Doc# OMA-DLDRM-2005-0212R1-push-device-registration-data-to-device-during-broadcast-registration.doc[image: image9.jpg]
Change Request

Doc# OMA-DLDRM-2005-0212R1-push-device-registration-data-to-device-during-broadcast-registration.doc
Change Request

Change Request

	Title:
	Push binary Device Registration data
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	BAC-DLDRM

	Doc to Change:
	OMA-DRM-XBS-20050511-D

	Submission Date:
	July 6th 2005

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Bjorn CW Kaag, bjorn.kaag@philips.com

	Replaces:
	 n/a

1 Reason for Change

This is a bug fix contribution to the subject of pushing Device Registration Data by the RI to a device that is part of the Broadcast Extensions for OMA DRM. The bugfix builds on CR086 with status “agreed” and corrects typos, aligns vocabulary (as used in CR OMA-BCAST-2005-221R02) and adds some text explaining status values, used references and the like. Note: for sake of clearness: CR086 is already incorporated in XBS.
This document describes a new mechanism that can be used by the RI to push registration data to a device in offline situations. That is when there is no interactive connection between the RI and the device. When the interactivity channel is available, the device may use ROAP protocols according to OMA DRM 2.0. But in the case where there is no interactivity channel and only a broadcast channel, the device data must be pushed from the RI to the device over the broadcast channel in another way. This CR describes how.

2 Impact on Backward Compatibility

The intention is to define the broadcast extensions to OMA DRM 2.0 in a way that builds on the key concepts and mechanisms that have been carefully crafted.

The new 1-pass binary Push Device Registration Protocol is intended to be used without interactivity channel, c.q. in a scenario not applicable to standard OMA DRM 2.0. This CR has therefore no impact on backwards compatibility.

3 Impact on Other Specifications

None.

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

The text in section 6 (detailed change proposal) should be incorporated as an update to existing section 5.1.3 of XBS 20050511-D, describing broadcast registration. For convenience the exact text in XBS may be replaced with the text of this CR. Detailed instructions are incorporated under the title “Note to the Editor”.

6 Detailed Change Proposal

6.1 General context

(Note for the Editor: text between “start snip” and “stop snip” does NOT need to be incorporated into XBS and is more to elaborate to the reader why the precise mechanism is required.)
{start snip}

This CR updates the device_registration_response() message as included in XBS. The essential definition of message remained unchanged while following changes have been made:
•Alignment of vocabulary: renaming of BGK to SGK, rephrased "unconnected device" to "broadcast device“, etc.

•Correction of typos, aligning multiple styles for expressing variables, etc.
•Aligned picture to standards rules: device now drawn on the left i.s.o on the right.

•Message tag value now specified.

•Error/status values now specified (Note: goal is standardization or error code, display is example, L&F is free).

•Upgraded AES protection to AES-WRAP.

•Used references and abbreviations now added.

•Included text for (optional) local domain registration to align with CR 220.

•Proposed to use appendices

{end snip}
Note to editor: Following text updates existing section 5.1.3 of XBS 20050511-D, describing broadcast registration. In case the section number(s) do not match contact the author.
5.1.3 Broadcast registration

To register the device data has to be notified to the RI. There are two cases for the notification of device data to the RI:

Case 1: The device has never been registered before and is activated by the user.

There are two possibilities in which the device has no direct communication back channel to contact the RI but needs to report device data to the RI:

· The device has no interactivity channel or the interactivity channel is not able to make a connection to the RI, but the device is able to create an other connection to a connected OMA device. This device is called an unconnected interactive device, and is covered in OMA DRM.

· The device has no interactivity channel and is unable to make a connection to an interactive device. This device is called a broadcast (only) device. In this case the 1-pass binary push registered device protocol is used, as is specified in this document.

Case 2: The device has been registered at the RI before and needs to be re-registered.

· In this case the RI uses the 1-pass binary inform registered device protocol to send a message ordering the device to re-register, as is specified in this document.

Following sequence chart explains the registration for broadcast only mode of operation.

[image: image1.wmf][1] notify device data

[2] wait

[3] cert. & cap. request

[4] valid?

[5] cert. & cap. data

[6] check

[7] 1-pass PDR

ROT / PKI+CRL

Service Provider /

RI

Customer / Device

Figure 1: Registration for broadcast mode of operation with one ROT

Note: Notification of device data to the Rights Issuer is performed off-line. Transmission of the registration data from the RI to the device is performed on-line via the broadcast channel.

Explanation of the protocol:

· Once the RI has the device data from the device [1] via the protocol described in section (Dear reader: refer to CR2005-0211, which updates XBS section 5.1.1.3, Note to Editor: refer to XBS section 5.1.1.3), the RI contacts the ROT [3], while the device is entered into registration mode and awaits the registration data [2].

· The ROT implements a Public Key Infrastructure (a.k.a. PKI). The PKI looks up the certificate and capabilities belonging to the device data in question [4]. The ROT should have a Certificate Revocation List (a.k.a. CRL). In any case it is the responsibility of the ROT to decide whether the requested device data is valid or not and whether or not the requested certificate and capabilities data can be passed to the RI.

· Assuming the RI received the requested certificate and capabilities from the ROT [5], the RI will perform some last checks [6] and SHALL send back a registration data message to the device [7].

· The RI uses the 1-pass binary Push Device Registration data (a.k.a. PDR) protocol to send the registration data over the broadcast network. The PDR protocol is described in section 5.1.3.1. The registration data (in the format of the device_registration_response() message) is specified in section 5.1.3.2. The RI MAY decide to send an error status with the message or send valid registration data containing the data required to create an RI context.

· A device listening for device_registration_response() messages will look for messages with the corresponding message_tag. On every message with a matching message_tag the device will check the long_form_udn parameter. If this matches (any of) the device’s local UDN(s), the device will process the message and will start trying to decrypt the secret data in it.

· If the device does not receive registration data within a timeout, the device leaves the registration mode and stops listening for device_registration_response() messages.

· Subsequent distribution of Right Objects at regular intervals is done with a message send as an inform message using the 1-pass Inform Registered Device protocol.
Note for the reader: This CR focuses on the sending of registration data to the device (arrow number [7] in Figure 1).
5.1.3.1 Theory of operation

Note: This protocol is also known as the “1-pass PDR protocol”, short for Push Device Registration protocol.

[image: image2.wmf][1] send registr. data

ROT / PKI+CRL

Service Provider /

RI

Customer / Device

Figure 2: 1-pass PDR protocol – (first) device registration

Note: Transmission of registration data is performed on-line via the broadcast channel. The registration data (device_registration_response() message) is specified in section 0
Explanation of the protocol:

· The RI SHALL use the 1-pass binary Push Device Registration data (a.k.a. PDR) protocol to send registration data over the network [1]. The registration data can be the device_registration_response() message (refer to section 5.1.3.2) or the domain_registration_response() message (Dear reader: refer to CR2005-0220, Note to Editor: refer to appropriate XBS section). The RI SHALL use the RI mechanisms described in section (Dear reader: refer to CR2005-0224, Note to Editor: refer to appropriate XBS section) to address the message to a device. The RI SHALL include a valid keyset in the message.

· A device listening for device_registration_response() (or domain_registration_response()) messages SHALL look for messages with the corresponding message_tag. On every message with a matching message_tag the device SHALL check the long_form_udn parameter. If this matches (any of) the devices local UDN(s) the device SHALL start validating the signature and check the RI certificate (chain.). If both (UDN and signature) are valid the device detects this message is really addressed to it. The device SHALL start processing the message and SHALL start trying to decrypt the secret data in it. If the message is correct, the device SHALL store the new keyset with key(s). The devise SHALL delete the old keyset (if applicable).

· After a timeout the device SHALL leave the registration mode and stops listening for device_registration_response() messages.

5.1.3.2 Registration data – device_registration_response message

5.1.3.2.1 Message description

Using the 1-pass PDR protocol the RI SHALL send a device_registration_response() message with the registration data to the device as specified below:

Table 1: message description

	Device_Registration_Response()

	Parameter name
	(M)andatory / (O)ptional

	remark

	message_tag
	M
	global, not encrypted

	protocol_version
	M
	global, not encrypted

	longform_udn()
	M
	global, not encrypted

	status
	M
	device specific, not encrypted

	certificate_version
	M
	global, not encrypted

	ri_certificate_counter
	M
	global, not encrypted

	c_length
	M
	global, not encrypted

	ri_certificate
	M
	global, not encrypted

	ocsp_response_counter
	M
	global, not encrypted

	r_length
	M
	global, not encrypted

	ocsp_response
	M
	global, not encrypted

	local_time_offset_flag
	M
	device specific, not encrypted

	time_stamp_flag
	M
	device specific, not encrypted

	subscriber_group_key_flag
	M
	device specific, not encrypted

	signature_type_flag
	M
	global, not encrypted

	short_udn_flag
	M
	device specific, not encrypted

	surplus_block_flag
	M
	device specific, not encrypted

	keyset_block_length
	M
	device specific, not encrypted

	unique_group_key
	O
	device specific, encrypted

	subscriber_group_key
	O
	device specific, encrypted

	unique_device_key
	O
	device specific, encrypted

	unique_device_filter
	M
	device specific, encrypted

	ri_authentication_key
	M
	device specific, encrypted

	local_domain_key
	O
	device specific, encrypted

	shortform_domain_id
	M
	device specific, encrypted

	drm_time
	M
	device specific, not encrypted

	local_time_offset
	O
	device specific, not encrypted

	registration_timestamp_start
	O
	device specific, not encrypted

	registration_timestamp_end
	O
	device specific, not encrypted

	shortform_udn
	O
	device specific, not encrypted

	signature_block
	M
	device specific, not encrypted

message_tag - This parameter identifies the type of the message. Refer to section A.14 for the value of the message_tag.

protocol_version - This parameter indicates the protocol_version of this message. The device SHALL ignore messages that have a protocol_version number it doesn’t support. The value of the protocol_version of this message is set to 0x0 (i.e. the original format).

If set to 0x0 the format specified in the this version of the specification is used. If set to anything else than 0x0, then the format is beyond the scope of this version of the specification

longform_udn() - The long form of the UDN. Refer to (Dear reader: refer to CR2005-0085, Note to Editor: refer to appropriate XBS section 5.1.1.2) for details.

status - The status parameter SHALL indicate one of the values explained in the following table. The device SHALL ignore messages with other error values.

Table 2: Status values

	status value
	meaning

	Success
	The registration request was executed successfully and the RI completed all data. The device SHALL process the message.

	UnknownError
	The RI encountered an unknown error after receiving the registration request. The device MAY put forward a subsequent registration request to the RI (context).

	NotSupported
	The RI does not support the registration request.

	AccessDenied
	The RI decided that the device will not be granted access to the service and stops the registration. The RI will stop listening to future registration requests of this device. The device is forced to refrain from future registration and SHALL suppress broadcast and/or mixed-mode registration requests to the particular RI (context).

	NotFound
	The RI decided that the device could not be found (offline UDN and/or UaProf). The device MAY put forward a subsequent registration request to the RI (context).

	MalformedRequest
	The RI decided that the registration request was malformed and will force the device to execute a (re)-registration at once. The device SHALL enter (re)registration mode.

certificate_version - is a numerical representation of the version of the RI certificate. Using the certificate_version parameter the device can decide if it is needed to update the RI certificate (if it was stored before).

Table 3: description of certificate_version parameter

	Parameter Fieldname
	Field Value (h)
	supports

	major_version_number
	0x0,..,0xA
	MSB4(certificate_version)

	minor_version_number
	0x0,..,0xA
	LSB4(certificate_version)

The parameter is divided 2 fields of 4 bits, whereas the first 4 bits (MSB left) express the Major number and the last four bits (LSB right) express the Minor version. The major and minor number encode in bslbf format. 16 Major and 16 Minor versions are supported. For example: Major.Minor version <1.2> is expressed as 0001 0010b.

ri_certificate_counter - This parameter indicates the depth of the RI certificate chain.

	number of certificate in chain
	Value (h)
	remark

	0
	0x0
	will signal absence of ri_certificate e.g. on error status to save bandwidth.

	1
	0x1
	

	2
	0x2
	

	3
	0x3
	

	4
	0x4
	

	5
	0x5
	

	6
	0x6
	

	7
	0x7
	

Note: The certificate chain can have a depth of up to 7 RI certificates.

c_length - This parameter indicates the length in bytes of the ri_certificate.

ri_certificate() - This parameter SHALL be present. When present, the value of a ri_certificate parameter SHALL be a certificate chain including the RI’s certificate. The chain SHALL NOT include the root certificate. The RI certificate SHALL come first in the list. Each following certificate SHALL directly certify the one preceding it.

The Device MAY store RI certificate verification data indicating that an RI certificate chain has been verified. The purpose of this is to avoid repeated verification of the same certificate chain. The RI certificate verification data stored in this way SHALL uniquely identify the RI certificate and SHALL be integrity protected. The Device SHOULD check if the RI certificate chain received in this parameter corresponds to the stored certificate verification data for this RI. If so, the Device NEED NOT verify the RI certificate chain again, otherwise the Device SHALL verify the RI certificate chain.
 If an RI certificate is received that is not in the stored certificate verification data for this RI, and if the Device can determine (in the case of Broadcast Devices that support DRM Time) that the expiry time of the received RI certificate is later than the RI Context for this RI, and the certificate status of the RI certificate as indicated in the OCSP response is good (see [OCSP-MP]), then the Device SHALL verify the complete chain and SHOULD replace the stored RI certificate verification data with the received RI certificate data and set the RI context expiry time to that of the received RI certificate expiry time.
However, if the Device does store RI certificate verification data in this way it SHALL store the expiry period of the RI’s certificate (as indicated by the notAfter field within the certificate) and SHALL compare the Device’s current DRM Time with the stored RI certificate expiry time whenever verifying the signature on signed messages from the RI. If the Device’s current DRM Time is after the stored RI certificate expiry time then the Device SHALL abandon processing the RI message and SHALL initiate the registration protocol.

ocsp_response_counter - This parameter indicates the depth of the OCSP response chain.

	number of responses in chain
	Value (h)
	remark

	0
	0x0
	will signal absence of ocsp_response e.g. on error status to save bandwidth.

	1
	0x1
	

	2
	0x2
	

	3
	0x3
	

	4
	0x4
	

	5
	0x5
	

	6
	0x6
	

	7
	0x7
	

Note: The certificate chain can have a depth of up to 7 OCSP responses.

r_length - This parameter indicates the length in bytes of the ocsp_response.

ocsp_response() - This parameter, when present, SHALL be a complete set of valid OCSP responses for the RI's certificate chain. The Device SHALL NOT fail due to the presence of more than one OCSP response element. A Device SHALL check that an OCSP response is present in the received message. If no OCSP response is present in the device_registration_response() message, then the Device SHALL abort the registration protocol.

local_time_offset_flag - Binary flag to signal presence of the parameter it describes:

	local_time_offset_flag
	Value (h)
	remark

	data absent
	0x0
	

	data present
	0x1
	

time_stamp_flag - Binary flag to signal presence of the parameter it describes:

	time_stamp_flag
	Value (h)
	remark

	data absent
	0x0
	

	data present
	0x1
	

subscriber_group_key_flag - The flag expresses how many subscriber_group_keys (a.k.a. SGK) are delivered with the registration data. When zero message broadcast is used, a set of 8 keys will support a group size of 256. A set of 9 keys will support a group size of 512. Other values or larger group sizes are not supported. A value larger than zero indicates that the registration data message delivers a set of zero message subscriber_group_key (s) to the device and that the device needs to use zero message broadcast style encryption to deduce the decryption key to decrypt the SEK.

	subscriber_group_key_flag
	Value (h)
	remark

	data absent
	0x0
	will signal absence of keyset_block e.g. on error status to save bandwidth.

	reserved for future use
	0x1-0x7
	not used in this version of the specification

	set of (8) subscriber_group_key
	0x8
	

	set of (9) subscriber_group_key
	0x9
	

	reserved for future use
	0xA-0xF
	not used in this version of the specification

signature_type_flag - A flag to signal type of signature algorithm used:

	signature_type_flag
	Value (h)
	remark

	RSA 1024
	0x0
	

	RSA 2048
	0x1
	CMLA requirement (2004-2007)

	RSA 4096
	0x2
	

	reserved for future use
	0x3
	not used in this version of the specification

short_udn_flag - Binary flag to signal presence of the parameter it describes:

	short_udn_flag
	Value (h)
	remark

	data absent
	0x0
	

	data present
	0x1
	

surplus_block_flag - Binary flag to signal the presence of the parameter it describes:

	surplus_block_flag
	Value (h)
	remark

	data absent
	0x0
	

	data present
	0x1
	

keyset_block_length - This parameter indicates the length in bits of the total keyset_block. That is the part in the sessionkey_block() plus the optional second part from the surplus_block().
unique_group_key - An symmetric AES encryption key to address a unique group. This key is also known as UGK. The key length SHALL be 128 bit.

Note: This key is wrapped into the keyset_block. (Refer to 5.1.3.2.2).

subscriber_group_key - An (set of) AES symmetric encryption key(s) which are used for the zero message subscriber_group_key deduction of the key needed to decrypt the SEK and/or PEK. These subscriber_group_key is also known as SGK. The key length SHALL be 128 bit.

Note: This key is wrapped into the keyset_block. (Refer to 5.1.3.2.2).

unique_device_key - An AES symmetric key to address a unique device. This key is also known as UDK. The key length SHALL be 128 bit.

Note: This key is wrapped into the keyset_block. (Refer to 5.1.3.2.2).

unique_device_filter - A [EUROCRYPT] style addressing scheme used to filter for messages like BCROs. A device address consists of 5 bytes and is unique within an operation. The shared address is defined as the 4 most significant bytes of the unique address. The least significant byte (byte 5) defines the position (0….255) in the group that shares an address. This means that each group consists of 256 members. An access mask, in an entitlement, is used to identify individual members. So if for a particular group only member 5 and 100 are allowed to have access to a service then their corresponding bits are set in the access mask. Take the device_id_mask equal to 252 (1111 1100b) then the least significant byte of the device_id is masked and thereby creating a shared address. This address is also known as UDF.

Note: This address is wrapped into the keyset_block. (Refer to 5.1.3.2.2).
ri_authentication_key - An AES symmetric key to verify MACs on BCRO and KSM messages. This key is also known as RIAK. The key length SHALL be 128 bit.

Note: This key is wrapped into the keyset_block. (Refer to 5.1.3.2.2).

local_domain_key - An AES symmetric key to address a unique device. This key is also known as LDK. The key length SHALL be 128 bit.

Note: This key is wrapped into the keyset_block. (Refer to 5.1.3.2.2).
longform_domain_id() – This parameter is also known as the Longform Local Domain Filter (LLDF). Please refer to A.13.3 for the definition. The longform_domain_id() is used for mixed-mode operation. Note: This address is wrapped into the keyset_block. (Refer to 0).
shortform_domain_id – This parameter is also known as the Shortform Local Domain Filter (SLDF). Please refer to 0. An addressing scheme used to filter for messages like BCROs. The shortform_domain_id is used for broadcast mode of operation.

Note: This address is wrapped into the keyset_block. (Refer to 5.1.3.2.2).
drm_time - This parameter defines the time in Universal Time Coordinated (UTC). This 40-bit field contains the current time and date in UTC and MJD. Refer to A.4 for calculation of the UTC and Modified Julian Date (MJD). This field is coded as 16 bits giving the 16 LSBs of MJD followed by 24 bits coded as 6 digits in 4-bit BCD.

EXAMPLE: 93/10/13 12:45:00 is coded as “0xC079124500”.

local_time_offset - This parameter indicates the local time offset from the (UTC) drm_time as explained in Annex A.4.

registration_timestamp_start - Indicates from what time onwards the registration data is valid. This is an extra mechanism above the expiration date of the RI certificate. (Note: please note that this parameter can also be used against replay attacks.)

registration_timestamp_end - Indicates from what time onwards the registration data is expires. This is an extra mechanism above the expiration date of the RI certificate. (Note: please note that this parameter can also be used against replay attacks.)

shortform_udn - This parameter allows the RI to give an own defined short number identifying the device. This number can be used as a shorter alternative to the UDN during offline notifications. The shortform_udn is coded in BCD format.

signature_block - The signature SHALL enable a single source authenticity check on the message. The algorithm used for the signature is RSA-1024 or RSA-2048 or RSA-4096. The signature will apply to the implementation guidelines of PCKS#1, as outlined in A.11.

Note Message result:

The stored RI Context SHALL at a minimum contain:

· RI ID, Unique device filter (UDF).

· following keys:

· UGK, BGK1..n and/or UDK

· RIAK.

· SK

If domain addressing via an OMA DRM 2.0 domain is required the keyset SHALL (additionally to the standard addressing above) include following keys:

· LDK.

· Shortform Local Domain Filter (SLDF). A.k.a. “shortform_domain_id”. Refer to A.13.1.

· For mixed-mode devices domain context SHALL additionally contain:

· Longform Local Domain Filter (LLDF). A.k.a. “longform_domain_id()”. Refer to A.13.3.

· A Device MAY have several Domain Contexts with an RI.

· The RI Context SHALL also contain an RI Context Expiry Time, which is defined to be the timestamp of the registration data if that was send and otherwise the expiration of the RI certificate.

· The RI Context MAY also contain RI certificate validation data.

· If the RI Context has expired, the Device SHALL NOT execute any other protocol than the 1-pass binary device data registration protocol with the associated RI (context), and upon detection of RI Context expiry the Device SHOULD initiate the offline notification of detailed device data protocol using the RI_ID stored in the RI Context. Depending on the implementation a dialogue will be shown to the user and the offline NDD protocol will be executed.

· Accessing an ESG for purchase is still allowed, as this will require a registration first.

· The device SHALL be rendered inoperable for any purchase protocol or playback of future content. The device MAY use stored BCROs to play old content for which the device obtained ROs, but SHALL NOT use these BCROs for new content received after the re-registration request until the device is re-registered with the RI.

Requirements:

· The Device SHALL have at most one RI Context with each RI. An existing RI Context SHALL be replaced with a newly established RI Context after successful re-registration with the same RI.

· The device SHALL support at least 6 RI context for broadcast mode of operation.

· For standard addressing the keyset SHALL include a valid set of :

· UGK, BGK1..n and/or UDK keys

· RIAK key. A single RIAK key is bound to a single Subscriber Group (e.g. 256 or 512 members).
· Unique device filter (UDF).

· If domain addressing via an OMA DRM 2.0 domain is required the keyset SHALL (additionally to the standard addressing above) include a valid set of :

· LDK key.

· Shortform Local Domain Filter (SLDF). A.k.a. “shortform_domain_id”. Refer to A.13.1.

And in case of mixed-mode operation devices the keyset SHALL contain:

· A Longform Local Domain Filter (LLDF, a.k.a. “longform_domain_id()”) that matches the SLDF. Refer to A.13.3.

5.1.3.2.2 Protection of the keyset

The device_registration_response() message is split in two parts: device specific (time bound) data and global (not time bound) data.

[image: image3.wmf]Device global data

(in the clear)

Device specific data

Key material

(encrypted)

Other device data

(in the clear)

Longform_udn

signature

Message_tag

Signature over

complete

message

Figure 3: device_registration_response() message

The device global data SHALL be in the clear. The device specific data contains the keyset for the device. This key material SHALL be encrypted, whereas the rest of the device specific data SHALL be in the clear. The key material SHALL be protected by encryption. The RI SHALL use the device’s public key to encrypt all key material in the device specific data part of the message.

The RI SHALL use his private key to sign the complete message data. Upon reception the device SHALL verify the RI signature, by using the issuer’s public key from the RI certificate. The device SHALL make sure that this message is correct by using a valid and correct RI certificate.

The complete message SHALL be authenticated by a signature from the RI.

Creation of the encrypted message SHALL adhere to the following rules:

1. Generate a (128 or 192 or 256) bit AES key to be used as session key (SK) for the device_registration_response() message.

2. Concatenate the keyset (UGK, BGK1..n, UDK, RIAK, UDF and/or LDK, SLDF plus optional LLDF if applicable) under rules of [FIPS_197] and the Tag Length Format described in section A.13.

3. Encrypt the keyset using [AES_WRAP] using the generated SK as (AES-WRAP style) KEK. This will produce the keyset_block.

4. Calculate the part of the keyblock that would fit into the RSA block (depending on the size of RSA used, be that 1024, 2048 or 4096), including the SK and under implementation rules of the PCKS#1. If the keyset_block fits into one RSA block continue at step 5. Else continue at step 4.

5. If the SK plus keyset_block including PCKS#1 header, aligning, etc did not fit into one RSA block, then keep the remainder part as surplus_block().

6. Encrypt SK plus the (part of the)keyset_block that fits into the RSA block with the public key of the target device using RSA (1024 or 2048 or 4096) under implementation guidelines of [PKCS#1]. This will produce the sessionkey_block().

7. Concatenate the (non encrypted) parameters that were not used in the key_block and create the message “header” from this. Refer to 6.3.1 for details. (for reason of completeness: of course the sessionkey_block(), the (optional) surplus_block() and the signature_block are not part of the message header)

8. Concatenate the message “header” and the sessionkey_block() . If the SK plus keyset_block including PCKS#1 header, aligning, etc did not fit into one RSA block, then also concatenate surplus_block() part. Hash the result under implementation guidelines of [PKCS#1]. Please refer to section A.11. This will produce the signature_input_data.

9. Sign the signature_input_data with RSA (1024 or 2048 or 4096) using the private key of the RI. The signature will apply to the implementation guidelines of PCKS#1, as outlined in A.11. This will produce the signature_block.

10. The device_registration_response() message comprises of the message “header” plus sessionkey_block(), optionally the surplus_block() and the signature_block.

[image: image4.wmf]surplus_block

(AES encrypted)

Sessionkey_block

(RSA encrypted)

Signature_block

(RSA signature)

SK (plus part of

keyset_block that fits into

RSA block (size)

RSA signature

Message “header”

(in the clear)

All but input for keyblocks

below

(optional) Remainder of

keyset_block that did not fit

into RSA block

Keyset_block

(AES encrypted)

Figure 4: structure of device_registration_response() message.

Concluding: The number of RSA blocks used should be kept to a minimum. The AES surplus_block() is present if and when the keyset does not completely fit into the sessionkey_block() given the RSA block size used. If present the AES surplus_block() contains those keys that did not fit into one RSA block (i.e. the sessionkey_block()). The complete keyset needed for operation after registration is included in the encrypted keyset_block, which is concatenated from the first part in the sessionkey_block() and optionally the surplus_block(). Refer to appendix A.7 for calculations on the surplus_block_size.

Decryption of the encrypted message SHALL adhere to the following rules:

1. Locate the message via message_tag

2. Verify if the message is intended for this device by comparing the long_form_udn with the UDN stored in the device.

3. Verify the signature_block of the message by using the public key from the RI.

4. Locate the sessionkey_block() and decrypt the block with the private key of the local device. Locate the session key (SK) from the header and (eventual) padding (according to PCKS#1). Then locate the keyset_block part from the header and (eventual) padding (according to PCKS#1).

5. (Optionally) If there is a surplus_block() concatenate this part to the keyset_block. This will complete the keyset_block.

6. Use the SK to decrypt the keyset_block.

7. Allocate the individual keyset_items from the keyset_block according to [AES_WRAP] and the Tag Length Format described in section A.13.

Note: The SK SHALL be stored into protected storage. The AES encrypted keyset_block MAY be stored as is into unprotected storage and decrypted by the device upon use. If the keyset_block is not stored but the decrypted keys from that block are stored instead, the device SHALL store all key data safely. The keys SHALL NOT leak outside the device.

5.1.3.2.3 Message syntax

Table 4: message syntax

	fields
	length
	type

	device_registration_response(){
	
	

	/* signature protected part starts here */
	
	

	/* message header starts here */
	
	

	message_tag
	8
	bslbf

	protocol_version
	4
	bslbf

	reserved_for_future_use
	4
	bslbf

	longform_udn()
	80
	bslbf

	status
	8
	bslbf

	flags {
	
	

	ri_certificate_counter
	3
	bslbf

	ocsp_response_counter
	3
	bslbf

	local_time_offset_flag
	1
	bslbf

	time_stamp_flag
	1
	bslbf

	subscriber_group_key_flag
	4
	bslbf

	short_udn_flag
	1
	bslbf

	signature_type_flag
	2
	bslbf

	surplus_block_flag
	1
	bslbf

	keyset_block_length
	16
	uimsbf

	}
	
	

	certificate_version
	8
	bslbf

	for(cnt1=0; cnt1 < ri_certificate_counter ;cnt1++){
	
	

	c_length
	16
	uimsbf

	ri_certificate()
	8*c_length
	bslbf

	}
	
	

	for(cnt2=0; cnt2 < ocsp_response_counter ;cnt2++){
	
	

	r_length
	16
	uimsbf

	ocsp_response()
	8*r_length
	bslbf

	}
	
	

	drm_time
	40
	mjdutc

	if (local_time_offset_flag == 0x1) {
	
	

	local_time_offset
	16
	bslbf

	}
	
	

	if (time_stamp_flag == 0x1) {
	
	

	registration_timestamp_start
	40
	mjdutc

	registration_timestamp_end
	40
	mjdutc

	}
	
	

	if (short_udn_flag == 0x1) {
	
	

	short_udn
	32
	bslbf

	}
	
	

	/* message header ends here */
	
	

	if (signature_type_flag == 0x0){
	
	

	sessionkey_block()
	1024
	bslbf

	} else if (signature_type_flag == 0x1)
	
	

	sessionkey_block()
	2048
	bslbf

	} else if (signature_type_flag == 0x2)
	
	

	sessionkey_block()
	4096
	bslbf

	}
	
	

	if (surplus_block_flag == 0x1){
	
	

	surplus_block()
	(*1)
	bslbf

	padding_bits
	(*2)
	bslbf

	}
	
	

	/* signature protected part ends here */
	
	

	if (signature_type_flag == 0x0){
	
	

	signature_block
	1024
	bslbf

	} else if (signature_type_flag == 0x1)
	
	

	signature_block
	2048
	bslbf

	} else if (signature_type_flag == 0x2)
	
	

	signature_block
	4096
	bslbf

	}
	
	

	}
	
	

key:

(*1) for details please refer to section A.7

(*2) (surplus_block() length) mod 8

A.1 Security Considerations

Note to the editor: this is a new section not incorporated in XBS 20050511-D. It is advised to put this text in an Appendix with appendix numbering of own taste. The appendix numbering used here is just as an example to align with other CRs and may be changed based on proceeding insight(s).
A.1.1 Handling weak keys

(The responsible components in) the head-end architecture SHALL NOT use weak keys that will be used for messages in the IP Datacast network. At the time of this writing there are no specified weak keys for use in AES. This does not mean to imply that weak keys do not exist. If, at some point, a set of weak keys for AES are identified, the use of these weak keys SHALL be rejected in the head-end architecture followed by a request for replacement key.

A.2 Status and Error Message Handling

Note to the editor: this is a new section not incorporated in XBS 20050511-D. It is advised to put this text in an Appendix with appendix numbering of own taste. The appendix numbering used here is just as an example to align with other CRs and may be changed based on proceeding insight(s). Goal is to collect all status and error message handling codes into one place in the document.
This section describes the status and error values for use in the 1-pass protocols for broadcast devices.

The Status field is a binary value. Upon receipt of a message for which Status is not "Success", the default behaviour, unless explicitly stated otherwise below, is that both the RI and the Device SHALL immediately close the connection and terminate the protocol. RI systems and Devices are required to delete any session-identifiers, nonces, keys, and/or secrets associated with a failed run of the protocol.

When possible, the Device SHOULD present an appropriate error message to the user
.

[image: image5.wmf]The service cannot continue due to an error.

Please contact customer service at:

XXXX-XXX-XXXXXXX

and notify the short UDN:

XXXX XXXX

with following errorcode

XXX

An example dialogue showing an error

Figure 5: sample notification display

Note: The error codes should be displayed as a three digit decimal number. Refer to table 5 for an overview of possible error codes.

Table 5: status / error codes

	Status / Error
	value(h)
	comment

	Success
	0x00
	

	UnknownError
	0x01
	

	NotSupported
	0x03
	

	AccessDenied
	0x04
	

	NotFound
	0x05
	

	MalformedRequest
	0x06
	

	Reserved for future use
	0x11-0xFF
	

UnknownError indicates an internal RI system error.

NotSupported indicates the Device made a request for a feature currently not supported by the RI.

AccessDenied indicates that the Device is not authorized to contact this RI.
NotFound indicates that the requested object was not found.

MalformedRequest indicates that the RI failed to parse the Device's request.

A.4 Conversion between time and date conventions

Note to the editor: this is a section is an update to section 5.1.3.6, which is already incorporated in XBS 20050511-D. It is advised to remove the abovementioned section and use the following text in an Appendix with appendix numbering of own taste. The appendix numbering used here is just as an example to align with other CRs and may be changed based on proceeding insight(s).
(please note: this text has been copied from ETSI EN 300 468 V1.6.1)

The types of conversion which may be required are summarized in Figure 6.

[image: image6.png]
Figure 6: Conversion routes between Modified Julian Date (MJD) and Co-ordinated Universal Time (UTC)

The conversion between MJD + UTC and the "local" MJD + local time is simply a matter of adding or subtracting the

local offset. This process may, of course, involve a "carry" or "borrow" from the UTC affecting the MJD. The other five

conversion routes shown on the diagram are detailed in the formulas below:

Symbols used:

D

Day of month from 1 to 31

int

Integer part, ignoring remainder

K, L ,M', W, Y'
Intermediate variables

M

Month from January (= 1) to December (= 12)

MJD

Modified Julian Date

MN

Week number according to ISO 2015 [21]

mod 7

Remainder (0-6) after dividing integer by 7

UTC

Universal Time, Co-ordinated

WD

Day of week from Monday (= 1) to Sunday (= 7)

WY

"Week number" Year from 1900

x

Multiplication

Y

Year from 1900 (e.g. for 2003, Y = 103)

a) To find Y, M, D from MJD

Y' = int [(MJD - 15 078,2) / 365,25]

M' = int { [MJD - 14 956,1 - int (Y' × 365,25)] / 30,6001 }

D = MJD - 14 956 - int (Y' × 365,25) - int (M' × 30,6001)

If M' = 14 or M' = 15, then K = 1; else K = 0

Y = Y' + K

M = M' - 1 - K × 12

b) To find MJD from Y, M, D

If M = 1 or M = 2, then L = 1; else L = 0

MJD = 14 956 + D + int [(Y - L) × 365,25] + int [(M + 1 + L × 12) × 30,6001]

c) To find WD from MJD

WD = [(MJD + 2) mod 7] + 1

d) To find MJD from WY, WN, WD

MJD = 15 012 + WD + 7 × { WN + int [(WY × 1 461 / 28) + 0,41] }

e) To find WY, WN from MJD

W = int [(MJD / 7) - 2 144,64]

WY = int [(W × 28 / 1 461) - 0,0079]

WN = W - int [(WY × 1 461 / 28) + 0,41]

EXAMPLE: MJD = 45 218 W = 4 315

Y = (19)82 WY = (19)82

M = 9 (September) N = 36

D = 6 WD = 1 (Monday)

NOTE: These formulas are applicable between the inclusive dates 1900 March 1 to 2100 February 28.

A.4.1 local time offset

This 16-bit field contains the current offset time from UTC in the range between –12 hours and +13 hours at the area which is indicated by the combination of country_code and country_region_id in advance. These 16 bits are coded as 4 digits in 4-bit BCD in the order hour tens, hour, minute tens, and minutes.

The positive or negative offset from the UTC is indicated with the 1 bit local_time_offset_polarity. If this bit is set to “0” the polarity is positive and the local time is advanced to UTC. (Usually east direction from Greenwich). If this bit is set to “1” the polarity is negative and the local time is behind UTC. Please note that the local_time_offset_polarity is represented by the first bit of the first nibble representing the hour tens field. The first nibble of the local_time_offset is therefore encoded as follows:

Table 6: Local time offset coding

	local_time_offset_polarity
	offset hour tens
	first nibble

	0 (i.e. “+”)
	0
	0000

	0 (i.e. “+”)
	1
	0001

	1 (i.e. “-”)
	0
	1000

	1 (i.e. “-”)
	1
	1001

A.7 Limits of the surplus_block

Note to the editor: this is a section is an update to section 5.1.3.4, which is already incorporated in XBS 20050511-D. It is advised to remove the abovementioned section and use the following text in an Appendix with appendix numbering of own taste. The appendix numbering used here is just as an example to align with other CRs and may be changed based on proceeding insight(s).
Following examples show two possible cases: one keyset for standards addressing and one keyset with additional domain addressing.

A.7.1 Standard keyset

for standard addressing is keyset_block filled with:

· 1 UGK, 9 SGK , 1UDK , 1 UDF , 1 RIAK, 1 UDF.

Note: Max Subscriber Groupsize is 512, this is supported by 9 SGK.

Table 7: standard keyset with RSA block size 1024

	value
	variable
	key size
	key data
	
	key size
	key data
	
	key size
	key data

	1024
	RSA size
	
	
	
	
	
	
	
	

	1
	UDF
	40
	40
	
	40
	40
	
	40
	40

	1
	UGK
	128
	128
	
	128
	128
	
	128
	128

	9
	SGK
	128
	1152
	
	128
	1152
	
	128
	1152

	1
	UDK
	128
	128
	
	128
	128
	
	128
	128

	1
	RIAK
	128
	128
	
	128
	128
	
	128
	128

	0
	LDK
	128
	0
	
	128
	0
	
	128
	0

	0
	SLDF
	48
	0
	
	48
	0
	
	48
	0

	0
	LLDF
	840
	0
	
	840
	0
	
	840
	0

	0
	TDK
	128
	0
	
	128
	0
	
	128
	0

	13
	TLF overhead
	7
	181
	
	7
	181
	
	7
	181

	
	keyset_block
	
	1757
	
	
	1757
	
	
	1757

	
	
	
	
	
	
	
	
	
	

	1
	SK
	128
	128
	
	192
	192
	
	256
	256

	0
	PKCS overhead
	
	0
	
	
	0
	
	
	0

	
	sessionkey_block()
	1024
	
	
	1024
	
	
	1024
	

	
	room in sessionkey_block() to use for keyset_block
	
	896
	
	
	832
	
	
	768

	
	(remainder of keyset_block in) surplus_block()
	
	861
	
	
	925
	
	
	989

Other block sizes with keyset as depicted above produce following results:

Table 8: standard keyset with other RSA block sizes

	block size
	SK size
	keyset_block
	room in sessionkey_block()
	surplus block

	2048
	128
	1757
	1920
	no

	2048
	192
	1757
	1856
	no

	2048
	256
	1757
	1792
	no

	4096
	128
	1757
	3968
	no

	4096
	192
	1757
	3904
	no

	4096
	256
	1757
	3840
	no

A.7.2 Extended keyset

An extended keyset includes keys for standard addressing plus domain addressing. The keyset_block is filled with:

· 1 UGK, 9 SGK , 1UDK , 1 UDF , 1 RIAK, 1 UDF, 1 LDK, 1 SLDF, 1 LLDF (maximum size), 1 TDK.

Note: Max Subscriber Groupsize is 512, this is supported by 9 SGK.

Table 9: extended keyset with RSA block size 1024

	value
	variable
	key size
	key data
	
	key size
	key data
	
	key size
	key data

	1024
	RSA size
	
	
	
	
	
	
	
	

	1
	UDF
	40
	40
	
	40
	40
	
	40
	40

	1
	UGK
	128
	128
	
	128
	128
	
	128
	128

	9
	SGK
	128
	1152
	
	128
	1152
	
	128
	1152

	1
	UDK
	128
	128
	
	128
	128
	
	128
	128

	1
	RIAK
	128
	128
	
	128
	128
	
	128
	128

	1
	LDK
	128
	128
	
	128
	128
	
	128
	128

	1
	SLDF
	48
	48
	
	48
	48
	
	48
	48

	1
	LLDF
	840
	840
	
	840
	840
	
	840
	840

	1
	TDK
	128
	128
	
	128
	128
	
	128
	128

	17
	TLF overhead
	7
	219
	
	7
	219
	
	7
	219

	
	keyset_block
	
	2939
	
	
	2939
	
	
	2939

	
	
	
	
	
	
	
	
	
	

	1
	SK
	128
	128
	
	192
	192
	
	256
	256

	0
	PKCS overhead
	
	0
	
	
	0
	
	
	0

	
	sessionkey_block()
	1024
	
	
	1024
	
	
	1024
	

	
	room in sessionkey_block() to use for keyset_block
	
	896
	
	
	832
	
	
	768

	
	(remainder of keyset_block in) surplus_block()
	
	2043
	
	
	2107
	
	
	2171

Table 10: extended keyset with other RSA block sizes

	block size
	SK size
	keyset_block
	room in sessionkey_block()
	surplus block

	2048
	128
	1924
	1920
	1019

	2048
	192
	1924
	1856
	1083

	2048
	256
	1924
	1792
	1147

	4096
	128
	1924
	3968
	no

	4096
	192
	1924
	3904
	no

	4096
	256
	1924
	3840
	no

Note: not yet included is the PKCS overhead in the sessionkey_block(), so surplus_block() will be a little larger

A.11 RSA signatures under PKCS#1

Note to the editor: this is a section is an update to section 5.1.3.5, which is already incorporated in XBS 20050511-D. It is advised to remove the abovementioned section and use the following text in an Appendix with appendix numbering of own taste. The appendix numbering used here is just as an example to align with other CRs and may be changed based on proceeding insight(s).
RSA signatures are made as described by the implementation guidelines of [PKCS #1] v2.1: RSA Cryptography Standard, RSA Laboratories, June 14, 2002.
The scheme is RSA + SHA1. There are two choices described in the [PKCS#1] as they are RSASSA-PSS and RSASSA-PKCS1-V1_5

Since OMA DRM 2.0 is used for interactive mode of operation and uses RSASSA-PSS, this specification will also use RSASSA-PSS to sign the binary messages for broadcast mode of operation.

A.12 C-style types

Note to the editor: this is a new section not incorporated in XBS 20050511-D. It is advised to put this text in an Appendix with appendix numbering of own taste. The appendix numbering used here is just as an example to align with other CRs and may be changed based on proceeding insight(s).
Following abbreviated types are used in the document:

	type name
	description
	remark

	bslbf
	bit serial leftmost bit first
	

	mjdutc
	modified julian date UTC
	

	uimsbf
	unsigned integer most significant bit first
	

All fields marked as reserved for future use SHALL be set to the value 0, when not used.

All fields marked as reserved SHALL be set to value 0, and never to any other value.

A.13 Tag Length Format for keyset_block

Note to the editor: this is a section is an update to section 5.1.3.3, which is already incorporated in XBS 20050511-D. It is advised to remove the abovementioned section and use the following text in an Appendix with appendix numbering of own taste. The appendix numbering used here is just as an example to align with other CRs and may be changed based on proceeding insight(s).
A.13.1 Syntax definition

A Tag Length Format (TLF) is defined to identify the keyset_items in the keyset_block. A keyset_item is identified by following syntax:

<tag> [optional <clarifier>] <length> <keyset_item>

Following values are defined and SHALL be used:

tag values:

This is a 4 bit field (bslbf) indicating the tag that uniquely identifies the keyset item.

Table 11: defined tag values

	Keyset_item
	Tag (b)
	remark

	UGK
	0000
	

	SGK
	0001
	

	UDK
	0010
	

	UDF
	0011
	

	LDK
	0100
	

	SLDF
	0101
	shortform_domain_id

	LLDF
	0110
	

	RIAK
	0111
	

	TDK
	1000
	

	reserved for future use
	1001-1111
	not used in this version of the spec

Note:

· The keyset items SHALL be included in the order of the table above.

· The keyset SHALL include only one instance of the following keys: UGK, UDK, UDF, RIAK and TDK.

· If included the BGKs (8 or 9) SHALL follow in fashion BGK1..n.

· The keyset MAY include zero or more domain sets (LDK, SLDF, LLDF). If included the SLDF SHALL follow the LDK it belongs to, followed by the optional LLDF that belongs to the aforementioned SLDF.
clarifier (optional):

This is a 10 bit field (bslbf) can be used to indicate the following possible values:

· in case the preceding <tag> value indicates a SGK, this field represents the position of a SGK in the Fiat Naor tree.

· in case the preceding <tag> value indicates a LLDF this field represents the length on the LLDF.

describing the use of the clarifier field for position of SGK:

If keyset_item == 001 (i.e. SGK) then the optional field “clarifier” SHALL indicate the position of the SGK as a node in the [FIAT NOAR] tree. When m = groupsize, then n = 2 log (m), where n is number of BGKs in tree. Possible positions for the BGKs in the tree are 2(n+1) -1 . Therefore parameter “position” is expressed with 10 bits to express 1023 nodes in a tree. First MSB left will be used as binary indicator to indicate if the SGK position is a node (0, zero) or a leaf (1, one). Bit positions 2..10 (from left to right LSB) are used in binary format as an indication of the node and leaf position. Nodes and leafs SHALL be numbered according to following picture 7:

[image: image7.wmf]i

2i+2

2i+1

Parent

node

Right

child

node

Left

child

node

Figure 7: node numbering

Key:

The root key R is numbered zero. Node keys NK are sequentially numbered per “level” in a breadth-first manner from left to right, starting from the root node with number 0

describing the use of the clarifier for length of LLDF:

If LLDF is included the optional field “clarifier” describes the variable length of the LLDF in bits, as described in A.13.3.

length values:

This is a 3 bit field (bslbf) indicating the length of a keyset item.

Table 12: defined length values

	(key)length prescriber
	Length (b)
	remark

	128 bit AES
	000
	

	192 bit AES
	001
	

	256 bit AES
	010
	

	5 byte Eurocrypt
	011
	

	6 byte
	100
	SLDF

	reserved for future use
	101-111
	not used in this version of the specification

Note: In case of the LLDF there is no extra length field, since the length value is indicated by the clarifier.

A.13.2 TLF examples

E.g.1: A 5 byte Eurocrypt address implementing the UDF will be coded like:

<0011> <011> <UDF>

E.g.2: A 48 bits SLDF address will be coded like:

<0101> <100> <SLDF>

E.g.3: A LLDF address of 105 bytes will be coded like:

<0110> <1101001000> <LLDF>

E.g.4: A 128 but AES key implementing the UGK will be coded like:

<0000> <000> <UGK>

[image: image8.wmf]R

NK1

D1

D0

NK2

NK3

D3

D2

NK4

D5

D4

NK5

D7

D6

NK6

NK10

NK14

NK13

NK12

NK11

NK9

NK8

NK7

Figure 8: sample tree with correct node and device numbering.

E.g.5: A 128 bit AES key implementing the SGK on node position NK5 in figure 8 will be coded like:

<0001> <0000000101> <000> <SGK>

E.g.6: A 128 bit AES key implementing the SGK on node position NK7 (i.e. D0) in figure 8 will be coded like:

<0001> <1000000001> <000> <SGK>

A.13.3 LLDF syntax

In OMA DRM 2.0 the domain ID can be 1 to 17 characters (any) followed by 3 digit characters.

The string that forms the identifier is encoded normally in ROAP messages using UTF-8 [RFC 3629]. UTF-8 character encoding for ASCII characters is 'efficient' with 1 byte per character. On the other hand, there are characters that are encoded using 6 bytes (Asian languages).

The 17 XML UTF-8 characters are translated into bytes as follows:

Longest OMA DRM 2.0 domain identifier encoded as bytes is 6*17+3 bytes = 105 bytes.

Shortest domain identifier is 4 bytes.

A.14 Message_tag overview

Note to the editor: this is a new section not incorporated in XBS 20050511-D. It is advised to put this text in an Appendix with appendix numbering of own taste. The appendix numbering used here is just as an example to align with other CRs and may be changed based on proceeding insight(s). Goal is to collect the message tags of all messages into one place in the document / in one appendix.
The messages that are defined in this specification SHALL use following message_tag values:

Table 13: message_tag overview

	message name
	message_tag
	described in section

	device_registration_response()
	0x01
	6.3.1

Note to the editor: update “described in section” column with correct section number in XBS document, to be defined later.
1.3 References

Note to the editor: this is a new section not incorporated in XBS 20050511-D. It is advised to put this text in an new section with section numbering of own taste. The section numbering used here is just as an example to align with other CRs and may be changed based on proceeding insight(s). Goal is to collect the references into one place in the document / in one section.
[AES_WRAP]
NIST Key Wrap, National Institute of Standards and Technology, 16 November 2001

[EUROCRYPT]
EN 50094:1992 - CLC/TC 206
Access control system for the MAC/packet family: EUROCRYPT, 1992

[FIPS 197]
National Institute of Standards and Technology, Specification for the Advanced Encryption Standard (AES) FIPS 197. November 26, 2001

[PKCS#1]
PKCS #1 v2.1: RSA Cryptography Standard, RSA Laboratories, June 14, 2002

[RFC 3629]
RFC 3629, UTF-8, a transformation format of ISO 10646. F. Yergeau, November 2003.
1.4 Abbreviations

Note to the editor: this may be added to the section with abbrevs in XBS 20050511-D. The section numbering used here is just as an example to align with other CRs and may be changed based on proceeding insight(s).
For the purposes of the present document, the following abbreviations apply:

AES
Advanced Encryption Standard

BCD
Binary Coded Decimal

DRD
Device Registration Data

LDK
Local Domain Key

LLDF
Long-form Local Domain Filter (a.k.a. longform_domain_id)

MJD
Modified Julian Date

OCSP
Online Certificate Status Protocol

OMA
Open Mobile Alliance

PDR
Push Device Registration

PKC
Public Key Certificate

PKC-ID
PKC Identifier: the hash of the Public Key Certificate

PKI
Public Key Infrastructure

RI
Rights Issuer

RIAK
Right Issuer Authentication Key

ROT
Root Of Trust

RSA
Rivest-Shamir-Adelman public key algorithm

SGK
Subscriber Group Key

SLDF
Short-form Local Domain Filter (a.k.a. shortform_domain_id)

TDK
Token Delivery Key

TEK
Traffic Encryption Key

UDF
Unique Device Filter

UDK
Unique Device Key

UDN
Unique Device Number

UDP
User Datagram Protocol

UGK
Unique Group Key

� key: (O)ptional means that the user of the message MAY include the parameter in the message, but the device MUST support the interpretation of the parameter. (M)andatory means that the user of the message SHALL include the parameter in the message.

� Note: It is the sequence of the defined values that is specified. The use of dashes as the delimiter is shown with an example placement to be consistent with the examples used elsewhere in this specification. The text portion of this screen is shown as an example only; there is no implied requirement to duplicate the exact wording or formatting shown. The numeric fields SHALL be included as defined above (please note: the short UDN will only be displayed after the first registration, when that data is available for display).

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 24)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20050101-I]

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 24)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20050101-I]

_1179506541.vsd
�

[1] notify device data�

[2] wait�

[3] cert. & cap. request�

[4] valid?�

[5] cert. & cap. data�

[6] check�

[7] 1-pass PDR�

ROT / PKI+CRL�

Service Provider / RI�

Customer / Device�

_1179506636.vsd
�

[1] send registr. data�

ROT / PKI+CRL�

Service Provider / RI�

Customer / Device�

_1170593409.vsd
The service cannot continue due to an error. Please contact customer service at:
XXXX-XXX-XXXXXXX

and notify the short UDN:
XXXX XXXX
with following errorcode
XXX�

An example dialogue showing an error�

_1174919035.vsd
text�

�

�

�

Parent node�

Right
child
node�

i�

2i+2�

2i+1�

Left child
node�

_1179063040.vsd
text�

�

�

�

�

R�

NK1�

D1�

D0�

NK2�

NK3�

�

�

D3�

D2�

NK4�

�

�

�

D5�

D4�

NK5�

�

�

�

D7�

D6�

NK6�

NK10�

NK14�

NK13�

NK12�

NK11�

NK9�

NK8�

NK7�

�

�

�

_1171444797.vsd
surplus_block
(AES encrypted)�

Sessionkey_block
(RSA encrypted)�

Signature_block
(RSA signature)�

(optional) Remainder of keyset_block that did not fit into RSA block�

SK (plus part of keyset_block that fits into RSA block (size)�

RSA signature�

Message �header�
(in the clear)�

All but input for keyblocks below�

Keyset_block
(AES encrypted)�

_1170257600.vsd
Device global data
(in the clear)�

Device specific data
�

�

Key material (encrypted)�

Other device data (in the clear)�

Longform_udn�

signature�

Message_tag�

Signature over complete message�

