Doc# OMA-DLDRM-2005-XXXX-Token-handling-using-broadcast-channel2.doc[image: image3.jpg]
Change Request

Doc# OMA-DLDRM-2005-XXXX-Token-handling-using-broadcast-channel2.doc
Change Request

Change Request

	Title:
	Token handling using broadcast channel
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	BAC-DLDRM

	Doc to Change:
	OMA-TS-DRM-XBS-V1_0-20050621-D

	Submission Date:
	July 6th 2005

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	John Bernsen, john.ac.bernsen@philips.com

	Replaces:
	 n/a

1 Reason for Change

This is a contribution to the subject of sending tokens for metered consumption by the RI to a device that is part of the Broadcast Extensions for OMA DRM. It is the broadcast alternative for the functionality in BCAST/2005/OMA-BCAST-2005-0100R03-token-based-metering-specification-text.zip

This document describes a new mechanism that can be used by the RI to send tokens to a device in offline situations. That is when there is no interactive connection between the RI and the device. When the interactivity channel is available, the device may use ROAP protocols according to OMA DRM 2.0. But in the case where there is no interactivity channel and only a broadcast channel, the device data must be pushed from the RI to the device over the broadcast channel in another way. This CR describes how.

This CR also contains the specification on token management by RIs and devices.

2 Impact on Backward Compatibility

The intention is to define the broadcast extensions to OMA DRM 2.0 in a way that builds on the key concepts and mechanisms that have been carefully crafted.

The new Token delivery response message is intended to be used without interactivity channel, c.q. in a scenario not applicable to standard OMA DRM 2.0. This CR has therefore no impact on backwards compatibility.

3 Impact on Other Specifications

None.

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

The text in section 6 (detailed change proposal) should be incorporated as an update to existing section 5.1.3 of XBS 20050621-D, describing broadcast registration. Detailed instructions are incorporated under the title “Note to the Editor”.

6 Detailed Change Proposal

Note to editor: Following text consists of new sections of XBS 20050621-D, describing token handling. In case the suggested section number(s) do not match contact the author.
5.3
Token handling

5.3.1
Protocol overview

The theory of operation (refer to section A.16) results in the specification of several protocols:

· offline protocols (from device to RI)

	protocol
	section
	purpose

	token request protocol
	5.3.2
	request to purchase tokens

	token reporting protocol
	5.3.3
	protocol to report the consumption of tokens

· 1-pass protocols (from RI to device)

	protocol
	section
	purpose

	1-pass binary Push Device Registration protocol
	5.1.3*1)
	transmit registration data to device

	1-pass binary Inform Registered Device protocol
	5.1.2.X*2)
	inform device via messages.

The protocols interrelate in following way (roundtrip):

	kicking off action…
	…results in

	token request protocol

(request to purchase tokens)
	token delivery response message

(transmit tokens to device)

	token reporting protocol

(report the consumption of tokens)
	token delivery response message

(transmit tokens to device)

5.3.2
token request protocol

When the user of a device wants to obtain tokens, he uses the NSD protocol with the token_request action type. (refer to section 5.1.2*1)).

5.3.3
token reporting protocol

When the user of a device is instructed by his device to report token consumption, he uses the NSD protocol with the token_consumption_message action type in order to send a token consumption report. (refer to section 5.1.2*1)).

5.3.4
Binary messages

5.3.4.1
delivering tokens – token_delivery_response() message

5.3.4.1.1
Message description

Using the 1-pass IDR protocol (refer to section 5.1.2.X*2)) the RI sends a token_delivery_response() message, informing the device of the delivery of new tokens. The message is specified below:

Table 1: token delivery response message description

	token_delivery_response()

	Parameter name
	(M)andatory / (O)ptional

	remark

	message_tag
	M
	not encrypted

	protocol_version
	M
	not encrypted

	message_length
	M
	not encrypted

	group_size_flag
	M
	not encrypted

	address_mode
	M
	not encrypted

	one
	M
	not encrypted

	address
	M
	not encrypted

	bit_access_mask
	not used in this version of the specification
	not encrypted

	position_in_group
	M
	not encrypted

	domain_id_extension
	not used in this version of the specification
	not encrypted

	domain_generation
	not used in this version of the specification
	not encrypted

	rights_issuer_id
	M
	not encrypted

	status
	M
	not encrypted

	device_nonce
	M
	not encrypted

	response_flag
	M
	not encrypted

	token_reporting_flag
	M
	not encrypted

	earliest_reporting_time_flag
	M
	not encrypted

	latest_reporting_time_flag
	M
	not encrypted

	token_quantity_flag
	M
	not encrypted

	token_delivery_response_id
	M
	not encrypted

	latest_consumption_time
	O
	not encrypted

	earliest_reporting_time
	O
	not encrypted

	latest_reporting_time_flag
	O
	not encrypted

	encrypted_token_quantity
	O
	encrypted

	encrypted_report_authentication_key
	O
	encrypted

	MAC
	M
	not encrypted

message_tag - This parameter identifies the type of the message. Refer to section A.14 for the value of the message_tag.

protocol_version - This parameter indicates the protocol_version of this message. The device SHALL ignore messages that have a protocol_version number it doesn’t support. The value of the protocol_version of this message is set to 0x0 (i.e. the original format).

If set to 0x0 the format specified in the this version of the specification is used. If set to anything else than 0x0, then the format is beyond the scope of this version of the specification.

message_length - 12-bit field indicating the length in bytes of the message starting immediately after this field.

group_size_flag - 1-bit field indicating the group size used. 0 – a maximum group size 256 is used, 1 – a maximum group size of 512 is used

address_mode - 3-bit field indicating the addressing mode used by this message. Table 2 lists all possible address modes. Not that not all modes are used in this version of the specification for the token delivery response message.

Table 2 address_mode for token delivery response message

	address_mode
	description

	0x0
	addressing whole of unique group

This addressing mode is not used in this version of the specification for the token delivery response message

	0x1
	addressing of broadcast group using a bit_mask size of 256 or 512 bit depending on group_size_flag (subset of unique group)

This addressing mode is not used in this version of the specification for the token delivery response message

	0x2-0x3
	addressing of unique device

	0x4
	addressing of OMA DRM 2.0 domain. Address field concatenated with the domain_id_extension will be the domain id in this case

This addressing mode is not used in this version of the specification for the token delivery response message

	0x5-0x7
	reserved for future use

one - 1-bit flag which SHALL have the value 0x1 in this version of the specification. This field MAY have value 0x0 in future versions of the specification

address - 4-byte group address. Each rights issuer has its own address space. If the group_size is 512 then the group address is made of the first 31 bit of the address field. If this message is addressed to a unique device in a group then the LSB of the address field is the MSB of the group position.

bit_access_mask - This field is not used in this version of the specification and MAY be used in future versions. It is indicated here, so devices according to this version of the specification know its size. All bits of the field SHALL be set to 0, when the field is not used.
position_in_group - If this message addresses a unique device then this field specifies the position of the unique device in the given broadcast group. If group_size_flag is 0 than the position in the group is directly given by the position_in_group field. If group_size_flag is 1 then 9 bit are used to identify the position in the group. If group_size_flag is 1 then the LSB (bit 0) from the address field is used as the 9th bit, the MSB. The real position in the group is then given by:

int real_position_in_group;

if(address_mode&0x6==0x2){

if(group_size_flag == 0){

//maximum size of 256 devices in group.

real_position_in_group = position_in_group;

}else{

//maximum size of 512 devices in group;

real_position_in_group = ((address&0x1)<<8)||position_in_group;

}

}

domain_id_extension - This field is not used in this version of the specification and MAY be used in future versions. It is indicated here, so devices according to this version of the specification know its size. All bits of the field SHALL be set to 0, when the field is not used.
domain_generation - This field is not used in this version of the specification and MAY be used in future versions. It is indicated here, so devices according to this version of the specification know its size. All bits of the field SHALL be set to 0, when the field is not used.
rights_issuer_id() - The ID of the rights issuer. This is the 160-bit SHA-1 hash of the public key of the RI. See X509PKISHash in [OMA-DRM-DRM].

status - The status parameter SHALL indicate one of the values explained in the following table. The device SHALL ignore messages with other error values.

Table 3: message error codes

	status value
	meaning

	Success
	The message contains valid token delivery data from the RI.

	NotSupported
	The RI does not support the sending of tokens from the RI. In this message, the RI SHALL set the value of token_quantity to zero or SHALL set the token_quantity_flag to 0x0.

	TokenConsumptionMessageError
	The RI did receive a token consumption message, but that it was erroneous and that the device should redo the last token consumption message.

In this token delivery response message, the RI SHALL set the value of token_quantity to zero or SHALL set the token_quantity_flag to 0x0.. The RI SHALL use a token_reporting_flag of value 0x1. The RI SHALL use the device_nonce of the last token consumption message that the RI successfully processed or set the response_flag to 0x0 in case no token consumption messages have been successfully processed. The device SHALL generate a token consumption message, reporting on the token consumption from the time of the generation of the token consumption message with the same device_nonce as the device_nonce in this token delivery response message, or from first start-up in case the response_flag was set to 0x0.

	NoTokenConsumptionMessage
	The RI did not receive a token consumption message yet, but was expecting one, because the present date/time is later than the last latest_token_consumption_time sent to the device in a token delivery response message.

In this token delivery response message, the RI SHALL set the value of token_quantity to zero or SHALL set the token_quantity_flag to 0x0. The RI SHALL use a token_reporting_flag of value 0x1. The RI SHALL use the device_nonce of the last token consumption message that the RI successfully processed or set the response_flag to 0x0 in case no token consumption messages have been successfully processed. The device SHALL generate a token consumption message, reporting on the token consumption from the time of the generation of the token consumption message with the same device_nonce as the device_nonce in this token delivery response message, or from first start-up in case the response_flag was set to 0x0.

device_nonce – If the response_flag equals 0x1, the device_nonce is the nonce present in the request (using the offline NSD protocol) to which this token delivery response message is a response. If the response_flag field equals 0x0, this token delivery response message does not refer to any request from the device to the RI and the device_nonce MAY be ignored. The nonce is encoded in BCD.

response_flag – If this flag equals 0x1, this token delivery response message is a response to a message from the device to the RI and the device_nonce in this token delivery response message is taken from that message. If this flag equals 0x0, this token delivery response message does not refer to any message from the device to the RI and the device_nonce can be any value.

token_reporting_flag – If this flag equals 0x1, the device has to report to the RI the consumption of the tokens received with this token delivery response message. If this flag equals 0x0, the device can consume all tokens delivered with this token delivery response message, as well as any other previously delivered tokens which are still not consumed, without ever having to report their consumption.

earliest_reporting_time_flag - Binary flag to signal presence of the parameter it describes:

	earliest_reporting_time field
	Value (h) of earliest_reporting_time_flag
	remark

	data absent
	0x0
	

	data present
	0x1
	

latest_reporting_time_flag - Binary flag to signal presence of the parameter it describes:

	latest_reporting_time field
	Value (h) of latest_reporting_time_flag
	remark

	data absent
	0x0
	

	data present
	0x1
	

token_quantity_flag - Binary flag to signal presence of the parameter it describes:

	token_quantity field
	Value (h) of token_quantity_flag
	remark

	data absent
	0x0
	

	data present
	0x1
	

token_delivery_response_id – This is the ID of the token delivery response message. The RI SHALL use the same token_delivery_response_id when retransmitting a token delivery response message. The RI SHALL generate a random number using a sufficiently good pseudo random number generator for every new token delivery response message. Devices SHALL discard token delivery response messages with a token_delivery_response_id identical to the one in an already received token delivery response message.

latest_token_consumption_time – After the date/time indicated in the latest_token_consumption_time field, the device SHALL NOT use any tokens, which have been received after the last token delivery response message that had the token_reporting_flag set to 0x0, for the consumption of protected content controlled by the RI. The device SHALL use the date/time in the latest_token_consumption_time field, if present, of the last received token delivery response message, regardless of the value of the field status.

earliest_reporting_time - If the device reports the consumption of tokens before the date/time indicated in the earliest_reporting_time field, the RI NEED NOT change the latest_token_consumption_time in its subsequent token delivery response message.

latest_reporting_time – The purpose of this field is to make uninterrupted token consumption possible. If the device reports the token consumption before the date/time indicated in the latest_reporting_time field, the RI SHALL send the next token delivery response message before the latest_token_consumption_time, unless the RI wishes to interrupt or disable the token consumption.

encrypted_token_quantity – A 4-byte field, containing the encrypted token_quantity. Token_quantity is a signed, two’s complement 32-bit number. If the value of token_quantity is positive, it specifies the number of tokens the device receives from the RI. If the value of token_quantity is negative, it specifies how many tokens the RI removes from the device. If the field encrypted_token_quantity is not present, no tokens are received from the RI and no tokens are removed from the device by this token delivery response message. The token_quantity is encrypted using AES-128-CBC, with fixed IV 0 and with 0 padding in the last block if needed. The encryption key used depends on the addressing mode of the token delivery response message, see the next table.

Table 4 Mapping of address_mode to keys for the token delivery response message

	address_mode
	Key(s) used to decrypt field

	0x0 (unique group)
	This addressing mode is not used in this version of the specification for the token delivery response message

	0x1 (broadcast group)
	This addressing mode is not used in this version of the specification for the token delivery response message

	0x2-0x3 (unique device)
	Token Delivery Key

	0x4 (domain)
	This addressing mode is not used in this version of the specification for the token delivery response message

	0x5-0x7
	reserved for future use

encrypted_report_authentication_key - This field contains the encrypted Report Authentication Key. The Report Authentication Key a 128 bit key to authenticate the reported number of tokens with in the next token consumption message. The encrypted_report_authentication_key field is only present if the token_reporting_flag has the value 0x1. The RI SHALL generate a random number using a sufficiently good pseudo random number generator for the value of every newly required Report Authentication Key. The Report Authentication Key is encrypted using AES-128-CBC, with fixed IV 0 and with 0 padding in the last block if needed. The encryption key used depends on the addressing mode of the token delivery response message, see the next table.

Table 5 Mapping of address_mode to keys for the token delivery response message

	address_mode
	Key(s) used to decrypt field

	0x0 (unique group)
	This addressing mode is not used in this version of the specification for the token delivery response message

	0x1 (broadcast group)
	This addressing mode is not used in this version of the specification for the token delivery response message

	0x2-0x3 (unique device)
	Token Delivery Key

	0x4 (domain)
	This addressing mode is not used in this version of the specification for the token delivery response message

	0x5-0x7
	reserved for future use

MAC: This is the authentication code calculated over all bytes before this field in this message using HMAC-SHA-1-96 (see [RFC 2104]). The MAC is used for integrity check of this message. The key used to create the MAC is the token delivery response message authentication key TDRMAK as defined in Annex A.9.5. Devices SHALL NOT use token delivery response messages with an invalid MAC.
Note Message result:

· More information on device actions after the reception of this message can be found in section A.16.2.

5.3.4.1.3
Message syntax

Table 6: token delivery response message syntax

	fields
	length
	type

	token_delivery_response(){
	
	

	/* MAC protected part starts here */
	
	

	message_tag
	8
	bslbf

	protocol_version
	4
	bslbf

	message_length
	12
	uimsbf

	group_size_flag
	1
	bslbf

	reserved for future use
	3
	bslbf

	address_mode
	3
	uimsbf

	one
	1
	bslbf

	address
	32
	uimsbf

	if(address_mode == 0x1 && group_size_flag == 0){

	
	

	

bit_access_mask
	256
	bslbf

	}else if(address_mode == 0x1 && group_size_flag == 1){
	
	

	

bit_access_mask2
	512
	bslbf

	}else if (address_mode&0x6 == 0x2){
	
	

	

position_in_group
	8
	uimsbf

	}else if (address_mode == 0x4){2
	
	

	

domain_id_extension
	6
	bslbf

	

domain_generation
	10
	uimsbf

	}
	
	

	rights_issuer_id()
	160
	bslbf

	status
	8
	bslbf

	device_nonce
	4
	bslbf

	flags {
	
	

	response_flag
	1
	bslbf

	token_reporting_flag
	1
	bslbf

	earliest_reporting_time_flag
	1
	bslbf

	latest_reporting_time_flag
	1
	bslbf

	token_quantity_flag
	1
	bslbf

	reserved for future use
	7
	bslbf

	}
	
	

	token_delivery_response_id
	96
	bslbf

	if (token_reporting_flag == 0x1) {
	
	

	latest_token_consumption_time
	40
	mjdutc

	if (earliest_reporting_time_flag == 0x1) {
	
	

	
earliest_reporting_time
	40
	mjdutc

	}
	
	

	if (latest_reporting_time_flag == 0x1) {
	
	

	
latest_reporting_time
	40
	mjdutc

	}
	
	

	}
	
	

	/* encrypted part starts here
	
	

	if(token_quantity_flag == 1){
	
	

	

encrypted_token_quantity
	32
	bslbf

	}
	
	

	encrypted_report_authentication_key
	128
	bslbf

	/* encrypted part ends here
	
	

	/* MAC protected part ends here */
	
	

	MAC
	96
	bslbf

	}
	
	

Note that all reserved for future use fields SHALL have the value 0 for token delivery response messages created according to this version of the specification.

*1): Note to Editor: these are references to the actual XBS document.
*2): Note to Editor: these two messages have been defined in another CR.
A.9.5
Authentication of token delivery response messages

Token delivery response messages contain one MAC field which is used to authenticate the message and to protect the integrity of the message.

The authentication key is generated from the RIAK:

[image: image1.wmf])

_

}(

{

TDRM

CONSTANT

RIAK

f

TDRMAK

auth

=

where:

CONSTANT_TDRM
= 0x040404040404040404040404040404 (120 bit)

Note: To obtain the RIAK the device needs have been equipped with a valid keyset. Refer to Error! Reference source not found. for details.

Refer to A.9.4*2) for details on f-auth.

The TDRMAK is used in the MAC generation / verification of the token delivery response message. The algorithm used to calculate the MAC field is HMAC-SHA1-96 according to [FIPS 198] and [RFC2104], using a authentication key of 160 bit.
A.14 Message_tag overview

Note to the editor: this message tag is define in this CR. It should be added to the table with all the other message tags.
The messages that are defined in this specification SHALL use following message_tag values:

Table 7: message_tag overview

	message name
	message_tag
	described in section

	token_delivery_response()
	0x30
	5.3.4.1

A.15
Authentication of the tokens_consumed field in the token consumption data

Devices SHALL authenticate the tokens_consumed field and the device_nonce of the token consumption report, see section 5.1.2*1), in the way specified in this section. The hash function used here is one of the four secure hash functions from [SCHNEIER], page 449 (the upper left one in figure 18.9).

The maximum amount of tokens that can be reported as consumed is 9999. The amount of tokens, with the before mentioned restriction, is represented with a 14 bit uimsbf number and called tokens_consumed. The value of device_nonce can be in value between 0 and 9 and is represented as a 4 bit uimsbf number. The 14 bit number tokens_consumed is right concatenated with the 4 bit number device_nonce. The resulting 18 bit number is right padded with 0x1 and right padded again with 109 binary zeroes (so 2109). The resulting 128 bit number is used as the input for a single AES block. The Report Authentication Key, as obtained with the token delivery response message, see section 5.3.4.1, is used as the key input for the AES block. The 128-bit output of the AES block is EXOR-ed with the 128-bit input of the AES block. The left-most 43 bits of the result of this EXOR operation are taken as the report_authentication_code. The 13 digit decimal representation of these 43 bits, including any leading zeroes is used as the report_authentication_code in the token consumption report. See also the next figure.

[image: image2.wmf]AES

report_authentication_key

128

tokens_consumed || device_nonce || 2

109

I

2

O

2

128

report_authentication_code discard

43

85

128

128

128

Figure 1: computation of the report_authentication_code

A.16
Management of tokens by RIs and devices

A.16.1
Token management by RIs

There are two business models for the use of tokens.

The first business model is that all tokens ordered by the user are paid for by the user. These tokens are pre-paid tokens. The second business model is that a user orders tokens, but only wants to pay for the ones he actually consumes. These tokens are post-paid tokens.

The tools to support these two business models are the token delivery response message, see section 5.3.4.1 and the token reporting protocol, see section 5.3.3. The next sections describe how these tools can be used by an RI to support the above two business models and how one can switch from one business model to the other.

A.16.1.1
Pre-paid token business model

Setting the token_reporting_flag in the token delivery response message to 0x0 will signal to the device that it does not now nor in the future have to report anymore on the consumption of any of the tokens received so far from this RI.

Therefore in the pre-paid token business model, where the user has agreed to be billed for the delivery of the tokens and their consumption need not be reported, the RI will set the token_reporting_flag to 0x0.

Tokens that are delivered from an RI to a device with a token delivery response message which token_reporting_flag has been set to 0x0 can be called pre-paid tokens.

A.16.1.2
Post-paid token business model

Setting the token_reporting_flag in the token delivery response message to 0x1 will signal to the device that it SHALL report on the consumption of these tokens
.

Therefore in the post-paid token business model, where the user has to be billed for the actual consumption of the tokens and their actual consumption SHALL be reported by the device, the RI will set the token_reporting_flag to 0x1.

Tokens that are delivered from an RI to a device with a token delivery response message which token_reporting_flag has been set to 0x1 can be called post-paid tokens.

In the post-paid token business model, the RI can limit its risk, by making sure that a device at all times only contains post-paid tokens up to a certain maximum, the so called credit-limit. Furthermore, the RI can set a date/time limit in the device after which the device is not allowed to consume post-paid tokens any more. This can be done as follows

1.
The RI sends in the first token delivery response message a number of tokens equal to the credit-limit. Furthermore, the RI sets the token_reporting_flag in the token delivery response message to 0x1 and sets the latest_consumption_time to a suitable date/time.

2.
The RI waits for the reception of a token consumption message.

3.
If the RI receives a token consumption message, it SHALL check the authenticity of the tokens_consumed field. If the authentication fails, go to step 2, otherwise continue with step 4.

4.
For reasons explained in section A.16.1.3, if the reported number of consumed tokens is higher than the credit-limit, the RI SHALL assume that only a number of post-paid tokens equal to the credit-limit have been consumed by the device.

5.
The RI bills the user for the amount of post-paid tokens consumed with a maximum equal to the credit-limit.

6.
The RI sends a token delivery response message a number of tokens equal to the amount of post-paid tokens consumed with a maximum equal to the credit-limit. Furthermore, the RI sets the token_reporting_flag in the token delivery response message to 0x1 and sets the latest_consumption_time to a suitable date/time.

7.
Go to step 2.

Note that in the above, the use of the response_flag, device_nonce, earliest_reporting_time, latest_reporting_time and other fields has not been included.

Note further that the RI can force the creation of a token consumption message by sending a token delivery response message with its status field set to “TokenConsumptionMessageError” or to “NoTokenConsumptionMessage”.

 A.16.1.3
Switching from the pre-paid token business model to the post-paid token business model

When at a certain point of time, the user asks the RI to switch from the use of pre-paid tokens to the use of post-paid tokens and the RI agrees, the RI starts at step 1 in the previous section. The device will report the actual consumption of tokens that will delivered to it in step 1 and in all steps 6. However, at the time of executing step 1, the device MAY still have some pre-paid tokens. Based on the implementation of the device, these pre-paid tokens MAY also be reported as consumed by the device, see section A.16.2. Because the RI knows that a device never holds more post-paid tokens than the credit limit, the RI SHALL assume that at most an amount of tokens equal to credit_limit have been consumed by the device. Hence step 4 in section A.16.2.

A.16.1.4
Switching from the post-paid token business model to the pre-paid token business model

When at a certain point of time, the user asks the RI to switch from the use of post-paid tokens to the use of pre-paid tokens, and the RI agrees, the RI has a few options

One option is that the RI bills the user for the amount of post-paid tokens that were left in the device at the time of the last token consumption message. These tokens have in effect then become pre-paid tokens. The RI will set the token_reporting_flag in the next token delivery response message to 0x0 and set the value of token_quantity to zero or to the amount of tokens that the user wished to purchase in addition to the amount of post-paid tokens left in the device (encrypting token_quantity yields the encrypted_token_quantity field).

Another option, useful e.g. when the previous option turns out to be expensive, is that the RI performs the actions described in section A.16.1.5 for clearing the post-paid tokens left in the device. After clearing the post-paid tokens, the RI can start sending pre-paid tokens to the device if the user wishes to purchase these.

A.16.1.5
Stopping the post-paid token business model

When at a certain point of time, the user informs the RI that he does no longer wish to use post-paid tokens, not even the ones that are still in his device, the RI can do the following. The RI sends the device a token delivery response message with:

· the value of token_quantity set to zero (encrypting token_quantity yields the encrypted_token_quantity field), or set the token_quantity_flag to 0x0,

· the token_reporting_flag field set to 0x1,

· the latest_token_consumption_time set to a date/time in the past,

· the status field to “NoTokenConsumptionMessage”.

This forces the device to generate a token consumption report. Using this, the RI determines how many post-paid tokens are still in the device. The RI sends the device a token delivery response message with:

· the value of token_quantity set to minus the amount of post-paid tokens left in the device (encrypting token_quantity yields the encrypted_token_quantity field),

· the token_reporting_flag field set to 0x1,

· the latest_token_consumption_time set to a date/time in the past,

· the status field to “Success”.

The above message MAY be repeated several times. After reception of this token delivery message, the device will have no post-paid tokens left. Any remaining pre-paid tokens can still be consumed by the device.

A.16.2
Token management by devices

Each RI context in a device SHALL at a minimum contain:

· a token purse, which is incremented with the tokens received from the RI and which is decremented with the amount of tokens required for each requested consumption of metered protected content from the corresponding RI. If a decrement would yield an accumulator value of less than zero, the device SHALL deny the requested consumption of metered protected content from the corresponding RI.

· a token consumption accumulator, which initially starts at zero.

· the token purse initially starts at zero.

Whenever a device receives from an RI a token delivery response message that has its token_reporting_flag set to 0x0, the device sets the token consumption accumulator associated with the RI to zero and SHALL consider all tokens in the token purse associated with the RI as pre-paid tokens.

In case of the reception of a (series of) token delivery response message with the token_reporting_flag set to 0x1, there are 2 possible implementations of token consumption registration.

A device with a simple implementation of token consumption registration would do the following:

1.
Whenever tokens are required and available for consumption, then in addition to decrementing the token purse associated with the RI, the device also increments the token consumption accumulator associated with the RI with the same amount.

2.
When a device receives a token delivery response message with status “Success” and a token_reporting_flag set to 0x1, the device SHALL schedule the creation of a token consumption report at a suitable time, keeping in mind the value in the field latest_consumption_time and possibly the values in the fields earliest_reporting_time and latest_reporting_time.

If the response_flag was set to 0x1, the device SHALL decrement the token consumption accumulator associated with the RI with the amount of tokens reported in the token consumption report that this token delivery response message was a response to. The device MAY delete that token consumption report and all others sent before that token consumption report was sent

The device SHALL increment the token purse associated with the RI with the number of tokens indicated in the encrypted_token_quantity field of this token delivery response message.

3
When a device receives a token delivery response message with status “TokenConsumptionMessageError” or with status “NoTokenConsumptionMessage”, the device SHALL immediately create a token consumption report.

4.
When a device creates a token consumption report, it uses a device_nonce which is one higher than the previously used device_nonce. If the previously used device_nonce was 9, the device uses 0 as the next device_nonce.

5.
When a device creates a token consumption report, it uses the value of the token consumption accumulator associated with the RI as the amount of tokens to report as consumed.

6.
Token consumption reports SHALL be stored by the device, at least until the device receives a token delivery response message indicating that they have been successfully been processed by the RI or indicating that later created token delivery messages have been successfully been processed by the RI

7.
The device SHALL stop with the execution of the above actions stop when it receives a token delivery response message with the token_reporting_flag set to 0x0. The device SHALL then set the token consumption accumulator associated with the RI to zero and MAY delete all created token consumption reports.

The device actions above imply that the RI will consider the first credit_limit tokens reported as consumed to be post-paid tokens, even though the device might still have had pre-paid tokens. Furthermore, if the current date/time is past the date/time set in the latest_token_consumption_time field, a device is not allowed to use tokens any more. Since a device according to the above rules does not keep track separately of the pre-paid tokens, it cannot use tokens anymore even though the device might still have had pre-paid tokens.

With a slightly more complex implementation, the above two disadvantages can be solved. The device can then first consume all pre-paid tokens before consuming any post-paid tokens. To this end, the device would implement two token purses per RI, a pre-paid token purse and a post-paid token purse for tokens that have been delivered to the device with token delivery response messages with the token_reporting_flag set to 0x1. The device can first consume all tokens in the pre-paid token purse. Consumption of tokens from the pre-paid token purse will not influence the value of the token consumption accumulator and this consumption will therefore not be reported by the device. Whenever the device consumes tokens from the other token purse, the token consumption accumulator SHALL be incremented with the same amount. A device according to this implementation, upon the reception of a token delivery response message with the token_reporting_flag set to 0x0, SHALL increment the pre-paid token purse with the tokens in the post-paid token purse, SHALL set the post-paid token purse as well as the token consumption accumulator to zero.

� key: (O)ptional means that the user of the message MAY include the parameter in the message, but the device MUST support the interpretation of the parameter. (M)andatory means that the user of the message SHALL include the parameter in the message.

� 	Although this addressing mode is indicated here to facilitate future upgrades, this addressing mode is NOT used in this version of the specification. for the token delivery response message

� 	Note that although a broadcast device can only display the token consumption message to the user and must rely on the user to report this message to the RI, the wording in this section is as if the device does the reporting.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 13)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20050101-I]

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 13)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20050101-I]

_1178113094.unknown

_1179600412.vsd
text�

text�

128�

43�

85�

AES �

�

128�

report_authentication_key�

128�

tokens_consumed || device_nonce || 2109�

I2�

O2�

report_authentication_code discard�

128�

128�

