD protocol (see 7.3) the RI sends a join_domain_msg() message, forcing the device to join a particular domain.

This join_domain_msg() trigger is almost identical to the re_register_msg() message described in section 7.3.5, with the only adaptation being that the message_tag is different. Refer to A.10 for the value of the message_tag.

7.5.3.4 (Force to) Leave a Domain - leave_domain_msg() Message

Using the 1-pass IRD protocol (see 7.3), the RI sends a leave_domain_msg() message, forcing the device to leave a particular domain.

This leave_domain_msg() trigger is almost identical to the re_register_msg() message described in section 7.3.5, with the only adaptations being that :

· the message_tag is different. Refer to A.10 for the value of the message_tag.

· the shortform_domain_id is incorporated, which is the SLDF.

For the message description with an explanation of the parameters refer to the re_register_msg() message. For sake of completion the complete leave_domain_msg() message syntax is explained below:

7.5.3.4.1 Leave Domain Message Syntax

Table 37: Leave domain message syntax

	fields
	length
	Type

	leave_domain_msg() {
	
	

	/* signature protected part starts here */
	
	

	message_tag
	8
	bslbf

	protocol_version
	4
	bslbf

	reserved_for_future_use
	4
	bslbf

	bcd_udn()
	80
	bslbf

	flags {
	
	

	signature_type_flag
	2
	bslbf

	ri_certificate_counter
	3
	bslbf

	ocsp_response_counter
	3
	bslbf

	reserved for future use
	8
	bslbf

	}
	
	

	shortform_domain_id
	48
	uimsbf

	certificate_version
	8
	bslbf

	for(cnt1=0; cnt1 < ri_certificate_counter ;cnt1++){
	
	

	c_length
	16
	uimsbf

	ri_certificate()
	8*c_length
	bslbf

	}
	
	

	for(cnt2=0; cnt2 < ocsp_response_counter ;cnt2++){
	
	

	r_length
	16
	uimsbf

	ocsp_response()
	8*r_length
	bslbf

	}
	
	

	/* signature protected part ends here */
	
	

	if (signature_type_flag == 0x0){
	
	

	signature_block
	1024
	bslbf

	} else if (signature_type_flag == 0x1)
	
	

	signature_block
	2048
	bslbf

	} else if (signature_type_flag == 0x2)
	
	

	signature_block
	4096
	bslbf

	}
	
	

	}
	
	

� Note: It is the sequence of the defined values that is specified. The use of dashes as the delimiter is shown with an example placement to be consistent with the examples used elsewhere in this specification. The text portion of this screen is shown as an example only; there is no implied requirement to duplicate the exact wording or formatting shown. Please note: the short UDN will only be displayed after the first registration, when that data MAY be available for display.

� key: (O)ptional means that the user of the message MAY include the parameter in the message, but the device SHALL support the interpretation of the parameter. (M)andatory means that the user of the message SHALL include the parameter in the message.

� Note: It is the sequence of the defined values that is specified. The use of dashes as the delimiter is shown with an example placement to be consistent with the examples used elsewhere in this specification. The text portion of this screen is shown as an example only; there is no implied requirement to duplicate the exact wording or formatting shown. The numeric fields SHALL be included as defined above (please note: the short UDN will only be displayed after the first registration, when that data MAY available for display

� Note: It is the sequence of the defined values that is specified. The use of dashes as the delimiter is shown with an example placement to be consistent with the examples used elsewhere in this specification. The text portion of this screen is shown as an example only; there is no implied requirement to duplicate the exact wording or formatting shown. The numeric fields MUST be included as defined above (please note: the short UDN will only be displayed after the first registration, when that data MAY be available for display).

� key: (O)ptional means that the user of the message MAY include the parameter in the message, but the device MUST support the interpretation of the parameter. (M)andatory means that the user of the message SHALL include the parameter in the message.

� key: (O)ptional means that the user of the message MAY include the parameter in the message, but the device MUST support the interpretation of the parameter. (M)andatory means that the user of the message SHALL include the parameter in the message.

� key: (O)ptional means that the user of the message MAY include the parameter in the message, but the device MUST support the interpretation of the parameter. (M)andatory means that the user of the message SHALL include the parameter in the message.

� key: (O)ptional means that the user of the message MAY include the parameter in the message, but the device MUST support the interpretation of the parameter. (M)andatory means that the user of the message SHALL include the parameter in the message.

� key: (O)ptional means that the user of the message MAY include the parameter in the message, but the device MUST support the interpretation of the parameter. (M)andatory means that the user of the message SHALL include the parameter in the message.

� key: (O)ptional means that the user of the message MAY include the parameter in the message, but the device MUST support the interpretation of the parameter. (M)andatory means that the user of the message SHALL include the parameter in the message.

� key: (O)ptional means that the user of the message MAY include the parameter in the message, but the device MUST support the interpretation of the parameter. (M)andatory means that the user of the message SHALL include the parameter in the message.

�note to editor: two empty lines have been removed.

�This seems to be an ancient description... I replaced it to improve consistency with the other “certificate_version” fields.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 56)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20060101-I]

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 17 (of 56)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20060101-I]

_1186339687.vsd
�

[1] notify device data�

[2] wait�

[3] cert. & cap. request�

[4] valid?�

[5] cert. & cap. data�

[6] 1-pass PDR�

ROT / PKI+CRL�

Service Provider / RI�

Customer / Device�

_1189857700.vsd
In order to start the requested action
 please contact customer service at:
XXXX-XXX-XXXXXXX

action request code:
XXXX XXXX XXXX

token consumption data:
XXXX XXXX XXXX XXXX XXXX
�

_1218618314.vsd
Device global data
(in the clear)

Device specific data

Key material
„keyset“ (encrypted)

Other device data (in the clear)

Longform_udn

signature

Message_tag

_1220360141.vsd
[1] notify device data

[2] enter reg. mode

Service Provider / RI

Customer / Device

_1218617834.vsd
Device global data
(in the clear)

Device specific data

Key material
„keyset“
(encrypted)

Other device data (in the clear)

Longform_udn

signature

Message_tag

_1186339833.vsd
Device serial number�

Checksum�

ROT ID�

_1173621832.vsd
[1] notify "request"�

[2] wait�

[3] check�

[4] send data�

Customer / Device�

Service Operator / RI�

_1179506636.vsd
�

[1] send registr. data�

ROT / PKI+CRL�

Service Provider / RI�

Customer / Device�

_1182158234.vsd
�

[1] data message�

ROT / PKI+CRL�

Service Provider / RI�

Customer / Device�

_1179506608.vsd
�

[1] notify "request"�

Service Provider / RI�

Customer / Device�

_1175965624.vsd
Sessionkey_block
(RSA encrypted)�

Signature_block
(RSA signature)�

SK (plus keyset_block that fits into RSA block (size)�

RSA signature�

Message �header�
(in the clear)�

All but input for keyblocks below�

Keyset_block
(AES encrypted)�

_1171444797.vsd
surplus_block
(AES encrypted)�

Sessionkey_block
(RSA encrypted)�

Signature_block
(RSA signature)�

(optional) Remainder of keyset_block that did not fit into RSA block�

SK (plus part of keyset_block that fits into RSA block (size)�

RSA signature�

Message �header�
(in the clear)�

All but input for keyblocks below�

Keyset_block
(AES encrypted)�

_1172925010.vsd
In order to start service with this device
 please contact customer service at:
XXXX-XXX-XXXXXXX

Unique Device Number (UDN):
XXXX XXXX XXXX XXXX XXXX

short UDN:
XXXX XXXX
 �

In order to start service with this device
 please send an SMS with the UDN below to the following phone number:
XXXX-XXX-XXXXXXX

Unique Device Number (UDN):
XXXX XXXX XXXX XXXX XXXX

short UDN:
XXXX XXXX
 �

An example dialogue showing instructions for vocal notification of UDN to callcenter�

An example dialogue showing instructions for notification of UDN per SMS to callcenter�

_1171273947.vsd
In order to start the requested action
 please contact customer service at:
XXXX-XXX-XXXXXXX

action request code:
XXXX XXXX XXXX
�

An example dialogue showing instructions for vocal notification of ARC to callcenter�

In order to start the requested action
 please send an SMS with the short request code (NSD) below to the following phone number:
XXXX-XXX-XXXXXXX

action request code:
XXXX XXXX XXXX�

An example dialogue showing instructions for notification of ARC per SMS to callcenter�

