Doc# [image: image6.jpg]OMA-DLDRM-2006-0291R02-CR_Partial_computation_of_PDCF_hash.doc
Change Request

Doc# OMA-DLDRM-2006-0291R02-CR_Partial_computation_of_PDCF_hash.doc
Change Request

Change Request

	Title:
	Partial computation of PDCF hash
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	DLDRM

	Doc to Change:
	OMA-TS-DRM-DCF-V2_1-20060523-D

	Submission Date:
	6th Oktober 2006

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Bert Greevenbosch, Fraunhofer IIS, bert.greevenbosch@iis.fraunhofer.de

Mercè Serra, Fraunhofer IIS, merce.serra@iis.fraunhofer.de
Harald Fuchs, Fraunhofer IIS, harald.fuchs@iis.fraunhofer.de
Stefan Döhla, Fraunhofer IIS, stefan.doehla@iis.fraunhofer.de

	Replaces:
	n/a

1 Reason for Change

State of the art for OMA DRM 2.1:
From OMA DRM 2.1 TS:
"If the Rights Object contains a DCF hash value, DRM Agents in client Devices MUST verify that this hash value is identical to the hash value calculated by the DRM Agent over the DCF. If the hash values are not identical, the DRM Agent MUST prohibit the DCF from being decrypted and used. In a progressive download scenario, the DRM Agent can complete hash verification only after the complete DCF has been received and possibly after DCF decryption has started. The DRM Agent MUST discontinue DCF decryption and use, if the hash verification fails.

To improve user experience (by reducing waiting time due to verification of the DCF integrity), the DCF hash may be calculated by the Device in advance, possibly during download or as soon as the DCF is received, and may be cached by the Device for later use. In order to verify the integrity of the DCF a Device may compare the cached hash value to that in a corresponding RO. When acquiring an RO, the Device may also report the cached hash value to the RI in the RO-Request. The location for the cached hash value is not specified and therefore is implementation specific."
From OMA DRM 2.1 DCF:
"Content Objects MAY be protected for integrity by including a DCF hash into a Rights Object or ROAP request. Since (P)DCF MAY include structures editable by the Device, these structures are excluded from hash calculation. The DCF hash MUST be calculated from the beginning of the DCF to the end of the last OMADRMContainer, ignoring the MutableDRMInformation box. PDCF hash MUST be calculated from the beginning of the PDCF, skipping the MutableDRMInformation box after the movie box, or end of file in case there is no MutableDRMInformation box present."

In this document we propose a mechanism for providing (P)DCF integrity protection by using partial hashes instead of computing the hash of the whole (P)DCF at once. A (P)DCF is divided in parts and a set of partial hashes are included in the (P)DCF. Every partial hash provides integrity of one of the (P)DCF parts. A master hash over this set of hashes is computed and inserted in the corresponding RO (similar to the current <DigestValue>).
In order to check the integrity of a (P)DCF, the Device has to proof first the integrity of the partial hashes (master hash). The Device could then start proving the partial hashes and rendering simultaneously. If the integrity check of a part fails, the rendering of the content is aborted.
This mechanism offers the Device much more flexibility when checking the (P)DCF integrity by increasing only slightly the complexity. The Device could start rendering immediately after the integrity of the first part was checked achieving a negligible waiting time. It would substitute managing a secure database on the Device including the precomputed hashes of all (P)DCFs, as the integrity could be checked every time before rendering.

Even if we decide that we keep the managing of a secure database on the Device, the Device cannot start rendering during the progressive download or immediately after the download (as integrity checking of a very large PDCF can take a while) without being sure that the integrity of the content was fine. This could lead to a bad user experience while rendering tampered content.
In the case of Multipart DCFs, the hash of every part can be calculated independently. Only the part that is going to be used needs to be checked. In this way a selective integrity protection for the different DCFs parts is also allowed.

NOTE that some changes in chapter 5.3 "DCF Hash Calculation" are needed to adapt to the new mechanism.
R02 describes an improved method to perform a partial hash computation, after consulting with ISO-file format experts. The partial hashes are introduced as a new Track in the ISO-file format, which is intended for Metadata purposes.
2 Impact on Backward Compatibility

Old devices that do not know these new introduced Boxes, are unable to prove the integrity of a DCF/PDCF that are protected using this mechanism.
It might be necessary to introduce a new field in the RO for this new sequential hash value, so that old OMA DRM v2.0-Devices can differenciate it from the original <DigestValue> in v2.0. Proposals and comments of the group are very gladly received.
3 Impact on Other Specifications

None

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

For the DLDRM group to accept the CR.

6 Detailed Change Proposal

6. Discrete Media Profile (DCF)
This section defines the DRM Content Format for Discrete Media.

6.1 DCF MIME Type
The MIME type for objects conforming to the format defined in this section MUST be

application/vnd.oma.drm.dcf

and the corresponding file extension MUST be “.odf”.

6.2 DCF File Format

The structure of the Discrete Media profile of DRM Content Format (DCF) MUST be according to the structure definitions below.

A DCF file MUST include at least one OMADRMContainer box. The OMADRMContainer box is a container for a single Content Object and its associated headers. It MUST appear on the top level, i.e. to conform to this specification, it MUST NOT be nested inside another data type. There MAY exist multiple OMADRMContainer boxes in a file, but one MUST immediately follow the file header, and they all MUST be located on the top level in the nesting structure.
After every OMADRMContainer box, there MAY be an optional OMADRMHashBox, which protects the integrity of the previous OMADRMContainer.
The version indicator field in each box MUST be 0 for files conforming to this specification. All numeric fields in the format MUST be stored in network byte order.

6.2.1 OMA Constraints on ISO Format

In files conforming to this specification, box size MUST be greater than 1 unless otherwise specified and the extended_type MUST NOT be used in the mandatory boxes. Some of the mandatory boxes MUST support the 64 bit length field and for those boxes, size field MUST be set to 1. Also note that in some earlier ISO specifications, the term atom was used to describe the file format structures, but the structures specified in this specification are called boxes in order to be consistent with current specifications.

The FullBox version is typically started from zero (0), incremented by each revision. The flags field MAY be used to include additional information, but SHOULD normally be set to 0, unless otherwise specified. This specification names each supported box to indicate that a box has a defined structure and a purpose in the OMA DRM Content Format.

There are also placeholders for extensions, with only a generic box reference. These extensions may be defined later, and thus a conforming file parser SHOULD skip any extension boxes it does not understand. In addition, all of the toplevel boxes are derived from the FullBox type, which supports version information. Later specifications MAY increment the version number if changes are made to any common data structures. Later versions of the boxes defined in this specification should remain backwards compatible with the help of this version indicator. A parser conforming to this specification MAY attempt to parse a box which has a greater version number than this specification, but the conformance is limited to the current version (0) of this specification. A conforming parser MUST check the version number field.

6.2.2 File Branding

The ISO base media file format defines a File Type box for identifying the major brand of the media file along with compatible brands. Files conforming to the Discrete Media profile MUST include a File Type box with the DCF brand as the major brand number and compatible brand to make the File Type box fixed length. The DCF major brand is 32 bits (4 octets) wide with the hexadecimal value 0x6F646366 (‘odcf’). This MUST be followed by a four-octet minor version indicator and the DCF brand as the single compatible brand, making the file header a total of 20 octets (160 bits) from the beginning of the file. The minor version field is in network byte order. For files conforming to this version of the DCF specification the version value MUST be 2 (0x00000002). A conforming file parser MUST support the minor version number. It should be noted that future minor versions of the DCF file format might use more compatible brands in the File Type box, changing the file header length. The Figure 1 shows the relationship of the File Type, brand, version and rest of the file content.

Figure 1: DCF file header and body

[image: image1.wmf]odcf

File data

4

4

file size - 20

2

Version

Brand

ftyp

20

4

4

Fixed File Type header

odcf

4

Compatible brand

6.3 Overall structure

The high-level overview of the DCF format is depicted in the Figure 2. The mandatory parts of the format include the file header (File Type box with brand number and minor version fields), immediately followed by an OMA DRM Container box. The OMA DRM Container box MUST include a DCF headers box and a Protected Content box.
The design principles for the format include that the DCF headers box is located at a fixed offset from the beginning of the file, and thus, the OMA DRM Container box MUST be the first box after the file header of 20 octets and the DCF headers box MUST be the first box in the OMA DRM Container.

Figure 2: DCF structure

[image: image2.wmf]O

M

A

D

R

M

C

o

n

t

a

i

n

e

r

20

OMA DRM headers

D

R

M

C

o

n

t

e

n

t

Content Object

Content Object container

2

n

d

O

M

A

D

R

M

C

o

n

t

a

i

n

e

r

(

multipart

)

 other content

containers

20

D

C

F

H

e

a

d

e

r

s

Common

headers

OMA DRM Container Length

-

20

Complete File Size

2

nd OMA DRM

Container Length

Fixed

DCF

header

User

Data

M

u

t

a

b

l

e

D

R

M

I

n

f

o

R

i

g

h

t

s

O

b

j

e

c

t

(

Editable

space

)

RO

,

Trans

-

actionID

OMA

DRM

Hash

Box

OMA

DRM

Hash

 Box

OMA

DRM

Hash

Box

OMA

DRM

Hash

 Box

The table below outlines the mandatory boxes and their order. Additional boxes MAY be added after the mandatory boxes have first appeared. Table 1 shows the nesting order of the mandatory boxes, on the left is the parent and on the right, the child. The first column indicates which fields and boxes MUST be present in DCF (marked as ‘M’) and which boxes MAY appear in the DCF (marked as ‘O’). Note that in the table, the second OMA DRM Container box MUST include all the mandatory nested boxes as well.
Table 1: Logical DCF box structure diagram

	Present in DCF
	Data type/value
	
	
	Nesting level
	Offset from beginning of file
	Field purpose

	M
	Box(‘ftyp’)
	
	
	0
	0
	File header (fixed File Type box, 20 bytes)

	M
	Box(‘odrm’)
	
	
	0
	20
	OMA DRM Container box

	M
	
	Box(‘odhe’)
	
	1
	40
	Discrete Media headers box

	M
	
	
	Box(‘ohdr’)
	2
	53 + ContentTypeLength
	OMA DRM Common Headers box

	O
	
	
	Box(‘udta’)
	2
	53 + ContentTypeLength + Box(‘ohdr’)
	ISO User Data box (optional)

	M
	
	Box(‘odda’)
	
	1
	40 + Box(‘odhe’)
	Content Object box

	O
	Box('odhb')
	
	
	0
	
	OMA DRM Hash Box (optional)

	O
	Box(‘odrm’)
	
	
	0
	
	If multipart DCF, additional OMA DRM Container box

	O
	Box('odhb')
	
	
	0
	
	If multipart DCF, additional OMA DRM Hash Box (optional)

	O
	Box(‘mdri’)
	
	
	0
	
	Mutable DRM information box

	O
	
	Box(‘odtt’)
	
	1
	
	Transaction tracking box

	O
	
	Box(‘odrb’)
	
	1
	
	Rights Object container box

	O
	
	Box(‘skip’)
	
	1
	
	Additional free space

6.3.1 OMA DRM Container Box

aligned(8) class OMADRMContainer extends FullBox('odrm', version, 0) {

OMADRMDiscreteHeaders
ContentHeaders;
// Headers for Discrete Media DCF

OMADRMContentObject
DRMContent;

// Actual encrypted content

Box

Extensions[];

// Extensions, to the end of the box

}

The OMADRMContainer box MUST include a single OMADRMDiscreteHeaders box and a single OMADRMContent box, followed by optional extensions. The Extensions inside the OMADRMContainer box are defined by OMA. The OMA DRM Container box MUST support 64 bit length attributes, i.e. the size attribute MUST be set to 1, and largesize MUST be used for determining the box size.
6.3.2 Discrete Media Headers Box

aligned(8) class OMADRMDiscreteHeaders extends FullBox('odhe', version, flags) {

unsigned int(8)
ContentTypeLength;
// Content Type Length

char

ContentType[];

// Content Type String

OMADRMCommonHeaders
CommonHeaders;

// Common headers (same as with PDCF)

if(flags & 0x000001) {

UserDataBox

UserData;
// ISO User Data Box (optional)

}

}
The Discrete Media headers box includes fields specific to the DCF format and the Common Headers box, followed by an optional user-data box. There MUST be exactly one OMADRMDiscreteHeaders box in a single OMA DRM Container box, as the first box in the container.

The ContentType field indicates the actual media type contained in the OMA DRM container. There MUST be exactly one OMADRMCommonHeaders (see section Fehler! Verweisquelle konnte nicht gefunden werden. for details) box per a single OMADRMDiscreteHeaders box.

Table 2. OMA DRM Discrete Media header fields
	Field name
	Type
	Purpose

	ContentTypeLength
	Unsigned int(8)
	Length of the ContentType field

	ContentType
	ContentTypeLength octets
	The MIME media type of the plaintext data encoded as US-ASCII

	CommonHeaders
	OMADRMCommonHeaders
	OMA DRM Common Headers box as in Fehler! Verweisquelle konnte nicht gefunden werden.

	UserData
	UserDataBox
	User Data as defined in 6.3.3.3 (OPTIONAL)

6.3.2.1 ContentType

The ContentType field MUST indicate the original MIME media type of the Content Object i.e. what content type the result of a successful extraction of the OMADRMContent box represents. The ContentType field is encoded using US-ASCII encoding and MUST NOT include a NULL character.
6.3.2.2 CommonHeaders
The CommonHeaders field MUST be the same box as defined in Fehler! Verweisquelle konnte nicht gefunden werden..
6.3.2.3 User-Data

A user-data box ('udta'), as defined in [ISO14496-12], MAY be present in the discrete headers box. When a DCF includes the UserDataBox, it MUST be added immediately after the OMADRMCommonHeaders box. The presence of the user-data box MUST be indicated with the flag 0x000001 in the containing box header. The user-data box is a container box for informative user data. This user information is formatted as a set of sub-boxes with specific box types that more precisely define their usage. Each of the sub-boxes MAY be included only once unless otherwise noted.

Some of these sub-boxes contain text information, which is metadata, as defined in [TS26.244]. This specification supports a subset of the sub-boxes defined in [TS26.244].

6.3.2.3.1 Title

The Title box (‘titl’) contains a descriptive name for this Content Object, as defined in [TS26.244]. The title is only informative and the device MAY use it e.g. to derive a filename when the DRM protected object is received and stored into a local repository. Other names may be transmitted outside this object (e.g. Content-Disposition header in HTTP) and they may override the name specified in this element.

This box MAY be included zero or more times using different language codes. The syntax for this box is the same as defined in [TS26.244]. A Device MUST support UTF-8 encoded text and MAY support UTF-16 encoded text.
6.3.2.3.2 Description

The Description box (‘dscp’) contains a description of the Content Object, as defined in [TS26.244]. This text is informative and the device MAY display it to the user prior to acquiring Rights for the Content Object.

This box MAY be included zero or more times using different language codes. The syntax for this box is the same as defined in [TS26.244]. A Device MUST support UTF-8 encoded text and MAY support UTF-16 encoded text.
6.3.2.3.3 Copyright

The Copyright box (‘cprt’) contains a copyright declaration of the organization holding the copyright of the Content Object, as defined in [TS26.244]. This text is informative and the device MAY display it to the user prior to acquiring Rights for the Content Object.

This box MAY be included zero or more times using different language codes. The syntax for this box is the same as defined in [TS26.244]. A Device MUST support UTF-8 encoded text and MAY support UTF-16 encoded text.
6.3.2.3.4 Author

The Author box (‘auth’) contains a textual string representing the author of the Content Object as defined in [TS26.244]. This text is informative and the device MAY display it to the user prior to acquiring Rights for the Content Object.

This box MAY be included zero or more times using different language codes. The syntax for this box is the same as defined in [TS26.244]. A Device MUST support UTF-8 encoded text and MAY support UTF-16 encoded text.
6.3.2.3.5 IconURI

aligned(8) class OMADRMIconURI extends FullBox('icnu', version, 0) {

char

IconURI[];

// Icon URI
}
The IconURI box (‘icnu’) contains a URI where an appropriate icon for this content may be retrieved from. The device MAY request the object at this URI, and if an appropriate content is returned, use this as an icon associated with the content to the user.

The value of the IconURI MUST be a URI according to [RFC2396]. It is a string encoded using UTF-8 characters, continuing until the end of the box is reached.

If the DCF is a Multipart DCF, a IconURI MAY be a CID reference [RFC2557] within the current file. In this case, the referenced Content Object MUST be NULL-encrypted.

Table 3: IconURI box

	Field name
	Type
	Purpose

	IconURI
	char[]
	URI for an Icon for the content.

6.3.2.3.6 InfoURL

aligned(8) class OMADRMInfoURL extends FullBox('infu', version, 0) {

char

InfoURL[];

// Info URL
}
The InfoURL box (‘infu’) contains a URL where additional information can be found regarding the Content Object. The device MAY obtain this information prior to using the RightsIssuerURL field or after the Rights Object has been obtained.

The value of the InfoURL MUST be a URL according to [RFC2396] and MUST be an absolute identifier. It is a string encoded using UTF-8 characters, continuing until the end of the box is reached.

Table 4: InfoURL box

	Field name
	Type
	Purpose

	InfoURL
	char[]
	Location of additional information for the content.

6.3.3 Content Object Box

aligned(8) class OMADRMContentObject extends FullBox('odda', version, 0) {

unsigned int(64) OMADRMDataLength;
// Length of the encrypted content

byte
OMADRMData[];

// Encrypted content

}
The Content Object box MUST include only the data length field and data bytes for a single Content Object. Later revisions of this box may include additional fields, so conforming implementations MUST use the OMADRMDataLength field to indicate/determine the amount of actual data bytes. The data length includes the Initialization Vector in the beginning of the encrypted data, as depicted in Figure 3.

Figure 3: Data Length and IV

[image: image3.wmf]Encrypted data

IV

Data length

Padding (if used)

Plaintext length

The Content Object box MUST support the 64 bit size field and thus size MUST be set to 1 and largesize MUST be used for determining actual box size. The OMADRMDataLength field MAY indicate a length of zero, and the Device MAY try to acquire the actual Content Object by using e.g. the ContentURL, if provided.

Table 10: Content Object box

	Field name
	Type
	Purpose

	OMADRMDataLength
	Unsigned int(64)
	Length of the OMADRMData field, in octets

	OMADRMData
	byte []
	Content bytes, as specified by the OMADRMDiscreteHeaders box

6.3.4 OMA DRM Hash Box
The hash value offers a mechanism to the Device to check the content integrity of the DCF. In the case of a Multipart DCF, as the hash value is introduced after every OMA DRM Container, it also offers the possibility to check the content integrity of every DCF part independently (i.e. the integrity of a DCF part can be checked on its own, without having to proof the integrity of the rest of the parts). This mechanism also allows the Rights Issuer to provide integrity information for selected DCF parts.
After every OMA DRM Container an OMA DRM Hash Box MAY follow. In this case, the hash over the whole OMA DRM Container box is calculated and put in the OMA DRM Hash Box immediately after (i.e. hash_algorithm is set to the hash algorithm used and hash_value is set to the computed hash value).
Further on, the 160-bit SHA-1 hash over the concatenation of all hash_values in the OMADRMHashBoxes is introduced in the RO as the <PartialDigestValue>. The concatenation is done sequentially in order of appearance.
In this way, all DCF parts with an OMADRMHashBox are integrity protected by the RO.

The OMADRMHashBox has the following format:

aligned(8) class OMADRMHashBox extends FullBox('odhb', version, 0) {

unsigned int (4) hash_algorithm;

unsigned int (4) reserved;

unsigned int (hash_length) hash_value;

}
The field hash_algorithm indicates, which algorithm is used for the hash calculation (see Table 11). As the hash_value appears in every OMADRMHashBox, it can be useful to truncate the calculated SHA-1 hash for reducing overhead.

Table 11 : field hash_algorithm

	Value of hash_algorithm
	Hash used
	Hash length (in bits)

	0x00
	no hash used; i.e. DCF-part
 is not integrity protected
	0

	0x01
	SHA1
	160

	0x02
	SHA1-96
	96

	0x03
	SHA1-64
	64

	0x04 – 0x0F
	reserved for future use
	-

The field hash_value contains the hash, using the algorithm expressed by hash_algorithm, calculated over the previous OMA DRM Container box. The length of hash_value (i.e. hash_length) depends on the hash algorithm used and is indicated in bits in Table 11.
6.3.5 Extended Boxes

Any additional boxes contained in a single OMA DRM container box have not been defined in this specification. A Content Issuer MAY place additional boxes into the Extensions but Devices MAY ignore these.

6.4 Multiple OMA DRM Containers

A DCF MAY include more than one OMA DRM Container. Each of these containers MUST conform to the definition of the OMA DRM Container, and MUST be placed sequentially, alternating with an optional OMA DRM Hash Box, on the top level (i.e. nesting them is not allowed). The media type of Content Object in each these containers MAY BE different. However, the media type of the first OMA DRM Container is considered to be the default media type of the DCF’s content.

Each OMA DRM Container MUST have a unique ContentID in its headers. This kind of a DCF with multiple Content containers is called a Multipart DCF.

Note that a Multipart DCF is different from a DCF including a Composite Object. A Composite Object (such as MIME multipart, ZIP and so on) is included in a single OMA DRM Container and has only one set of OMA DRM headers associated with it, whereas Multipart DCFs contain multiple OMA DRM Containers each including separate headers associated with the contained content. Multipart DCFs support the association of different rights with individual Media Objects.
6.4.1 Referencing Multipart Objects

As each object in the Multipart DCF has its own ContentID and MAY have a Content-Location header, the CID mechanism from [RFC2557] or the Content-Location mechanism from [RFC2616] MUST be used for referencing objects within the Multipart DCF. The reference MAY then be used in e.g. multimedia presentations to include objects from within the Multipart DCF. Individual Content Objects cannot be referenced from e.g. presentations outside the DCF file.

The ContentID is considered to be internal for the DRM Content Format and DRM Agent, and ContentIDs are referenced from outside the DRM Content Format only to associate it with a Rights Object. Transport protocols MUST define their own mechanisms how to reference to a DRM Content Format file.

6.5 Additional Extensions

Additional extension boxes MAY be added after the first OMA DRM Container (this may be e.g. an OMA DRM Hash Box). A conforming file parser, which does not recognize the additional boxes, MUST ignore them. However, any extensions MUST be designed in a way that the mandatory parts of this specification are always included and the file remains interoperable with conforming implementations.
7. Continuous Media Profile (PDCF)

The Continuous (Packetized) Media profile is targeted for media content like audio and video. Audio and video files MAY be included in a DCF format, but since the PDCF format has been specifically designed for Continuous Media, it provides additional advantages for those media types.

The PDCF format is an instance of the ISO Base Media File Format [ISO14496-12] that supports encrypted media tracks, which MUST use OMA DRM for key management and MUST include the OMA DRM data structures defined in this specification. Examples of ISO Base Media File Format instantations are the 3GP format [TS26.244] and 3G2 format [C.S0050].

The PDCF format MAY be used for downloaded content or for hosting streamable content. OMA DRM specifies common data structures for file formats and additional information on top of streaming services. The OMA DRM 2.0 specifications define key management functionality supporting Continuous Media but services can optimise the protocols and codecs in their architecture. Supporting the PDCF format is OPTIONAL for a Device.

7.1 PDCF File format

This specification defines the OMA DRM key management part of the PDCF format. In the ProtectionSchemeInfoBox, there is space for a “black box” (SchemeInformationBox) describing the key management governing access to the encrypted media content. In a PDCF file, this box MUST be the OMADRMKMSBox.

The basic PDCF file format data structures are defined by the corresponding base file format specification, and this specification only adds OMA DRM specific structures and parameters. Other DRM mechanisms MAY be used in those file formats supporting encrypted media tracks, but not in PDCF files, as explained in this specification.
Figure 4: Example PDCF Structure

[image: image4.wmf]ISO

-

based media file

'

f

t

y

p

'

OMA DRM Common Headers

M

e

d

i

a

D

a

t

a

Encrypted and unencrypted data

time

-

ordered

,

interleaved or packetized

frames

,

hint instructions

OMA DRM protected content

M

o

v

i

e

B

o

x

Video Track

File type

Audio Track

Metadata Track

'

o

d

k

m

'

'

o

h

d

r

'

M

u

t

a

b

l

e

D

R

M

I

n

f

o

r

m

a

t

i

o

n

R

i

g

h

t

s

O

b

j

e

c

t

Rights Object

,

TransactionID

ProtectionSchemeInfoBox

The Figure 4 illustrates how protection information is stored in a PDCF. It is an example where only the video track is protected by placing a ProtectionSchemeInfoBox into the track and specifying the OMA DRM identifier as the key management system. All tracks in a PDCF can be protected with the mechanism.

There is a difference between a streamable PDCF and a non-streamable PDCF. A streamable PDCF MUST conform to the server profile of the file format specification, and the media data is stored as packets. In a non-streamable PDCF, media data is stored as samples. An access unit is a group of one or more samples.

The encryption process changes both packet and sample formats from the original plaintext. The file format may support also other DRM key management systems than OMA DRM 2.0, but the encrypted access unit format is specific to OMA DRM. Thus, in the encryption process, non-streamable PDCFs MUST have the OMADRMAUHeader (see 7.1.4) inserted before each access unit.

7.1.1 DRM Scheme Type

The SchemeTypeBox includes information on which DRM system is being used to manage keys and decryption of the content. As the media file format MAY support also other key management systems than OMA DRM, the key management system in use is indicated by a 4CC in the SchemeType field [ISO14496-12].

Table 12 : PDCF Scheme Type for OMA DRM

	SchemeType
	Value
	Semantics

	OMA DRM
	‘odkm’
	OMA DRM is used for key management in the PDCF.

Table 13: PDCF Scheme Version for OMA DRM

	SchemeVersion
	Value
	Semantics

	OMA DRM 2.0
	0x00000200
	OMA DRM version is 2.0

For PDCF files conforming to this specification, the SchemeType MUST be the 4CC ‘odkm’, and SchemeVersion MUST be 0x00000200 (version 2.0). If OMA DRM key management scheme ‘odkm’ is indicated, then the file is a PDCF and MUST contain at least one OMADRMKMSBox. A PDCF MUST support only OMA DRM for the key management system.

7.1.2 Scheme Information

The SchemeInformationBox (‘schi’) is used to carry DRM key management system specific information, thus it is only a container box. For OMA DRM, this box MUST include exactly one OMADRMKMSBox, as the first sub-box.

7.1.3 OMA DRM Key Management System

There MAY be several instances of the OMADRMKMSBox in a PDCF file, and one can appear either at the movie level or exactly one per each protected track.

aligned(8) class OMADRMKMSBox extends FullBox('odkm', version, 0) {

OMADRMCommonHeaders

Headers;

// Common headers box

OMADRMAUFormatBox

AUFormat;

// optional

}
Table 14 : OMA DRM Headers in PDCF
	Field name
	Type
	Purpose

	Headers
	OMADRMCommonHeaders
	OMA DRM Common headers as defined in Fehler! Verweisquelle konnte nicht gefunden werden..

Contained in the OMADRMKMSBox there MUST be:

· one OMADRMCommonHeaders box. The common headers box is exactly as defined in section Fehler! Verweisquelle konnte nicht gefunden werden.
There MAY be :

· one OMADRMAUFormatBox, as the second sub-box.
7.1.3.1 Common Headers

The Common headers box is exactly the same as defined in section 5.2.1.

7.1.3.2 Access Unit Format

The OMADRMAUFormatBox is used to indicate the format of the headers placed on media access units.

aligned(8) class OMADRMAUFormatBox extends FullBox('odaf', 0, 0) {

bit(1) SelectiveEncryption;

bit(7) reserved;

unsigned int(8) KeyIndicatorLength;

unsigned int(8) IVLength;

}

Where
SelectiveEncryption : Describes the use of Selective Encryption. This bit should be set to 1 in this version of the specification.
IV length: Describes the size of the initialization vector in bytes. This length should be consistent with the algorithms used and indicated in table 1.
Key indicator length: Describes the size of the key indicator in bytes. In this version of the specification, the value of KeyIndicatorLength is 0.

7.1.4 Access Unit Format
The Access Unit Format specifies the format for each access unit protected by OMA DRM. A media file format specifies the layout of the media data as samples, but the encryption/decryption process requires additional information carried in each access unit. The additional information is dependent on the DRM key management used. OMA DRM specifies its own access unit header, which MUST precede the codec-specific sample data in each access unit.

aligned(8) class OMADRMAUHeader {

bit(1)
EncryptedAU;

// Encryption indicator

bit(7)
reserved;

// Must be zero

if (EncryptedAU==1) {

unsigned int(8 * KeyIndicatorLength) KeyIndicator;

unsigned int(8 * IVLength) IV;

}

Table 15: PDCF Access Unit Format

	Field name
	Type
	Purpose

	EncryptedAU
	bit(1)
	Encryption Indicator for the access unit.

	KeyIndicator
	unsigned int(8 * KeyIndicatorLength)
	In this version, the length of the KeyIndicator is 0, so this field can be ignored.

	IV
	unsigned int(8 * IVLength)
	IV data

Table 16: Selective Encryption Indicator values

	SelectiveEncryption
	Value
	Semantics

	None
	0
	Access unit is not encrypted.

	Encrypted
	1
	Access unit is encrypted.

When encrypting PDCF Content, the OMADRMAUHeader information MUST be added to the processed access unit, also if the EncryptionMethod field in the OMADRMCommonHeaders box is set to NULL. A playing Device uses the header information for decryption purposes and is able to extract the actual sample(s).
7.1.5 Integrity protection
 In the case that a PDCF is large, calculating the hash over the entire file can be time-consuming. If it is required to verify the hash before allowing access to the content, the user may have to wait for a long time,especially if the file is to be played while downloading (progressive download). It is therefore possible to divide a PDCF in parts, consisting of some samples or chunks, and calculate a hash over each of these parts. These hashes are stored as OMA Hash Samples in a separate Metadata Track which references the data track. For the integrity of these hashes, a master hash over the concatenation of all the OMA Hash Samples in the Partial Hash Track is computed and placed in the <PartialDigestValue> field in the RO.

This partial hash mechanism allows the Device to start rendering the content and verifying the integrity of the content simultaneously. In this way the user does not have to wait for the hash checking before rendering a content. However, the rendering MUST be stopped as soon as a partial hash turns out to be wrong.

7.1.5.1 Partial Hash Track
The hash information for integrity protection of the PDCF is placed in a Partial Hash Track (‘hash’), which is derived from ISO base file format Metadata Tracks [14496-12:2005 AMD2]..

OMA Hash samples and the corresponding samples in the media track are linked using the following base mechanisms:

· The TrackReferenceBox ‘tref’ of the Partial Hash Track is used to link it to the data track . The reference_type used within ‘tref’ shall be ‘cdsc’ (see ISO/IEC 14496-12, chapter 8.6).

· The time-to-sample tables of both the data track and the hash track are used to describe the relationship of hash samples and data samples. For one hash sample, the hash value is calculated for all data samples with timestamps within the range of the timestamp of the hash sample to the following hash sample. To allow an unambiguous correlation of hash values and data samples, the same timescale shall be used in the MediaHeaderBox ‘mdhd’ of both tracks and the sample boundaries shall be aligned.
Figure 5: Example PDCF Structure

[image: image5]
A PartialHashSampleEntry contains the necessary configuration information for the hash calculation. The PartialHashTrack’s Sample Description (‘stsd’) contains one single sample entry of the following format:

aligned(8) class PartialHashSampleEntry extends MetadataSampleEntry ('hash'){

unsigned int(4)
hash_algorithm;

unsigned int(4)
reserved;

}

The field hash_algorithm indicates, which algorithm is used for the hash calculation (see Table 11).
7.1.5.2 OMA Hash Sample Format
Each sample in the OMA Partial Hash Track will have the following structure:
aligned(8) class OMAHashSample {

unsigned int(hash_length)
hash_value;

}

The field hash_value contains the hash, using the algorithm expressed by the field hash_algorithm, calculated over the corresponding samples. The length of hash_value (= hash_length) depends on the hash algorithm used and is indicated in bits in Table 11

…

…

OMA Hash Sample

OMA Hash Sample

Partial Hash�Track

Media�Track

AU

AU

AU

AU

AU

AU

AU

AU

AU

AU

AU

AU

t

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 15)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20060101-I]

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 5 (of 15)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20060101-I]

_1162188018.vsd
�

Page ��

Title
��

odcf�

File data�

2�

ftyp�

�

4�

4�

file size - 20�

odcf�

�

Version�

4�

�

Brand�

20�

4�

4�

Fixed File Type header�

Compatible brand�

�

_1220958010.vsd
OMA DRM Container

20

OMA DRM headers

DRM Content

Content Object

OMA  DRM  Hash Box

Content Object container

2nd OMA DRM Container

(multipart)
 other content containers

20

DCF Headers

Common headers

OMA DRM Container Length - 20

Complete File Size

2nd OMA DRM Container Length

Fixed  DCF
header

User
Data

Mutable DRM Info

Rights Object

(Editable
space)  RO,Trans-
actionID

OMA  DRM  Hash Box

OMA  DRM  Hash  Box

OMA  DRM  Hash  Box

_1220958431.vsd
'ftyp'

ISO-based media file

Audio Track

Metadata Track

'odkm'

Mutable DRM Information

'ohdr'

Rights Object

Rights Object,
TransactionID

OMA DRM Common Headers

ProtectionSchemeInfoBox

Media Data

Encrypted and unencrypted data
time-ordered, interleaved or packetized frames, hint instructions

OMA DRM protected content

Movie Box

Video Track

File type

_1143479644.vsd

