Doc# OMA-BCAST-2007-0388-CR_remove_bsdaID_in_XBS.doc[image: image1.jpg]
Change Request

Doc# OMA-BCAST-2007-0388-CR_remove_bsdaID_in_XBS.doc
Change Request

Change Request

	Title:
	OMA-BCAST-2007-0388-CR_remove_bsdaID_in_XBS
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	BAC BCAST and DLDRM

	Doc to Change:
	OMA-TS-DRM_XBS-V1_0-20061222-D

	Submission Date:
	March 6, 2007

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	John Bernsen, john.ac.bernsen@philips.com

	Replaces:
	n/a

1 Reason for Change

This CR is a proposal for solving review comment:

	SG-F-060
	2007.01.26
	T
	5.4.2.5
	Source: Nokia

From: Doc 0088R01R01

Comment:

SGDD contains attribute ‘BSDAid’. However, the definition of ‘BSDAid’ is not given anywhere in the TS SG or other BCAST specs. For example, who allocates the id, what it represents, and what it is used for.
Proposed Change:
Remove attribute ‘BSDAid’ from SGDD.

Remove all occurrences of string ‘BSDAid’ from TS Service Guide.

Remove all occurrences of string ‘BSDAid’ from TS Services.

	Status: OPEN
Action to Charles to think about the use case of BSDAid and check with Menno.
Nokia proposes:

Remove attribute ‘BSDAid’ from SGDD.

Remove all occurrences of string ‘BSDAid’ from TS Service Guide.

Remove all occurrences of string ‘BSDAid’ from TS Services.

Remove ‘BSDAid’ from SPSP section 5.5.1 – three occurrences:

· ‘service_CID’

· ‘service_BCI’
· Remove the sentence ‘bsdaID is the globally …”
To re-discuss in the group whether BSDAid can be completely removed from TS SG, Service and SPCP

on OMA-TS-DRM_XBS-V1_0-20061222-D
This comment is a comment on the SG specification, but it does involve the XBS document.
The comment basically says that bsdaID is not required to make service_CID and program_CID (and the derived BCI values) globally unique. Instead of symply removing them, we think it is better to indicate clearly that bsdaID is not required in this BCAST specification, because other, similar specifications do need their equivalent of bsdaID, so people will get confused ans think this is erroneous.
While making this CR, we found that ’serviceBaseCID’ is the wrong term. The SG spec uses ‘baseCID’. We took the liberty of correcting that too.

Furthermore, both ‘cid’/’bci’ and ‘CID’/’BCI’ are used. We took the liberty of correcting this inconsistency and using ‘CID’/’BCI’ everywhere.
2 Impact on Backward Compatibility

This CR has no impact on backwards compatibility

3 Impact on Other Specifications

None

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

Members are kindly asked to agree with the indicated changes in 6.

6 Detailed Change Proposal
Change 1: Removing/replacing bsdaID; using ‘CID’ and ‘BCI’ everywhere; replacing ‘serviceBaseCID’ by ‘baseCID’ in 10.1
10.1.1 Linking Key Stream Message to Generalised Rights Object

To successfully process a key stream message, the Device MUST find an appropriate GRO that refers to the correct content and holds the appropriate key material. Both normal RO (e.g. as delivered via ROAP) as well as BCROs are equally usable in this respect.

A key stream message is linked to a GRO by comparing content identifiers. In a normal RO, this is the value encoded in the <o-ex:context> element of the <o-ex:asset> elements inside the <o-ex:rights> element in the <ro> element of the <protectedRO> element in the <ROResponse> message. In a normal RO, the content identifier is a CID (Content ID). In a BCRO, this is the value of the BCI fields in each asset.

The CID is constructed as follows:

program RO
program_CID = stringtomakeitunique || ‘#P’ || baseCID ||’@’ || hex(program_CID_extension)

service RO
service_CID = stringtomakeitunique || ‘#S’ || baseCID ||’@’ || hex(service_CID_extension)

Note that ‘program_CID’ and ‘service_CID’ shall be globally unique. Note further that because of the specification of ‘baseCID’ in the OMA BCAST SG, the global uniqueness is already guaranteed and therefore, ‘stringtomakeitunique’ shall be the empty string.
The hex() function is a hexadecimal presentation of the parameter containing hexadecimal characters 0-9 and a-f (in lowercase) with possible preceding zeros.

EXAMPLE
For a 16-bit value 2748, hex() returns "0abc". There are always two characters generated for each byte.

The BCI used is a binary value, which is defined by the key stream layer:

program BCRO

program_BCI = SHA1-64(stringtomakeitunique || ‘#P’ || baseCID || ’@’) || program_CID_extension

service BCRO

service_BCI = SHA1-64(stringtomakeitunique || ‘#S’ || baseCID || ’@’) || service_CID_extension
Note that ‘program_BCI’ and ‘service_BCI’ shall be globally unique. Note further that because of the specification of ‘baseCID’ in the OMA BCAST SG, the global uniqueness is already guaranteed and therefore, ‘stringtomakeitunique’ shall be the empty string.
To process a key stream message, the DRM Agent should be given also the baseCID. This value is defined in the service guide [BCAST10-SG].

In case program_flag=1 in the key stream message, the agent would first try to find a GRO with matching content identifiers. The DRM agent will determine if any of the GROs it has stored governs an asset that has a content identifier (CID or BCI) based on baseCID and program_CID_extention.
Where program_CID_extension is found in the key stream message. Alternatively, the agent could be given the whole content identifier in combination with the key stream message to be processed. This requires the agent’s environment to compute this content identifier using information from the service guide [BCAST10-SG] and the key stream message.

If one or more of such GROs are found, the Device MUST select one GRO among those as specified in 5.9 "Order of Rights Object Evaluation" in [DRMREL-v2]. That GRO is now linked to this key stream message.

Otherwise, if service_flag=1 in the key stream message (regardless of P=1 or P=0) then the agent tries to find GROs with a content identifier (CID or BCI) based on baseCID and service_CID_extention.
If one or more of such GROs are found, one is selected among those using the normal OMA procedures. That GRO is now linked to this key stream message.

If no suitable GRO is found, then the DRM Agent MUST stop processing this key stream message.

10.1.2
Authentication

Using the suitable and selected GRO, it MUST verify the proper MAC field.

If the GRO is linked to the key stream message using a program_BCI or a program_CID, then it holds a holds a PEK/PAK combination, and the PAK must be used to verify the program_mac field of the key stream message.

If the GRO is linked to the key stream message using a service_BCI or a service_CID, then it holds a SEK/SAK combination, and the SAK must be used to verify the service_mac field of the key stream message.

If the verification succeeds it may proceed with decryption of the traffic key material.

When the computed MAC differs from the value encoded in the message, verification fails and the DRM Agent MUST stop processing this key stream message.
Change 2: Using ‘CID’ and ‘BCI’ everywhere in section 7.4.2 and 7.4.2.1
7.4.2
Construction of the Asset, CommonHeaders and Recording Key

All broadcast content accessed via a service/program GRO, and thus identified with a service_BCI/program_BCI, can be viewed as a continuum of content that belongs to the same OMA group. All content recorded by the device using a combined access+save permission for an asset identified by service_BCI/program_BCI must be accessible to that same device through a play permission associated with the same asset (identified by the service_BCI/program_BCI).

To enable this, and still create uniquely identifiable assets, the OMA group feature is used.

The way the new asset is created depends on whether the recording device has access to the broadcast content using a service GRO (containing a SEK, associated with a service_BCI) or a program GRO (containing a PEK, associated with a program_BCI).

7.4.2.1
Recording Broadcast Content

The device makes a recording of broadcast content that is accessed through an asset, that identifies the Broadcast Content Identifier (service_BCI or program_BCI), and which is associated with either a Service Encryption Key or a Program Encryption Key. In the following sections, BCI refers to the broadcast content identifier of that asset, and KEY refers to either the SEK or the PEK, whichever is associated with that asset.

	
	Asset contains program_BCI and PEK
	Asset contains service_BCI and SEK

	BCIservice/program
	program_BCI
	service_BCI

	KEYsek/pek
	PEK
	SEK

The device MUST include a GroupID box in the new asset that is to hold the recorded content. The GroupID in that box MUST equal BCIservice/program.

The content of the created asset MUST be encrypted with a key CIEK. The GroupKey stored in the box MUST be the key CIEK that is encrypted with KEYsek/pek.

The EncryptionAlgorithm field in the GroupID box MUST identify the AES-CBC mode algorithm. The recording device MUST generate a suitable CIEK value at random. This allows superdistribution to be achieved without distribution of the SEK/PEK in the RO which gives access to the superdistributed content. The initialisation vector MUST be randomly generated by the device:

CIEK
:=
random 128-bit AES key or KEYsek/pek
IV
:=
random 128 bit number

GroupKey
:=
IV || AES-CBC{ KEYsek/pek }(CIEK)

Table 33: Fields in the GroupID box

	Field
	Contents

	GKEncryptionMethod
	MUST be AES-CBC.

	GroupID
	MUST equal BCIservice/program

	GroupKey
	Contains the result of applying the encryption algorithm defined by GKEncryptionMethod to the CIEK key as plaintext, using KEYsek/pek as encryption key and a randomly selected initialization vector. This initialization vector MUST be prefixed to the resulting ciphertext.

The CommonHeaders box MUST contain a unique ContentID, as well as a proper RightsIssuerURL.

Table 34: CommonHeaders box fields

	Field
	Contents

	EncryptionMethod
	Determined by the recording device.

	PaddingScheme
	Determined by the recording device.

	PlaintextLength
	Determined by the length of the recorded asset, calculated by the recording device.

	ContentIDLength ContentID[]
	MUST equal:

base64Binary(BCIservice/program) + base64(recording timestamp)

	RightsIssuerURLLength RightsIssuerURL[]
	MUST equal:

RightsIssuerURL + "?rib=" + base64(recording information block)

Where the RightsIssuerURL is retrieved from the service guide, using its association with the service_CID (in case the asset holds a service_BCI) or the program_CID (in case the asset holds a program_BCI).

The recording information block holds the BCIservice/program, the recording timestamp, KEYsek/pek (but salted and encrypted) and an integrity protection.

	TextualHeadersLength TextualHeaders[]
	Determined by context information (original asset, service guide, session description protocol).

	ExtendedHeaders[]
	Empty.

In the definition of these fields, the base64() operation is defined by [RFC2045], the ‘+’ denotes concatenation, the recording timestamp is defined by section 7.4.2.2 and the recording information block is defined in section 7.4.2.3.

Based on the values of the ‘rib’, the rights issuer can determine and verify the integrity of the recording information, including the CIEK. This then allows the rights issuer to issue GROs to the saved asset or to the whole group of recorded content (that share the same GroupId).

7.4.2.2
Recording Timestamp

The representation with which the device should represent the date and time of the start or the end of the recording is defined by two timestamps that are NTP timestamps as specified by [RFC1305], but with the fractional seconds part truncated to leave only the 4 most significant bits.

The first timestamp indicates the date and time of the start of the recording, whereas the second timestamp indicates the end of the recording.

	Field
	Length
	Type

	OMADRMRecordingTimestamp() {
	
	

	
startDateAndTime
	36
	NTP timestamp, see below

	
endDateAndTime
	36
	NTP timestamp, see below

	}
	
	

Example:

The recording timestamp:
(msb)
11000110100110011101010001010110 0001

11000110100110100000000101011100 0111 (lsb)

corresponds to the recording start time and date NTP timestamp:

11000110100110011101010001010110 00010000000000000000000000000000

which equals 3331970134.0625 seconds after January 1st, 1900, 00:00 UTC, or Jan 8th, 2005, 11:15:34.0625 UTC

and the recording end time and date NTP timestamp:

11000110100110100000000101011100 01110000000000000000000000000000

which equals 3331981660.4375 after January 1st, 1900, 00:00 UTC, or Jan 8th, 2005, 14:27:40.4375 UTC

Note that the whole seconds part of the NTP timestamp format is 32 bits, and will roll-over on February 6, 2036 06:28:16 UTC. For that reason, devices and rights issuers SHALL interpret NTP timestamps of which the whole seconds part has a most significant bit of 0, as signalling a date and time in the epoch 2036-2172.

7.4.2.3
Recording Information Block

The RightsIssuerURL holds a ‘rib’ parameter, which equals the base64 encoded recording information block defined in this section.

	Field
	Length
	Type

	OMADRMRecordingInformationBlockBase() {
	
	

	
BCI
	96
	bslbf

	
OMADRMRecordingTimestamp()timestamp()
	72
	OMADRMRecordingTimestamp()

	
salt
	128
	bslbf

	
salted_key
	128
	bslbf

	}
	
	

	Field
	Length
	Type

	OMADRMRecordingInformationBlock() {
	
	

	
OMADRMRecordingInformationBlockBase()
	424
	

	
MAC
	96
	bslbf

	}
	
	

	Field
	Length
	Type

	OMADRMRecordingInformationBlockSigned() {
	
	

	
OMADRMRecordingInformationBlockBase()
	424
	

	
signature_type_flag
	2
	uimsbf

	
reserved_for_future_use
	6
	bslbf

	
/* signature is computed over all preceding fields. */
	
	

	
if(signature_type_flag == 0x0) {
	
	

	

signature
	1024
	bslbf

	
} else if (signature_type_flag == 0x01) {
	
	

	

signature
	2048
	bslbf

	
} else if (signature_type_flag == 0x02) {
	
	

	

signature
	4096
	bslbf

	
}
	
	

	}
	
	

BCI: contains the BCIservice/program (service_BCI or program_BCI, depending on the asset to which the save permission is applied).

timestamp(): this contains the recording start date and time and the recording end date and time.

salt: this is a random 128 bit number, generated by the recording device which is used to salt the CIEK before it is encrypted.

salted_key: this field contains the result of encrypting the salted C IEK with KEYsek/pek:

salted_key
:=
AES-ECB{ KEYsek/pek } (CIEK xor salt)
Note: AES-ECB is used in this case to avoid the padding overhead of AES-CBC as used in section 7.4.2.1.

MAC: this is the authentication code calculated over all bytes before this field in the OMADRMRecordingInformationBlock using HMAC-SHA1-96 (see [RFC 2104]). The MAC is used check the integrity of the recording information. The key used to create the MAC is KEYsek/pek, depending on the asset to which the save permission is applied.

OMADRMRecordingInformationBlockSigned is only applicable when the sign_bcro_flag is turned on in the device_registration_response message. As such this class is OPTIONAL.
7.4.2.4
Access to Recorded Assets

Recorded assets have a GroupID box that defines them as being part of a group of assets that are protected with the same key, and that share a common GroupId. By making sure that the recording device uses its access permission content id as the GroupId of all the recorded assets recorded using that access permission, play permissions can be issued with the same content id as the access permission; and it will apply to all recorded material that was recorded using that access permission.

On the other hand, the ContentIDs of the generated assets are unique (by qualifying the base content id with the recording timestamp) as required by the OMA DCF specification, and other devices can use the RightsIssuerURL to contact the original rights issuer to acquire play rights for that content. The rights issuer is free to provide group rights or individual asset rights. A group right would contain the GroupId, whereas an individual right would refer to the exact ContentID (as can be retrieved from the RightsIssuerURL).

Change 3: Using ‘CID’ and ‘BCI’ everywhere in section 7.2.4
7.2.4
Format of the OMADRMAsset() Object
	Field
	Length
	Type

	OMADRMAsset() {
	
	

	
BCI
	96
	bslbf

	
key_flag
	1
	uimsbf

	
key_type
	1
	uimsbf

	
reserved_for_future_use
	2
	uimsbf

	
inherit_flag
	1
	uimsbf

	
asset_type
	2
	uimsbf

	
permissions_category_flag
	1
	uimsbf

	
if (inherit_flag == 1) {
	
	

	

purchase_item_id
	32
	uimsbf

	

reserved_for_future_use
	1
	uimsbf

	

rekeying_period_number
	7
	uimsbf

	
}
	
	

	
if (permissions_category_flag == 1) {
	
	

	

permissions_category
	8
	uimsbf

	
}
	
	

	
if (key_flag == 1) {
	
	

	

if (asset_type == 0x0) {
	
	

	

if (key_type == 0) {
	
	

	

encrypted_service_encryption_authentication_key
	256
	bslbf

	

} else if (key_type == 1) {
	
	

	

encrypted_program_encryption_authentication_key
	256
	bslbf

	

}
	
	

	

} else if (asset_type == 0x1) {
	
	

	

encrypted_content_encryption_key
	128
	bslbf

	

}
	
	

	
}
	
	

	}
	
	

BCI: this 96-bit field is the Binary Content ID. The BCI can be a service_BCI or a program_BCI. These are defined in section 10.1.1.
reserved_for_future_use: all fields reserved_for_future_use SHALL be set to 0 for this version of the specification.

key_flag:1-bit flag indicating that the asset does contain key material.

key_type: 1-bit flag indicating the type of the key material. If set to 0 the key material contains a service encryption key (SEK), when set to 1 it contains a program encryption key (PEK).

inherit_flag: 1-bit flag indicating whether inheritance is used. If set to 1 the asset inherits the rights setting from a parent GRO.

asset_type: 2-bit flag indicating the asset type as defined in the table below.

	Field: asset_type
	Description

	0x0
	Broadcast stream protected by IPSec, SRTP or ISMACryp as defined in this specification. This asset MAY contain either a PEK or a SEK.

	0x1
	Downloaded file content as defined by OMA. This asset MAY contain a CEK (Content Encryption Key).

	0x2-0x3
	reserved

permissions_category_flag: 1-bit flag indicating that a permissions_category field is present in this asset object.
purchase_item_id: 32-bit field specifying the purchase ID of the parent GRO this BCRO is associated with. Refer to Section 7.2.1 for the specification of this relation.
rekeying_period_number: 7-bit field specifying the rekeying_period_number of the parent GRO. The purchase_item_id and rekeying_period_number are used together with the socID and deviceID or domainID to uniquely identify the parent GRO.

permissions_category: for program assets, the value of this field (if present) is always zero. For service assets, the following rule applies. If the value of this field is nonzero, it indicates that the permissions (see below) linked to this asset are only to be applied for streaming content whose TKM contains the same value in its permissions_category field. If the value of this field is zero, it indicates that the permissions (see below) linked to this asset are only to be applied for streaming content whose TKM contains the value zero in its permissions_category field, or has value zero for its permissions_flag bit (indicating that there is no permissions_category field in the TKM). Note that there MAY be multiple assets with the same service_BCI, in which case typically only one of them contains authentication and/or encryption keys in it asset object(s). TKM permissions_category field value thus selects the one with the permissions to be applied among the service assets with the same service_BCI. The one with the authentication and/or encryption keys is found among the BCROs via inheritance, or by lookup for a BCRO with key material in its assets.

encrypted_service_encryption_authentication_key: if key_type is set to 0 then this field contains the encrypted SEAK, the service encryption key (SEK) concatenated with the Service Authentication Seed (SAS). The field itself is protected using AES-128-CBC, with fixed IV 0 and with 0 padding in the last block if needed. The key used to decrypt this field depends on the addressing mode of the BCRO.

Table 32: Keys used in different addressing modes

	Field: address_mode
	Keys used

	0x0 (Fixed Subscriber Group addressing / whole group)
	UGK (Unique Group Key)

	0x1 (Fixed Subscriber Group addressing / subset)
	DEK (Deduced Encryption Key: based on fixed_bit_access_mask and SGKs, refer ot Section 9.3.4.)

	0x2 or 0x3 (unique device)
	UDK (Unique device key)

	0x4 (OMA Domain)
	LDK (Local Domain Key)

	0x5 (Flexible Subscriber Group addressing / subset)
	DEK (Deduced Encryption Key: based on the braodcast_encryption_scheme and FSGKs, see Table 55 in Appendix A.9 and Section 9.3.4.)

	0x6 (Flexible Subscriber Group addressing / whole group)
	UGK (Unique Group Key)

encrypted_program_encryption_authentication_key: if key_type is set to 1 then this field contains the encrypted PEAK, the program encryption key (PEK) concatenated with the program authentication seed (PAK). The field itself is protected using AES-128-CBC, with fixed IV 0 and with 0 padding in the last block if needed. The key used to decrypt this field is depending on the addressing mode of the BCRO. Table 32 indicates which key is used in which addressing mode.

encrypted_content_encryption_key: this field contains the encrypted content encryption key (CEK). The field is protected using AES-128-CBC, with fixed IV 0 and with 0 padding in the last block if needed. The key used to decrypt this field is depending on the addressing mode of the BCRO. Table 32 indicates which key is used in which addressing mode.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 10)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20060101-I]

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 10 (of 10)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20060101-I]

