Doc# OMA-BCAST-2008-XXX-CR_TAA_fix.doc[image: image5.jpg]"sOMaQa

Open Mobile Alliance

Change Request

Doc# OMA-BCAST-2008-XXX-CR_TAA_fix_R3.doc
Change Request

Change Request

	Title:
	TAA fix
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	BCAST-DRM

	Doc to Change:
	OMA-TS-DRM_XBS-V1_0-20080723-D

	Submission Date:
	July 29, 2008

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Jukka Alve, Nokia, jukka.alve@nokia.com
Anja Jerichow, Nokia Siemens Networks, anja.jerichow@nsn.com
Uwe Rauschenbach, Nokia Siemens Networks, uwe.rauschenbach@nsn.com
Michael Andre, Intel, michael.andre@intel.com

	Replaces:
	 n/a

1 Reason for Change

There’s a problem in the order of the steps of encrypting and decrypting the keyset when a Trust Authority Algorithm is used. Because AES_WRAP encryption step is applied to the entire keyset (including TAA_descriptor) as a whole, due to the properties of AES_WRAP, it is not possible to AES_UNWRAP the part of the keyset containing TAA_descriptor while the remaining part is still encrypted with Trust Authority Algorithm. On the other hand, the information contained in TAA_descriptor would be required to be able to perform the Trust Authority Algorithm decryption step. This results in a deadlock situation.
This CR fixes this problem by changing the order of the encryption and decryption steps so that when a Trust Authority Algorithm is used, it is the first step in encryption and the last step in decryption.
Additionally, a couple of broken references in that section are fixed, and the numbering of the algorithms is changed to manual mode in order to avoid problems with the broken cross-referencing mechanism of Word.
2 Impact on Backward Compatibility

none

3 Impact on Other Specifications

none

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

Members are kindly asked to agree with the indicated changes in 6.

6 Detailed Change Proposal

Change 1: Amend the TAA-protection of the keyset delivered during device registration
7.2.2.2.3 Protection of the (Device Registration) Keyset

The device_registration_response() message is split in two parts: device global data (not time bound) and device specific (time bound).

[image: image1.wmf]Device global data

(

in the clear

)

Device specific data

Key material

„keyset“

(

encrypted

)

Other device data

(

in the clear

)

Longform

_

udn

signature

Message

_

tag

Signature over

complete

message

Figure 9: device_registration_response() message

The device global data SHALL be in the clear. The device specific data contains the keyset for the device. The key material SHALL be protected by encryption.

The RI SHALL use its private key to sign the complete message data. Upon reception the device SHALL verify the RI signature, by using the issuer’s public key from the RI certificate. The device SHALL make sure that this message is correct by using a valid and correct RI certificate.

The complete message SHALL be authenticated by a signature from the RI.

Creation of the encrypted message SHALL adhere to the following rules:

1.
Generate a (128 or 192 or 256) bit AES key to be used as session key (SK) for the device_registration_response() message.
2.
Determine if the trust authority has defined an algorithm for extra encryption of the keyset_block. If so, prepare the appropriate TAA descriptor for it (using the syntax defined in C.11.3
).

3.
For Fixed Subscriber Group addressing, concatenate TAA_descriptor from step 2, if it is present, and the following fields to form the keyset: UGK, SGK1..n, UDK, UDF, BDK, SBDF, LBDF (if applicable), RIAK, TDK and the Tag Length Format described in Section C.11.

For Flexible Subscriber Group addressing, concatenate TAA_descriptor from step 2, if it is present, and the following fields to form the keyset: UGK, UDK, UDF, BDK, SBDF, LBDF (if applicable), RIAK, TDK, flexible_device_data, FSGK1..m and the Tag Length Format described in Section C.11.

4.
If a TAA_descriptor has been inserted in the keyset, encrypt the keyset starting at the last bit of the TAA_descriptor while using the algorithm and parameter as indicated in the TAA_descriptor .

5.
The concatenated keyset SHALL be padded with one bit with the value '1' and, after this 1-valued bit, 0 to 63 bits with the value '0', such that the length of the padded keyset is a multiple of 64 bits, see Appendix A of [NIST 800-38A]. Note that if the non-padded keyset was already a multiple of 64 bits in length, it is padded with 64 bits.
6.
Encrypt the keyset using [AES_WRAP] using the generated SK as (AES-WRAP style) KEK. This will produce the keyset_block.

7.

Calculate the part of the keyblock that would fit into the RSA block (depending on the size of RSA used, be that 1024, 2048 or 4096), including the SK and under implementation rules of the PKCS#1. If the keyset_block fits into one RSA block continue at step 9. Else continue at step 8.

8.
If the SK plus keyset_block including PKCS#1 header, aligning, etc did not fit into one RSA block, then keep the remainder part as surplus_block().

9.
Encrypt SK plus the (part of the)keyset_block that fits into the RSA block with the public key of the target device using RSA (1024 or 2048 or 4096) under implementation guidelines of [PKCS#1] and possible further instructions from the Trust Authority. This will produce the sessionkey_block().

10.
Concatenate the (non encrypted) parameters that were not used in the key_block and create the message "header" from this. Refer to 7.2.2.2.2 for details. (for reason of completeness: of course the sessionkey_block(), the (optional) surplus_block() and the signature_block are not part of the message header)

11.
Concatenate the message "header" and the sessionkey_block() . If the SK plus keyset_block including PKCS#1 header, aligning, etc did not fit into one RSA block, then also concatenate surplus_block() part. The result SHALL be hashed under implementation guidelines of PKCS#1, as specified in Section C.9. This will produce the signature_input_data.

12.
Sign the signature_input_data with RSA (1024 or 2048 or 4096) using the private key of the RI. The signature SHALL apply to the implementation guidelines of PKCS#1, as specified in C.9. This will produce the signature_block.

13.
The device_registration_response() message comprises of the message "header" plus sessionkey_block(), optionally the surplus_block() and the signature_block.

[image: image2.wmf]surplus_block

(AES encrypted)

Sessionkey_block

(RSA encrypted)

Signature_block

(RSA signature)

SK (plus part of

keyset_block that fits into

RSA block (size)

RSA signature

Message “header”

(in the clear)

All but input for keyblocks

below

(optional) Remainder of

keyset_block that did not fit

into RSA block

Keyset_block

(AES encrypted)

Figure 10: Structure of device_registration_response() message

Concluding: The number of RSA blocks used should be kept to a minimum. The AES surplus_block() is present if and when the keyset does not completely fit into the sessionkey_block() given the RSA block size used. If present the AES surplus_block() contains those keys that did not fit into one RSA block (i.e. the sessionkey_block()). The complete keyset needed for operation after registration is included in the encrypted keyset_block, which is concatenated from the first part in the sessionkey_block() and optionally the surplus_block(). Refer to appendix for calculations on the surplus_block_size.

Decryption of the encrypted message SHALL adhere to the following rules:

1.
Locate the message via message_tag

2.
Verify if the message is intended for this device by comparing the long_form_udn with the UDN stored in the device.

3.
Verify the signature_block of the message by using the public key from the RI.

4.
Locate the sessionkey_block() and decrypt the block with the private key of the local device. Locate the session key (SK) from the header and (eventual) padding (according to PKCS#1). Then locate the keyset_block part from the header and (eventual) padding (according to PKCS#1). See Appendix C.12 for the determination of the session key length.

5.
(Optionally) If there is a surplus_block() concatenate this part to the keyset_block. This will complete the keyset_block.

6.
Use the SK to decrypt the keyset_block.
7.
Remove padding.
8.
If there is no TAA_descriptor present in the decrypted keyset block from step 7, go to step 9. If there is a TAA_descriptor present, part of the keyset_block was double encrypted. In this case, take the keyset_block (i.e. result from step 7) and decrypt it anew, this time starting at the last bit of the TAA_descriptor while using the algorithm and parameter as indicated in the TAA_descriptor.
9.
Allocate the individual keyset_items from the keyset_block according to the Tag Length Format described in Section C.11.

NOTE: The SK SHALL be stored into protected storage of the Device. The AES encrypted keyset_block MAY be stored as is into unprotected storage and decrypted by the Device upon use. If the encrypted keyset_block is not stored but the decrypted keys from that block are stored instead, the Device SHALL store all key data safely. In either case, the Device SHOULD use integrity protection of what is stored in unprotected storage to prevent tampering of the keys. The keys SHALL NOT leak outside the Device.
Change 2: Amend the TAA-protection of the keyset delivered during domain registration

7.7.4.3 Protection of the (Domain Registration) Keyset

The domain_registration_response() message is split in two parts: device specific (time bound) data and global (not time bound) data.

[image: image3.wmf]Device global data

(

in the clear

)

Device specific data

Key material

„keyset“

(

encrypted

)

Other device data

(

in the clear

)

Longform

_

udn

signature

Message

_

tag

Signature over

complete

message

Figure 17: domain_registration_response() message

The device global data SHALL be in the clear. The device specific data contains the keyset for the device.

The RI SHALL use its private key to sign the complete message data. Upon reception the device SHALL verify the RI signature, by using the issuer’s public key from the RI certificate. The device SHALL make sure that this message is correct by using a valid and correct RI certificate.

The complete message SHALL be authenticated by a signature from the RI.

Creation of the encrypted message SHALL adhere to the following rules:

1.
Generate a (128 or 192 or 256) bit AES key to be used as session key (SK) for the domain_registration_response() message.

2.
Determine if the trust authority has defined an algorithm for extra encryption of the keyset_block. If so, prepare the appropriate TAA descriptor item for it (using the syntax defined in C.11.3
).

3.
Concatenate the TAA descriptor item from step 2 if it is present, the keyset (BDK, SBDF plus optional LBDF if applicable) under rules of the Tag Length Format described in Section C.11.
4.
If a TAA_descriptor has been inserted in the keyset,encrypt the keyset starting at the last bit of the TAA_descriptor while using the algorithm and parameter as indicated in the TAA_descriptor.
5.
The concatenated keyset SHALL be padded with one bit with the value'1' and, after this 1-valued bit, 0 to 63 bits with the value '0', such that the length of the padded keyset is a multiple of 64 bits, see Appendix A of [NIST 800-38A]. Note that if the non-padded keyset was already a multiple of 64 bits in length, it is padded with 64 bits. More than one context is allowed up to the RSA blocksize.
6.
Encrypt the keyset using [AES_WRAP] using the generated SK as (AES-WRAP style) KEK. This will produce the keyset_block.
7.

Calculate the part of the keyset_block that would fit into the RSA block (depending on the size of RSA used, be that 1024, 2048 or 4096), including the SK and under implementation rules of the PKCS#1.
8.
Encrypt SK plus the keyset_block with the public key of the target device using RSA (1024 or 2048 or 4096) under implementation guidelines of [PKCS#1] and possible further instructions from the Trust Authority. This will produce the sessionkey_block().

9.
Concatenate the (non encrypted) parameters that were not used in the key_block and create the message "header" from this. Refer to 7.7.4.1.1 for details. (for reason of completeness: of course the sessionkey_block() and the signature_block are not part of the message header)

10.
Concatenate the message "header" and the sessionkey_block(). The result SHALL be hashed under implementation guidelines of [PKCS#1] as specified in Section C.9. This will produce the signature_input_data.

11.
Sign the signature_input_data with RSA (1024 or 2048 or 4096) using the private key of the RI. The signature SHALL apply to the implementation guidelines of PKCS#1, as specified in C.9. This will produce the signature_block.

12.
The domain_registration_response() message comprises of the message "header" plus sessionkey_block() and the signature_block.

[image: image4.wmf]Sessionkey_block

(RSA encrypted)

Signature_block

(RSA signature)

SK (plus keyset_block that

fits into RSA block (size)

RSA signature

Message “header”

(in the clear)

All but input for keyblocks

below

Keyset_block

(AES encrypted)

Figure 18: Structure of domain_registration_response() message.

Decryption of the encrypted message SHALL adhere to the following rules:

1.
Locate the message via message_tag

2.
Verify if the message is intended for this device by comparing the long_form_udn with the UDN stored in the device.

3.
Verify the signature_block of the message by using the public key from the RI.

4.
Locate the sessionkey_block() and decrypt the block with the private key of the local device. Locate the session key (SK) from the header and (eventual) padding (according to PKCS#1). Then locate the keyset_block part from the header and (eventual) padding (according to PKCS#1). See Appendix C.12 for the determination of the session key length.

5.
Use the SK to decrypt the keyset_block.
6.
Remove padding.

7.
If there is no TAA_descriptor present in the decrypted keyset block from step 6, go to step 8. If there is a TAA_descriptor present, part of the keyset_block was double encrypted. In this case, take the keyset_block (i.e. result from step 6) and decrypt it anew, this time starting at the last bit of the TAA_descriptor while using the algorithm and parameter as indicated in the TAA_descriptor.
8.
Allocate the individual keyset_items from the keyset_block according to the Tag Length Format described in Section C.11.
Note: the SK SHALL be stored into protected storage. The AES encrypted keyset_block MAY be stored as is into unprotected storage and decrypted by the device upon use. If the keyset_block is not stored but the decrypted keys from that block are stored instead, the device SHALL store all key data safely. The keys SHALL NOT leak outside the device.

�Editor, pls. automate this reference.

�Editor, pls automate this reference

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 7)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20060101-I]

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Page 7 (of 7)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20060101-I]

_1218617834.vsd
Device global data
(in the clear)

Device specific data

Key material
„keyset“
(encrypted)

Other device data (in the clear)

Longform_udn

signature

Message_tag

_1218618314.vsd
Device global data
(in the clear)

Device specific data

Key material
„keyset“ (encrypted)

Other device data (in the clear)

Longform_udn

signature

Message_tag

_1171444797.vsd
surplus_block
(AES encrypted)�

Sessionkey_block
(RSA encrypted)�

Signature_block
(RSA signature)�

(optional) Remainder of keyset_block that did not fit into RSA block�

SK (plus part of keyset_block that fits into RSA block (size)�

RSA signature�

Message �header�
(in the clear)�

All but input for keyblocks below�

Keyset_block
(AES encrypted)�

_1175965624.vsd
Sessionkey_block
(RSA encrypted)�

Signature_block
(RSA signature)�

SK (plus keyset_block that fits into RSA block (size)�

RSA signature�

Message �header�
(in the clear)�

All but input for keyblocks below�

Keyset_block
(AES encrypted)�

