[image: image2.jpg]Doc# OMA-BAC-DLDRM-2006-0324R07-DRM2.1-TS-BackupROthroughRI
Change Request

Doc# OMA-BAC-DLDRM-2006- 0324R07-DRM2.1-TS-BackupROthroughRI
Change Request

Change Request

	Title:
	Backup RO through RI Changes to DRM Specification
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	DLDRM

	Doc to Change:
	OMA-TS-DRM-DRM-V2_1-20060523-D

	Submission Date:
	11 Sep. 2006

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Pei Dang , dpei@huawei.com, Huawei Technologies Co.,Ltd.
Manxue Guo, guomanxue@chinamobile.com, CMCC
Sulaiman Thompson, sulaiman.thompson@beepscience.com, Beep Science AS

	Replaces:
	N/A

	Attachments:
	OMA-TS-DRM-REL-V2_1-20060523-D_backupthroughRIR07

	
	

1 Reason for Change

Most of the hundred-millions of mobile subscribers in China often like to buy new mobile phones to substitute their old ones, so they need the mobile operators to provide the service of transferring their ROs in old mobile phones to RI , then RI can restore these ROs to his own new mobile phone in convenience. And especially for the stateful ROs, from the perspective of the operator, RI should only restore the current state information to the new mobile phones. So the requirement that Uploading RO through RI and the uploaded RO can only be restored to the Device belonging to the same user with the requesting Device is required.
This CR provides details of the changes needed to the DRM2.1 specifications in order to support this requirement.

2 Impact on Backward Compatibility

V2.0 Devices will not support this requirement.
3 Impact on Other Specifications

See attachments
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

We recommend that the group approves the changes proposed within this CR.
6 Detailed Change Proposal
Change 1:
5 The Rights Object Acquisition Protocol (ROAP) Suite

5.1 Overview
The Rights Object Acquisition Protocol (ROAP) is the common name for a suite of DRM security protocols between a Rights Issuer (RI) and a DRM Agent in a Device. The protocol suite contains a 4-pass protocol for registration of a Device with an RI , two protocols by which the Device requests and acquires Rights Objects (RO) and one protocol by which the Device may request to upload ROs. The 2-pass RO acquisition protocol encompasses request and delivery of an RO whereas the 1-pass RO acquisition protocol is only a delivery of an RO from an RI to a Device (e.g. messaging/push). The ROAP suite also includes 2-pass protocols for Devices joining and leaving a Domain; the Join Domain protocol and the Leave Domain protocol.

For RIs, execution of a ROAP protocol may involve interaction with one or more OCSP responders, in order to retrieve a valid set of OCSP reponses. This interaction is not always needed, and is illustrated in the following flow diagrams with dotted lined.
Change 2:
5.1.6 The 2-pass Rights Object Upload Protocol

The Rights Object Upload protocol is the protocol by which a Device submits a Rights Object upload Request to the RI. Rights Objects MAY only be uploaded to the same RI that originally issued the RO. The protocol assumes the Device has a valid RI context for the associated RI.

[image: image1.emf]Device

Rights

Issuer

1

2

RO UploadRequest

RO UploadResponse

Figure 6: The 2-pass Rights Object Upload Protocol
5.1.8 Rules for Obtaining User Consent

There are various points within the execution of ROAP, the processing of DCFs and the process of installing Domain and Device ROs that a Device may have to obtain user consent, this section defines when explicit user consent is required. Some explicit user interactions may not be necessary if the Device implements a User Confirmation Whitelist that contains the Fully Qualified Domain Name of authorised RIs. Devices MAY implement a User Confirmation Whitelist.

· A Device MUST obtain the user’s consent before attempting to acquire an RO for a DCF when initiating rights acquisition from a DCF i.e. when sending an HTTP GET to the RightsIssuerURL. The DRM Agent MUST NOT attempt to acquire an RO for the DCF if the user does not provide consent. If the DCF includes a Silent header with a specified silent rights URL or a Preview header with method “preview-rights” and a specified preview rights URL, the DRM Agent MUST compare the domain name of the silent or preview URL with the list of authorized domain names already stored by the DRM Agent for that RI. The DRM Agent MUST be capable of extracting a fully qualified domain name from URLs that follow the format defined in [RFC2396]. For the purpose of domain name comparison, the DRM Agent MUST use the mechanism described in Section 1 of [RFC 2965]. If the domain name in the specified URL is in the list of authorized domain names already stored by the DRM Agent for that RI, the DRM Agent MUST attempt to silently acquire the RO for the DCF.

· Before initiating the 4-pass Registration protocol a Device MUST obtain user consent before contacting the RI; however, if the FQDN (Fully Qualified Domain Name) part of the roapURL element of the ROAP Trigger corresponds to an entry in the User Consent Whitelist the Device MAY contact the RI without obtaining explicit user consent.

· For implied ROAP exchanges as specified in section 5.1.7 a Device MUST obtain user consent in order to contact the RI if it does not have a valid RI Context, however, if the FQDN part of the roapURL element of the ROAP Trigger corresponds to an entry in the User Consent Whitelist the Device MAY contact the RI without obtaining explicit user consent. If a valid RI Context has been established the Device SHOULD NOT obtain explicit user consent for any further implied ROAP exchanges.

· If a Device receives a ROAP response with the status equal to “NotRegistered” or “DeviceTimeError” the Device SHOULD NOT obtain explicit user consent before continuing as specified in section 5.3.6.

· If a Device receives a JoinDomain ROAP Trigger for a Domain that it is not a member of i.e. it does not have a corresponding Domain Context, the Device MAY obtain user consent prior to attempting to join the Domain,

· If a Device receives a JoinDomain ROAP Trigger for a Domain that it is a member of, i.e. it has a corresponding Domain Context, but the Domain Generation is greater than that stored in the corresponding Domain Context, the Device SHOULD NOT obtain explicit user consent prior to attempting to upgrade the Domain.

· If a Device receives a LeaveDomain ROAP Trigger for a Domain that it is not a member of i.e. it does not have a corresponding Domain Context, the Device MUST obtain user consent prior to initiating ROAP, however, if the FQDN part of the roapURL element of the ROAP Trigger corresponds to an entry in the User Consent Whitelist the Device MAY initiate ROAP without obtaining explicit user consent.

· If a Device is attempting to install a Device RO and it determines that it does not have a valid RI Context for the RI as identified by the <riID> element in the roap:ROPayload of a Device RO, the Device MUST obtain user consent prior to contacting the RI, this applies to both ROAP and non-ROAP communications e.g. HTTP GET requests (see section 9.3.1.3), however, if the FQDN part of the roapURL element of the ROAP Trigger or the riURL attribute of the roap:protectedRO corresponds to an entry in the User Consent Whitelist the Device MAY contact the RI without obtaining explicit user consent.

· If a Device is attempting to install a Domain RO and it determines that it is not a member of the Domain for which the Domain RO is issued, i.e. it does not have a corresponding Domain Context, the Device MUST obtain user consent prior to attempting to join the Domain, this applies to both ROAP and non-ROAP communications e.g. HTTP GET requests (see section 8.7.2.1), however, if the FQDN part of the roapURL element of the ROAP Trigger or the riURL attribute of the roap:protectedRO corresponds to an entry in the User Consent Whitelist the Device MAY attempt to join the Domain without obtaining explicit user consent.

· If a Device is attempting to install a Domain RO and it determines that it is a member of the Domain for which the Domain RO is issued, but the Domain Generation is greater than that stored in the corresponding Domain Context, the Device SHOULD NOT obtain explicit user consent prior to attempting to upgrade the Domain, this applies to both ROAP and non-ROAP communications e.g. HTTP GET requests (see section 8.7.2.1).
· Before initiating the 2-pass RO Upload protocol the Device MUST obtain user consent. RO upload is intended to be a user initiated event.
The means for provisioning and management of the User Consent Whitelist implemented for the purpose of determining if explicit user confirmation is required are outside the scope of this specification.

For the purpose of comparing FQDNs and User Consent Whitelist entries, the DRM Agent MUST use the mechanism described in Section 1 of [RFC 2965].
Change 3:
5.3.6 The Status type

The Status simple type enumerates all possible error messages.

<simpleType name="Status">

<restriction base="string">

<enumeration value="Success"/>

<enumeration value=”Abort”/>

<enumeration value="NotSupported"/>

<enumeration value="AccessDenied"/>

<enumeration value="NotFound"/>

<enumeration value="MalformedRequest"/>

<enumeration value="UnknownCriticalExtension"/>

<enumeration value="UnsupportedVersion"/>

<enumeration value="UnsupportedAlgorithm"/>

<enumeration value="NoCertificateChain"/>

<enumeration value="InvalidCertificateChain"/>

<enumeration value="TrustedRootCertificateNotPresent"/>

 <enumeration value=”SignatureError”/>

<enumeration value="DeviceTimeError"/>

<enumeration value="NotRegistered"/>

<enumeration value="InvalidDCFHash"/>

<enumeration value="InvalidDomain"/>

<enumeration value="DomainFull"/>

<enumeration value="DomainAccessDenied"/>

<enumeration value=”RightsExpired”/>

<enumeration value="UnknownUploadedRO"/>
 <enumeration value="InvalidUploadedRO"/>

</restriction>

</simpleType>

Upon transmission or receipt of a message for which Status is not "Success", the default behaviour, unless explicitly stated otherwise below, is that both the RI and the Device SHALL immediately close the connection and terminate the protocol. RI systems and Devices are required to delete any session-identifiers, nonces, keys, and/or secrets associated with a failed run of the ROAP protocol.

When possible, the Device SHOULD present an appropriate error message to the user, using the value of the Status attribute, the errorMessage attribute (if present) and/or the errorRedirectURL (if present). See section 5.3.5.

These error messages are valid in all ROAP-Response messages unless explicitly stated otherwise.

Abort indicates that the RI rejected the Device’s request for unspecified reasons.
NotSupported indicates that the Device made a request for a feature currently not supported by the RI.

AccessDenied indicates that the Device is not authorized to contact this RI.
NotFound indicates that the requested object was not found. This error is only valid in the ROAP-ROResponse message.

MalformedRequest indicates that the RI failed to parse the Device's request.

UnknownCriticalExtension indicates that a critical ROAP extension used by the Device was not supported or recognized by the RI.

UnsupportedVersion indicates that the Device used a ROAP protocol version not supported by the RI. This error is only valid in the ROAP-RIHello message.

UnsupportedAlgorithm indicates that the Device suggested algorithms that are not supported by the RI (this error should not occur as long as all Devices and all RIs implement the mandatory algorithms, since any negotiation will successfully fall back on these). This error is only valid in the ROAP-RIHello message.

NoCertificateChain indicates that the RI could not verify the signature on a Device request due to not having access to the Device's certificate chain. This error is only valid in the following messages: ROAP-RegistrationResponse, ROAP-ROResponse, ROAP-JoinDomainResponse, ROAP-LeaveDomainResponse and ROAP-ROUploadResponse .

InvalidCertificateChain indicates that the RI could not verify the signature on a Device request due to the certificate chain being invalid in some way (other than the absence of a trusted root certificate which could be used to verify the chain). This error is only valid in the following messages: ROAP-RegistrationResponse, ROAP-ROResponse, ROAP-JoinDomainResponse, ROAP-LeaveDomainResponse and ROAP-ROUploadResponse.

TrustedRootCertificateNotPresent indicates that the RI could not verify the signature on a Device request due to the absence of a trusted root certificate which could be used to verify the chain. This error is only valid in the following messages: ROAP-RegistrationResponse, ROAP-ROResponse, ROAP-JoinDomainResponse, ROAP-LeaveDomainResponse and ROAP-ROUploadResponse.

SignatureError indicates that the RI could not verify the Device's signature. This error is only valid in the following messages: ROAP-RegistrationResponse, ROAP-ROResponse, ROAP-JoinDomainResponse, ROAP-LeaveDomainResponse and ROAP-ROUploadResponse.

DeviceTimeError indicates that a Device request was invalid due to the Device’s DRM Time being inaccurate as assessed by the Rights Issuer. This error is only valid in the following messages: ROAP-ROResponse, ROAP-JoinDomainResponse, ROAP-LeaveDomainResponse and ROAP-ROUploadResponse. The Device SHOULD NOT perform the default error handling. Instead, the Device SHOULD initiate the 4-pass Registration protocol, using the same ROAP URL as from the ROAP Request that resulted in the error response. See also section 5.1.7. Upon successful completion of the 4-pass Registration protocol the Device SHOULD create and send a new instance of the original request (ROAP-RORequest, ROAP-JoinDomainRequest ROAP-LeaveDomainRequest or ROAP-ROUploadRequest) including the Device’s updated DRM Time, with all other parameters remaining the same as for the original request. If the Device is unable to successfully re-register with the RI then it SHOULD NOT resend the original request. If the Response message received after the resend of the original request contains a status attribute equal to “DeviceTimeError” or “NotRegistered”, the Device MUST handle this repeated error using the default error handling and MUST NOT again start a 4-pass Registration. The Device may have to obtain user consent to contact the RI, section 5.1.8 defines when explicit user consent is required.

NotRegistered indicates that the Device tried to contact an RI which does not have any registration information stored for the Device. This error is only valid in the following messages: ROAP-ROResponse, ROAP-JoinDomainResponse, ROAP-LeaveDomainResponse and ROAP-ROUploadResponse. The Device SHOULD NOT perform the default error handling. Instead, the Device SHOULD initiate the 4-pass Registration protocol, using the same ROAP URL as from the ROAP Request that resulted in the error response. See also section 5.1.7. Upon successful completion of the 4-pass Registration protocol the Device SHOULD create and send a new instance of the original request (ROAP-RORequest, ROAP-JoinDomainRequest ROAP-LeaveDomainRequest or ROAP-ROUploadRequest) including the Device’s updated DRM Time, with all other parameters remaining the same as for the original request. If the Response message received after the resend of the original request contains a status attribute equal to “DeviceTimeError” or “NotRegistered”, the Device MUST handle this repeated error using the default error handling and MUST NOT again start a 4-pass Registration.The Device may have to obtain user consent to contact the RI, section 5.1.8 defines when explicit user consent is required.

InvalidDCFHash is sent when the RI detects an incorrect DCF hash value in a ROAP-RORequest message. This error is only valid in the ROAP- ROResponse message.

InvalidDomain indicates that the request was invalid due to an unrecognized Domain Identifier. This error is only valid in the following messages: ROAP-ROResponse, ROAP-JoinDomainResponse, and ROAP-LeaveDomainResponse.

DomainFull indicates that no more Devices are allowed to join the Domain. This error is only valid in the ROAP-JoinDomainResponse message.

DomainAccessDenied indicates that the Rights Issuer does not allow the Device access to the Domain, or the Device identifier can not be authorized without more information. This error is only valid in the ROAP-JoinDomainResponse message.

RightsExpired indicates that the requested rights are no longer available (for this device). It is only valid in a ROAP-RO-Response message. This response code indicates to the device that it SHOULD NOT make further attempts to acquire these rights. If the session was initiated by a HTTP GET to a DCF Preview rights URL or a DCF Silent rights URL the DRM Agent SHOULD NOT attempt further requests to the initiating URL (for the current media object). If the session was initiated by a ROAP Trigger the trigger SHOULD be discarded. The results of any implicit ROAP transactions MUST remain in effect. The device MAY ignore this status code.
UnknownUploadedRO indicates that at least one RO being uploaded was not issued by this RI. This error is only valid in the ROAP-ROUploadResponse message.

InvalidUploadedRO indicates that at least one RO being uploaded is not eligible for backup.. For example the RO may be an expired RO , or a Domain RO. This error is only valid in the ROAP-ROUploadResponse message.
Change 4:
5.3.9 The Rights Object Payload type

Values of the ROPayload type carries (protected) rights and wrapped keys that can be used to decrypt encrypted portions of the rights.

<!-- Rights Object Definitions -->

<complexType name="ROPayload">

 <sequence>

 <element name="riID" type="roap:Identifier"/>

 <element name="rights" type="o-ex:rightsType"/>

 <element name="signature" type="ds:SignatureType" minOccurs="0"/>

 <element name="timeStamp" type="dateTime" minOccurs="0"/>

 <element name="encKey" type="xenc:EncryptedKeyType"/>

 </sequence>

 <attribute name="version" type="roap:Version" use="required" />

 <attribute name="id" type="ID" use="required" />

 <attribute name="stateful" type="boolean"/>

 <attribute name="domainRO" type="boolean"/>

 <attribute name="riURL" type="anyURI"/>

</complexType>

The <riID> element is of type roap:Identifier and SHALL identify the issuing RI.

The <rights> element is of type o-ex:rightsType and MUST be conformant with [DRMREL-v2]. The o-ex:id attribute of this type SHALL be present.

The <signature> element is of type ds:SignatureType from [XML-DSIG] and MUST be present when the RO is a Domain RO. The URI attribute of a <ds:Reference> element of the <ds:SignedInfo> child element of the <signature> SHALL reference the <rights> element by having the same value as the o-ex:id attribute of the <rights> element (i.e., when present, the signature SHALL be made at least over the <rights> element). In compliance to the rules of canonicalization specified in Section 5.3.3, the <ds:Reference> element MUST contain a <ds:Transforms> element, that contains a single <ds:Transform> element that signals the use of the exclusive canonicalization algorithm without comments. The <ds:KeyInfo> child element of the <signature> element SHALL identify the signing key. The Device MUST verify that the signing key is associated with the RI identified in the <riID> element.

The <timeStamp> value MUST be given in Universal Coordinated Time (UTC). The time-stamp provides replay protection, see further in section 9.4. RIs MUST include a timeStamp for all Device ROs.
Change 5:
5.4.5 RO Upload
5.4.5.1 RO Upload Request

The ROAP-ROUploadRequest message is sent from a Device to an RI to upload Rights Objects. If the RO being uploaded is stateful the Device MUST report the current state information to the RI. Before sending this message, the Device MUST disable the ROs being uploaded..

5.4.5.1.1 Message description
	ROAP-RO UploadRequest

	Parameter
	Mandatory/Optional

	Device ID
	M

	RI ID
	M

	Device Nonce
	M

	Request Time
	M

	Uploaded ROs
	O

	Certificate Chain
	O

	Extensions
	O

	Signature
	M

Table 11: RO Network Backup Request Message Parameters

Device ID identifies the requesting Device. The value MUST equal the stored Device ID as specified in Section 5.4.2.4.1.

RI ID identifies the authorizing RI. The value MUST equal the stored RI ID as specified in Section 5.4.2.4.1.
Device Nonce is a nonce chosen by the Device. Nonces are generated and used in this message as specified in section 5.3.10.

Request Time is the current DRM Time, as seen by the Device.
Uploaded ROs lists the ROs being uploaded and their current state information.
Certificate Chain: This parameter is sent unless Certificate Caching is indicated in the RI Context with this RI. When present, the parameter value shall be as described for the Certificate Chain parameter in the ROAP-RegistrationRequest message.

Extensions: The following extensions are defined for the ROAP-ROUploadRequest message:
Peer Key Identifier: An identifier for an RI public key stored in the Device. If the identifier matches the stored RI ID as specified in Section 5.4.2.4.1 or if it is empty, it means the Device has already stored the RI ID and the corresponding RI certificate chain, and the RI need not send down its certificate chain in its response message.

No OCSP Response: Presence of this extension indicates to the RI that there is no need to send any OCSP responses since the Device has cached a complete set of valid OCSP responses for this RI.

OCSP Responder Key Identifier: This extension identifies an OCSP responder key stored in the Device. If the identifier matches the key in the certificate used by the RI's OCSP responder, the RI MAY remove the OCSP Responder certificate chain from the OCSP response before providing the OCSP response to the Device.

The Device MUST send the Peer Key Identifier extension if, and only if, it has stored the RI public key corresponding to the stored RI ID as specified in Section 5.4.2.4.1. The Device MUST send the No OCSP Response extension if, and only if, it has a complete set of valid OCSP responses for the RI’s certificate chain. The Device MUST send the OCSP Responder Key Identifier extension if, and only if, it has stored an OCSP Responder key for this RI.

Signature is a signature on this message (besides the Signature element itself). The signature method is as follows:

The message except the Signature element is canonicalized according to Section 5.3.3.

The result of the canonicalization, d, is considered as input to the signature operation.

The RI MUST verify the signature on the ROAP-ROUploadRequest message.
5.4.5.1.2 Message syntax

The <roUploadRequest> element specifies the ROAP-ROUploadRequest message. It has complex type roap:ROUploadRequest, which extends the basic roap:Request type.

<element name="roUploadRequest" type="roap:ROUploadRequest"/>

<complexType name="ROUploadRequest">

 <annotation>

 <documentation xml:lang="en">

 Message sent from Device to RI to upload ROs.

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Request">

 <sequence>

 <element name="deviceID" type="roap:Identifier"/>

 <element name="riID" type="roap:Identifier"/>
 <element name="nonce" type="roap:Nonce"/>

 <element name="time" type="dateTime"/>

 <element name="UploadRO">
 <complexType>
 <sequence maxOccurs="unbounded">
 <element name="roID" type="ID"/>
 <element name="stateInfo" type="o-ex:constraintType" minOccurs="0" maxOccurs="unbounded"/>

 </ sequence >
 </complexType>

 </element>
 <element name="certificateChain" type="roap:CertificateChain" minOccurs="0"/>
 <element name="extensions" type="roap:Extensions" minOccurs="0"/>
 <element name="signature" type="base64Binary"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

The <roID> element identifies the original RO issued by the RI. The value equals the “id” attribute of the <ro> element in the <protectedRO> element issued by the RI.
The <stateInfo> element is of type o-ex:constraintType and used to express the current state information of the RO to be uploaded . The <stateInfo> MUST be repeated for every <constraint> in the original <ro> that contains an ”id” attribute. Only <constraint> elements with an “id” attribute may be reported.
5.4.5.2 RO Upload Response

The ROAP-ROUploadResponse message is sent from the RI to the Device in response to a ROAP-ROUploadRequest message. This message is the second message in the 2-pass protocol to upload RO.

5.4.5.2.1 Message description
	Parameter
	ROAP-RO UploadResponse

	Status
	M

	Device ID
	M

	RI ID
	M

	Device Nonce
	M

	Certificate chain
	O

	OCSP Response
	O

	Extensions
	O

	Signature
	M

Table 12: RO UploadResponse Message Parameters

Status indicates if the request was successfully handled or not. In the latter case an error code as specified in Section 5.3.6 is sent.

Device ID identifies the requesting Device. The value returned here MUST equal the Device ID sent by the Device in the ROAP-ROUploadRequest message that triggered this response.

RI ID identifies the RI. The value returned here MUST equal the RI ID sent by the Device in the preceding ROAP-ROUploadRequest message.
Device Nonce: This parameter MUST have the same value as the corresponding parameter value in the preceding ROAP-ROUploadRequest. If the Device Nonce is incorrect, the ROAP-RO UploadResponse processing will fail and the Device MUST discard the received RO UploadResponse PDU.

Certificate Chain: This parameter MUST be present unless a preceding ROAP-ROUploadRequest message contained the Peer Key Identifier extension, the extension was not ignored by the RI, and its value identified the RI's current key. When present, the value of a Certificate Chain parameter shall be as described for the Certificate Chain parameter of the ROAP-ROUploadResponse message.

The Device SHOULD check if the RI certificate chain received in this parameter corresponds to stored certificate verification data for this RI. If so, the Device need not verify the RI certificate chain again, otherwise the Device MUST verify the RI certificate chain. If an RI certificate is received that is not in the stored certificate verification data for this RI, and if the expiry time of the received RI certificate is later than the RI Context for this RI, and the certificate status of the RI certificate as indicated in the OCSP response is "good," then the Device MUST verify the complete chain and SHOULD replace the stored RI certificate verification data with the received RI certificate data and set the RI context expiry time to that of the received RI certificate expiry time.
OCSP Response: This parameter, when present, SHALL be a complete set of valid OCSP responses for the RI's certificate chain. The Device MUST NOT fail due to the presence of more than one OCSP response element. This parameter will not be sent if the Device sent the Extension No OCSP Response in the preceding ROAP-ROUploadRequest (and the RI did not ignore that extension). For the processing of this parameter, see further Section 6.

Extensions: The current extensions are defined for ROAP-ROUploadResponse message.
Fail: The presence of this extension indicates that one or more ROs failed to be uploaded. If present the extension will list one or more RO IDs from the original RO Upload Request which failed to upload. This extension only exist when the status equals to "InvalidUploadedRO" or "UnknownUploadedRO".
Signature is a signature on this message (besides the Signature element itself). The signature method is as follows:

The message except the Signature element is canonicalized according to Section 5.3.3.

The result of the canonicalization, d, is considered as input to the signature operation

The Device MUST verify this signature. A Device MUST NOT accept the RO Upload protocol as successful unless the signature verifies, the RI certificate chain has been successfully verified, and the OCSP response indicates that the RI certificate status is good. If the RO Upload protocol failed the Device MUST enable the ROs to be uploaded, otherwise the Device MUST delete the ROs to be uploaded.

5.4.5.2.2 Message syntax

The <roUploadResponse> element specifies the ROAP-ROUploadResponse message. It has complex type roap:ROUploadResponse, which extends the basic roap:Response type.

<element name="roUploadResponse" type="roap:ROUploadResponse"/>

<complexType name="ROUploadResponse">

 <annotation>

 <documentation xml:lang="en">

 Message sent from RI to Device in response to a ROUploadRequest.

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Response">

 <sequence minOccurs="0">

 <element name="deviceID" type="roap:Identifier"/>

 <element name="riID" type="roap:Identifier"/>

 <element name="nonce" type="roap:Nonce"/>
 <element name="certificateChain" type="roap:CertificateChain" minOccurs="0"/>

 <element name="ocspResponse" type="base64Binary" minOccurs="0" maxOccurs="unbounded"/>

 <element name="extensions" type="roap:Extensions" minOccurs="0"/>

 <element name="signature" type="base64Binary"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>
<complexType name="Fail">

 <complexContent>

 <extension base="roap:Extension"/>

 <sequence minOccurs=”0”>

 <element name="roID" type="ID" minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>
Change 6:
9.4. Replay Protection
9.4.1 Introduction

Rights Objects containing permissions with constraint elements such as <count>, <interval>, or <accumulated> requires the current state of the usage permissions to be maintained in the DRM Agent. In contrast with stateless rights, there has to be a mechanism to protect against an attacker replaying the reception of such stateful ROs to the Device, which could cause an unauthorized extension of the permissions. But for those stateless ROs which have been uploaded to RI (see section 11), the Device MUST remove them and can’t consume them any longer. So there also has to be a mechanism to protect against an attacker replaying the reception of such stateless ROs to the Device
In certain variants of RO acquisition described in this specification such a replay protection mechanism is inherent in the protocol. In particular, the 2-pass RO Acquisition protocol contains a Device nonce, sent in the RO request and sent back and signed in the RO response. The DRM Agent compares an incoming correctly signed RO Response with the nonce in a sent RO Request and unless there is a match, the RO is rejected and replay of the RO Response is not possible. RI authentication provided by the 2-pass protocol can thus be used to control replay.

In contrast, the 1-pass RO Acquisition protocol or the sharing of ROs in a Domain does not offer a challenge/response mechanism. 1-pass ROAP offers a limited replay protection through the time-based RI authentication, but it is not optimal in that the synchronization between RI and Device cannot be guaranteed.

To accommodate for this, a local replay cache will be kept in the Device. Logically, the replay cache is a table where each entry contains a Globally Unique RO Identity (GUID) for a received, stateful RO, and the RI Time Stamp for the RO. The GUID MUST be unique for each instance of the RO (or else a user who legitimately twice in a row buys the same stateful RO could be seen as mounting a replay attack).

When stateful ROs with GUIDs and time stamps are received, they will be compared with previously received stateful ROs in the replay cache. If there is a match with an existing entry, the newly received RO will not be installed. When the replay cache is full, ROs with newer (later) time stamps replace entries with older time stamps and ROs with time stamps older than the oldest time stamp in the cache are rejected. This mechanism provides a secure replay protection. Appropriate sizing of the replay cache minimizes the risk that a long delivery time of one stateful RO in combination with mass distribution of other stateful ROs with later time stamps causes the delayed RO to be rejected (in situations of mass distribution of stateful ROs, the RI could use the 2-pass ROAP protocol since that has an inherent replay protection mechanism that does not interfere with the mechanism described here.).

A limitation of the method described above is that sharing of Domain ROs with very old time stamps may be affected by the finiteness of the replay cache. A second mechanism is therefore included to eliminate this limitation. This second mechanism defines a separate replay cache for ROs with a GUID, but without a timestamp. GUIDs of new ROs without timestamps will then be compared to GUIDs in the GUID-only replay cache. If there is a match, the RO is rejected; otherwise it is accepted and the replay cache is updated. If the GUID-only replay cache is full, a previous entry is removed to give room for the GUID of the new RO. This mechanism does not limit sharing of ROs but is possible to circumvent, since it is possible to replay stateful ROs with GUIDs that has been deleted from the cache.

The reason for having separate replay caches is that the secure mechanism based on timestamps and GUIDs should not be affected by the latter, more limited, replay protection mechanism. A separate replay cache for GUID-only entries still provides a certain degree of protection for corresponding ROs, allowing RIs to balance security interests against the risk of unintentional rejection of "old" Domain ROs.
To provide replay protection for stateless Rights Objects after they have been uploaded to an RI, Devices MUST maintain a separate local replay cache for stateless ROs. Logically, the replay cache is a table where each entry contains a Globally Unique RO Identity (GUID) for an uploaded stateless RO, and the RI Time Stamp for the RO. The GUID MUST be unique for each instance of the RO.
9.4.2 Replay Protection Mechanisms

This section defines two mechanisms enabling protection against Device RO as well as Domain RO replay attacks.

The OMA DRM Release 2 replay protection mechanisms are intended to support the use case of stateful Device ROs or Domain ROs that are delivered without a prior RO Request, i.e. in the 1-pass ROAP, or Domain ROs delivered outside of ROAP. In the case of Domain ROs, the statefulness is per Device in the Domain. E.g. if a Domain RO with a count 3 constraint is successfully shared between Devices, each Device is allowed 3 uses. It is the original Domain RO that SHALL be shared between Devices within a Domain. Any state information about how many times a constraint has been consumed, SHALL NOT be shared between the Devices.

The roap:ROPayload type contains two components for stateful RO replay protection management: the Globally Unique ID attribute id and the RI Time Stamp element <timeStamp>. In addition, the RI indicates that an RO is stateful by setting the stateful attribute to True. The <timeStamp> element is optional for Domain ROs and provides the RI with two different methods for replay protection: Replay protection with and without RI-assigned timestamps (RITS). These methods are described in the following.

A Device MUST have three (logical) replay caches: one with <GUID, RITS> entries for stateful ROs with GUIDs and RITS, one with <GUID> entries for stateful ROs with GUIDs only, and one with <GUID, RITS> entries for such stateless ROs that have been uploaded to RI. The Device MUST protect the integrity of its replay caches. It is RECOMMENDED that each replay cache for stateful RO is able to store at least 100 entries, but the size of the replay cache for stateless RO should be as large as is practical .

9.4.2.1 Stateful ROs with RI Time Stamps

This replay protection mechanism is applicable to both Device ROs and Domain ROs and is secure, i.e. it can guarantee protection against replay attacks. However, in the Domain case, subsequent sharing may be restricted by the replay protection mechanism and cannot be guaranteed. In particular, a receiving Device may reject Domain ROs that are shared long after they have been received from the RI. The mechanism assumes at least loosely synchronized time across the set of RIs and OCSP responders that may be accessed by a Device.

When receiving a stateful RO with a <timestamp> element (RITS), the Device MUST perform the following procedure:

a) If the RITS is more than 24 hours in the future when compared to the Device’s DRM Time then the Device MUST reject the RO. The user MUST be informed of the event and of the present Device DRM Time, and SHOULD be asked if the Device’s DRM Time is correct. If the DRM Time is not correct the Device SHOULD initiate Device DRM Time synchronization by re-registering with the RI using the Registration protocol.

b) Failing a), if the GUID for the RO is already in the <GUID, RITS> replay cache then the Device MUST reject the RO.

c) Failing b), if the <GUID, RITS> replay cache is not full, the Device MUST accept the RO and insert the ROs GUID and RITS values as an entry in the replay cache. Note: The GUID value is the id attribute of the roap:ROPayload value.

d) If the replay cache is full, and the RITS is before the earliest RI Time Stamp in the replay cache the Device MUST reject the RO.

e) Otherwise – if the replay cache is full, and the RITS is after the earliest RI Time Stamp in the replay cache the Device MUST accept the RO and insert the corresponding <GUID, RITS> values as an entry in the replay cache, by deleting the cache entry with the earliest RITS value.

9.4.2.2 Stateful ROs without RI Time Stamps

This replay protection mechanism is intended for Domain ROs. It does not restrict subsequent sharing, installation or usage of Domain ROs but it is less secure than the mechanism in Section 9.4.2.1 and it does not guarantee replay protection. Hence, if protection from replay of a stateful RO is important, the RI should include an RI Time Stamp in the RO payload. If indefinite sharing of stateful Domain ROs in a Domain is important and it is acceptable that, with some effort from an attacker, this stateful RO may be replayed, then the RI should not include an RI Time Stamp in the RO payload.

When receiving a stateful RO without a <timestamp> element, the Device MUST perform the following procedure:

a) If the RO's GUID is in the GUID-only replay cache then the Device MUST reject the RO.

b) Failing a), if the GUID-only replay cache is not full, the Device MUST accept the RO and insert the RO's GUID value as an entry in the cache.

c) Otherwise – if the GUID-only replay cache is full, the Device MUST accept the RO and insert the RO's GUID value as an entry in the GUID-only replay cache by deleting an existing entry in the cache. The Device MAY use FIFO in the GUID-only replay cache or MAY select a random entry for deletion.

9.4.2.3 Stateless ROs uploaded to RI
This replay protection mechanism is mainly intended for such stateless ROs that have been uploaded to RI. It can guarantee protection against replay attacks. In order to support replay protection of such stateless RO, the RI SHOULD include an RI Time Stamp in the RO payload of all stateless Device ROs..
When receiving a stateless RO with a <timestamp> element (RITS), the Device MUST perform the following procedure:

a) If the GUID for the RO is already in the <GUID, RITS> replay cache then the Device MUST reject the RO.

b) Failing a), if the <GUID, RITS> replay cache is not full, the Device MUST accept the RO
c) Failing b),If the replay cache is full, and the RITS is before the earliest RI Time Stamp in the replay cache the Device MUST reject the RO.

d) Otherwise – if the replay cache is full, and the RITS is after the earliest RI Time Stamp in the replay cache the Device MUST accept the RO .
When uploading a stateless RO to RI successfully, the Device MUST perform the following procedure:

a) If the replay cache is not full, the Device MUST insert the corresponding <GUID, RITS> values as an entry in the replay cache.

b) Otherwise – if the replay cache is full, the Device MUST insert the corresponding <GUID, RITS> values as an entry in the replay cache, by deleting the cache entry with the earliest RITS value. However, if the RITS of the RO to be inserted is before the earliest RITS value in the replay cache, there’s no need to insert it.
Change 7:
11 Uploading RO

The Rights Object Upload capability is Optional for both Devices and Rights Issuers. During the RO Upload the device sends to the RI information about one or more rights objects (identified by the ROID) including the current state information. After successfully uploading an RO the RI is able to re-issue the RO to a new device belonging to the same user. If a Device supports Rights Object Upload it MUST provide a means for the user to initiate the RO upload. For example the device may offer a menu option to upload one or more rights objects to an RI. If an RI supports Rights Object Upload it MUST record all issued device ROs.
Domain ROs MUST NOT be Uploaded. Domains ROs should be distributed to new devices using typical domain RO distribution mechanisms (e.g. embedded in DCF). Domain RO upload is also disabled as according to the domain RO usage rules all devices in a domain are given access according to the RO's "original" state. Therefore if a user was to upload a partially consumed domain RO then the new device would lose some of the state information.

11.1 Sending ROUploadRequest

The DRM Agent SHALL initiate the ROAP-ROUploadRequest to the riURL in the RI Context when the user wants to upload RO(s) to the RI. Before sending the ROAP-ROUploadRequest, the DRM Agent MUST disable the RO(s) to be uploaded. And the DRM Agent MUST send the current state information of the RO to be uploaded to the RI if the RO is stateful.

11.2 Processing ROUploadRequest

If the RI receives a ROAP-ROUploadRequest message then the RI MUST respond with an appropriate ROAP-ROUplodResponse message; or if RO Upload is not supported the RI MUST respond with the NotSupported ROAP Status code.
If the RI receives a ROAP-ROUploadRequest message it MUST first check that it has a valid Device Context with the Device sending the message by checking the value of <deviceID> element of the ROAP-ROUploadRequest message.
If the RI does not have a valid Device Context the RI MUST return a ROAP-ROUploadResponse message with the value of the <status> element equal to NotRegistered.
If the device ID is valid, the RI must validate the signature on the ROAP-ROUploadRequest message . If the signature does not match, the RI MUST return a ROAP-ROUploadResponse message with the status set to an appropriate value i.e. ‘SignatureError’,’ NoCertificateChain’, ‘InvalidCertificateChain’,’TrustedRootCertificateNotPresent’
If all the verification above are valid, then the RI should verify that the ROID to be uploaded is issued by itself . If it is not , the RI MUST return a ROAP-ROUploadResponse message with the value of the <status> element equal to UnknownUploadedRO.
If all the verification are valid, then the RI should save the current state information for the uploaded ROs..
11.3 Processing ROUploadResponse

If the DRM Agent receives a ROAP-ROUploadResponse message it MUST check the value of the <DeviceNonce> element,. If the device nonce value does not match the value of the <nonce> element sent in the preceding ROAP-ROUploadRequest message ,the Device MUST:

· Discard the ROAP-ROUploadResponse,
Otherwise the Device MUST next check the signature of the ROAP-ROUploadResponse message. If the signature is wrong, the Device MUST Discard the ROAP-ROUploadResponse and reenable all of the ROs which were uploaded.,
If the signature is correct, the DRM Agent MUST next check the value of the <status> element.
· If the value of the <status> element is ‘Success’ the DRM Agent can consider the RO(s) have been successfully uploaded and MUST remove the local RO(s) which have been successfully uploaded to the RI. In order to avoid replay attack as specified in section 9.4, the Device should keep track of the stateless RO’s uploading history as specified in section 9.4.3.
· If the value of the <status> element is ‘UnknownUploadedRO’ or ‘InvalidUploadedRO’ the DRM Agent MUST enable the RO(s) whose ROID has been indicated in the <extension> element of the ROAP-ROUploadResponse.
· If the value of the <status> element is any other value the DRM MUST reenable the ROs which were attempted to be uploaded.

11.4 Restoring uploaded RO
When the user wants to restore the ROs, the RI SHOULD verify first that the user of the restoring Device is the same user with the uploading Device. The method of user verification is beyond the scope of this specification. After this user verification is completed successfully, the RI can send ROAP-ROAcquisition trigger to the restoring Device. Then the RI can issue new RO(s) to the restoring Device according to the information of the ROID and state saved. The state information saved will be used as the original state information for the new RO(s) . After issuing the new RO(s) successfully, the RI SHOULD delete the uploaded RO info, and record only the information for the newly issued RO.
Change 8
Appendix F. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [IOPPROC].

F.6 Client Conformance Requirements

The table below enumerates the client conformance requirements on all Devices – Connected, as well as Unconnected Devices. The Enabler Release Definition for DRM V2.0 [DRMERELD-v2] defines the mandatory features to be supported by the Connected and Unconnected Devices. For further information, please see section 8 of [DRMERELD-v2].

	Item
	Function
	Reference
	Status
	Requirements

	DRM-CLI-CMN-001
	ROAP Schema parsing and processing support.
	5.3
	M
	

	DRM-CLI-CMN-002
	General XML Schema Requirements
	5.3.2
	M
	

	DRM-CLI-CMN-003
	Nonce values in ROAP messages
	5.3.10
	M
	

	DRM-CLI-CMN-004
	Processing and responding to status codes during ROAP protocol runs
	5.3.6,5.4.2
	M
	

	DRM-CLI-CMN-005
	ROAP Trigger parsing and processing
	5.2.1
	M
	

	DRM-CLI-CMN-006
	ProtectedRO support
	5.3.8,5.3.9
	M
	

	DRM-CLI-CMN-007
	XML Canonicalization
	5.3.9,5.4
	M
	

	DRM-CLI-CMN-008
	4-pass ROAP-Registration protocol
	5.4.2
	M
	

	DRM-CLI-CMN-009
	ROAP Extensions
	5.4.2,5.4.3,5.4.4
	O
	

	DRM-CLI-CMN-0010
	Hash Algorithms: SHA-1 and associated URI
	5.4.2.1.1
	M
	

	DRM-CLI-CMN-0011
	MAC Algorithms: HMAC-SHA-1 and associated URI
	5.4.2.1.1
	M
	

	DRM-CLI-CMN-0012
	Signature Algorithms: RSA-PSS-Default and associated URI
	5.4.2.1.1
	M
	

	DRM-CLI-CMN-0013
	Key Transport Algorithms: RSAES-KEM-KDF2-KW-AES128 and associated URI
	5.4.2.1.1
	M
	

	DRM-CLI-CMN-0014
	Key Wrap Algorithms: AES-WRAP and associated URI
	5.4.2.1.1
	M
	

	DRM-CLI-CMN-0015
	Domains Functionality
	5.1.4,5.1.5,5.4.4,7.2.3,7.3,8
	O
	DRM-CLI-CMN-016,DRM-CLI-CMN-032,DRM-CLI-CMN-033,DRM-CLI-CMN-034,DRM-CLI-CMN-035,DRM-CLI-CMN-042,

AND DRM-CLI-CD-059, DRM-CLI-CD-060

OR DRM-CLI-UD-067, DRM-CLI-UD-068

	DRM-CLI-CMN-0016
	Hash Chains for Domain Key Management
	5.4.4.1.1,7.3,8.7.1
	O
	

	DRM-CLI-CMN-0017
	DRM Agent Certificates
	D.1
	M
	

	DRM-CLI-CMN-0018
	User Certificates for WIM Binding
	D.5
	O
	

	DRM-CLI-CMN-0019
	RI Certificate Processing and Certificate Chain Validation
	5.4.2.4,5.4.3.2,5.4.4.2,6.2
	M
	

	DRM-CLI-CMN-0020
	RI Signature Validation
	5.4.2.4,5.4.3.2,5.4.4.2
	M
	

	DRM-CLI-CMN-0021
	OCSP Response Validation
	5.4.2.4,5.4.3.2,5.4.4.2,6.2,6.3
	M
	OCSP-C-006, OCSP-C-007, OCSP-C-009, OCSP-C-011, OCSP-C-012, OCSP-C-013, OCSP-C-015, OCSP-C-016, OCSP-C-017, OCSP-C-019, OCSP-C-020, OCSP-C-021, OCSP-C-022, OCSP-C-022a, OCSP-C-022b, OCSP-C-022c, OCSP-C-023, OCSP-C-024, OCSP-C-028

	DRM-CLI-CMN-0022
	IMSI Binding
	15.1
	O
	

	DRM-CLI-CMN-0023
	WIM Binding
	15.2
	O
	DRM-CLI-CMN-018

	DRM-CLI-CMN-0024
	Transaction Tracking
	12.3, 5.4.3.1, 5.4.3.2.1
	O
	

	DRM-CLI-CMN-0025
	User Consent for ROAP Triggers and associated processing
	5.2.1
	M
	

	DRM-CLI-CMN-0026
	User Consent for Silent and Preview Headers
	5.2.2
	M
	

	DRM-CLI-CMN-0027
	RI Certificate Caching
	5.4.2.1.1
	O
	

	DRM-CLI-CMN-0028
	RI Certificate Verification data storage in the RI Context
	5.4.2.4.1
	O
	

	DRM-CLI-CMN-0029
	Replay Protection for Stateful Rights Objects
	9.4,5.3.9
	M
	

	DRM-CLI-CMN-0030
	Maintaining state information for Stateful Rights Objects
	9.4.1
	M
	

	DRM-CLI-CMN-0031
	Domain Name Whitelists
	5.4.2.4.1
	M
	

	DRM-CLI-CMN-0032
	Multiple Domain Contexts
	8.2
	O
	

	DRM-CLI-CMN-0033
	Domain Context
	5.4.4.2.1,8.2
	O
	

	DRM-CLI-CMN-0034
	Domain Context Expiry processing
	5.4.4.2.1
	O
	

	DRM-CLI-CMN-0035
	Installing Domain ROs
	8.6.2.1, 8.6,5.4.4.2
	O
	

	DRM-CLI-CMN-0036
	Multiple RI Contexts
	5.4.2.4.1
	M
	

	DRM-CLI-CMN-0037
	RI Context
	5.4.2.4.1
	M
	

	DRM-CLI-CMN-0038
	Use of riID as identifiers for RI Contexts stored in the Device
	5.4.2.4.1,5.3.8,5.2.1
	M
	

	DRM-CLI-CMN-0039
	RI Context Expiry processing
	5.4.2.4.1
	M
	

	DRM-CLI-CMN-0040
	DCF Hash verification; usage in ROAP
	5.4.3.1.1
	O
	

	DRM-CLI-CMN-0041
	Device RO Processing
	9.3.1
	M
	

	DRM-CLI-CMN-0042
	Domain RO Processing
	8.6
	O
	

	DRM-CLI-CMN-0043
	MIME Types for ROAP PDU, Trigger, ProtectedRO, and Rights Objects
	5.3.8,10.2
	M
	

	DRM-CLI-CMN-0044
	Exporting to other DRMs and Protected Links
	13
	O
	

	DRM-CLI-CMN-0045
	Super Distribution of the DCF
	12
	O
	

	DRM-CLI-CMN-0046
	Super Distribution of the ContentURL
	12
	O
	

	DRM-CLI-CMN-0047
	Parent Rights Object
	9.5
	M
	

	DRM-CLI-CMN-0048
	Off-device storage of content and Rights Objects
	9.6
	O
	

	DRM-CLI-CMN-0049
	Capability signaling to Content Issuers and Rights Issuers
	10
	M
	

	DRM-CLI-CMN-0050
	Processing Content Objects, Rights Objects and ROAP Triggers received via WAP PUSH
	11.4
	M
	

	DRM-CLI-CMN-0051
	DCF Integrity protection after the DCFs are downloaded to the Device
	12.4
	M
	

	DRM-CLI-CMN-0052
	Backwards Compatibility to OMA DRM v1
	Appendix B
	M
	

	DRM-CLI-CD-0053
	DRM Time
	6.3,5.4
	O
	DRM-CLI-CD-054

	DRM-CLI-CD-0054
	DRM Time Synchronization
	6.3,5.4
	O
	

	DRM-CLI-CD-0055
	Connectivity for Unconnected Devices via ROAP over OBEX
	11.6
	O
	DRM-CLI-CMN-015

	DRM-CLI-CD-0056
	Connectivity to Rights Issuers over appropriate transport connections
	14
	O
	

	DRM-CLI-CD-0057
	2-pass ROAP-ROAcquisition protocol
	5.4.3
	O
	

	DRM-CLI-CD-0058
	1-pass ROAP-ROAcquisition protocol
	5.4.3.2.1
	O
	

	DRM-CLI-CD-0059
	2-pass ROAP-JoinDomain protocol
	5.4.4.1
	O
	

	DRM-CLI-CD-0060
	2-pass ROAP-LeaveDomain protocol
	5.4.4.3
	O
	

	DRM-CLI-CD-0061
	HTTP Transport Mapping
	11.2
	O
	

	DRM-CLI-CD-0062
	Capability Signalling
	10
	O
	

	DRM-CLI-CD-0063
	Silent and Preview header processing in DCFs
	5.2.2
	O
	

	DRM-CLI-CD-0064
	Download OTA support for delivering Content , ROAP Triggers, and Rights Objects
	11.3
	O
	

	DRM-CLI-UD-0065
	Utilize the connectivity provided by the Connected Device to conduct ROAP protocols
	14
	O
	

	DRM-CLI-UD-0066
	ROAP-OBEX Server
	14,11.6
	O
	

	DRM-CLI-UD-0067
	2-pass ROAP JoinDomain protocol
	5.4.4.1
	O
	

	DRM-CLI-UD-0068
	2-pass ROAP LeaveDomain protocol
	5.4.4.3
	O
	

	DRM-CLI-UD-0069
	2-pass ROAP RO Upload protocol
	5.4.5,
11
	O
	

F.7 Server Conformance Requirements

	Item
	Function
	Reference
	Status
	Requirements

	DRM-SERVER-001
	ROAP schema parsing and message processing
	5.3
	M
	

	DRM-SERVER-002
	General XML Schema Requirements
	5.3.2
	M
	

	DRM-SERVER-003
	Nonce values in ROAP messages
	5.3.10
	M
	

	DRM-SERVER-004
	Indicating the status parameter in the runs of the ROAP protocols as defined
	5.3.6,5.4.2
	M
	

	DRM-SERVER-005
	XML Canonicalization
	5.3.9,5.4
	M
	

	DRM-SERVER-006
	RI Certificates
	D.2
	M
	

	DRM-SERVER-007
	DRM Agent Certificate processing and Certificate Chain Validation
	5.4.2.3.1
	M
	

	DRM-SERVER-008
	Unique riID in ROAP Protocols.
	5.4
	M
	

	DRM-SERVER-009
	Support for OCSP Requests; including nonce extensions.
	5.4.2.4.1
	M
	OCSP-C-001, OCSP-C-002, OCSP-C-004, OCSP-C-006, OCSP-C-007, OCSP-C-025, OCSP-C-027, OCSP-C-031 OCSP-C-033, OCSP-C-034, OCSP-C-035, OCSP-C-037

See Note

	DRM-SERVER-0010
	Providing the most recent OCSP Response to Devices in ROAP protocol runs
	5.4.2.4.1
	O
	

	DRM-SERVER-0011
	ROAP Trigger support and initiating the ROAP protocol using ROAP Triggers
	5.2.1
	M
	

	DRM-SERVER-0012
	Domain ID element in ROAP Triggers
	5.2.1
	O
	

	DRM-SERVER-0013
	More than one roID elements in a roAcquisition trigger
	5.2.1
	O
	

	DRM-SERVER-0014
	Use of MAC in leaveDomain ROAP Trigger
	5.2.1
	M
	

	DRM-SERVER-0015
	4-pass ROAP-Registration Protocol
	5.4.2
	M
	

	DRM-SERVER-0016
	2-pass ROAP-ROAcquisition Protocol
	5.4.3
	M
	

	DRM-SERVER-0017
	1-pass ROAP-ROResponse Protocol
	5.4.3.2.1
	M
	

	DRM-SERVER-0018
	2-pass ROAP-JoinDomain Protocol
	5.4.4.1
	M
	

	DRM-SERVER-0019
	2-pass ROAP-LeaveDomain Protocol
	5.4.4.3
	M
	

	DRM-SERVER-0020
	Hash Chain support for Domain Key Generation
	8.7.1
	O
	

	DRM-SERVER-0021
	ProtectedRO support
	5.3.8
	M
	

	DRM-SERVER-0022
	Signature on Domain RO
	5.4.3.2.1,5.3.9
	M
	

	DRM-SERVER-0023
	Signature on Device RO
	5.3.9,5.4.3.2.1
	O
	

	DRM-SERVER-0024
	domainRO and riURL attributes in ProtectedRO for Domain ROs
	5.3.9
	M
	

	DRM-SERVER-0025
	Hash Algorithms: SHA-1 and associated URI
	5.4.2.1.1
	M
	

	DRM-SERVER-0026
	MAC Algorithms: HMAC-SHA-1 and associated URI
	5.4.2.1.1
	M
	

	DRM-SERVER-0027
	Signature Algorithms: RSA-PSS-Default and associated URI
	5.4.2.1.1
	M
	

	DRM-SERVER-0028
	Key Transport Algorithms: RSAES-KEM-KDF2-KW-AES128 and associated URI
	5.4.2.1.1
	M
	

	DRM-SERVER-0029
	Key Wrap Algorithms: AES-WRAP and associated URI
	5.4.2.1.1
	M
	

	DRM-SERVER-0030
	Unique identifier for Rights Issuers
	5.3.9
	M
	

	DRM-SERVER-0031
	Parent Rights Object
	9.5
	M
	

	DRM-SERVER-0032
	Issuer Responsibilities
	10.4
	M
	

	DRM-SERVER-0033
	Download OTA support for delivering Content , ROAP Triggers, and Rights Objects
	11.3
	O
	

	DRM-SERVER-0034
	Use of WAP PUSH to deliver Content, ROAP Triggers, and Rights Objects
	11.4
	M
	

	DRM-SERVER-0035
	Transaction Tracking
	12.3, 5.4.3.1, 5.4.3.2.1
	M
	

	DRM-SERVER-0036
	2-pass ROAP RO Upload protocol
	5.4.5,

11
	O
	

Change 9:
Appendix G. Examples (Informative)
G.1.13 RO Upload Request

<roap:roUploadRequest

xmlns:roap="urn:oma:bac:dldrm:roap-1.0"
xmlns:o-ex="http://odrl.net/1.1/ODRL-EX"
xmlns:o-dd="http://odrl.net/1.1/ODRL-DD"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<deviceID>
 <keyIdentifier xsi:type="roap:X509SPKIHash">

 <hash>vXENc+Um/9/NvmYKiHDLaErK0gk=</hash>

 </keyIdentifier>
</deviceID>

 <riID>
 <keyIdentifier xsi:type="roap:X509SPKIHash">

 <hash>aXENc+Um/9/NvmYKiHDLaErK0fk=</hash>

 </keyIdentifier>
</riID>

 <nonce>32efd34de39sdwefqwer </nonce>

 <time>2006-03-17T14:20:00Z</time>
 <UploadRO>

 <roID>n8yu98hy0e2109eu09ewf09u</roID>
<stateInfo o-ex:id="C-1">

<o-dd:count>98</o-dd:count>
</stateInfo >

<stateInfo o-ex:id="C-2">

 <o-dd:count>8</o-dd:count>
 <o-dd:datetime>

 <o-dd:end>2005-10-21T00:00:00Z</o-dd:end>

 </o-dd:datetime>
</stateInfo>

</UploadRO>
 <signature>821ue3ue3ue10ue2109ue1ueoidwoijdwe309u09ueqijdwqijdwq09uwqwqi009</signature>

</roap:roUploadRequest>
G.1.14 RO Upload Response

<roap:roUploadResponse
xmlns:roap="urn:oma:bac:dldrm:roap-1.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
status="Success">

<deviceID>
<keyIdentifier xsi:type="roap:X509SPKIHash">

 <hash>vXENc+Um/9/NvmYKiHDLaErK0gk=</hash>

 </keyIdentifier>
</deviceID>

 <riID>
 <keyIdentifier xsi:type="roap:X509SPKIHash">

 <hash>aXENc+Um/9/NvmYKiHDLaErK0fk=</hash>

 </keyIdentifier>
</riID>

 <nonce>32efd34de39sdwefqwer </nonce>

 <certificateChain>

 <certificate>miib223121234567</certificate>

 <certificate>miib834124312431</certificate>

</certificateChain>
<signature>321ue3ue3ue10ue2109ue1ueoidwoijdwe309u09ueqijdwqijdwq09uwqwqi009</signature>

</roap:roUploadResponse>

G.7 State information Examples for Uploading RO :
The example state information shown below shows how to report the current state information of a stateful RO to the RI in the ROAP-RO Upload request message.

The original stateful RO issued by the RI is :

<o-ex:rights

 xmlns:o-ex="http://odrl.net/1.1/ODRL-EX"

 xmlns:o-dd="http://odrl.net/1.1/ODRL-DD"

 xmlns:oma-dd="http://www.openmobilealliance.com/oma-dd"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"

 o-ex:id="C.2">

 <o-ex:context>

 <o-dd:version>2.0</o-dd:version>

 <o-dd:uid>RightsObjectID</o-dd:uid>

 </o-ex:context>

 <o-ex:agreement>

 <o-ex:asset>

 <o-ex:context>

 <o-dd:uid>ContentID</o-dd:uid>

 </o-ex:context>

 <o-ex:digest>

 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 <ds:DigestValue>DCFHash</ds:DigestValue>

 </o-ex:digest>

 <ds:KeyInfo>

 <xenc:EncryptedKey>

 <xenc:EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#kw-aes128"/>

 <ds:KeyInfo>
 <ds:RetrievalMethod URI="REKReference"/>
 </ds:KeyInfo>
 <xenc:CipherData>

 <xenc:CipherValue>EncryptedCEK</xenc:CipherValue>

 </xenc:CipherData>

 </xenc:EncryptedKey>

 </ds:KeyInfo>

 </o-ex:asset>

 <o-ex:permission>
 <o-ex:constraint o-ex:id="C-1">
<o-dd:count>100</o-dd:count>
</o-ex:constraint>
 <o-dd:play>

 <o-ex:constraint o-ex:id="C-2">

 <o-dd:count>10</o-dd:count>
 <o-dd:interval>P20DT00H00M00S</o-dd:interval>
 </o-ex:constraint>

 </o-dd:play>
 <o-dd:display>
 </o-dd:display>
 </o-ex:permission>

 </o-ex:agreement>

</o-ex:rights>

Assuming that the first time the user played the content is October 01st, 2005, 00:00:00 UTC and the user has played the content 2 times before uploading. The Device converts the interval constraint to a dateTime constraint and the the <stateInfo> in the ROAP-RO Upload request message should be:

<stateInfo o-ex:id="C-1">
 < o-dd:count>98</o-dd:count>
</stateInfo >
<stateInfo o-ex:id="C-2">

 <o-dd:count>8</o-dd:count>
 <o-dd:datetime>

 <o-dd:end>2005-10-21T00:00:00Z</o-dd:end>

 </o-dd:datetime>
</stateInfo>

� Note: The RI is used primarily as a proxy between the DRM agent and the OCSP responder and thus does not necessarily need to process the OCSP response. However, to minimize client side processing and to reduce bandwidth consumption, this specification highly recommends that Rights Issuers do as much processing and validation of OCSP responses it receives from the responder as possible before sending them to the DRM agent and thus also support OCSP-C-009, OCSP-C-011, OCSP-C-012, OCSP-C-013, OCSP-C-015, OCSP-C-016, OCSP-C-017, OCSP-C-019, OCSP-C-021, OCSP-C-022b, OCSP-C-022c, OCSP-C-029, OCSP-C-030.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 24)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20050101-I]

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Page 8 (of 25)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20050101-I]

_1218457789.vsd

