Doc# OMA-DLDRM-2005-0268-TKM_authentication_update.doc[image: image1.jpg]"sOMaQa

Open Mobile Alliance

Change Request

Doc# OMA-DLDRM-2005-0231-TKM_authentication_update_(broadcast).doc
Change Request

Change Request

	Title:
	CR Against CR 231 on TKM authentication update
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	BAC-DLDRM

	Doc to Change:
	OMA-TS-BCAST_SvcCntProtection-V1_0-20050630-D

	Submission Date:
	August 23rd 2005

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Sanjeev Verma, sanjeev.verma@nokia.com

	Replaces:
	 n/a

1 Reason for Change

This is a contribution against CR 231 on the subject of the new authentication mechanism as set forth in CR OMA-BCAST-DLDRM-2005-229 for a registered broadcast device that is part of the Broadcast Extensions for OMA DRM.

This document introduces an optional permission category in the TKM that allows delivery of post-acquisition permissions to the terminal. Also, it introduces some minor corrections in the aforementioned CR.
2 Impact on Backward Compatibility

This CR has no impact on the backward compatibility.
3 Impact on Other Specifications

None.

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

The new text should be incorporated as an update to section 5.1.2.2.4.1 of OMA-TS-BCAST_SvcCntProtection-V1_0-20050630-D. Detailed instructions are incorporated into the text under the title “Note to the Editor”. For ease of referral cross links to other CRs and/or XBS sections are incorporated in the text under the title “Note to the Reader”. For sake of completeness: these yellow parts are not to be incorporated into XBS.

6 Detailed Change Proposal

6.1 General context

(Note for the Editor: text between “start snip” and “stop snip” does NOT need to be incorporated into XBS and is more to elaborate to the reader why the precise mechanism is required.)
{start snip}

As set forth in CR OMA-BCAST-DLDRM-2005-0229 the newly proposed authentication mechanisms offers great benefits:

· The proposal saves bandwidth when using IPSec with ESP authentication.

· Simplified design: one authentication key derivation function for all of the layers in the rights model (i.c. TKM, BCRO, IPSec ESP plus the token delivery response messages as described in OMA-BCAST-DLDRM-CR0221).

· Enhanced security: a leak of a key from a message does not reveal the authentication key. In the proposed mechanism the message only carries a seed instead of the key like it was in the old proposal.
· Architectural decoupling (w.r.t. authentication): A change in one layer of the rights model (e.g. a change in a traffic layer) will not lead to a change in the layer below or above it. For example: when IPSec would require (in the future, for reasons not to be discussed here) a longer keylength for authentication, the TKM does not need to change at all. The PRF would generate more key material according to the standard
This CR describes the changes needed to the TKM to support the new authentication

{stop snip}

5.1.2.2.4.1 Traffic Key Message (TKM)

Note to the editor: this is an update to section 5.1.2.2.4.1 of OMA-TS-BCAST_SvcCntProtection-V1_0-20050630-D. It is advised to accept the changes via Words Track Changes funktion.
Each TKM SHALL be encapsulated in exactly 1 UDP packet.

In order to keep access times low for devices that start accessing a service, a KSM SHALL be transmitted periodically.
The TKM SHALL be transported in-band, in the same Elementary Stream together with the media streams that are protected with the traffic keys contained in the TKM.

	Key_Stream_Message_Description
	Length
	Type

	key_stream_message() {
	
	

	
selectors_and_flags {
	
	

	

protocol_version
	4
	uimsbf

	

reserved_for_future_use
	4
	bslbf

	

traffic_protection_protocol
	3
	uimsbf

	

traffic_authentication_flag
	1
	uimsbf

	

next_traffic_key_flag
	1
	uimsbf

	

timestamp_flag
	1
	uimsbf

	

programme_flag
	1
	uimsbf

	

service_flag
	1
	uimsbf

	
}
	
	

	
if (traffic_protection_protocol == TKM_ALGO_IPSEC) {
	
	

	

security_parameter_index
	32
	uimsbf

	
}
	
	

	
if (traffic_protection_protocol == TKM_ALGO_SRTP) {
	
	

	 master_key_index_length
	8
	uimsbf

	

master_key_index
	8*length
	uimsbf

	

number_of_media_flows
	8
	uimsbf

	

for (i = 0; i < number_of_media_flows; i++) {
	
	

	

synchronization_source
	32
	uimsbf

	

rollover_counter
	32
	uimsbf

	

}
	
	

	
}
	
	

	
encrypted_traffic_key_material_length
	8
	uimsbf

	
encrypted_traffic_key_material
	8*length
	bslbf

	
if (next_traffic_key_flag == TKM_FLAG_TRUE) {
	
	

	

next_encrypted_traffic_key_material
	8*length
	bslbf

	
}
	
	

	
reserved_for_future_use
	5
	bslbf

	
traffic_key_lifetime
	3
	uimsbf

	
if (timestamp_flag == TKM_FLAG_TRUE) {
	
	

	

timestamp
	40
	mjdutc

	
}
	
	

	
if (programme_flag == TKM_FLAG_TRUE) {
	
	

	

programme_selectors_and_flags {
	
	

	

reserved_for_future_use
	6
	bslbf

	

access_criteria_flag
	1
	uimsbf

	

permissions_flag
	1
	uimsbf

	

}
	
	

	

if (access_criteria_flag == TKM_FLAG_TRUE) {
	
	

	

reserved_for_future_use
	4
	bslbf

	

	4
	uimsbf

	

number_of_access_criteria_descriptors
	8
	uimsbf

	

access_criteria_descriptor_loop() {
	
	

	

access_criteria_descriptor()
	
	

	

}
	
	

	

}
	
	

	
	
	

	
	
	

	
	
	

	

if (service_flag == TKM_FLAG_TRUE) {
	
	

	

encrypted_PEK
	128
	bslbf

	

}
	
	

	

programme_CID_extension
	32
	uimsbf

	

programme_MAC
	96
	bslbf

	
}
	
	

	
if (service_flag == KSM_FLAG_TRUE) {
	
	

	

service_CID_extension
	32
	uimsbf

	

service_MAC
	96
	bslbf

	
}
	
	

	}
	
	

Descriptors for access_criteria_descriptor_loop

	tag
	8
	uimsbf

	length
	8
	uimsbf

	value
	<8xlength>
	bit string

The access criteria descriptor loop is an extension mechanism to allow the addition of new access criteria in the future versions of this specification. The device SHALL ignore access criteria descriptors that it doesn’t support.

A single access criteria descriptor can carry one or more access criteria.
Constant Values

TKM_ALGO_IPSEC
0

TKM_ALGO_SRTP
1

TKM_FLAG_FALSE
0

TKM_FLAG_TRUE
1

Coding and Semantics of Attributes

protocol_version – indicates the protocol version of this key stream message.

The device SHALL ignore messages that have a protocol_version number it doesn’t support. The value of the protocol_version of this message is set to 0x0 (i.e. the original format).

Note: If set to 0x0 the format specified in the this version of the specification is used. If set to anything else than 0x0, then the format is beyond the scope of this version of the specification.
traffic_protection_protocol – defines the protocol used for the encryption and authentication of traffic:

TKM_ALGO_IPSEC = IPsec ESP (transport mode; encryption: AES-128-CBC [key length 128]; authentication: HMAC-SHA1-96 [key length 160]or NULL)

TKM_ALGO_SRTP = SRTP (encryption: AES-128-CTR [key length 128]; authentication: HMAC-SHA1-80 [key length 160] or NULL)

other values = reserved for future use

Whether or not authentication is used depends on <traffic_authentication_flag>.

traffic_authentication_flag – defines whether or not the traffic is authenticated:

TKM_FLAG_FALSE = traffic authentication is not used

TKM_FLAG_TRUE = traffic authentication is used, and the algorithm depends on <traffic_protection_protocol>
next_traffic_key_flag – indicates whether or not the traffic key message contains the next traffic key material:

TKM_FLAG_FALSE = the traffic key message contains only the current traffic key material

TKM_FLAG_TRUE = the traffic key message contains both the current and the next traffic key material

The next traffic key material SHALL be be included at least 1 second before it becomes current. This is to enable the devices to process the traffic key material and put the necessary security associations in place before the media packets start arriving that are encrypted with the next traffic encryption key.

The next traffic key material SHALL NOT be included earlier than 1 minute before it becomes current. This is to limit the effect on pay-per-view enforcement that is caused by sending the next traffic key material encrypted with the encryption key of a program that may end before the next traffic key becomes current, to maximally 1 minute.

The above times SHALL be relative to the moment of transmission of the key stream messages.

timestamp_flag – indicates whether or not the key stream message contains a timestamp:

TKM_FLAG_FALSE = the key stream message does not contain a timestamp

TKM_FLAG_TRUE = the key stream message contains a timestamp.
program_flag – indicates whether or not the program key layer is present in the traffic key message:

TKM_FLAG_FALSE = the program key layer is not present, i.e. the optional program key layer is not used for the service

TKM_FLAG_TRUE = the program key layer is present, i.e. the optional program key layer is used for the service

<program_flag> and <service_flag> SHALL NOT both be 0. All other combinations are allowed, indicating that either or both of the key layers are present.

service_flag – indicates whether or not the service block is present in the traffic key message:

TKM_FLAG_FALSE = the service key layer is not present, i.e. the optional service key layer is not used for the service

TKM_FLAG_TRUE = the service key layer is present, i.e. the optional service key layer is used for the service

<program_flag> and <service_flag> SHALL NOT both be 0. All other combinations are allowed, indicating that either or both of the key layers are present.

security_parameter_index – provides the link to the IPsec ESP header:

Upon reception of a protected IP packet, the terminal SHALL use the security parameter index (SPI) to identify (look up) the correct security association and thereby find the decryption and authentication keys to be used for the received IPsec ESP packet.

The SPI is associated with the current TEK. If the next traffic key flag is set to 1, the SPI associated with the “next TEK” is implicitely defined as SPI+1.

master_key_index_length – provides the length of the master_key_index field

This field gives the length of the master_key_index field in bytes.
master_key_index – provides the link to the SRTP header:

Upon reception of a protected RTP packet, the terminal SHALL use the master key index (MKI) to identify (look up) the correct security association and thereby find the decryption and authentication keys to be used for a received SRTP packet.

This field is a sequence of 8-bit values. The sequence consists of master_key_index_length bytes. The bytes are in the same order that they will be in an SRTP packet and SHALL be in SRTP [RFC3711] network byte-order when extracting the MKI value.

The MKI is associated with the current TEK. If the next traffic key flag is set to 1, the MKI associated with the “next TEK” is implicitely defined as MKI+1.

number_of_media_flows – specifies how many RTP media flows are protected by the traffic key:

For each of the media flows, the SRTP roll-over counter needs to be signaled.

synchronization_source – identifies an RTP media flow to which the associated roll-over counter applies.

rollover_counter – signals the current roll-over counter of the RTP media flow identified by synchronization source.

The roll-over counter is an extension of the sequence number contained in the SRTP packet. It can be different for each SRTP-protected media flow, even if the same traffic key message is used. Therefore, to allow terminals instant service access, the current value of the roll-over counter for each media flow is signalled in the TKM.

Whenever the sequence number of one of the media flows rolls over, a new crypto period SHALL be started, with an incremented MKI, and the new ROC for the media flow in question. The network SHALL ensure that such a ROC-triggered change of the crypto period doesn’t violate the lower bound of crypto period durations.

A terminal that is already tuned to a particular channel SHALL locally keep track of the ROC values and increment them when the RTP sequence number wraps around (this is really an SRTP requirement).

encrypted_traffic_key_material_length – is the length in bytes of the encrypted traffic key material.

The length of the traffic key material depends on the encryption and authentication algorithm, and is obtained by adding the respective key sizes. Encryption MAY require the clear-text key material to be padded.

encrypted_traffic_key_material – is the key material currently used for encryption and optional authentication of the traffic, encrypted using AES-128-CBC, with fixed IV 0, and with 0 padding in the last block, if needed.

If <programme_flag> == TKM_FLAG_TRUE, the traffic key material is encrypted with the programme encryption key (PEK).

If <programme_flag> == TKM_FLAG_FALSE and <service_flag> == TKM_FLAG_TRUE, the traffic key material is encrypted with the service encryption key (SEK).

After decryption (and discarding any padding), the traffic encryption key (TEK) and the traffic authentication key (TAK) are obtained in a way that depends on the protocol used for traffic protection:

1.) IPsec:
If no traffic authentication is used, the TEK is identical to the decrypted traffic key material (16 bytes).
If traffic authentication is used, TEK and traffic authentication seed (TAS) are obtained by splitting the decrypted traffic key material into two parts, where the TEK is identical to the first 16 bytes, and the TAS is identical to the second 16 bytes. The TAK (20 bytes) is derived from the TAS, as described in A.9.

2.) SRTP:
The master key is identical to the decrypted traffic key material. If no traffic authentication is used, the master key has a length of 16 bytes; if traffic authentication is used, 36 bytes. How the TEK and TAK are derived from the master key is defined by SRTP.

next_ _encrypted_traffic_key_material – is the encrypted key material used for encryption and optional authentication of the traffic after the current crypto period is over and the next crypto period starts. The structure of this attribute is similar to encrypted_traffic_key_material attribute.

traffic_key_lifetime – denotes is the lifetime in seconds of the traffic key, relative to the first occurrence of an SPI or MKI.

If <traffic_key_lifetime> is n, then the actual lifetime is 2n seconds, as presented in the following table:

Table 1: Traffic Key Lifetime

	value of traffic_key_lifetime attribute
	0
	1
	2
	3
	4
	5
	6
	7

	actual lifetime of traffic key material (seconds)
	1
	2
	4
	8
	16
	32
	64
	128

The actual duration of the crypto period SHALL be strictly shorter than the defined lifetime of the traffic key material. Typically, an SPI or MKI appears for the first time implicitly, when the “next” traffic key material is included in a KSM. Any safety margins to cope with network and transmission delays SHALL be added by the network. A typical value for the lifetime could be three times the crypto period.

The maximal value for the crypto period duration is in practice slightly shorter than the traffic key lifetime, because the KSM will include the “current” and “next” traffic key material before a change of crypto period, to allow the devices to set up the security associations.

After the lifetime has expired, the security association containing the traffic key can be safely deleted by the terminal. This may help managing the security association database in the terminal or enable other optimizations.

The maximum value for the traffic key lifetime is defined mainly in order to have a strict upper bound for the effect of the “sneak post view” problem: the “next traffic key” material is distributed under the current PEK, and allows viewers to view a programme during the next crypto period. Should this possibility still be of a concern, the network MAY choose a shorter crypto period than the maximum value, or, during the crypto period where the current programme ends and a new programme starts, choose to distribute the “current” and the “next” traffic key material in separate KSMs, encrypted with their respective PEKs.

timestamp – Field containing a timestamp at the point of sending the key stream message. The timestamp SHALL be used as a reliable time of reception of the associated media stream for post-acquisition permissions. The device SHALL not use the timestamp as a reliable source for DRM time.

The format of the 40-bit mjdutc field is specified in Annex A.4. This 40-bit field contains the timestamp of the key stream message in Universal Time, Co-ordinated (UTC) and Modified Julian Date (MJD). This field is coded as 16 bits giving the 16 LSBs of MJD followed by 24 bits coded as 6 digits in 4-bit Binary Coded Decimal (BCD).

EXAMPLE 1: 93/10/13 12:45:00 is coded as "0xC079124500".

access_criteria_flag – indicates whether or not access criteria are defined for the program:

TKM_FLAG_FALSE = no access criteria are defined, implying that the terminal is allowed to access program without further restrictions (provided the necessary keys are available to the terminal)

TKM_FLAG_TRUE = access criteria are defined, implying that the terminal is allowed to access the program only if the specified access criteria are met

Access criteria cannot change during a program, i.e. as long a program key is valid.

permissions_flag – indicates whether or not permissions category is defined for the programme:

KSM_FLAG_FALSE = no permissions category is defined

KSM_FLAG_TRUE = permissions category is defined

number_of_access_criteria_descriptors – indicates the number of access criteria descriptors.

permissions_category – indicates the permissions category for the programme:

0x00 - no permissions category, service RO applies as such,
0x01...0x3F - permissions_category is included in the post-acquisition permissions lookup, and
0x40...0xFF - reserved for future standardization.

If permissions_category is in the range 0x01...0x3F,

· in case of ICRO, the device SHALL use as service_CID for post-acquisition permissions lookup the text string

service_CID = bsdaID + "#S" + serviceBaseCID + "@" + hex(service_CID_extension) + "_" + hex(permissions_category)

and then apply the permissions specified in the service ICRO for this asset.

· in case of BCRO, the device SHALL look up the permissions specified in the service BCRO for the asset that has a matching permissions_category field.

If permissions_category is in the (reserved for future standardization) range 0x40...0xFF, and device does not support it, device SHALL drop (i.e. ignore) all post-acquisition permissions (like play, redistribute etc.) indicated in the service RO, or if device cannot do such permissions dropping, allow real-time rendering of the streaming content only (i.e. refuse to record the content, or to redistribute it in real time). Permissions_category has no impact on a Programme RO. The permissions delivered in a Programme RO apply as such.

encrypted_PEK – is the programme encryption key (PEK) used within the current key stream message to decrypt the traffic key material, encrypted using AES-128-CBC with fixed IV 0).

The programme encryption key is encrypted with the service encryption key (SEK).
program_CID_extension – is the extension of the program_CID which allows to identify the program key material that has been delivered to the device within a Program RO.

[Note: It is envisioned that for binary rights objects, that can be used for the unconnected mode of operation, a binary, fixed-size version of the content ID (CID) is needed. This ID is called BCI in this specification.]

The CID/BCI of the service key is constructed as:

program_CID ::= bsdaID + "#P" + serviceBaseCID + "@" + hex(program_CID_extension)

program_BCI ::= hash(bsdaID + "#P" + serviceBaseCID + "@") + program_CID_extension

The bsdaID and serviceBaseCID are string values and are expected to be part of the service guide. Upon receiption of a TKM, the terminal can assemble the program_CID/BCI and look up the program key (wrapped inside an RO).

The hex() function is a hexadecimal presentation of the parameter containing hexadecimal characters 0-9 and a-f (in lowercase) with possible preceding zeros. EXAMPLE: for a 16 bit value 2748, hex() returns "0abc". Note that two characters are always generated for each byte.
The hash function for the construction of program_BCI is SHA1-64. It doesn’t depend on the contents of the TKM, and can thus be pre-computed.

bsdaID – is the globally co-ordinated ID of the broadcast service distribution/adaptation center.
program_MAC –

is the HMAC-SHA-1-96 according to RFC 2104 and 2404 calculated over all preceding fields of the key stream message.

It is used to authenticate the relevant part of the traffic key message in case of pay-per-view, where a PEK from a program RO is used to directly decrypt the traffic key material.

In case the terminal is accessing the traffic key message with a Program RO, the terminal SHALL compute the program MAC, and drop the message if authentication fails. In this case, <program_MAC> MAY also be used to detect and drop duplicates (it can be expected that a particular traffic key message is repeated multiple times, in order to keep access times short for terminals that newly start receiving a broadcast transmission).

In case the terminal is accessing the traffic key message with a Service RO, it will not be able to compute the program MAC, and there is no need for it to do so.

service_CID_extension – is the extension of the service_CID which allows to identify the service key material that has been delivered to the device within a Service RO.

[Note: It is envisioned that for binary rights objects, that can be used for the unconnected mode of operation, a binary, fixed-size version of the content ID (CID) is needed. This ID is called BCI in this specification.]

The CID/BCI of the service key is constructed as:

service_CID ::= bsdaID + "#S" + serviceBaseCID + "@" + hex(service_CID_extension)

service_BCI ::= hash(bsdaID + "#S" + serviceBaseCID + "@") + service_CID_extension

The bsdaID and serviceBaseCID are string values and are expected to be part of the service guide. Upon receiption of a TKM, the terminal can assemble the service_CID/BCI and look up the service key (wrapped inside an RO).

The hex() function is a hexadecimal presentation of the parameter containing hexadecimal characters 0-9 and a-f (in lowercase) with possible preceding zeros. EXAMPLE: for a 16 bit value 2748, hex() returns "0abc". Note that two characters are always generated for each byte.
The hash function for the construction of service_BCI is SHA1-64. It doesn’t depend on the contents of the TKM, and can thus be pre-computed.

If the permissions_category field is present and has a nonzero value, the Service_CID of the service is constructed as specified above (at description of the permissions_category field).

bsdaID – is the globally co-ordinated ID of the broadcast service distribution center.
service_MAC – is the HMAC-SHA-1-96 according to RFC 2104 and 2404 calculated over all preceding fields of the key stream message. It is used to authenticate the traffic key message with SAK in case of subscription, where a SEK from a service RO is used to decrypt the PEK and further decrypt the traffic key material.

In case the terminal is accessing the traffic key message with a Service RO, the terminal SHALL compute the service MAC, and drop the message if authentication fails, i.e. if the computed MAC doesn’t correspond to <service_MAC>. In this case, <service_MAC> MAY also be used to detect and drop duplicates (it can be expected that a particular traffic key message is repeated multiple times, in order to keep access times short for terminals that newly start receiving a broadcast transmission).

In case the terminal is accessing the traffic key message with a Program RO, it NEED NOT compute the service MAC.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 9)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20050101-I]

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Page 9 (of 9)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20050101-I]

