Doc# OMA-BCAST-2007-0828-CR_Fix_subscript_format_in_seciton_13.4.doc[image: image4.jpg]"sOMaQa

Open Mobile Alliance

Change Request

Doc# OMA-BCAST-2007-0828-CR_Fix_subscript_format_in_seciton_13.4.doc
Change Request

Change Request

	Title:
	Fix subscript format in section 13.4
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	OMA-BCAST-DRM

	Doc to Change:
	OMA-TS-DRM_XBS-V1_0--20070907-C

	Submission Date:
	2 November 2007

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Bert Greevenbosch, Fraunhofer IIS, bert.greevenbosch@iis.fraunhofer.de
Mercè Serra, Fraunhofer IIS, merce.serra@iis.fraunhofer.de

	Replaces:
	n/a

1 Reason for Change

During the editing process of OMA-TS-DRM_XBS-20070426-D to OMA-TS-DRM_XBS-20070504-D, some subscript formatting in section 13.4 was lost. This CR re-introduces the subscript format.

Additionally, this CR proposes to use in one sentence the variable m instead of k. This is proposed to ensure that k cannot be confused with K, which is the key used to encrypt the content.
2 Impact on Backward Compatibility

None
3 Impact on Other Specifications

None
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

For the OMA-BCAST-DRM group to agree the CR.
6 Detailed Change Proposal

Change 1: Fix some typos in section 13.4
13.4 AES counter encryption in byte mode and salt

To record an ISMACryp stream directly to a PDCF file, a couple of adaptations to the OMA DRM v2.0 PDCF file format [DRMCF-v2] are needed.

The AES counter mode algorithm as appears in [DRMCF-v2], AES_128_CTR, is slightly modified. This modified version will be referred to as AES_128_BYTE_CTR. Using the AES_128_BYTE_CTR algorithm allows the storing of ISMACryp AUs without re-encryption. The AES_128_BYTE_CTR algorithm corresponds to the encryption algorithm used in ISMACryp. The two AES counter mode algorithms are explained in more detail in Section 12.3.1.

Section 12.3.2 makes the adaptations needed to signal that the AES_128_BYTE_CTR algorithm is used. This is done by adding a new possible value for the EncryptionMethod field in the OMADRMCommonheaders box.

Section 12.3.3 handles the adaptations needed for the use of a Salt. In the AES_128_BYTE_CTR algorithm, the Salt contains the 64 most significant bits of an Initialization Vector (IV) and is transmitted only once per track. The salt omits the need to send all the bits of the IV in each AU and therefore reduces the overhead in the AU Header.

13.4.1 Description of AES counter modes

In both AES counter mode algorithms, a block of plaintext is encrypted to a block of ciphertext by xoring it with a generated pseudorandom KeyBlock based on AES encryption, which is defined as follows:

KeyBlocki = AES-128-ENCRYPT{K}(i),

where K is the key used to encrypt the content and i is a 128-bit integer. Each KeyBlock has a length of 16 bytes and uses a new value of i. The mth byte in a KeyBlocki is denoted by KeyBlocki[m], where m=0 corresponds to the first byte. Similarly the nth byte of the ciphertext (in an AU) is denoted by C[n] and nth byte of the associated plaintext by P[n], where n=0 corresponds to the first byte.

The encrypter/decrypter has an internal variable CTR. This variable is used to calculate i in KeyBlocki. The exact calculation of i depends on the counter mode. To calculate the first value of CTR, the cipher algorithms need an Initialization Vector. There is one Initialization Vector per AU.

The basic difference between the two AES counter mode algorithms lies in the fact that for AES_128_ CTR the CTR is increased by 1 for each (16 byte) KeyBlock, whilst for AES_128_BYTE_CTR the CTR is increased by 1 for each byte. Furthermore, AES_128_BYTE_CTR uses a Salt, whereas AES_128_CTR does not.

13.4.1.1 AES_128_CTR
The AES_128_CTR algorithm is defined in [DRMCF-v2]. Using this algorithm, the initial value of CTR is equal to the value of the Initialization Vector IV. CTR is increased by one for each KeyBlock. The first byte of plaintext is encrypted using the first byte in KeyBlockCTR, with CTR=IV.

The plaintext on byte position n, P[n], is encrypted to the ciphertext on byte position n, C[n], as follows:
C[n] = P[n] xor KeyBlockIV+floor(n/16)[n mod 16]. The decryption is similarly done as follows:
P[n] = C[n] xor KeyBlockIV+floor(n/16)[n mod 16].

If this mode is used, it should be avoided to encrypt two different AUs using the same KeyBlock. Therefore encryption in this mode should always start with a fresh CTR value for each AU. This means that possibly unused bytes from the last KeyBlock used to encrypt the previous AU are discarded. The following figure illustrates this:

[image: image1]
13.4.1.2 AES_128_BYTE_CTR

In the case of AES_128_BYTE_CTR, the IV derivation algorithm is technically identical to ISMACryp, so that the initial value of CTR is also equal to the value of the Initialization vector IV. CTR is increased by one for each byte of ciphertext/plaintext. CTR is used together with a 64-bit integer Salt to calculate the KeyBlock. The Salt is stored in the OMADRMSalt box in the ExtendedHeaders of the OMADRMCommonHeaders box. The 4 least significant bits of CTR contain the byte offset in the KeyBlocki(CTR) with i(CTR) = ((Salt << 64) xor (CTR >> 4)). Notice that i(CTR) is a function i depending on CTR.

The plaintext on byte position n, P[n], is associated with a CTR value CTR = IV + n. P[n] is encrypted to the ciphertext on byte position n, C[n], as follows: C[n] = P[n] xor KeyBlocki(CTR) [CTR & 0xF]. The decryption is similarly done as follows:
P[n] = C[n] xor KeyBlocki(CTR)[CTR & 0xF].

For encryption in this mode, it is RECOMMENDED to increase the Initialization Vector continuously over the borders of AUs: when the Initialization Vector associated an AU has a value IV and the AU contains B bytes of ciphertext, then the Initialization Vector of the next AU has the value IV+B. This allows possibly unused bytes of the last KeyBlock of one AU to be used for the encryption of the first bytes of the next AU. The following figure illustrates this case:

[image: image2]
If there are no unused KeyBlock bytes left, the next AU starts with a fresh KeyBlock, as is illustrated in the following figure:

[image: image3]
The bitsize of CTR is the same as the bitsize of the Initialization Vector, IVLength. To ensure that the CTR does not overflow, the IV MUST be reset in due time. This can be avoided by choosing the IVLength big enough.

...

...

KeyBlock with�i(IV'+16)

KeyBlock with�i(IV)

KeyBlocks

XOR

Plaintext

...

KeyBlock with�i(IV')

�

Next AU with Initialization Vector IV' = IV+ B

KeyBlock with�i(IV+16m)

KeyBlock with�i(IV+16)

AU with Initialization Vector IV�(B bytes)

KeyBlock with�i(IV)

KeyBlocks

XOR

Plaintext

...

...

...

KeyBlock with�i(IV'+16(m+1))=�KeyBlock with�i(IV'+16)

Next AU with Initialization Vector IV' = IV+ B

KeyBlock with�i(IV+16m) =�KeyBlock with�i(IV')

KeyBlock with�i(IV+16)

AU with Initialization Vector IV�(B bytes)

KeyBlocks

XOR

Plaintext

...

...

Key Block with�CTR = IV' = �IV+m+1

Next AU with Initial Vector�IV' = IV+ ceil(B/16)

Key Block�with�CTR = IV+1

Key Block�with�CTR = IV

AU with Initial Vector IV�(B bytes)

Key Block with CTR = IV+m

...

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2007 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 4)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20070101-I]

© 2007 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 4)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20070101-I]

