[image: image4.jpg]«“+OMa

Open Mobile Alliance

	OMA-TS_DLOTA-V2_0-200508107132410-D
	Page 22 V(65)

	Download Over the Air Specification
Draft Version 2.0 - 10 October 2005

	

	Open Mobile Alliance

OMA-TS_DLOTA-V2_0-20051010-D

	

	

	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

81.
Scope

2.
References
9
2.1
Normative References
9
2.2
Informative References
9
3.
Terminology and Conventions
10
3.1
Conventions
10
3.2
Definitions
10
3.3
Abbreviations
12
4.
Introduction
13
5.
OMA Download Process
14
5.1
Object Discovery Process
15
5.1.1
Step 1; The Download Descriptor is transferred to the device
16
5.2
Object Installation process
17
5.2.1
Step 2; The Downloading Agent is launched, the Download Descriptor is processed
18
5.2.2
Step 3; Capabilities Check
19
5.2.3
Step 4; User Confirmation
20
5.2.4
Step 5a; Object retrieval
20
5.2.5
Step 5b; License Retrieval
23
5.2.6
Step 6; Sending Download Completion Notification
24
5.2.7
Step 7; Installation
24
5.2.8
Step 8; Sending Installation Notification
26
5.2.9
Step 9; Download Confirmation and next step
28
5.2.10
Step 10; Sending Deletion Notification
29
5.3
Status Report Functionality
29
5.3.1
Status Report Formatting
30
5.4
Local Content Presentation
31
5.5
Persistence of Download Descriptor attributes
31
5.6
HTTP Specific Functionality
31
5.6.1
Client capability advertisement
31
5.6.2
Authentication of user
31
5.6.3
State Management of download transaction
31
5.6.4
Transparency of Download Descriptor mechanism
32
5.7
OMA Download over Broadcast Protocols
32
6.
Download Descriptor
33
6.1
Download Descriptor
33
6.2
Download Descriptor attributes
33
6.2.1
type
34
6.2.2
size
34
6.2.3
objectURI
35
6.2.4
msobjectURI
35
6.2.5
server
35
6.2.6
updatedDDURI
36
6.2.7
installNotifyURI
36
6.2.8
nextURL
36
6.2.9
DDVersion
37
6.2.10
name
37
6.2.11
description
38
6.2.12
vendor
38
6.2.13
home
38
6.2.14
logo
39
6.2.15
support
39
6.2.16
infoURL
39
6.2.17
iconURI
40
6.2.18
installParam
40
6.2.19
downloadTime
40
6.2.20
timestamp
41
6.2.21
environment
41
6.2.22
license
42
6.2.23
Progressive Download Flag
42
6.2.24
Product
42
6.2.25
compound
43
6.2.26
mediaobject
43
6.2.27
objectID
44
6.2.28
objectVersion
44
6.2.29
downloadNotifyURI
44
6.2.30
deleteNotifyURI
45
6.2.31
interval
45
timeInterval
46
timeIntervalExpire
46
reservationNotifyURI
47
6.2.35
meta
47
6.2.36
text
47
6.3
Extensibility
48
6.3.1
Media type with custom installation commands
48
7.
Relationship to JavaTM MIDP OTA (informative)
49
7.1
MIDP OTA and OMA Download
49
8.
XML Syntax for Download Descriptor
50
8.1
Example
50
8.1.1
Example for multiple server support
50
8.1.2
Example of environment element
51
8.1.3
Example with multiple Products and Media Objects
52
8.1.4
Example with license attributes
53
8.1.5
Example with additional textual metadata
54
8.2
XML Schema
55
Appendix A
Static Conformance Requirements (Normative)
60
Appendix B
Example of Download Transaction (Informative)
61
B.1
HTTP Request to view a download service page
61
B.2
HTTP Request for Download Descriptor
61
B.3
HTTP Request to Install a Media Object
62
B.4
Install Status via HTTP Post Request
62
B.6 Pause and Resume Media RetrievalPause and Resume Media Retrieval
62
Appendix C
Media Type Registration (Informative)
64
Appendix D
Change History (Informative)
65

1. Scope
TheOMA Download Over-the-Air (OTA) specifications define procedures for enabling the downloading of Media Objects hosted on a server to a client. This specification defines the Download OTA version 2.0 technical specification.

OMA Download OTA version 1.0 provides a mechanism for user-initiated download of content, such as ring-tones, images, and applications. While OMA Download OTA provides much of the functionality needed to provide for a more reliable download solution than basic HTTP, other protocols exist in the mobile industries that provide functionality beyond that of OMA Download OTA version 1.0.

Download OTA version 2.0 is an evolution of Download OTA version 1.0. The purpose of Download OTA version 2.0 is to add functionality that was missing from version 1.0. Backward compatibility can be achieved by also adding support for version 1.0 Download Descriptors to the Download User Agent. Furthermore, version 1.0 Download Descriptors can be easily converted to version 2.x Download Descriptors, as all version 1.0 elements are also available with the same semantics in the version 2.x Download Descriptor, except that the structure of the Download Descriptor is changed.
2. References
2.1 Normative References

	[IOPPROC]
	“OMA Interoperability Policy and Process”, Version 1.1, Open Mobile Alliance™, OMA-IOP-Process-V1_1, URL:http://www.openmobilealliance.org/

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC2234]
	“Augmented BNF for Syntax Specifications: ABNF”. D. Crocker, Ed., P. Overell. November 1997, URL:http://www.ietf.org/rfc/rfc2234.txt

	
	

	
	

	[RFC2396]
	“Uniform Resource Identifiers (URI): Generic Syntax”, T. Berners-Lee et.al., August 1998, URL:http://www.ietf.org/rfc/rfc2396.txt

	[RFC2616]
	“Hypertext Transfer Protocol -- HTTP/1.1”. R. Fielding, UC Irvine, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, Berners-Lee, June 1999, URL:http://www.ietf.org/rfc/rfc2616.txt

	[WSP]
	" Wireless Session Protocol ", WAP-230-WSP, WAP Forum,
http://www.openmobilealliance.org/

	[XMLSchema]
	XML Schema Part 1: Structures D. Beech, M. Maloney, and N. Mendelsohn. W3C Recommendation, May 2001. http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/

XML Schema Part 2: Datatypes. P. Biron and A. Malhotra. W3C Recommendation, May 2001.

http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/

	
	<< Add/Remove reference rows as needed! >>

2.2 Informative References
	[DRM-v2]
	“Digital Rights Management”,

Open Mobile Alliance(, OMA-DRM-DRM-V2_0,

URL:http://www.openmobilealliance.org/

	[RFC2045]
	“Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies”, N. Freed et.al, November 1996, URL:http://www.ietf.org/rfc/rfc2045.txt

	[RFC2046]
	“Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types”, N. Freed et.al, November 1996, URL:http://www.ietf.org/rfc/rfc2046.txt

	
	<< Add/Remove reference rows as needed! >>

3. Terminology and Conventions
3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and ,“Introduction” are normative, unless they are explicitly indicated to be informative.

3.2 Definitions
Compound Product
A Product consisting of several Media Objects where the set of Media Objects must be handled as a single entity.
Content Delivery
The actual delivery of the Media Object, for example by means of a HTTP GET, to the client device.

Content Download
The whole transaction including discovery, delivery of content and confirmation of download.

Content Handler
An entity in the mobile device responsible for the processing of a particular media type. The content handler typically handles issues related to installation of content, in addition to execution of content. The actual processing of retrieved content is outside the scope of this specification.

Content Storage
The physical location of the Media Object to be downloaded.

Discovery Application
A user agent in the device that discovers media on behalf of the user. The End User discovers content on the Web by using a Web browser or an application specifically created for a type of content. A picture editor may discover pictures, a melody composer may discover melodies, and an application manager may discover applications (e.g. games) on dedicated Web sites. Email and MMS messages may contain Web addresses to Media Objects available for downloading. These types of applications are collectively referred to as a Discovery Application.

Discovery Process
The process by which the user or device finds a resource (i.e. a Media Object) that he wants to load onto his device. The discovery can take place for example by means of a browser, a dedicated discovery application, a received message, or some offline means (like a newspaper).

Download Agent
An abbreviated form of Download User Agent.

Download Descriptor
Metadata about Media Objects and instructions to the download agent for how to download these. The object triggers the Download Agent in the client device. It describes the Media Objects to be downloaded and allows the client device to decide if it has the capabilities to install and render/execute the Media Objects. Media Objects are grouped within Products to create an association between Media Objects. This can be a very loose association, or in case of a Compound Product a very tight association.
Download Protocol
The actual delivery of an object is performed using the protocol specified in the Download Descriptor. The only mandatory protocol as defined in this specification is [W-HTTP] (or [WSP] if the environment is WAP 1.x). Other protocols, including full support for HTTP, may be used if supported by both parties.

Download Server
A Web server hosting Media Objects available for download. It is responsible for the download transaction from the server perspective. It handles download session management including actions triggered by the installation status report.

Download Service
The overall service that a client device is exposed to when it wants to select a Product or Products and execute a download of it. A download service is typically constructed with the help of the abstract building blocks Presentation Server, Download Server and Content Storage.
Download User Agent
A user agent in the device responsible for downloading Media Objects described by a Download Descriptor. Responsible for the download transaction from the client perspective. It is triggered by the reception or activation of a Download Descriptor.

Generic Content
The concept of Generic Content includes any MIME media type except the JavaTM JAR media type. For this media type please see [MIDPOTA].

Installation Notification
A Status Report message from the client to the server. It indicates to the server that the Download Agent has successfully installed the Media Object or Product, and that the content (to the best knowledge of the Download Agent) will be made available to the user.
License
An electronic certificate that enables the use of the Media Object. This could for instance be an OMA DRM v2 Rights Object. See [DRM-v2].
Media Object
A resource on a Web server that can be downloaded. It may be a single object (often referred to as a file), or a container consisting of multiple objects. The mechanism for the latter may be MIME-multipart. There are no restrictions as to the characteristics of the Media Object, but the transfer encoding has to make it compatible with an HTTP (or WSP) transport. The download of a Media Object is the ultimate goal of each transaction undertaken with the protocol defined in this specification.

Media Object Installer
The Media Object Installer is responsible for the preparation for and execution of the installation of a particular Media Object. The Installer is often implemented as part of the Content Handler of the particular media type or as part of a file system manager.
Media Type
A MIME media type [RFC2046].

MIDP OTA Provisioning
The JAVATM MIDP OTA Provisioning is defined in [MIDPOTA].
Presentation Server
A Web server presenting a download service to the user. It is one of the possible discovery mechanisms. The client device may browse a Web or WAP page at the presentation server and be redirected to the Download Server for the OMA Download transaction.

Product
A set of Media Objects that have some sort of relation to each other. This can be an arbitrary set defined by a content provider. It is also possible that several Media Objects depend on each other and as such form a Product. See also Compound Product
Server
All Servers in this specification are abstract, i.e. logical, entities. They are used in the specification only to help the reader to separate between different functional elements that may be implemented and deployed in any configuration.

Status Report
A message sent from the mobile device to a server to indicate the positive or negative outcome of a download transaction. In the context of Content Download the Status Report terminates the "download session" (or "download transaction").

Status Report Server
A WEB server accepting status reports from the download agent.
Well-intentioned attempt
A “well-intentioned attempt to send an Installation Status Report” means that the client device sends a Status Report under circumstances where the network connection is known (to the extent possible) to be present, and the Status Report is known to be properly formatted. If there is no network connection then an attempt to send a request should not be regarded as well-intentioned.

3.3 Abbreviations
	CID
	Content Identifier

	DD
	Download Descriptor

	HTTP
	HyperText Transfer Protocol

	JAD
	JavaTM Application Descriptor

	JAR
	JavaTM Archive

	J2ME
	JavaTM 2 Micro Edition

	MIDP
	Mobile Information Device Profile

	MMS
	Multimedia Messaging Service

	OMA
	Open Mobile Alliance

	OTA
	Over The Air

	RP
	Recommended Practices

	URL
	Universal Resource Locator

	URI
	Universal Resource Identifier

	WAP
	Wireless Application Protocol

	XML
	Extensible Markup Language

4. Introduction
Editor’s Note: The editor deleted all texts that were included in the introduction section of DLOTA version 1.0 specification and moved to the DLOTA version 2.0 architecture specification.

<< From a market perspective...

What can you do with this specification?

What problem does this solve?

How can this specification be applied?

Consider the target audience and provide deployment examples as possible.

DELETE THIS COMMENT >>

5. OMA Download Process
During the download and installation process the user SHOULD be given opportunities to control the download and to determine object specific terms. For any operation, the user SHOULD be informed of progress and given an opportunity to cancel the activity. The user interface of the device SHOULD allow the user to abort the download operation at appropriate points during the download and installation process (i.e. before a well-intentioned attempt to send an installation notification has been done).

When a Media Object or Product is installed, and if an Installation Notification has been requested in the Download Descriptor, a confirmation MUST be sent to the server to indicate that the installation has completed. If the Download Descriptor does not include a request for an Installation Notification then no such confirmation will be sent.

If an InstallNotifyURI has been defined in the Download Descriptor, then errors during the download process MUST be reported using the status report mechanism, The server may use the status report, communicating both success and failure of the transaction, for accounting or for other customer service needs.

A Download Descriptor MAY contain multiple Media Objects grouped as a Product. It MAY also contain multiple Products. An InstallNotifyURI can be defined either for one or more Media Objects of a Product, or for the Product as a whole. If defined for a Product as a whole, any notification MUST be send after the Download Agent has handled all Media Objects of the Product. Otherwise, If the URI is defined for a specific Media Object, any notification MUST be send as soon as the Download Agent has handled that specific Media Object. See section 5.2.8 for details on sending Installation Notifications.
If a Product is a Compound Product, the InstallNotifyURI MUST NOT be specified for separate Media Objects of the Compound Product. It MAY only be specified for the Product as a whole.

[image: image1.wmf]

Download Descriptor

End User

Discovery

Application

Download

User Agent

Media Object

Installation Notification

Mobile

Device

Server

back end

2. Launch

4. Validate with user

1. Tr

ansfer

Use

5a. Retrieve

7. Send

3. Check

8. Download confirmation

6. Install

DRM

Agent

5b. Retrieve

License

Obtain License

Rights Issuer

Figure 1. The picture describes the actions in the client device and the communication operations. These actions are referenced in the sections “Object Discovery Process” and “Object Installation Process”.
5.1 Object Discovery Process

While using the Discovery Application, the user is typically presented with a reference to the Download Descriptor. The reference may be on a Web page, or inside an email or MMS message, or stored in memory or in an accessory attached to the phone.

5.1.1 Step 1; The Download Descriptor is transferred to the device

The transfer protocol used depends on the where the Download Descriptor is located and on the requirements of the transfer.

The Device hosting the Download Agent MUST at a minimum support either [W-HTTP] or [WSP], and MAY support either [WAPTLS] or [WTLS], as well as other protocols. The Download Descriptor may be retrieved from the download server, or the presentation server, depending on requirements of the deployment.
The device hosting the Download Agent MAY also support reception of the Download Descriptor using a mechanism such as MMS, email or some instant messaging protocol.

The Content-Type parameter of the transport protocol or message container (or equivalent) MUST be used to detect the Download Descriptor media type; a charset parameter MAY also be used to indicate the character set of the Download Descriptor.

It is recommended that servers do not put multiple Download Descriptors into one and the same transport entity (e.g. multipart/mixed). This would make transaction management, and interpretation of the multipart semantics, unnecessarily complicated. The device MAY support this case, but is not required to.

For details on state management during the transaction see Section 5.6.3 State Management of Download Transactions.

For details related to authentication see Section 5.6.2 Authentication of User.

5.1.1.1 Co-Delivery of Download Descriptor and Media Objects
When the Download Descriptor is delivered to the device the server system may select to deliver one or more of the Media Objects specified in the Download Descriptor in a single delivery operation. This is described as a “Content Download transaction with co-delivery of Descriptor and Media Objects” in Section 4.3.1 OMA Download
. If the device in the capability negotiation indicates that it supports multipart/related ([RFC2387]) or application/vnd.wap.multipart.related ([WSP]) then it MUST be able to process such a multipart with the Download Descriptor as the first part and the Media Objects as the second and further parts. The CID (Content ID) mechanism MUST be used in the Download Descriptor to reference the Media Object in a related multipart.

When one or more Media Objects are Co-Delivered with the Download Descriptor the process continues as described in Section 5.2 Object Installation Process, with the exception that the Co-Delivered Media Objects are retrieved locally (in “step 5”) rather than from an external location. The same steps of “Launch of Download Agent”, “Capabilities check” and “User Confirmation” are still performed.

If the download transaction is aborted before step 6 (or optionally during step 7) then the
MUST be discarded from the device.

5.2 Object Installation process

Object installation is the process by which Media Objects are downloaded onto the device and made available for execution or rendering.

To install Media Objects, the Download Agent that is responsible for the processing of the Download Descriptor performs a number of actions, and SHOULD provide the user with appropriate feedback if one of the actions fails. It MUST also use the Status Report mechanism (if requested in the Download Descriptor) to give the server infrastructure feedback about a possible failure of the download event, and MUST use the mechanism to report on a successful installation.

Within OMA Download OTA v2 there are three notifications, these notifications are used to provide feedback on the status of the download and installation operations.. These notifications can be used by a service to determine how many Media Objects were downloaded and installed, or if a large number of users aborted the download when they were presented with a formal description of the Media Object.

The 3 noftifications supported by OMA Download OTA v2 are:
· Download Completion Notification

The Download Completion Notification indicates to the Status Report Server that the Download Agent successfully downloaded the Media Object or Product. At the point where this notification is sent the Media Object or Product is not available to the user. This notification can be used to achieve the pre-downloading Media Objects use case [DLREQ].
·
Installation Notification

The Installation Notification indicates the installation status of the Media Object or Product to the Status Report Server. If the installation was successful the Media Object or Product will be available to the user after the Download Agent has completed its obligations to send the Installation Notification as specified in section Step 8; Sending Installation Notification. In the case of a failure the Installation Notification indicates that the Download Agent encountered an error during the installation of the Media Object or Product. If installation fails then the Media Object or Product MUST be discarded.

· Deletion Complete Notification

The Deletion Completion Notification indicates to the Status Report Server that the Media Object or Product has been removed from the device, and that the Media Object or Product is no longer available to the user.

Table 1. Installation status code and associated message

	Status Code
	Status Message
	Informative description of Status Code usage

	900
	Success
	Indicates to the service that the Media Object was downloaded and installed successfully.

	901
	Insufficient memory
	Indicates to the service that the device could not accept the Media Object as it did not have enough storage space on the device. This event may occur before or after the retrieval of the Media Object.

	902
	User Cancelled
	Indicates that the user does not want to go through with the download operation. The event may occur after the analyses of the Download Descriptor, or instead of the sending of the Installation Notification (i.e. the user cancelled the download while the retrieval/installation of the Media Object was in process).

	903
	Loss of Service
	Indicates that the client device lost network service while retrieving the Media Object.

	905
	Attribute mismatch
	Indicates that the Media Object does not match the attributes defined in the Download Descriptor, and that the device therefore rejects the Media Object.

	906
	Invalid descriptor
	Indicates that the device could not interpret the Download Descriptor. This typically means a syntactic error.

	912
	Deletion Completee
	Indicates that the Media Object is deleted from the device.

	951
	Invalid DDVersion
	Indicates that the device was not compatible with the “major” version of the Download Descriptor, as indicated in the attribute Version (that is a parameter to the attribute Media).

	952
	Device Aborted
	Indicates that the device interrupted, or cancelled, the retrieval of the Media Object despite the fact that the content should have been executable on the device. This is thus a different case from "Insufficient Memory" and "Non-Acceptable Content" (where the device has concluded that it cannot use the content).

	953
	Non-Acceptable Content
	Indicates that after the retrieval of the Media Object, but before sending the installation notification, the Download Agent concluded that the device cannot use the Media Object.

	954
	Loader Error
	Indicates that the URL that was to be used for the retrieval of the Media Object did not provide access to the Media Object. This may represent for example errors of type server down, incorrect URL and service errors.

	955
	Reservation Error
	Indicates that the Download Agent was not able to execute the download transaction at the designated time,

	956
	Reservation Cancelled
	Indicates that after receiving the Download Descriptor with timing reservation related attributes, the Download Agent or User decides to cancel timing reservation.

	957
	Download Completion
	Indicates that the Media Object is correctly downloaded to the Download Agent. In this state, the Media Object is yet to be available to the user.

	958
	Media Object Updated
	Indicates that the Download cancelled the Media Object Download due to the fact the Media Object has been updated.

	959
	Mixed Status
	Indicates that the Media Objects of a Product have different statuses. Additional lines will contain the status for each Media Object of the Product.

	960
	License Retrieval Success
	Indicates that the License retrieval for the Product or Media Object succeeded. This error MUST be reported separately from other errors. See paragraph 5.3

	961
	License Retrieval Failed
	Indicates that the License retrieval for the Product or Media Object Failed. This error MUST be reported separately from other errors. See paragraph 5.3

5.2.1 Step 2; The Downloading Agent is launched, the Download Descriptor is processed

The Download Agent is launched.

The Download Descriptor MUST be processed according to the rules defined in Section 5.2.1.1 Processing Rules. If the Download Agent encounters an error when parsing and interpreting the Download Descriptor (e.g. a syntax error), an error message SHOULD be displayed to the user. If an InstallNotifyURI attribute is present in the Download Descriptor then the Download Agent MUST post an “Invalid Descriptor” status report.

If the Version attribute of the Download Descriptor indicates a “major” version that is not supported by the client device it MUST send an “Invalid DDVersion” status code to the InstallNotifyURI and reject the Download Descriptor. The Device MAY select any of the defined InstallNotifyURI, in case the Download Descriptor contains multiple Products and or Media Objects. The Device MAY skip sending a status report if it is unable to parse the Download Descriptor.
If an error occurs the scenario stops at this point.

5.2.1.1 Processing Rules

This specification strives to ensure forward compatibility. The parsing and processing of first generation device implementations should not become incompatible as additional attributes are deployed. Thus, when processing the Download Descriptor, the following rules apply:

· Optional attributes
, as defined in this specification, MUST be ignored if not supported.

· Unknown attributes MUST be ignored (these attributes MAY be defined outside this specification).

· If an attribute occurs more than once, all but the first occurrence MUST be ignored.

· The only exception to this rule is the attribute Type that has well defined semantics when it occurs multiple times. If there are more occurrences of an attribute than the Download Agent can support then the Download Agent SHOULD accept as many attributes as it supports and after that ignore all subsequent attribute values as redundant (i.e. in case of multiple occurrences of an attribute the first one has the highest priority).
5.2.2 Step 3; Capabilities Check

The Download Agent MUST use the information in the descriptor, at a minimum size and type attributes, to check whether the device is capable of using and/or rendering the Media Objects. This is to prevent downloading of Media Objects that can not be consumed on the device.

If the device does not have sufficient memory for installing and storing the Media Objects, the Downloading Agent SHOULD aid the user in reviewing memory usage and freeing sufficient memory for installation of the new Media Objects.
If the Download Descriptor contains multiple Media Objects and, after freeing some memory, there is still insufficient memory to store all the Media Objects on the device, but enough memory to store some of the Media Objects, the Download Agent SHOULD give the end user a chance to select the Media Objects which he most want to download.
If a Product is a Compound Product, the Download Agent MUST handle the Product as if it is a single Media Object when performing any capability check. The Media Objects of a Compound Product SHOULD NOT be installed when any of the Media Objects of the Compound Product does not meet the capabilities of the Device. The Download Agent MUST show the Compound Product as a single selectable item when giving the end user a chance to select Media Objects in case of insufficient memory.
If a Media Object or a Compound Product has a InstallNotifyURI and if the Media Object or Compound Product is not installed due to lack of memory or due to the end-user selecting not to install, the Download Agent SHOULD notify the end user and MUST post a “Insufficient Memory” status report.
If the device based on the attributes in the Download Descriptor concludes that it lacks the capability to perform a successful installation of a Media Object or a Compound Product, for any reason other than insufficient memory, the Download Agent SHOULD notify the end user and MUST post a “Device Aborted” status report.

If there is more than one Type attribute in the Download Descriptor then the device MAY continue with the download transaction even if not all media types defined in the Type attribute are supported by the device.
5.2.3 Step 4; User Confirmation

Using the information in the Download Descriptor the user SHOULD be given a chance to confirm that they want to install the Media Object.

The following information SHOULD, if available, be made available to the user:

· Name

· Vendor

· Size

· Type

· Description
· DownloadTime
· Additional defined textual metadata
The user SHOULD be prompted for confirmation if one or more types are not supported. If the user chooses to reject or cancel the download based on the information presented the Download Agent MUST post an “User Cancelled” status report. In case of a Compound Product, the Download Agent MUST NOT show to the user the separate Media Objects of the Compound Product, but MUST show the Compound Product as a single entity to the User.
The Type attribute may occur multiple times for each Media Object. This indicates that the device is recommended to support all the listed media types in order to successfully download and use the complete Media Object. In this case the Download Agent should interpret the multiple Type attributes in a manner such that the order of occurance indicates the decreasing importance to the user, i.e. that first type attribute has the highest relevance for presentation (it would typically be the, one or more, most important media types to be rendered or executed). If the Media Object is packaged or wrapped in a container format then
 the first, one or more, type attributes would represent the innermost Media Objects.
5.2.4 Step 5a; Object retrieval

The retrieval of Media Objects is typically performed using HTTP (or HTTPS) but always according to the scheme in the ObjectURI attributes of the Download Descriptor. The Download Agent MUST support the HTTP scheme, and MAY support the HTTPS scheme. The Download Agent MUST at a minimum support either [W-HTTP] or [WSP], and MAY support either [WAPTLS] or [WTLS], as well as other optional protocols. For more details on specifics on the use of HTTP see section HTTP Specific Functionality.

The request for a Media Object MUST be for exactly the URI specified in the descriptor, but the request MAY include additional headers created by the Download Agent.
The mechanics of this action is explained more in detail in specifications covering [W-HTTP] and [WSP].
If the Download Descriptor contains multiple Media Objects, the Download Agent MAY retrieve each Media Object sequentially or in parallel. The exact algorithm for determining the order of downloads, or for deciding to perform downloads in parallel is outside the scope of this specification.
If a Media Object does not exist then the Download Agent MUST post a “Loader Error” status report.

If the connection with the network is lost during the retrieval of a Media Object the Download Agent MUST post a “Loss of Service” status report unless the Download Agent and Download Server supports pause and resume Media Object retrieval as defined in section5.2.4.3.

If the user aborts the retrieval of a Media Object then the Download Agent MUST post a “User Cancelled” status report.
If the Download Descriptor contains a Compound Product, and if any of the above errors situations occur for one or more of the Media Objects of the Compound Product, the Download Agent MUST discard all the Media Objects downloaded for the Compound Product, except when the Download Agent and Download Server support pause and resume, and the error condition is a temporary error (“Insufficient memory” or “Loss of Service”). In this latter case, the Download Agent MAY continue as defined in section 5.2.4.3
5.2.4.1 Object retrieval of download timing reservation

If the DownloadTime attribute is present in the Download Descriptor, the Download Agent SHOULD execute the download transactions for the Media Objects defined in the Download Descriptor at the time designated by the DownloadTime attribute. If the timeInterval attribute is present in addition to DownloadTime attribute in the Download Descriptor, then the Download Agent SHOULD execute the download transaction transactions for the Media Objects defined in the Download Descriptor with the desired time interval originated at the time specified in the DownloadTime attribute till the time specified in the timeIntervalExpire attribute. The Download Agent SHALL NOT execute the download transactions on or later time when specified in the timeIntervalExpire attribute.

The process for negotiating the download time between the User and the Download Server is outside the scope of this specification. For example, the User can use a web page to select the desired download time prior to initiating the download process. The Download Agent SHOULD adjust its timer to execute the download transaction at the designated time if the timestamp attribute is present in the Download Descriptor.
Before the Download Agent executes the download transaction at the designated time, if the Download Descriptor contains updatedDDURI attribute, the Download Agent SHALL fetch the Download Descriptor in order to deteremine if any of the Media Objects or Products has been replaced or updated. If the size of any of the Media Objects in the Download Descriptor is set to zero, the Download Agent SHOULD fetch the Download Descriptor to obtain the actual size of the Media Objects (See, section 5.2.4.2.. If the attributes in the new Download Descriptor differ from those in the original Download Descriptor then the Download Agent MAY notify the user that the Media Object has been replaced or updated, and the User MAY be given a chance to decide whether to execute the download transaction or not. This reconfirmation mechanism may help to reduce unnecessary download transactions to be executed.

 (Editors Note: We need to add some text how to detect the update of the DD (e.g. DD attributes that need to be compared, etc.). It is closely related to the result of the discussion of the updating Media Object use case.)

If the user aborts the automatic download after the Download Agent is ready to set the download transactions (e.g. after the Download Agent set a internal timer to execute the download transaction), and if the reservationNotifyURI attribute is present in the Download Descriptor, then the Download Agent MUST post an “Reservation Cancelled ” status report to the reservationNotifyURI.

If the Download Agent is not able to execute the download transactions at the designated time, and if the reservationNotifyURI attribute is present in the Download Descriptor, then the Download Agent MUST post a “Reservation Error” status report to the reservationNotifyURI and it SHOULD present a message to the User that the reserved downloading was not executed.

(Editors Note: We need to consolidate occurrence relating user interaction into one section. Currently, this is all spread out in the specification text, so that we’ll do it later time)

5.2.4.2 Object retrieval of updated media object

Object retrieval of updated media object MAY be occurred to replace the Media Object(s) which was available and installed to the device. The Download Agent MUST support this functionality.

The Media Object update SHOULD be triggered by the user. The Media Object update MAY be triggered without user confirmation, if the server authentication or control over user confirmation is taken place prior to the updating.

When a Media Object update is started, the Download Agent MUST retrieves Download Descriptor of updated Media Object(s) from where specified by updatedDDURL attribute. The Server SHALL return the Download Descriptor. The Download Agent MAY discard retrieved object if it is other than a Download Descriptor. If updatedDDURI is not present in the Download Descriptor, the Download Agent SHALL not perform updating Media Objects.

The Download Agent compares the objectID of existing Media Object and objectID in the newly retrieved Download Descriptor. If both objectIDs are identical, then the Download Agent compares the objectVersion of the both. The Download Agent MUST notify the user whether the Media Object is a newer, older or same version of the existing objectID of the Media Object and MUST get confirmation from the user before proceeding. If the Download Agent gets confirmation from user to replace or update the Media Object, the Download Agent retrieves the Media Object. Before the downloading of the Media Object is started, the Download Agent MUST verify the available capabilities as defined in section 5.2.2.

If the Download Descriptor contains multiple mediaobject attributes, the Download Agent SHOULD compare its objectID and objectVersion one by one and SHOULD retrieve and install only updated Media Objects. This may help to reduce unnecessary download transaction to be executed.
If the Download Descriptor contains multiple Media Objects that can be updated, the Download Agent MAY offer the user to select which Media Objects should be updated.
5.2.4.3 Pause and Resume Object Retrieval
A Download Server SHOULD support the capability of pause and resume retrieval of Media Objects using the HTTP Range Retrieval mechanism as defined in [RFC2616]. If the Download Server supports the capability to pause and resume retrieval of Media Objects, this capability MUST be exposed by the Download Server in the Media Object response using the HTTP header Accept-Ranges with the range-unit value set to bytes as defined in [RFC2616]. In addition, if the Media Object has an ObjectId and an ObjectVersion attribute in the associated Download Descriptor, the ETag header in the Media Object response MUST have the following value:

“ETag” “:” objectID”/”objectVersion

objectID=<Syntax Syntax aas defined in section [6.12.17] by the ObjectId attribute in the Download Descriptor>

objectIVersion=< Syntax as defined in section [6.12.18]>Syntax as defined by the ObjectVersion attribute in the Download Descriptor>

Media Object retrieval can be paused or interrupted by several reasons. The end user might decide to postpone the download, the network connectivity is lost, there is no memory available or the device gets of power. It is out of scope for this specification to define which events that can pause or interrupt an on going Media Object retrieval.

If the Download Agent disconnects the transport connection or detects that the transport connection is lost for some reason, the Download Agent SHOULD NOT discard the received content range if the server has exposed the support for Range Retrieval with the Accept-Ranges header. The received content range shall be stored in device but it SHALL NOT be available until before the remaining parts of the content has been downloaded and the content has been successfully installed.

If the end user or Download Agent decides to cancel a paused Media Object Retrieval, the Download Agent MUST post a “User Cancelled” status report.

Media Object Retrieval can be resumed by several reasons. The user might resume the download manually or the network connectivity might be restored. It is out of scope for this specification to define the policy for which events that should resume a paused Media Object retrieval.

Media Object Retrieval is resumed by the Downloading Agent by sending a new GET request to the ObjectURI. The Range header MUST specify the remaining content range that has not been downloaded. The Download Agent MUST NOT retrieve more than one content range. The If-Match header MUST contain the value of the Etag header provided in the paused Media Object retrieval if the ETag value is available.

If the Download Agent receives an HTTP Status Code, 412 Precondition failed. The Media Object has been updated since the Media Object retrieval was paused. The Download Agent MUST post a “Media Object Updated” status report and discard the saved content range, and notifies the end user. The Download agent Agent SHOULD MUST then start a Media Update Object retrieval procedure, as defined in section [“Object retrieval of updated media object”] by downloading offer the end user to download the new Download Descriptor at the same URI as the old Download Descriptor from the updatedDDURI. Once the new Download Descriptor is downloaded to the Device, the Download Agent SHALL continues with “Capabilities Check” as defined in section [xxxx].

If the Download Agent receives an HTTP Status Code 206 Partial Content, the client SHALL concatenate the saved content range with the received content range and continue with the installation process as defined in step 6 and 7.

A Download Agent MUST NOT resume a Media Object retrieval, unless the Download Server has exposed this capability with the Accept-Ranges header.

5.2.4.4 Retrieval of Chunked Media Objects

A Download Agent and a Download Server MAY support the capability of retrieval of chunked Media Objects using the HTTP Range Retrieval mechanism as defined in [RFC2616]. The HTTP Range Retrieval mechanism can be used in order to enable the download of Media Objects that are larger than the maximum transfer size that may be imposed by the underlying network.
The Download Agent MUST NOT send the successful Download Completion Notification (i.e. Download Completion (957)) unless the Download Agent can complete the download of the entire Media Object. The Download Agent MUST NOT send the successful Install Notification (i.e. Success (900)) unless the Download Agent can successfully install the entire Media Object. The Download Agent MAY send an appropriate error status code (as defined in section 5.2) if the Download Agent encounters an error or the download is interrupted.

In the case where a Download Server does not support Range Retrieval but a Download Agent has requested Range Retrieval the Download Server MUST return the complete Media Object. In this case, the Download Agent MUST immediately abort the download of the Media Object if the Download Agent does not have enough resources to retrieve the entire Media Object. And then the Download Agent MUST send the Insufficient Memory (901) status report if the InstallNotifyURL attribute is present in the associated Download Descriptor.
5.2.5 Step 5b; License Retrieval
If a Media Object or Product has a license attribute, the Download Agent MUST pass the contents of the license attribute transparently to the appropriate DRM Agent. The DRM Agent must retrieve the appropriate License and report back to the Download Agent the result of the License retrieval. The Download Agent MUST include the License retrieval status in any report posted to the server.

If a download reservation is defined for the Download Descriptor, this reservation MUST also be used for determining when to retrieve the License.

The Download Agent MAY perform Media Object download and License retrieval in sequence or in parallel. The exact algorithm for determining the order of downloads, or for deciding to perform downloads in parallel is outside the scope of this specification. When the Media Object contains a <progressiveDownloadFlag> element with value “true”, the Download Agent SHOULD start the retrieval of the License at least at the same time as the download to enable progressive rendering of the content. In case the containing Product of a Media Object that contains a <progressiveDownloadFlag> element with value “true” also has a <license> element, then the Download Agent SHOULD start the License retrieval for the Product also at the same time as the download of the Media Object.
5.2.6 Step 6; Sending Download Completion Notification

The purpose of the Download Completion Notification is to provide the Status Report Server with an indication that a Media Object or Product was downloaded successfully. At this point in the download process the Media Object or Product is not available to the user. As the Download Completion Notification is optional, this step may be skipped.
This step is valid only in the cases where it has been explicitly requested. This is indicated by including the downloadNotifyURI attribute in the Download Descriptor.

If the downloadNotifyURI attribute is present in the Download Descriptor, the Download Agent MAY send the Download Completion Notification (956) status report to the address defined in the downloadNotiryURI attribute. If the downloadNotifyURI is defined for a Product, the Download Agent MAY send the Download Completion Notification (956) status report after the completion of retrieving all the Media Objects specified for that Product in the Download Descriptor. If the downloadNotifyURI attribute is missing from the Download Descriptor then no Status Report can be sent.

The Download Agent SHOULD NOT send the status codes other than the Download Completion Notification (956) status report. The Download Agent SHOULD use the InstallNotifyURI to send such error status codes.

The process for sending the Download Completion Notification is the same as that for sending the install notification as explained in section 5.3.
5.2.7 Step 7; Installation

The installation is a media type specific, and implementation specific, mechanism to prepare a Media Object for rendering/execution on the device.

The functionality of this step “Installation” depends on whether the Installation Notification has been requested. This is indicated by including the InstallationNotifyURL attribute in the Download Descriptor..
The Download Agent MUST finish both step 5a Object Retrieval and step 5b License Retrieval for Media Objects that have a license attribute before starting the installation step.

In case of a Compound Product, the Download Agent MUST NOT start installation of a Media Object of the Compound Product before all Media Objects of the Compound Product are ready to be installed.
Installation Notification NOT requested

In case an Installation Notification has not been requested the download use case is terminated when the installation has completed. The Media Object or Product can now be rendered or executed.
Installation Notification requested

In case an Installation Notification has been requested by including the InstallNotifyURL attribute in the Download Descriptor, then the installation process is split into two phases.

· The first phase (covered as step 6 in this specification) consists of a pre-installation where the device prepares the Media Object for rendering/execution to the largest extent possible without actually allowing it to be used. In case of a Compound Product, this phase MUST be done for all the Media Objects of the Compound Product before starting the second phase.
· The second phase is dependant on the success of the next step (covered as step 7 in this specification), the execution of the Installation Notification. The Media Object(s) will only be made available for execution/rendering if that step is regarded as successful

These two phases are valid also in case the Download Descriptor and the Media Object(s) are co-delivered to the device.
Installation is complete when the Media Object or Product has been prepared for execution/rendering on the device, or the Download Agent encountered an error. In either case, the status MUST be reported (assuming the installation notification has been requested as indicated by the InstallNotifyURI) as described in the Section Status Report Functionality.

· If the installation succeeded the device MUST generate the status code “Success” in the Status Report as described in Section 5.2.6 “Step 7, Sending Installation Notification”.

· If the user canceled the downloading and installation before the installation completed (i.e. before the sending of the installation notification was completed) the device MUST generate the status code “User Cancelled” in the Status Report.

· If the installation of the Media Object or Product failed due to lack of memory then the device MUST generate the status code “Insufficient Memory” in the Status Report.

· If the installation of the Media Object or Product failed due to a reason independent of the end user, and some other reason, than lack of memory then the device MUST generate the status code “Device Aborted”
· If the Downloading User Agent immediately rejected a Media Object because it had characteristics that made it impossible to execute or render on the device then the device MUST generate the status code “Non-Acceptable Content” in the Status Report.
· If the Downloading User Agent could not install a Media Object because the attributes of the retrieved Media Object differed from the attributes defined in the Download Descriptor then the device MUST generate the status code “Attribute Mismatch”.
In all cases where a Status Report indicating an error is reported the Media Object, or in case of a Compound Product all Media Objects of the Compound Product, MUST be discarded by the device except when the Download Agent and Download Server supports pause and resume Media Object retrieval as define section 5.2.4.2 and it is an temporary error (“Insufficient memory” or “Loss of Service”). Within OMA Download OTA a server should treat a missing status report as the equivalent of receiving an error status code
.

[image: image3.wmf]Content

handler X

Client

Server

Browser

Download

Agent

Download

Descriptor

presented for

retrieval

Transaction

UI

Content

handler UI

Content

processing logic

Media object

presented for

retrieval

Installation

Notification sent to

server

A success code in the Installation

Notification indicates only that the media

object has been successfully loaded onto

the device, and handed over to the

appropriate content handler

Figure 2. The successful completion of the download transaction is independent of the content handler that will finalize the processing of the retrieved media type. However, the Download Agent and the approriate content handler may negotiate during the transaction about the device capabilities to process the content.
5.2.7.1 Media Object installation parameter

The attribute installParam MAY be used to convey installation parameters to the Media Type specific Media Object Installer. If an installParam exists then the Download Agent MUST pass the value of the installParam to the Media Object Installer.
If the Media Object installer does not support the installation parameter, the installation parameter must be ignored. If the Media Object installer supports the installation parameter, but there is an error in the parameter, then an error code (“attribute mismatch”) SHOULD be returned as defined in section 5.2.5.

If the Media Object is a Composite Object then the installParam parameter is conveyed by the Download Agent to the Media Object Installer of the Composite Object. The use of the value of this parameter is specific to the Media Object Installer and outside the scope of this specification.

5.2.8 Step 8; Sending Installation Notification

The purpose of the Status Report mechanism is to provide the download server with an indication that the Media Object has been properly received and installed. This functionality is available as the success or failure of the installation of a Media Object may be critical to execute certain business models within the content service realm.
This step is valid only in the cases where it has been explicitly requested, that is when the InstallNotifyURI attribute is included in the Download Descriptor.

If the InstallNotifyURI attribute is present in the Download Descriptor, the Installation Notification status report MUST be sent to the address defined in the InstallNotifyURI attribute. If the InstallNotifyURI attribute is present for a Compound Product, the Installation Notification status report MUST be sent after the completion of retrieving all the Media Objects specified in the Download Descriptor for the Compound Product. If the InstallNotifyURI attribute is missing from the Download Descriptor for the Media Object and for the Product containing the Media Object, then no Status Report can be sent.

If the network service is lost during installation, an Error Code “Loss of Service” MUST be used in a Status Report if possible (it may be impossible to deliver the status report due to the network-service outage).

The installation status is reported by the use of the schema defined in the InstallNotifyURI attribute. The Download Agent MUST at a minimum support either [W-HTTP] or [WSP] protocols. If the scheme is HTTP then an HTTP POST request to the defined URL is performed. The HTTP scheme MUST be supported. However, if the transfer of the Media Object has been performed using a different scheme than HTTP then the Download Agent MUST also be able to execute the Installation Notification using this same scheme.

In case the defined scheme of the Installation Notification is HTTP or HTTPS then:

· The content of the body of the POST request MUST include on the first line a status code and status message. The table “Installation Status Code and Associated Message” in Section 5.2 lists the valid status message codes and messages. The Section 5.3.1 defines the format of the installation notification.

· In case the installNotifyURI is specified for a Media Object or Product that has a license attribute, a second line MUST be added containing the License status code and status message. The status code reported MUST be either 960 (License Retrieval Succeeded) or 961 (License Retrieval Failed). The Section 5.3.1 defines the format of the installation notification.

· In case the installNotifyURI is specified for a Product, the Download Agent MAY add additional status lines for each Media Object defined for the Product. The Download Agent MUST add additional status lines for Media Objects defined for the Product if not all install statuses of all the Media Objects for the Product are the same. In such case, the overall installation status SHOULD be set to 959 “Mixed Status” error. Also the Download Agent MUST add an additional License retrieval status lines for each Media Object of the Product that has a license attribute.
· The sending of the Installation Notification is regarded as successful if the Download Agent receives an HTTP-Response from the Status Report Server with any 200-series response code. All other HTTP-response codes (100-, 300-, 400- and 500-series HTTP-response codes) MUST be handled as either temporary or permanent errors. The Download Agent MUST implement the behaviour associated with response codes representing temporary errors (for example “401” and “407”) as defined in [RFC2616].

· No content body should be returned in the HTTP response, if any is sent, the Download Agent MUST ignore the body part.

· If a request brings no response, the request MAY be retried, but it SHOULD NOT be retried if any response is received (except in case, e.g. “401 unauthorised”, the reply prompts a modified retry).

· The exception to the logic defined above is the semantics of a “Well-Intentioned Attempt”. If a well-intentioned Installation Notification attempt brings no response from the Status Report Server then the Download Agent MUST equate the situation to the reception of a 200-series response code. This may for example occur in the situation when the Download Agent experiences a timeout before the response is received. The time to wait for the HTTP-Response is implementation specific.
For other schema:

· The sending of the Installation Notification is regarded as successful if a response (the format of which will be dependant on the schema) indicating successful reception of the Installation Notification is received from the Status Report Server?

· If a request brings no response, the request MAY be retried.

· If a well-intentioned Installation Notification attempt brings no response from the server then the Download Agent MUST equate the situation to the reception of a response indicating that a successful reception of the Installation Notification was received from the Status Report Server.

If the Download Descriptor contains the InstallNofifyURI attribute then the Media Object MUST NOT be released for use at the device unless the sending of the installation notification succeeds. If the InstallNotifyURI is defined for a Product, then all the Media Objects of the Product MUST NOT be released for use at the device unless the sending of the installation notification succeeds.
If no well-intentioned attempt can be made then the device MUST NOT allow for the use of the Media Object(s). The device MUST indicate to the user that the download failed and remove the Media Object from the device.

5.2.8.1 Installation Notification Semantics

The Installation Notification mechanism should prevent a situation where the server has “knowledge” that the transaction completed, but the client perceives the transaction as failed (and so prevents the release a Media Object or Product for use in the device). This logic has to function properly also in situations where a proxy separates the Download Agent and the download server.

The Download Agent MUST make at least one well-intentioned attempt to send the Installation Notification to the address defined in the InstallNotifyURI attribute. By “well-intentioned” is meant an attempt where the network connection is known (to the extent possible) to be present. If such “well-intentioned” attempt cannot be made, despite multiple retries, then the Media Object or Product MUST immediately be removed from the device.

5.2.9 Step 9; Download Confirmation and next step

When the device has sent the status report, as described in step 8 above, or the download transaction completed without a Status Report (the Download Descriptor did not include an InstallNotifyURI attribute) then the Download Agent SHOULD indicate the result of the transaction to the user.

The download transaction may have ended successfully, or failed at any step of the download process. In both these cases the Download Agent SHOULD present the user with the option to either continue with a local context specific operation (often to render or execute the Media Object) or to continue with a browsing operation.

If the end user selects to continue with a browsing operation then the Download Agent SHOULD invoke the URL defined in the NextURL attribute. The flow control functionality implemented using NextURL may link to any resource either in the download server (that may issue a context sensitive redirection), in the presentation server, or somewhere else.

A context sensitive redirection provides an opportunity for a late binding for the control flow. This may be particularly important for error situations, to allow the presentation server to optimise its response based on the type of error that occurred.
If the NextURL attribute is not present in the Download Descriptor then the Download Agent SHOULD offer the user an opportunity to continue with a local operation, and MAY offer the user an opportunity to continue with a browsing operation. In the case the end user selects to continue with a browsing operation the URL to be activated is implementation specific.

The Download Agent MAY allow the user to continue with a local context specific operation or to continue with a browsing operation by browsing to the NextURL before the Media Objects are downloaded and installed. In this case, the Download Agent can download the Media Objects in the background. Also in this case, the Download Agent SHOULD present the user an option to browse to the Support URI from the Vendor attribute, if available, when downloading and installing the Media Objects fails in anyway, after sending the status report if the InstallNotifyURI is defined.
5.2.10 Step 10; Sending Deletion Notification
The purpose of the Deletion Complete Notification is to provide the download server with an indication that the Media Object has been removed from the device.
The sending of the Deletion Complete Notification is valid only in the cases where it has been explicitly requested, that is whendeleteNotifyURI attribute is included in the Download Descriptor.

If the deleteNotifyURI attribute is present in the Download Descriptor, then the Download Agent MAY send the Deletion CompleteComplete (912) status report to the URI specified in the deleteNotifyURI attribute.In case the delete notification URI is defined for a Product, the Download Agent MAY send the Deletion Completion (912) status report after the completion of deleting all the Media Objects specified in the Download Descriptor for the Product.
The Download Agent SHOULD NOT send the status codes other than the Deletion Complete (912) status report to the URI specified in the deleteNotifyURI attribute. The Download Agent SHOULD use the InstallNotifyURI to send such error status codes.

The process for sending the Deletion Complete Notification is the same as that for sending the Install Notification as explained in section 5.3.

The Download Agent SHOULD allow users to remove Media Objects. When a Media Object is to be removed from the device, the user SHOULD be prompted to confirm that the Media Object may be removed. The Download Agent SHOULD warn the user of any special circumstances that arise during the deletion of the Media Object. For example, the Media Object is part of compound objects, and the user SHOULD be made aware that part of the compound objects is being removed.
5.3 Status Report Functionality

The Status Report functionality in OMA Download covers reporting both successful and failed content download transactions.

The confirmation of a successful download and installation operation is particularly useful in deployments where some kind of pay-per-transaction business model is used. The Status Report can also be used to optimise the allocation of server resources.

However, it should be noted that a server cannot ever fully rely on the reception of a Status Report to indicate a completed transaction. The device may be unable to send the status report. Therefore the server needs to employ robust logic to discard hanging transactions.

There are two major usage scenarios with respect to status reports:

· FULL STATUS REPORTS: The Download Service requires an Installation Notification including status codes if there is an error during the download transaction. This kind of functionality would typically be deployed in a pay per download environment.

· NO STATUS REPORTS: The Download Service does not require an Installation Notification, in this scenario the Download Service leverages the metadata and capability negotiation features of the Download Descriptor.

The Status Report functionality described in the use cases above is implemented using the InstallNotifyURI attribute. If present, then the usage scenario FULL STATUS REPORTS is implemented as described above. If missing, then no status reports can be sent, and the usage scenario NO STATUS REPORT is implemented.
If the InstallNotifyURI is defined for a Product, the Download Agent SHALL sent the FULL STATUS REPORT as soon as all Media Objects are downloaded an prepared for installation. If the InstallNotifyURI is defined for a Product, it MUST NOT be defined for any of the Media Objects of the Product. If the Product is a compound Product, the InstallNotifyURI MUST NOT be defined for any Media Object of the Compound Product, even if the Compound Product does not have an InstallNotifyURI attribute.
5.3.1 Status Report Formatting

The Status Report must be formatted according to the ABNF syntax defined in this section. The ABNF notation used is defined in [RFC2234]. The terminals <DIGIT>, <WSP> and <CRLF> are also defined in [RFC2234]. The terminal <absoluteURI> is defined in [RFC2396].

fullStatusReport = overallStatusReport [*(CRLF detailStatusReport)] [CRLF]
overallStatusReport = overallDownloadStatus [CRLF overallLicenseStatus]

overallDownloadStatus = statusLine

overallLicenseStatus = statusLine
detailStatusReport = detailDownloadStatus [CRLF detailLicenseStatus]

detailDownloadStatus = detailStatusLine

detailLicenseStatus = detailStatusLine
statusLine = statusCode 1*WSP statusDescription

detailStatusLine = absoluteURI 1*WSP statusLine
statusCode = 3DIGIT

statusDescription = *(VCHAR / WSP)
A <fullStatusReport> always contains an <overallStatusReport> that describes the status for the Product or Media Object that contains the installNotifyURI. In case the <fullStatusReport> is the status of a Product, additional <detailStatusReport> elements MAY be included, one for each Media Object within the Product. The additional <detailStatusReport> elements, one for each Media Object of the Product, MUST be included in case the Media Objects of the Product do not have the same Status for downloading the Media Object, or in case any of the Media Objects of the Product has a License element.

If the Media Object or Product contains a License element then the <overallStatusReport> or <detailStatusReport> element defining the status of the Media Object or Product MUST contain an <overallLicenseStatus> or <detailLicenseStatus> respectively.

The <statusCode> report element MUST be a Status Code as defined in Table 1 in section 5.2. The <statusDescription> MUST be a Status Message as defined in Table 1 in section 5.2. The <statusCode> and <statusDescription> for a single <statusLine> must be obtained from the same row from Table 1 in section 5.2.

The <statusCode> reported for the <statusLine> within the <overallStatusReport> of a Product MUST be set to 959 in case the download Status Code of the Media Objects of the Product are not all equal.

Example Status report for a Product containing several Media Objects with License:

959 Mixed Status

960 License Retrieval Succeeded

cid:id1234@company.com 900 Success

cid:id1234@company.com 960 License Retrieval Succeeded

cid:id5678@company.com 953 Non-Acceptable Content

5.4 Local Content Presentation

The user experience can often be enhanced if the user interface is graphical rather than text based. The optional IconURI provides a facility to define an icon that can be used to represent the object on the screen of the device.

If present in the Download Descriptor the URI should contain a reference to a small graphical object. The means, including capability negotiation facilities, to download the graphical object are defined in the scheme of the attribute IconURI.

The support for IconURI is optional in both the Download Descriptor as well as in the Download Agent. The Download Agent SHOULD retrieve and use the specified icon.

5.5 Persistence of Download Descriptor attributes

The Download Agent MAY use the attributes received in the Download Descriptor in association with the Media Object at its discretion. Some of the attributes MAY be stored persistently in conjunction with the installation of the Media Object.
For a Product that contains a deleteNotifyURI, the Download Agent MUST persistently store the Media Objects associated with the Product to be able to send the delete notify report as soon as all Media Objects of the Product are deleted.
5.6 HTTP Specific Functionality

5.6.1 Client capability advertisement

For download operations over HTTP or HTTPS the device should advertise its capabilities (to the extent possible) by using the mechanism of HTTP request headers. Headers that SHOULD be included are Accept headers (at least Accept-Content) and User-Agent or UAProf.

The Server (or servers) supplying the Download Descriptor and the Media Object should use this information to select content that is appropriate for the device.

5.6.2 Authentication of user

Authentication of the user is not mandatory, but often a useful feature. Authentication MAY be performed at different levels of the protocol stack, but the HTTP basic authentication mechanism (as defined in RFC2617) MUST be supported by the client device.

If the server responds to the request for the Download Descriptor, or the Media Object, with a 401 (Unauthorised), the device MUST re-send the request (including potential cookies) with the user-supplied credentials in an Authorisation header field as specified in RFC2617. The credentials should be provided by the user—for example, a common mechanism would be to present a dialog to the user to enter a user name and password.

The network may also require proxy authentication. If a proxy responds to the request for the Download Descriptor, or the Media Object, with a 407 (Proxy Authentication Required), the device SHOULD re-send the request with the user-supplied credentials in a Proxy-Authorisation header field as specified in RFC2617.
5.6.3 State Management of download transaction

State Management in the download transaction can be handled using multiple different methods. The definition of these methods is outside the scope of this specification. This section gives two examples of methods that MAY be supported by a Download Agent.

The state management is most relevant in a transaction that leverages the Installation Notification. In this case it is important for the server to be able to associate the offer to download a Media Object (the download descriptor), the actual retrieval of the Media Object, and the Installation Notification (the Status Report).

The first method is based on the URL’s that are included in the Download Descriptor. Each of the URL’s may have a session identifier parameter that allows the server to associate the operations with each other.

The second method is based on the use of cookies, as defined in [HTTPSM]. This method allows the server to issue a cookie that will be associated with each subsequent operation within the download transaction.

5.6.4 Transparency of Download Descriptor mechanism

The Download Descriptor download transaction mechanism is designed to be transparent, i.e. from the content handler (i.e. GIF, JPEG, MIDI, etc.) point of view there should be no difference if the object was downloaded directly using a plain HTTP request-response, or using the Download Descriptor mechanism. If the content handler or the system in general, can benefit from information conveyed in the HTTP headers, then these headers should be available in a transparent manner.

The Download Descriptor transaction consists of three request-response pairs, all of them part of the transaction, and all of them with associated HTTP headers. The Download Agent MUST make the headers associated with the actual Media Object transfer available together with the Media Object. Headers associated with the two other (optional) request-response operations SHOULD NOT be exposed to the Media Object specific content handler.
5.7 OMA Download over Broadcast Protocols

Editor Note: This is a new section for OMA Download over Broadcast Protocols. Section 5.2.4 also needs to be updated.

6. Download Descriptor
Editor’s Note: This section is not updated from the DLOTAv1.0 specification. This section needs to be updated.

The Download Descriptor is a collection of attributes, used to describe a Media Object. The defined attributes are specified to allow the Download Agent to identify, retrieve, and install Media Objects. It may also be used by the application that is actually processing the Media Object (the Content Handler); the Download Descriptor may contain media specific attributes.

This section defines only the semantics of the Download Descriptor. The syntax is described in a separate section.

6.1 Download Descriptor

The Download Descriptor is used by the Download Agent and by the content handler that ultimately processes the Media Object. The Download Descriptor may for example include content handler specific attributes. The Download Agent SHOULD expose the complete Download Descriptor to the content handler (at the request of the content handler. The interface may be the same as for HTTP headers).

The descriptor allows the device to verify that the desired Media Object is suitable for the device before being loaded. It also allows Media Object-specific attributes (parameters) to be supplied to the relevant content handler.

The client device MUST use the MIME media type declared by the transport or packaging mechanism to identify a Download Descriptor object. The MIME media type is defined in Section 8 “XML Syntax for Download Descriptor”.

A predefined set of attributes is specified to allow the Download Agent software to identify, retrieve, and install Media Objects. All attributes appearing in the Download Descriptor are made available to the content handler of the media type that the Download Descriptor references.

Basically, a Download Descriptor contains a single <media> element. This <media> element optionally consists of a single <vendor> element and one or more <product> elements. The <product> elements in turn contain multiple <mediaObject> elements. A more detailed description of this structure can be found in the next sections. See Section 8 for the exact XML syntax.
6.2 Download Descriptor attributes

The attributes in the descriptor MUST be formatted according to the syntax defined in the syntax section of this specification. If not, then an error code “Invalid Descriptor” MUST be returned in the status report. However, it will in many cases be impossible to send the error code in case of a Download Descriptor that cannot be parsed properly due to formatting errors.

Descriptors retrieved via HTTP should use the standard HTTP content negotiation mechanisms, such as the Content-Encoding header and the Content-Type charset parameter to decode the stream to the preferred character set for the actual MIME media type representation of the Download Descriptor.

Each attribute is defined using the following properties:

Name - The name of the attribute

Definition - A statement that clearly represents the concept and essential nature of the attribute

Status - Whether the attribute is Mandatory – it MUST be included in a valid Download Descriptor - or Optional - MAY be included in the Download Descriptor. The property also defines if support for the functionality is optional or mandatory in the Download Agent.

Datatype - Indicates the type of data that can be represented in the value of the attribute

Refinement - A qualifier that makes the meaning of the attribute narrower or more specific

Comment - A remark concerning the application of the attribute

The attributes are defined in the following sections.

6.2.1 type

	Name
	type

	Definition
	The MIME media type of the Media Object

	Status
	Download Descriptor: Mandatory. User Agent: Mandatory

	Datatype
	MIME Media type

	Refinement
	-

	Comment
	The type attribute indicates the media type of the object to be executed or rendered. The type attribute may occur multiple times in case the client device needs to support multiple media types in order to process a composite object or a packaging mechanism. The value of the type attribute MAY be different from the media type indicated in the HTTP header “content-type” as transport packaging MAY be used.

The type attribute(s) SHOULD be used by the client to evaluate its capabilities relative to the content to be downloaded.

The type attribute is used to indicate to the client if the Media Object to be downloaded has a media type that is supported by the client. If the type is not supported then the client SHOULD abort the download transaction.

The device MUST support multiple occurrences of the type attribute per Media Object in the Download Descriptor.

6.2.2 size

	Name
	Size

	Definition
	The number of bytes to be downloaded from the URI.

	Status
	 Download Descriptor: Mandatory. User Agent: Mandatory

	Datatype
	Non Negative Integer

	Refinement
	-

	Comment
	The storage size and the execution size are dependent on the environment and may be different from the value of the size attribute.
The size equals to zero “0” may be used if the size of the Media Object is unknown when the Download Descriptor is created. This may be happened when download reservation is taken place.

The transport size may also be different, if compression or some packaging format is used.

The size can be used to allocate sufficiently large data buffers for downloading in the client.

6.2.3 objectURI

	Name
	objectURI

	Definition
	The URI (usually URL) from which the Media Object can be loaded.

	Status
	Download Descriptor: Mandatory. User Agent: Mandatory

	Datatype
	URI

	Refinement
	-

	Comment
	The Download Agent MUST be able to use an HTTP GET to reference this URI in order to retrieve the Media Object.

6.2.4 msobjectURI

	Name
	msobjectURI

	Definition
	Multiple server URIs (usually URLs) from which the Media Object can be alternatively loaded. The msobjectURI attribute MAY contain more than one URL for the location of the Media Object via the server sub-attribute.

	Status
	Download Descriptor: Optional. User Agent: Optional

	Datatype
	msobjectURIType

	Refinement
	-

	Comment
	If present, this attribute wraps one or more occurrences for the location of the Media Object.

6.2.5 server

	Name
	Server

	Definition
	The URI (usually URL) from which the Media Object can be loaded. The server attribute MAY contain more than one occurrence for the location of the Media Object.

	Status
	Download Descriptor: Optional. User Agent: Optional

	Datatype
	URI

	Refinement
	-

	Comment
	The Download Agent MUST be able to use an HTTP GET to reference this URI in order to retrieve the Media Object.

6.2.6 updatedDDURI

	Name
	updatedDDURI

	Definition
	The URI to which the Download Agent MUST retrieve the Download Descriptor of updated Media Object(s).

	Status
	Download Descriptor: Optional. User Agent: Mandatory

	Datatype
	URI

	Refinement
	-

	Comment
	The Download Agent MUST be able to use an HTTP GET to reference this URI in order to retrieve the Download Descriptor of updated Media Objects.

6.2.7 installNotifyURI

	Name
	installNotifyURI

	Definition
	The URI (or usually URL) to which an Installation Status Report is to be sent, either in case of a successful completion of the download, or in case of a failure.

	Status
	Download Descriptor: Optional. User Agent: Mandatory

	Datatype
	URI

	Refinement
	-

	Comment
	If the installNotifyURI attribute is defined then the Download Agent MUST send an Installation Status Report both in the case of success and any kind of failure. The status code is as defined in table 1 (Section Object Installation Process).

If the attribute is missing then no Installation Status Report can be issued, neither for success nor for failure.

The Download Agent posts a status-report to this URL. The URL is used both to report errors and process aborts, as well as to verify the successful installation of the Media Object.
If the InstallNotifyURI is defined for a Product, all Media Objects of the Product MUST have a objectID attribute.

6.2.8 nextURL

	Name
	NextURL

	Definition
	The URL to which the client should navigate in case the end user selects to invoke a browsing action after the download transaction has completed with either a success or a failure.

	Status
	Download Descriptor: Optional. User Agent: Optional

	Datatype
	A RFC2396 URL

	Refinement
	-

	Comment
	NextURL provides a way for the download service to express the desired terminal behaviour in scenarios where the service to user interaction is to continue with browsing actions.

This feature MAY for example be used when the Discovery Application is a Web browser.

6.2.9 DDVersion

	Name
	DDVersion

	Definition
	The version of the Download Descriptor technology.

	Status
	Download Descriptor: Optional. User Agent: Optional

	Datatype
	String (decimal)

	Refinement
	

	Comment
	The format of the Version is “major.minor”. A Download Agent not supporting the “major” version of the Download Descriptor ersion MUST send an “Invalid DDVersion” status code to the installNotifyURI
 and reject the Download Descriptor.

The “minor” version is used to differentiate between backwards compatible versions of the Download Descriptor.

The version of the Download Descriptor defined in this specification is “2.0”.

The default DDVersion, when the attribute is omitted from the Download Descriptor, is “1.0”

6.2.10 name

	Name
	Name

	Definition
	If defined as child element of mediaObject, a user readable name of the Media Object that identifies the object to the user. If defines as child element of vendor, a user readable name of the organisation providing the Media Objects.

	Status
	Download Descriptor: Optional. User Agent: Optional

	Datatype
	String

	Refinement
	Does not have any particular semantics, is intended for user interpretation.

	Comment
	The client MAY use the name as the default storage name, or as a part of it. The Download Agent MAY also use the name attribute of the vendor to ensure uniqueness between names. The client MAY additionally use the text attributes of the meta attribute for generating storage names.

6.2.11 description

	Name
	Description

	Definition
	A short textual description of the Media Object

	Status
	Download Descriptor: Optional. User Agent: Optional

	Datatype
	String

	Refinement
	Does not have any particular semantics, is intended for user interpretation.

	Comment
	The description attribute SHOULD be displayed to the user before the download of the Media Object is accepted by the end user.

The description attribute allows the user a last check before the transaction is completed.

6.2.12 vendor

	Name
	Vendor

	Definition
	Information over the organisation that provides the Media Object. It consists of a name, a home URI, a logo URI and a support URI attribute.

	Status
	Download Descriptor: Optional. User Agent: Optional

	Datatype
	VendorType

	Refinement
	Does not have any particular semantics, is intended for user interpretation.

	Comment
	The attribute MAY be displayed to the user during installation. The attribute MAY be used by the Download Agent to create a unique name for the Media Object when it is stored in the device. The Download Agent MAY allow the user to follow any of the optionally define URI’s for more information about the vendor.

6.2.13 home

	Name
	Home

	Definition
	The optional URI pointing to the Home page of the Vendor.

	Status
	Download Descriptor: Optional. User Agent: Optional

	Datatype
	URI

	Refinement
	-.

	Comment
	The Download Agent MAY allow the user to browse to the URI to obtain additional information about the vendor.

6.2.14 logo

	Name
	Logo

	Definition
	The optional URI pointing to a vendor specific image.

	Status
	Download Descriptor: Optional. User Agent: Optional

	Datatype
	URI

	Refinement
	-.

	Comment
	The Download Agent MAY use this URI to obtain the logo of the vendor and present it to the user.

6.2.15 support

	Name
	Support

	Definition
	The optional URI pointing to the Support page of the Vendor.

	Status
	Download Descriptor: Optional. User Agent: Optional

	Datatype
	URI

	Refinement
	-.

	Comment
	The Download Agent MAY allow the user to browse to the URI to obtain vendor specific support information. The vendor could present a context specific page to the user, helping the user to recover from a failed download.

6.2.16 infoURL

	Name
	InfoURL

	Definition
	A URL for further describing the Media Object

	Status
	Download Descriptor: Optional. User Agent: Optional

	Datatype
	URL

	Refinement
	Does not have any particular semantics, is intended for user interpretation.

	Comment
	The infoURL can be used to retreive information that describes the Media Object...

6.2.17 iconURI

	Name
	IconURI

	Definition
	The URI of an icon

	Status
	Download Descriptor: Optional. User Agent: Optional

	Datatype
	URI, URL

	Refinement
	-

	Comment
	The iconURI may be used by the client to represent the Media Object (e.g. an application) in the user interface (e.g. application manager).

6.2.18 installParam

	Name
	InstallParam

	Definition
	An installation parameter associated with the downloaded Media Object

	Status
	Download Descriptor: Optional. User Agent: Optional

	Datatype
	VeryLongString

	Refinement
	-

	Comment
	The value is an opaque text string that is handed by the Download Agent to the Media Object Installer. The syntax and semantics of the opaque string is relevant only to the particular Media Object Installer. The value is fully transparent to the Download Agent.

6.2.19 downloadTime

	Name
	DownloadTime

	Definition
	The time for the automatic download.

	Status
	Download Descriptor: Optional. User Agent: Optional

	Datatype
	Date and time format defined by RFC2822 (date-time)

	Refinement
	-

	Comment
	dateTime

Values of type datetime MUST conform to a single lexical representation defined in section 3.2.7 of [XMLSchema]. This lexical representation is the extended format CCYY-MM-DDThh:mm:ssZ where CC denotes the century, YY denotes the year, MM denotes the month, DD denotes the day, T is the date/time separator, hh, mm, ss represent the hour, minute, and second respectively, and Z is the mandatory UTC indicator. For example, 2002-12-31T23:59:59Z represents December 31st, 2002, 23:59:59 UTC.

6.2.20 timestamp

	Name
	timestamp

	Definition
	The time measured by the Download Server.

	Status
	Download Descriptor: Optional. User Agent: Optional

	Datatype
	Date and time format defined by RFC2822 (date-time)

	Refinement
	-

	Comment
	dateTime

Values of type datetime MUST conform to a single lexical representation defined in section 3.2.7 of [XMLSchema]. This lexical representation is the extended format CCYY-MM-DDThh:mm:ssZ where CC denotes the century, YY denotes the year, MM denotes the month, DD denotes the day, T is the date/time separator, hh, mm, ss represent the hour, minute, and second respectively, and Z is the mandatory UTC indicator. For example, 2002-12-31T23:59:59Z represents December 31st, 2002, 23:59:59 UTC.

6.2.21 environment
	Name
	environment

	Definition
	Container of execution environment specific metadata needed for the Media Object processing.

	Status
	Download Descriptor: Optional. User Agent: Optional

	Datatype
	 XML schema any and its XML attribute “envtype” is an URI.

	Refinement
	

	Comment
	This attribute wraps the environment specific meta information described by namespace qualified XML elements. The “envtype” value unambiguously identifies the information set that can be included inside the “environment” element and the content handler of the Media Object. If the content handler is unknown then the client SHOULD abort the download transaction. The possible values of “envtype”, syntax and semantics of the internal meta data structures depend on separate environment specific standards.

6.2.22 license
	Name
	License

	Definition
	Information for a DRM Agent to retrieve a License for the Product or Media Object.

	Status
	Download Descriptor: Optional. User Agent: Optional

	Datatype
	 XML schema any and its XML attribute “lictype” is an URI.

	Refinement
	

	Comment
	This attribute wraps the License specific meta information described by namespace qualified XML elements. The “lictype” value unambiguously identifies the information set that can be included inside the “license” element and the DRM agent that is able to retrieve the License for the Media Object or Product. If the DRM Agent is unknown then the client SHOULD abort the download transaction. The possible values of “lictype”, syntax and semantics of the internal meta data structures depend on separate DRM Agent specific standards.

6.2.23 Progressive Download Flag
	Name
	ProgressiveDownloadFlag

	Definition
	A flag that indicates if the Media Object is to be rendered as it is being downloaded.

	Status
	Download Descriptor: Optional. User Agent: Optional

	Datatype
	Boolean

	Refinement
	“true” means that the client may render the Media Object as it is being downloaded, if the client has this capability

“false” means that the client is to download and then render the Media Object some time later. The Media Object is not to be reproduced as it is being downloaded.
If the Media Object of the Product containing the Media Object has a license attribute, the Download Agent MUST obtain the License before starting the progressively download the Media Object.

	Comment
	If this attribute is missing, the Media Object is not to be reproduced as it is being downloaded.

6.2.24 Product

	Name
	Product

	Definition
	Container of one or more Media Objects.

	Status
	Download Descriptor: Mandatory. User Agent: Mandatory

	Datatype
	-

	Refinement
	The Product can be marked as a Compound Product by adding a compound attribute. When the Product is defined to be a Compound Product, the Download Agent MUST handle the contained Media Objects as if it is a single Media Object during the capabilities check, or when sending install, download or delete notification. For a Compound Product notifications MUST not be defined for any Media Object of the Product, only for the Product as a whole.

	Comment
	This attribute wraps the media objects and generic meta information about the Product
The Download Agent MUST accept at least one Product attribute in a single Download Descriptor.

6.2.25 compound

	Name
	Compound

	Definition
	Attribute for a Product that defines the Product to be a Compound Product.

	Status
	Download Descriptor: Optionally. User Agent: Mandatory

	Datatype
	Boolean

	Refinement
	True means that the Product is a Compound Product. Additional processing rules exist for such Product.

False means that the Product is just a collection of Media Objects. The Download Agent MAY however treat the Media Objects as separate entities.
If not defined, the default value is false.

	Comment
	-

6.2.26 mediaobject

	Name
	Mediaobject

	Definition
	Container of Media Object specific information to retrieve the Media Object.

	Status
	Download Descriptor: Mandatory. User Agent: Mandatory

	Datatype
	-

	Refinement
	-

	Comment
	This attribute wraps the media object specific information to retrieve the media object. If the Download Descriptor contains.

The Download Agent MUST accept at least one mediaobject attribute in a single Download Descriptor.

6.2.27 objectID

	Name
	objectID

	Definition
	The identification of the media object

	Status
	Download Descriptor: Optional. User Agent: Mandatory

	Datatype
	URI

	Refinement
	-

	Comment
	The Download Agent MUST use the object ID to identify the object.

The objectID field MUST contain a globally unique identifier for thisMedia Object. The value MUST be encoded using US-ASCII encoding. The value MUST be a unique URI according to [RFC2396]. The use of globally unique objectID’s is required for OMA DLDRMv2 and it is the responsibility of the content author to guarantee the uniqueness of the objectID within their own namespace.
The objectID is mandatory when the meta attribute of the Product that contains the Media Object contains an installNotifyURI attribute.

6.2.28 objectVersion

	Name
	objectVersion

	Definition
	The version of the Object

	Status
	Download Descriptor: Optional. User Agent: Mandatory

	Datatype
	String (decimal)

	Refinement
	-

	Comment
	The format of the objectVersion is “major.minor”. objectVersion shall be incremented if the corresponding media object is updated.

6.2.29 downloadNotifyURI

	Name
	downloadNotifyURI

	Definition
	The URI (usually URL) to which a completion of download is to be sent.

	Status
	Download Descriptor: Optional. User Agent: Optional

	Datatype
	URI

	Refinement
	-

	Comment
	The Download Server MAY include the downloadURI attribute into the Download Descriptor if it wants to receive the Download Completion Status Report from the Download Agent.

If the attribute is defined then the Download Agent MAY send a Download Completion Status Report in the case of download completion. The status code is as defined in table 1 (Section 5.2 Object Installation Process).

If the attribute is missing then no installation status report can be issued, neither for success nor for failure.

6.2.30 deleteNotifyURI

	Name
	deleteNotifyURI

	Definition
	The URI (usually URL) to which a delete completion is to be sent.

	Status
	Download Descriptor: Optional. User Agent: Optional

	Datatype
	URI

	Refinement
	-

	Comment
	The Download Server MAY include the deleteNotifyURI attribute into the Download Descriptor if it wants to receive the Deletion Complete status report from the Download Agent.

If the attribute is defined then the Download Agent MAY send the Deletion Complete status report in the case where the Media Object is deleted. The status code is as defined in table 1 (Section 5.2 Object Installation Process).

If the attribute is missing then no installation status report can be issued, neither for success nor for failure.

6.2.31 interval

	Name
	interval

	Definition
	Container of time interval related information

	Status
	Download Descriptor: Optional. User Agent: Optional

	Datatype
	-

	Refinement
	-

	Comment
	This attribute wraps the time interval related information for download reservation functionality. This attribute contains timeInterval, timeIntervalExpire attributes.

6.2.32 timeInterval

	Name
	timeInterval

	Definition
	The time interval for planned download

	Status
	Download Descriptor: Optional. User Agent: Optional

	Datatype
	duration

Values of type duration MUST conform to a representation defined in section 3.2.6 of [XMLSchema]. The lexical representation for duration is the extended format Pn MnDTnHnM, where nM represents the number of months, nD the number of days, 'T' is the date/time separator, nH the number of hours, and nM the number of minutes. The number of years and seconds SHALL not be used. A preceding minus sign (‘-‘) is not allowed.

For example, P12H represents 12 hours interval.

	Refinement
	-

	Comment
	The Download Server MAY include timeInterval attribute into Download Descriptor if the Download Server wants to execute the download transaction with the desired time interval. The Download Server SHALL include downloadTime attribute if timeInterval attribute is presented in the Download Descriptor. The Download Agent SHOULD execute the download transaction at or after the desired time indicated by downloadTime and timeInterval attribute. The desired time can be caluculated by downloadTime + n x timeInterval (n = 0, 1, 2, …).
Adding duration to dateTime is specified in section E of [XMLSchema].

6.2.33 timeIntervalExpire
	Name
	timeIntervalExpire

	Definition
	The time limit for planned download.

	Status
	Download Descriptor: Optional. User Agent: Optional

	Datatype
	dateTime

Values of type datetime MUST conform to a single lexical representation defined in section 3.2.7 of [XMLSchema]. This lexical representation is the extended format CCYY-MM-DDThh:mm:ssZ where CC denotes the century, YY denotes the year, MM denotes the month, DD denotes the day, T is the date/time separator, hh, mm, ss represent the hour, minute, and second respectively, and Z is the mandatory UTC indicator. For example, 2002-12-31T23:59:59Z represents December 31st, 2002, 23:59:59 UTC.

	Refinement
	-

	Comment
	The Download Server MAY include timeIntervalExpire attribute into Download Descriptor if the Download Server wants to execute the download transaction at the desired time interval. The Download Server MUST include timeIntervalExpire attribute if timeInterval attribute is presented in the Download Descriptor. The Download Agent SHALL not execute the download transaction at or after the time indicated by timeIntervalExpire attribute.

6.2.34 reservationNotifyURI

	Name
	reservationNotifyURI

	Definition
	A URL to which a reservation status report is to be sent.

	Status
	Download Descriptor: Optional. User Agent: Optional

	Datatype
	URI

	Refinement
	-

	Comment
	The Download Server MAY include reservationNotifyURI attribute into Download Descriptor if the Download Server provide functionality to cancel planned download.

If the end user select to cancel planned reservation download, Download Agent SHOULD send a cancel status report to this URI.

6.2.35 meta

	Name
	Meta

	Definition
	Container of Media Object or Product specific meta information.

	Status
	Download Descriptor: Mandatory. User Agent: Mandatory

	Datatype
	MetaType

	Refinement
	The meta attribute contains several of the other defined attributes that are both valid for Product and Media Object. The semantics of the attributes in the meta attribute differ slightly as defined below:
For attributes, except the license attribute or notification attributes: The Download Agent SHOULD use the value as defined for the Media Object. If an attribute is not defined for the Media Object, but is defined for the Product, the Download Agent SHOULD use the Product attributes as if they are also defined for the Media Object.

For notification attributes: If defined for a Product, the notification attribute MUST NOT be defined for any of the Media Objects within the Product. Notifications should be done when all Media Objects of the Product have the same state. If a notification attribute is defined at product level, then the same notification attribute if defined for Media Objects within the Product SHOULD be ignored by the Download Agent for such Media Objects.
For license attribute: When defined for a Media Object or Product, the Download Agent MUST pass the contents of the license attribute to the appropriate DRM agent. The attribute can be defined for the Product and for zero or more of the Media Objects of the Product. In this case, the Download Agent MUST pass all the contents of the license attributes to the appropriate DRM agent as separate requests.

	Comment
	-

6.2.36 text

	Name
	Text

	Definition
	Container that defines additional Media Object type specific textual meta data.

	Status
	Download Descriptor: Optional. User Agent: Optional

	Datatype
	MetaTextType

	Refinement
	This attribute contains textual information that does not have any particular semantics, and is intended for user interpretation
The attribute has two xml attributes that provide information about the semantics (id), and a user readable string defining the semantics (display).

	Comment
	The Download Agent MAY use the information for generating storage names. The Download Agent SHOULD present the contents and the semantics string to the user when providing information to the user about a Product or Media Object.

6.3 Extensibility

The Download Descriptor used by OMA contains general metadata that is useful for all types of media. In some cases, however, the standardised attributes are not sufficient and media type specific metadata must be added.

Extensions can be made to the Download Descriptor by defining the extension data in a separate namespace. That way, extension names will not collide with the standard metadata. The extensions can be used to trigger additional steps in the downloading procedure.

The extensibility is governed by a few basic rules:

· If an attribute is unknown to the Download Agent the attribute MUST be discarded
· If a value of an attribute is unknown to the Download Agent the attribute MUST be discarded
6.3.1 Media type with custom installation commands

The mechanism defined for the Download Descriptor is extensible. It is for example possible to extend the file with attributes that are specific to the installation of a specific media type. However, it is recommended that the installParam attribute be used for custom installation commands as described in section 5.2.7.1, Media Object installation parameter.

The content handler for the Download Descriptor SHOULD evaluate its capabilities to download the object, and abort the download process in case it cannot complete it properly.

The content handler SHOULD evaluate the received Media Object (without indication to the user) before sending an Installation Notification indicating success. If it determines that it cannot process the received Media Object then the error code “Non-Acceptable Content” should be posted to the server, and the Media Object should be discarded.

7. Relationship to JavaTM MIDP OTA (informative)
Editor’s Note: This section is not updated from the DLOTAv1.0 specification. This section needs to be updated.

The Download Descriptor for Generic Content Download may be used for all downloaded content types including MIDlets. However, whenever possible the JavaTM Application Descriptor (JAD, as defined in [MIDPOTA]) should be used for JavaTM MIDlet downloads.
The mechanism for JavaTM MIDlet download is specified in the MIDP OTA Provisioning RP specification (see [MIDP] and [MIDPOTA]). This specification allows vendor specific enhancements to be defined. Some of the attributes defined in this specification may be used in a JAD file for download of MIDP objects.

7.1 MIDP OTA and OMA Download

The framework for generic content download currently consists of the OMA Download mechanism, and a media type specific content download mechanism for JAR files (MIDP download as defined in [MIDPOTA]). The OMA Download mechanism for generic content is not intended to be used in the application space of JAD.

· If the media type to be downloaded is a JAR file then the Download Descriptor should be a JAD file as defined in [MIDPOTA].

· If the media type to be downloaded is different from a JAR file, i.e. is not a MIDP object, then the Download Descriptor should be as defined in this specification.
The intent of the specification is to encourage similarity between MIDP download and OMA Download, However, no formal relationship between the two specifications exists (except that the generic content download references the MIDP specification for MIDP OTA Provisioning).

8. XML Syntax for Download Descriptor
This section describes the syntax of the DD (Download Descriptor) media type. The syntax is expressed as XML [XML].

The media type application/vnd.oma.dd+xml has been registered with IANA for use as the Download Descriptor. The XML Schema [XMLSchema1] [XMLSchema2] for this media type is defined in section 8.2.

The Download Descriptor is defined using XML Namespaces [XMLNS]. The Download Agent MAY implement a fully namespaces aware XML processor as defined by [XMLNS], but is not required to do so in order to correctly process Download Descriptors.
Editors Note: Now the DD has two versions (i.e. DLOTAv1.0 DD and DLOTAv2.0 DD). The editor needs to add how to identify the DD version.

8.1 Example

<media xmlns="http://www.openmobilealliance.org/xmlns/ddv2" DDVersion=”2.0”>

 <product>

 <mediaObject>

 <meta>

 <installNotifyURI>http://download.example.com/

 image.gif?id=image</installNotifyURI>

 </meta>

 <size>100</size>

 <type>image/gif</type>

 <objectURI>http://download.example.com/image.gif</objectURI>

 </mediaObject>

 </product>

</media>

Editors Note: This example should be updated to include new elements defined by DLOTAv2.0.

8.1.1 Example for multiple server support

<media xmlns="http://www.openmobilealliance.org/xmlns/ddv2" DDVersion=”2.0”>

 <product>

 <mediaObject>

 <meta>

 <installNotifyURI>http://download.example.com/

 image.gif?id=image</installNotifyURI>

 </meta>

 <size>100</size>

 <type>image/gif</type>
 <objectID>cid:image@example.com</objectID>
 <objectURI>http://download.example.com/image.gif</objectURI>

<msobjectURI>

<server>http://download.example.alt1.com/image.gif</server>

<server>http://download.example.alt2.com/image.gif</server>

</msobjectURI>

 </mediaObject>

 </product>

</media>

8.1.2 Example of environment element

Company “acme” developed a game on the software platform specified by “whatever” standardization forum. This standardization forum defines a XML schema of internal structure for the DLOTA DD “environment” attribute together with the identifier of the content handler (“envtype” value) that knows the platform specific internal format of the package. The XML schema is:
<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema
 targetNamespace=http://www.whatever.org/xmlns/dd/vx.y
 xmlns:md=http://www.whatever.org/xmlns/dd/vx.y
 xmlns:xsd=http://www.w3.org/2001/XMLSchema
 elementFormDefault="qualified">

 <xsd:element name="option1" type="xsd:string"/>

 <xsd:element name="option2" type="xsd:string"/>

</xsd:schema>
The DLOTA Download Descriptor of the game application is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<media xmlns="http://www.openmobilealliance.org/xmlns/ddv2"
 xmlns:dd=http://www.whatever.org/xmlns/dd/vx.y
 DDVersion=”2.0”>

 <vendor>

 <name>acme</name>

 </vendor>

 <product>

 <mediaObject>

 <meta>

 <name>game.jar</name>

 <environment
 envtype="http://www.whatever.org/xmlns/dd/ResourcePackage" >

 <dd:option1>v6.4</dd:option1>

 <dd:option2>ABCDEF</dd:option2>

 </environment>

 </meta>

 <size>1234</size>

 <type>application/java-archive</type>

 <objectURI>http://acme.com/game.jar</objectURI>

 </mediaObject>

 </product>

</media>

8.1.3 Example with multiple Products and Media Objects
<?xml version="1.0" encoding="UTF-8"?>

<media xmlns=http://www.openmobilealliance.org/xmlns/ddv2
 ddVersion="2.0">

 <product>

 <meta>

 <name>Product1</name>

 <description>Cheap Product</description>

 </meta>

 <mediaObject>

 <meta>

 <name>Being anonymous</name>

 </meta>

 <size>6034500</size>

 <type>audio/3gpp</type>

 <objectURI>http://www.musicvendor.com/1234567.3g2</objectURI>

 </mediaObject>

 <mediaObject>

 <meta>

 <name>Nobody knows me</name>

 </meta>

 <size>60236476</size>

 <type>audio/3gpp</type>

 <objectURI>http://www.musicvendor.com/1234568.3g2</objectURI>

 </mediaObject>

 </product>

 <product>

 <meta>

 <name>Product2</name>

 <description>Expensive Product</description>

 </meta>

 <mediaObject>

 <meta>

 <name>Somebody thinks he knows me</name>

 </meta>

 <size>6034500</size>

 <type>audio/3gpp</type>

 <objectURI>http://www.musicvendor.com/1234568.3g2</objectURI>

 </mediaObject>

 </product>

 <nextURL>http://www.musicvendor.com/shop?nextPage</nextURL>

</media>
8.1.4 Example with license attributes
<?xml version="1.0" encoding="UTF-8"?>

<media xmlns=http://www.openmobilealliance.org/xmlns/ddv2
 xmlns:roap-trigger="urn:oma:bac:dldrm:roap-trigger-1.0"

 xmlns:roap="urn:oma:bac:dldrm:roap-1.0"

 xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
 ddVersion="2.0">

 <product>

 <meta>

 <name>Product1</name>

 <description>Cheap Product</description>

 <license lictype="roap-trigger">

 <roap-trigger:roapTrigger xsi:type="roap-trigger:RoapTrigger">

 <roAcquisition>

 <riID>

 <keyIdentifier xsi:type="roap:X509SPKIHash">

 <hash>aXENc+Um/9/NvmYKiHDLaErK0fk=</hash>

 </keyIdentifier>

 </riID>

 <roapURL>http://ri.example.com/ro.cgi?tid=qw683hgew7d</roapURL>

 <roID>roId</roID>

 <contentID>cid:product1@musicvendor.com</contentID>

 </roAcquisition>

 </roap-trigger:roapTrigger>

 </license>

 </meta>

 <mediaObject>

 <meta>

 <name>Being anonymous</name>

 <license lictype="roap-trigger">

 <roap-trigger:roapTrigger xsi:type="roap-trigger:RoapTrigger">

 <roAcquisition>

 <riID>

 <keyIdentifier xsi:type="roap:X509SPKIHash">

 <hash>aXENc+Um/9/NvmYKiHDLaErK0fk=</hash>

 </keyIdentifier>

 </riID>

 <roapURL>http://ri.example.com/ro.cgi?tid=qw683hgew7d</roapURL>

 <roID>roId</roID>

 <contentID>cid:1234567@musicvendor.com</contentID>

 </roAcquisition>

 </roap-trigger:roapTrigger>

 </license>

 </meta>

 <size>6034500</size>

 <type>audio/3gpp</type>
 <objectID>cid:1234567@musicvendor.com</objectID>
 <objectURI>http://www.musicvendor.com/1234567.3g2</objectURI>

 </mediaObject>

 <mediaObject>

 <meta>

 <name>Nobody knows me</name>

 </meta>

 <size>60236476</size>

 <type>audio/3gpp</type>

 <objectID>cid:1234568@musicvendor.com</objectID>

 <objectURI>http://www.musicvendor.com/1234568.3g2</objectURI>

 </mediaObject>

 </product>

 <nextURL>http://www.musicvendor.com/shop?nextPage</nextURL>

</media>

8.1.5 Example with additional textual metadata
<?xml version="1.0" encoding="UTF-8"?>

<media xmlns=http://www.openmobilealliance.org/xmlns/ddv2
 ddVersion="2.0">

 <vendor>

 <name>MusicVendor</name>

 <home>http://www.musicvendor.com</home>

 <logo>http://www.musicvendor.com/logo.jpg</logo>

 <support>http://www.musicvendor.com/support.html?dd12345</support>

 </vendor>

 <product>

 <meta>

 <name>Product1</name>

 <description>Cheap Product</description>

 <text id="artist" display="Artist">John Doe</text>

 <text id="album" display="Album">Songs for the Unknown</text>

 <infoURL>http://www.JohnDoe.Com</infoURL>

 <iconURI>http://www.JohnDoe.Com/coverArt.jpg</iconURI>

 </meta>

 <mediaObject>

 <meta>

 <name>Being anonymous</name>

 <!-- artist and album are inherited from Product meta -->

 </meta>

 <size>6034500</size>

 <type>audio/3gpp</type>

 <objectID>cid:1234567@musicvendor.com</objectID>

 <objectURI>http://www.musicvendor.com/1234567.3g2</objectURI>

 </mediaObject>

 <mediaObject>

 <meta>

 <name>Nobody knows me</name>

 <!-- artist and album are inherited from Product meta -->

 </meta>

 <size>60236476</size>

 <type>audio/3gpp</type>

 <objectID>cid:1234568@musicvendor.com</objectID>

 <objectURI>http://www.musicvendor.com/1234568.3g2</objectURI>

 </mediaObject>

 </product>

 <nextURL>http://www.musicvendor.com/shop?nextPage</nextURL>

</media>

8.2 XML Schema

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema targetNamespace="http://www.openmobilealliance.org/xmlns/ddv2"
 elementFormDefault="unqualified"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:dd="http://www.openmobilealliance.org/xmlns/ddv2">

 <xsd:simpleType name="ShortString">

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="40"/>

 </xsd:restriction>

 </xsd:simpleType>

 <xsd:simpleType name="LongString">

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="160"/>

 </xsd:restriction>

 </xsd:simpleType>

 <xsd:simpleType name="VeryLongString">

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="255"/>

 </xsd:restriction>

 </xsd:simpleType>

 <xsd:simpleType name="URI">

 <xsd:restriction base="xsd:anyURI">

 <xsd:maxLength value="256"/>

 </xsd:restriction>

 </xsd:simpleType>

 <xsd:complexType name="environmentType">

 <xsd:sequence>

 <xsd:any namespace="##other"
 processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

 <xsd:attribute name="envtype" type="dd:URI" use="required"/>

 </xsd:complexType>

 <xsd:complexType name="licenseType">

 <xsd:sequence>

 <xsd:any namespace="##other"
 processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

 <xsd:attribute name="lictype" type="dd:URI" use="required"/>

 </xsd:complexType>

 <xsd:complexType name="intervalType">

 <xsd:sequence>

 <xsd:element name="timeInterval" type="xsd:duration"/>

 <xsd:element name="timeIntervalExpire" type="xsd:dateTime"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="reservationType">

 <xsd:sequence>

 <xsd:element name="timestamp" type="xsd:dateTime"/>

 <xsd:element name="downloadTime" type="xsd:dateTime"/>

 <xsd:element name="interval" type="dd:intervalType" minOccurs="0"/>

 <xsd:element name="reservationNotifyURI" type="dd:URI" minOccurs="0"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="msobjectURIType">

 <xsd:sequence>

 <xsd:element name="server" type="dd:URI" maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="vendorType">

 <xsd:sequence>

 <xsd:element name="name" type="dd:ShortString"/>

 <xsd:element name="home" type="dd:URI" minOccurs="0"/>

 <xsd:element name="logo" type="dd:URI" minOccurs="0"/>

 <xsd:element name="support" type="dd:URI" minOccurs="0"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="metaTextType">

 <xsd:simpleContent>

 <xsd:extension base="dd:LongString">

 <xsd:attribute name="id" use="required">

 <xsd:simpleType>

 <xsd:restriction base="dd:ShortString">

 <xsd:enumeration value="artist"/>

 <xsd:enumeration value="album"/>

 <xsd:enumeration value="author"/>

 <xsd:enumeration value="genre"/>

 <xsd:enumeration value="#all"/>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:attribute>

 <xsd:attribute name="display" type="dd:ShortString" use="required"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

 <xsd:complexType name="metaType">

 <xsd:sequence>

 <xsd:element name="name" type="dd:ShortString"/>

 <xsd:element name="description" type="dd:LongString" minOccurs="0"/>

 <xsd:element name="text" type="dd:metaTextType"
 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element name="infoURL" type="dd:URI" minOccurs="0"/>

 <xsd:element name="iconURI" type="dd:URI" minOccurs="0"/>

 <xsd:element name="installParam" type="dd:VeryLongString" minOccurs="0"/>

 <xsd:element name="installNotifyURI" type="dd:URI" minOccurs="0"/>

 <xsd:element name="license" type="dd:licenseType" minOccurs="0"/>

 <xsd:element name="environment" type="dd:environmentType" minOccurs="0"/>

 <xsd:element name="downloadNotifyURI" type="dd:URI" minOccurs="0"/>

 <xsd:element name="deleteNotifyURI" minOccurs="0"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="mediaObjectType">

 <xsd:sequence>

 <xsd:element name="meta" type="dd:metaType" minOccurs="0"/>

 <xsd:element name="size" type="xsd:positiveInteger"/>

 <xsd:element name="type" type="dd:ShortString" maxOccurs="unbounded"/>

 <xsd:element name="objectID" type="dd:URI" minOccurs="0"/>

 <xsd:element name="objectVersion" type="dd:ShortString" minOccurs="0"/>

 <xsd:element name="progressiveDownloadFlag"
 type="xsd:boolean" minOccurs="0"/>

 <xsd:element name="objectURI" type="dd:URI"/>

 <xsd:element name="msobjectURI" type="dd:msobjectURIType" minOccurs="0"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="productType">

 <xsd:sequence>

 <xsd:element name="meta" type="dd:metaType" minOccurs="0"/>

 <xsd:element name="mediaObject"
 type="dd:mediaObjectType" maxOccurs="unbounded"/>

 </xsd:sequence>

 <xsd:attribute name="compound"
 type="xsd:boolean" use="optional" default="false"/>

 </xsd:complexType>

 <xsd:complexType name="compoundDDType">

 <xsd:sequence>

 <xsd:element name="vendor" type="dd:vendorType" minOccurs="0"/>

 <xsd:element name="product" type="dd:productType" maxOccurs="unbounded"/>

 <xsd:element name="updatedDDURI" type="dd:URI" minOccurs="0"/>

 <xsd:element name="reservation" type="dd:reservationType" minOccurs="0"/>

 <xsd:element name="nextURL" type="dd:URI" minOccurs="0"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:element name="media">

 <xsd:complexType>

 <xsd:complexContent>

 <xsd:extension base="dd:compoundDDType">

 <xsd:attribute name="DDVersion"
 type="dd:ShortString" use="optional" default="1.0"/>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 </xsd:element>

</xsd:schema>

Appendix A Static Conformance Requirements
(Normative)
The notation used in this appendix is specified in [CREQ].

	Item
	Function
	Reference
	Status
	Requirement

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

Appendix B Example of Download Transaction
(Informative)
Editor’s Note: This section is not updated from the DLOTAv1.0 specification. This section needs to be updated.

The example below shows a very simple use case of a download transaction.

B.1 HTTP Request to view a download service page

When requesting the rendering a service page, the request might look as follows:

GET http://www.service.com/download_service.html

Host: www.service.com

Accept: image/gif, multipart/mixed, application/vnd.oma.dd+xml, text/html

The response from server might look as follows:

HTTP/1.1 200 OK

Server: CoolServer/1.3.12

Content-Length: 2543

Content-Type: text/html

<?xml version="1.0"?>

<!DOCTYPE html PUBLIC "-//WAPFORUM//DTD XHTML Mobile 1.0//EN" "http://www.wapforum.org/DTD/xhtml-mobile10.dtd" >

 <html xmlns="http://www.w3.org/1999/xhtml" >

 <head>

 <title>Service presentation</title>

 <base href="http://host.foo.bar/" />

 </head>

 <body>

 <p>Please select the object

 here!</p>

 </body>

</html>
B.2 HTTP Request for Download Descriptor

When requesting the download of a download descriptor, the request headers might look as follows:

GET http://host.foo.bar/pic-dir/picture.dd?ID=1234

Host: host.foo.bar

Accept: application/vnd.oma.dd+xml

User-Agent: CoolPhone/1.4

Accept-Language: en-US, fi, fr

Accept-Charset: utf-8

The response from server might look as follows:

HTTP/1.1 200 OK

Server: CoolServer/1.3.12

Content-Length: 50

Content-Type: application/vnd.oma.dd+xml; charset=utf-8

<media xmlns="http://www.openmobilealliance.org/xmlns/dd">

 <type>image/gif</type>

 <objectURI>http:/foo.bar.com/pic-dir/picture.gif

</objectURI>

 <size>1234</size>

 <installNotify-URI>http:/foo.bar.com/status</installNotify-URI>

</media>
B.3 HTTP Request to Install a Media Object

When requesting the download of a Media Object file, the request might look as follows:

GET http://host.foo.bar/pic-dir/picture.gif

Host: host.foo.bar

Accept: image/gif, image/jpg
The response from server might look as follows:

HTTP/1.1 200 OK

Server: CoolServer/1.3.12

Content-Length: 25432

Content-Type: image/gif

… GIF picture…
B.4 Install Status via HTTP Post Request

After a successful reception of the GIF, the following would be posted:

POST http://foo.bar.com/status

Host: foo.bar.com

Content-Length: 13

900 Success

The response from the server might be:

HTTP/1.1 200 OK

Server: CoolServer/1.3.12
B.6 Pause and Resume Media RetrievalPause and Resume Media Retrieval

When requesting the download of a Media Object file, the request might look as follows:

GET http://host.foo.bar/pic-dir/picture.gif

Host: host.foo.bar

Accept: image/gif, image/jpg
The response from server might look as follows:

HTTP/1.1 200 OK

Server: CoolServer/1.3.12

Content-Length: 25432

Content-Type: image/gif

Accept-Ranges: bytes

ETag: fasd987sadf98@example.com/1.1

… GIF picture…
1034 bytes has been downloaded but the connection is lost for some reason.

The Media Object Retrieval is resumed

GET http://host.foo.bar/pic-dir/picture.gif

Host: host.foo.bar

Accept: image/gif, image/jpg

Range: 1034-25431

If-Match: fasd987sadf98@example.com/1.1
The response from server might look as follows:

HTTP/1.1 206 Partial Content

Server: CoolServer/1.3.12

Content-range: bytes 1034-25431/25432
Content-Type: image/gif

Accept-Ranges: bytes

ETag: fasd987sadf98@example.com/1.1

… GIF picture…
Appendix C Media Type Registration
(Informative)
Editor’s Note: This section is not updated from the DLOTAv1.0 specification. This section needs to be updated.

...Registration of MIME media type application/vnd.oma.dd+xml

 MIME media type name: application

 MIME subtype name: vnd.oma.dd+xml

 Required parameters: none

 Optional parameters:

 charset

 This parameter has identical semantics to the charset parameter

 specified in [XMLMIME].

 version

 Indicates the Download Descriptor version. The value has the

 format: <major>.<minor>; where major and minor are integers. For

 example, version="2.1" indicates version 2.1.

 Encoding considerations: See [XMLMIME].

 Security considerations: See [XMLMIME].

 Interoperability considerations:

 The OMA Download specifications

 [OMADL] specify user agent (Download Agent) conformance rules that

 dictate behaviour that must be followed when dealing with, among other

 things, unrecognized elements.

 Published specification:

 The OMA Download specification is published at

 http://www.openmobilealliance.org/

 Applications which use this media type:

 OMA Download agents, see [OMADL].

 Additional information:

 Magic number: There is no single initial byte sequence that is always

 present for Download Descriptor files.

 File extension: .xml or .dd

 Macintosh File Type code: TEXT

 Person & email address to contact for further information: Open Mobile Alliance

 <technical-comments@mail.wapforum.org>

 Intended usage: COMMON

 Author/Change controller: The OMA Download specifications are a work

 product of the Open Mobile Alliance's WAG Working Group. The Open Mobile Alliance has

 change control over these specifications.

....Fragment identifiers

 Fragment identifiers are not used for this media type.

....References

[OMADL] "OMA Download OTA Specification", Open Mobile Alliance

Specification. Available at <http://www.openmobilealliance.org/>.

[XMLMIME] Murata, M., St.Laurent, S., Kohn, D., "XML Media Types", RFC

3023, January 2001.

Appendix D Change History
(Informative)
	Type of Change
	Date
	Section
	Description

	Class 0
	20 October 2004
	All
	The initial version of this document. The following CR is incorporated.

· OMA-DLDRM-2004-0238-DLOTAv2.0-Technical-Spec-Initial-Draft

	Class 0
	13 January 2005
	
	Second Version. The following CR is incorporated.

· OMA-DLDRM-2005-0015-DLOTAv2-TS-Second-Draft

	Class 0
	05 May 2005
	
	Third Version. The following CR is incorporated.

· OMA-DLDRM-2005-0090-DLOTAv2.0-TS-Updated-Draft

	Class 0
	13 July 2005
	
	Forth Version. The following CRs are incorporated.

· OMA-DLDRM-2005-0168R04-DLOTAv2-Enhancement-of-Download-Timing-Reservation-Proposed-text
· OMA-DLDRM-2005-0183R01-LATE-Pause-and-resume-Download-in-DL-OTA-2.0
· OMA-DLDRM-2005-0218-Editorial-Changes-to-OMA-TS_DLOTA-V2_0_3-20050624-D

	Class 0
	24 August 2005
	
	Fifth Version. The following CRs are incorporated.

· OMA-DLDRM-2005-0166-DLOTAv2-Compond-MOs-and-Multiple-MOs-Support-Proposed-text
· OMA-DLDRM-2005-0167R02-DLOTAv2-Updating-Media-Object-Proposed-text
· OMA-DLDRM-2005-0249R1-CR_TS-DLOTA-V2_0-Multiple-Server-Support
· OMA-DLDRM-2005-0252R01-DLOTAv2-Chunked-Download-Text
· OMA-DLDRM-2005-0260R01-Download-Multiple-Objects-CR-for-DLOTAv2TS

�PAGE \# "'Page: '#'�'" �Page: 1���Note to editor: Remove this row and the previous from the table. Word cannot mark table row deletes.

�This needs to be added as a reference. I assume you refer to the Architecture Document

�PAGE \# "'Page: '#'�'" �Page: 16���I think some word is missing here.

�DLDRM needs further discussion on how to handle error status codes.

�PAGE \# "'Page: '#'�'" �Page: 19���The term attributes is I think misleading. Attributes and elements are different things in xml. Also, the schema defines whether attributes or elements can be added multiple times.

�Is this appropriate terminology?

�This sentence does not make any sense”a failure remains a failure…”

�This does not make sense now we have the downloadnotfication. The error codes that are applicable to each notification need to be reviewed and clearly defined.

�PAGE \# "'Page: '#'�'" �Page: 32���This is difficult to implement when the HTTP handler receiving the DD is a different application. It might not be possible for the Download Agent to share the coockies received.

�PAGE \# "'Page: '#'�'" �Page: 33���I think it is more readable when this section would be rewritten around de XML schema notation, as is done for DRMv2

�PAGE \# "'Page: '#'�'" �Page: 35���The current type in the schema does not show multiplicity. I changed this in the new schema proposal.

�PAGE \# "'Page: '#'�'" �Page: 37���As said, this might not be possible; as the version is not supported, the agent cannot obtain the URI from the DD

�There should be a DDVersion element with value set to 2!

�PAGE \# "'Page: '#'�'" �Page: 56���This set must be defined elsewhere.

(2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20040928-I]
(2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20040928-I]

_1189962572.doc

Download Descriptor

End User

Discovery

Application

Download

User Agent

Media Object

Installation Notification

Mobile

Device

Server

back end

2. Launch

4. Validate with user

1. Transfer

Use

5a. Retrieve

7. Send

3. Check

8. Download confirmation

6. Install

DRM

Agent

5b. Retrieve License

Obtain License

Rights Issuer

