Doc# OMA-DLDRM-2006-0132-Certificate-Caching-Extension.doc[image: image1.jpg]
Change Request

Doc# OMA-DLDRM-2006-0132-Certificate-Caching-Extension.doc
Change Request

Change Request

	Title:
	Certificate Caching Extension
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	OMA BAC DLDRM

	Doc to Change:
	OMA-TS-DRM-DRM-V2_0-20060303-A

	Submission Date:
	05 04 2006

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Michael Brügmann, CoreMedia, michael.bruegmann@coremedia.com

	Replaces:
	n/a

1 Reason for Change

The certificate caching extension can be send by the client and by the server.
If the server sends this extension it informs the client about the capability to store device certificates.

This is helpful as the client then knows that it does not need to send certificates again and again in following requests.

If the client sends the certificate caching extension it informs the server about the capability to store whether the server can store device certificates. This is something different. It doesn't help the server to decide whether RI certificates need to be sent in later requests. This information can only be obtained from the PeerKeyIdentifier extension.

We don't see any benefit for the server if it knows that the device can store whether the RI can store certificates.
The only thing is that the server does not need to send the certificate caching extension in the riHello, because the client can't store this information anyway. But it wouldn't harm if it is sent and ignored by the device.

Storing information whether somebody has the capability to store something is very confusing and leads to interpretation problems as we have seen in TestFest 14, while testing with another device manufacturer. Also it is very confusing that the certificate caching extension has different meanings in deviceHello and riHello.

One solution would be to make the meaning of a certificate caching extension sent by the client equivalent to the meaning of a certificate caching extension sent by the server. If the client would send a certificate caching extension in the deviceHello the server would not need to send certificates in later responses. In this case the PeerKeyIdentifier would be superfluous. If the device has lost the server’s certificates for some reason in must then initialize a new registration by itself.

Another solution is to totally remove the certificate caching extension from the specification of the Device Hello as it doesn't make sense as it is. A PeerKeyIdentifier sent by the client in a request would be the only way to inform the server about not to send its certificates in the response. We prefer the second solution as it is very clear and easy to understand. The attached change proposal refers to this idea.
2 Impact on Backward Compatibility

None.
3 Impact on Other Specifications

None.
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

The author recommends that this CR be agreed by the group and incorporated into a future version of the DRM specification.
6 Detailed Change Proposal

5.2.1.1 Device Hello

The ROAP-DeviceHello message is sent from the Device to the Rights Issuer to initiate the 4-pass Registration protocol. This message expresses Device information and preferences.

5.2.1.1.1 Message description

	Parameter
	ROAP-DeviceHello

	Version
	M

	Device ID
	M

	Supported Algorithms
	O

	
	

Table 1: Device Hello Message Parameters

Version is a <major.minor> representation of the highest ROAP version number supported by the Device. Devices MUST support all versions prior to the one they suggest. For this version of the protocol, Version SHALL be set to "1.0". Minor version upgrades must always be backwards compatible.

Device ID identifies the Device to the RI. The only identifier currently defined is the hash of the Device's public key info, as it appears in the certificate (i.e. the hash of the complete DER-encoded subjectPublicKeyInfo component in the Device's certificate). The default hash algorithm is SHA-1. The Device MUST send at least one Device ID. In case a Device holds multiple public keys, the Device MAY select one or more of these public keys and send the corresponding Device IDs. Other identifiers are allowed but interoperability when using them is not guaranteed.

Supported Algorithms identifies the cryptographic algorithms (hash algorithms, MAC algorithms, signature algorithms, key transport algorithms and key wrap algorithms) that are supported by the Device. Algorithms are identified using common URIs. The following algorithms and associated URIs MUST be supported by all Devices and RIs:

Hash algorithms:

SHA-1: http://www.w3.org/2000/09/xmldsig#sha1
MAC algorithms:

HMAC-SHA-1: http://www.w3.org/2000/09/xmldsig#hmac-sha1
Signature algorithms:

RSA-PSS-Default: http://www.rsasecurity.com/rsalabs/pkcs/schemas/pkcs-1#rsa-pss-default
Key transport algorithms:

RSAES-KEM-KDF2-KW-AES128:
http://www.rsasecurity.com/rsalabs/pkcs/schemas/pkcs-1#rsaes-kem-kdf2-kw-aes128
Key wrapping algorithms:

AES-WRAP: http://www.w3.org/2001/04/xmlenc#kw-aes128
Canonicalization algorithms:

Exclusive Canonicalization: http://www.w3.org/2001/10/xml-exc-c14n#
SHA-1 is defined in [SHA-1]. HMAC-SHA-1 is defined in [HMAC]. RSA-PSS-Default is RSASSA-PSS with all parameters having default values (see [PKCS-1] Appendix C). AES-WRAP is defined in [AES-WRAP]. RSA-KEM-KDF2-KW-AES128 is defined in Section 7, Key Management. Exclusive Canonicalization is defined in [XC14N], its use is further explained in Section 5.3.3 of this document.

Use of other algorithm URIs is optional. Since all Devices and all RIs must support the algorithms above, they need not be sent. Only URIs for algorithms not in this list needs to be sent in a ROAP-DeviceHello message.

5.2.1.1.2 Message syntax

The <deviceHello> element specifies the ROAP-DeviceHello message, which is the first message sent in the 4-pass ROAP Registration protocol. It has complex type roap:DeviceHello, which extends the basic roap:Request type.

<element name="deviceHello" type="roap:DeviceHello"/>

<complexType name="DeviceHello">

 <annotation>

 <documentation xml:lang="en">

 Message sent from Device to RI to establish an RI Context.

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Request">

 <sequence>

 <element name="version" type="roap:Version"/>

 <element name="deviceID" type="roap:Identifier"

 maxOccurs="unbounded"/>

 <element name="supportedAlgorithm" type="anyURI"

 minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

The following schema fragment defines the Version type. As noted above, for this version of ROAP, its value shall be "1.0".

<simpleType name="Version">

 <restriction base="string">

 <pattern value="\d{1,2}\.\d{1,3}"/>

 </restriction>

</simpleType>
The following schema fragment defines the Identifier type and its alternatives. Any non-standard identifier value must be expressed in well-formed XML.

<complexType name="Identifier">

 <choice>

 <element name="keyIdentifier" type="roap:KeyIdentifier"/>

 <any namespace="##other" processContents="strict"/>

 </choice>

</complexType>

<complexType name="KeyIdentifier" abstract="true"/>

A key can be defined by use of a hash of the key. The hash shall in this case be made over the DER-encoded subjectPublicKeyInfo value from the applicable certificate.

<complexType name="X509SPKIHash">

 <complexContent>

 <extension base="roap:KeyIdentifier">

 <sequence>

 <element name="hash" type="base64Binary"/>

 </sequence>

 <attribute name="algorithm" type="anyURI" default="http://www.w3.org/2000/09/xmldsig#sha1"/>

 </extension>

 </complexContent>

</complexType>

<!-- The corresponding ds:KeyInfo element -->

<element name="X509SPKIHash" type="roap:X509SPKIHash"/>

5.2.1.2 RI Hello

The ROAP-RIHello message is the second message of the Registration protocol and is sent from the Rights Issuer to the Device in response to a ROAP-DeviceHello message. The message expresses RI preferences and decisions based on the values supplied by the Device.

5.2.1.2.1 Message description

	Parameter
	ROAP-RIHello

	
	Status = “Success”
	Status ≠ “Success”

	Status
	M
	M

	Session ID
	M
	-

	Selected Version
	M
	-

	RI ID
	M
	-

	Selected Algorithms
	O
	-

	RI Nonce
	M
	-

	Trusted Device Authorities
	O
	-

	Server Info
	O
	-

	Extensions
	O
	-

Table 2: RI Hello Message Parameters

Status indicates if the ROAP-DeviceHello request was successfully (Status = Success) handled or not. In the latter case an error code as specified in Section 5.3.6 is sent.

Session ID is a protocol session identifier set by the RI. This allows for several, concurrent, RI-Device sessions.
Selected Version is the selected ROAP version. The selected version will be min(Device suggested version, highest version supported by RI). This information is part of the RI Context.

RI ID identifies the RI to the Device. The only identifier currently defined is the hash of the Rights Issuer’s public key info, as it appears in the certificate (i.e. the hash of the complete DER-encoded subjectPublicKeyInfo component in the Rights Issuer’s certificate). The default hash algorithm is SHA-1. In case the RI holds multiple public keys, the RI must select exactly one of these and send the corresponding RI ID. Other identifiers are allowed but interoperability when using them is not guaranteed. This information is part of the RI Context.

Selected Algorithms specifies the cryptographic algorithms (hash algorithm, signature algorithm, MAC algorithm and key transport algorithm) to use in subsequent ROAP interactions. If the Device indicated support of only mandatory algorithms (i.e. left out the <supportedAlgorithms> element), or the RI only supports the mandatory algorithms, then the RI need not send this field. Otherwise, the RI MUST provide this parameter and MUST identify one algorithm of each type. This information is part of the RI context.
RI Nonce is a random nonce sent by the RI. Nonces are generated and used in this message as specified in section 5.3.10.
Trusted Device Authorities is a list of Device trust anchors recognized by the RI. This parameter is optional. The parameter is not sent if the RI already has the Device's certificate or otherwise is able to verify a signature made by the Device. If the parameter is present but empty, it indicates that the Device is free to choose any Device certificate to authenticate itself. Otherwise the Device MUST choose a certificate chaining back to one of the recognized trust anchors. Trust anchors are identified in the same manner as Devices and RIs.
Server Info contains server-specific information that the Device must return unmodified, in the ROAP-RegistrationRequest. The Device must not attempt to interpret the value of this parameter. Devices MUST support the Server Info element being of length 512 bytes and MAY support Server Info elements of length greater than 512 bytes. RIs SHOULD keep Server Info length to 512 bytes or less.
Extensions: The following extensions are defined for the ROAP-RIHello message:

· Peer Key Identifier: An identifier for a Device public key stored by the RI. If the identifier matches one of the Device ID’s in the preceeding DeviceHello message, it means the RI has already stored that Device ID and the corresponding Device certificate chain, and the Device need not send that certificate chain in a later request message. If the extension is empty, it means the RI has already stored all Device ID’s listed in the preceeding DeviceHello message and the corresponding Device certificate chains, and the Device need not send its certificate chain in a later request message. Keys are identified in the same way as Devices are (a hash of the DER-encoded subjectPublicKeyInfo component of the Device's certificate). If the RI has stored the Device public key the RI MUST use this extension in the ROAP-RIHello. This extension also informs the Device that the RI has the capability to store information about Device certificates.

· Certificate Caching: When present, this extension indicates to the Device that the RI has the capability to store information about the Device certificate and that Device certificate chain sending is not necessary in subsequent protocol instances once the RI has received the Device certificate chain. This extension is not needed if the Peer Key Identifier is used, since the latter contains even more specific information.

· Device Details: By including this extension, the RI requests the Device to return Device-specific information such as manufacturer and model in a subsequent ROAP-RegistrationRequest message. When present, the DeviceDetails extension SHALL be empty (i.e. <extension xsi:type="roap:DeviceDetails"/>)".

If the Certificate Caching extension was present in the ROAP-DeviceHello message and the RI has capabilities to store Device certificates, then the RI MUST send either the Peer Key Identifier or the Certificate Caching extension in its ROAP-RIHello message. If the Certificate Caching extension was not present in the ROAP-DeviceHello message, then the RI need not send the Certificate Caching extension in its ROAP-RIHello. If the ROAP-RIHello contains a Peer Key Identifier extension, it SHOULD NOT contain a Certificate Caching extension.

The Device SHOULD note in the RI Context whether the RI has a correct public key for the Device stored and/or whether the RI has the capability to store information about the Device’s certificate.

5.2.1.2.2 Message syntax

The <riHello> element specifies the ROAP-RIHello message, which is sent in response to the ROAP-DeviceHello message. It has complex type roap:RIHello.

<element name="riHello" type="roap:RIHello"/>

<complexType name="RIHello">

 <annotation>

 <documentation xml:lang="en">

 Message sent from RI to Device in response to a deviceHello message.

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Response">

 <sequence minOccurs="0">

 <element name="selectedVersion" type="roap:Version"/>

 <element name="riID" type="roap:Identifier"/>

 <element name="selectedAlgorithm" type="anyURI" maxOccurs="unbounded"

minOccurs="0"/>

 <element name="riNonce" type="roap:Nonce"/>

 <element name="trustedAuthorities" type="roap:KeyIdentifiers" minOccurs="0"/>

 <element name="serverInfo" type="base64Binary" minOccurs="0"/>

 <element name="extensions" type="roap:Extensions" minOccurs="0"/>

 </sequence>

 <attribute name="sessionId" type="string"/>

 </extension>

 </complexContent>

</complexType>

<complexType name="KeyIdentifiers">

 <sequence minOccurs=”0” maxOccurs="unbounded">

 <element name="keyIdentifier" type="roap:KeyIdentifier"/>

 </sequence>

</complexType>

The following schema fragment defines the Peer Key Identifier extension:

<complexType name="PeerKeyIdentifier">

 <complexContent>

 <extension base="roap:Extension"/>

 <sequence minOccurs=”0”>

 <element name="identifier" type="roap:KeyIdentifier"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

The following schema fragment defines the Certificate Caching extension:
<complexType name="CertificateCaching">

 <complexContent>

 <extension base="roap:Extension"/>

 </complexContent>

</complexType>

The following schema fragment defines the Device Details extension:

<complexType name="DeviceDetails">

 <complexContent>

 <extension base="roap:Extension">

 <sequence minOccurs=”0”>

 <element name="manufacturer" type="string"/>

 <element name="model" type="string"/>

 <element name="version" type="string"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>
…

G.1 ROAP Examples

All examples are syntactically correct. Signature, MAC, cipher and digest values are fictitious however.

According to 5.3.3, these messages must be canonicalized before being sent by the RI or the DRM Agent.

G.1.1 Device hello

<roap:deviceHello

 xmlns:roap="urn:oma:bac:dldrm:roap-1.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <version>1.0</version>

 <deviceID>

 <keyIdentifier xsi:type="roap:X509SPKIHash">

 <hash>vXENc+Um/9/NvmYKiHDLaErK0gk=</hash>

 </keyIdentifier>

 </deviceID>

</roap:deviceHello>

�Note for the Editor: Please adapt XML-Schema [OMA-DRM-ROAP-V2_0-20060303-A] accordingly.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 7)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20060101-I]

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 7)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20060101-I]

