Doc# OMA-DLDRM-2006-0404-INP_SRM_and_SCE_Mutual_Authentication.doc[image: image2.jpg]
Input Contribution

Doc# OMA-DLDRM-2006-0404-INP_SRM_and_SCE_Mutual_Authentication.doc
Input Contribution

Input Contribution

	Title:
	SRM and SCE Mutual Authentication
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	DLDRM

	Submission Date:
	10 October 2006

	Source:
	Aram Perez, QUALCOMM, Inc., aramp@qualcomm.com

	Attachments:
	n/a
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	Replaces:
	n/a

1 Reason for Contribution

Both SRM and SCE have mutual authentication requirements. The input contribution proposes a protocol that can be used by both.
2 Summary of Contribution

A mutual authentication protocol with a confirmed secret exchange is presented to be used by SRM and SCE. The secret can be used to derive both a session key and a message integrity key.
3 Detailed Proposal

3.1 Nomenclature
The following nomenclature is used in this document.

	E[x]Key
	The RSA-OAEP encryption of x using Key

	H[x]
	The SHA-1 of x

	x|y
	x concatenated with y

3.2 Protocol
The protocol described below provides mutual authentication of two entities along with a shared secret that is confirmed. The protocol is illustrated in the following diagram:

[image: image1.wmf]A

B

AuthRequest

=

ArrayOf

[

H

[

RootKey

n

]

|

CertChain

n

]

AuthResponse

=

Status

|

CertChain

x

|

E

[

RanB

]

PubA

ConfirmRequest

=

E

[

RanA

|

H

[

RanB

|

RanA

]]

PubB

ConfirmResponse

=

Status

|

H

[

RanA

|

H

[

RanB

|

RanA

]]

Generate RanA

Generate RanB

Find common

Root

Verify certificate

chain

Verify certificate

chain

Encrypt RanB with

A’s Public Key

Calculate

H

[

RanB

|

RanA

]

Encrypt RanA

|

H

[

RanB

|

RanA

]

with B’s Public Key

Decrypt Message

Verify H

[

RanB

|

RanA

]

Calculate

H

[

RanA

|

H

[

RanB

|

RanA

]]

Decrypt RanB

Verify

H

[

RanA

|

H

[

RanB

|

RanA

]]

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Multiple SRM

/

SCE Operations

Generate SK and MK with

Ctr

=

1

Generate SK and MK with

Ctr

=

1

19

18

20

The steps below correspond to the numbered arrows in the figure above.

1. For every Root Key that entity A supports, it calculates hash of the Root Key and concatenates the corresponding certificate chain. This becomes the AuthRequest message. Entity A sends the AuthRequest message to entity B. Because in OMA DRM, all entities are identified by the hash of the entity’s public key, there is no need to send the entity’s ID in the AuthRequest, it can be calculated from the entity’s certificate.
2. Upon receiving the AuthRequest, entity B finds a Root Key it trusts in the AuthRequest and that it has a certificate chain under.

3. Entity B verifies entity A’s certificate chain that is under the Root Key selected in step 2. Any revocation checking of entity A is performed in this step. If the verification fails, entity B sets Status is set to “InvalidCertificateChain” and proceeds to step 6. Otherwise, Status is set to “Success”.
4. Entity B generates a 20 byte random number RanB.

5. Using the entity A’s certificate (from step 3), entity B encrypts RanB with entity A’s public key.

6. If Status is not Success, then entity B sends just Status and aborts the protocol. Otherwise, entity B appends its certificate chain (from step 2) to Status and appends the encrypted RanB (from step 5). This is the AuthResponse message sent to entity A.

7. Upon receiving the the AuthResponse message, entity A verifies entity B’s certificate chain. Any revocation checking of entity B is performed in this step. If verification fails, entity A aborts the protocol.

8. Entity A decrypts RanB.
9. Entity A generates RanA.

10. Entity A calculates the SHA-1 of RanB|RanA.

11. Using entity B’s public key (from step 7), entity A encrypts RanA concatenated with the SHA-1 of RanB|RanA (from step 10).

12. The encrypted data from step 11 is the ConfirmRequest message which entity A sends to entity B.
13. Entity B decrypts the ConfirmRequest.
14. Using the decrypted RanA (from step 13), entity B verifies the SHA-1 of RanB concatenated with RanA. If verification fails, entity B sets Status to “AccessDenied” and proceeds to step 16. Otherwise, Status is set to “Success”. At this point, entity B has authenticated entity A because entity A’s certificate chain is valid and it successfully decrypted RanB. Hence, entity B knows the entity A knows RanB.
15. Entity B calculates the SHA-1 of the plaintext data of step 13.

16. If Status is not Success, then entity B sends just Status and aborts the protocol. Otherwise, entity B appends the SHA-1 of step 15 to Status. This becomes the ConfirmResponse message that it sends to entity A.

17. Entity A verifies the SHA-1 of RanA concatenated with the SHA-1 of RanB concatenated with RanA. If verification fails, entity A aborts the protocol. Otherwise, at this point, entity A has authenticated entity B because entity B’s certificate chain is valid and it has successfully decrypted RanA. Hence, entity A knows that entity B knows RanA.

18. Entity B generates a session key (SK) and a message integrity key (MK) using a KDF, RanA, RanB and Ctr = 1. More information on Ctr below. Note that this step can be performed in parallel with step 17 (or before step 16).
19. Entity A generates a session key (SK) and a message integrity key (MK) using a KDF, RanA, RanB and Ctr = 1. More information on Ctr below.
20. Now that both entities have authenticated each other and have both a common session key and message integrity key, they can perform one or more SRM/SCE operations.
There is a desire (requirement?) in SRM that a Device know that it communicating to the same SRM Agent after mutual authentication has been performed. Although there has been mention of using power as a method of detection, this is easily defeated. Therefore, this IC recommends that a counter be used in the KDF function with steps 18 and 19. Each entity keeps a local copy of the counter (Ctr) which must be kept in sync. The KDF used in steps 18 and 19 can be KDF function described in section 7.1.2 of OMA-TS-DRM-DRM-V2_0-20060303-A. SK could be derived by setting Z = RanA|RanB and otherInfo = Ctr. MK could be derived by setting Z = RanB|RanA and otherInfo = Ctr. For any message that is sent (or received) the counter is incremented and a new SK and MK is generated with the new counter value. This would prevent someone keeping power applied to an SRM but changing the Device.
3.3 Message Syntax

The following is the syntax of the messages described using ASN.1 (only because I know ASN.1 better than XML):

AuthRequest ::= SEQUENCE {

 -- version Version, -- Do we want a version?
 rootHashesAndChains RootHashesAndChains

}

-- 8 bit integer, bits 7 - 3 = major, bits 2 - 0 = minor

Version ::= INTEGER (0..255)
-- Alternative Version

-- Version ::= SEQUENCE {

-- major INTEGER (0..255)

-- minor INTEGER (0..255)

-- }
RootHashesAndChains ::= SET OF RootHashAndCertChain

RootHashAndCertChain ::= SEQUENCE {

 rootHash Sha1, -- Hash of Root Public Key

 certChain CertChain -- Cert chain under the Root

}

Sha1 ::= OCTET STRING (SIZE(20)) -- SHA-1 hash
CertChain ::= SEQUENCE {

 endCert Certificate, -- End entity certificate

 caCerts SET OF Certificate -- In signing order

}

AuthResponse ::= SEQUENCE {

 -- version Version, -- Do we want a version?
 status Status,

 -- body is only present if status == success

 body AuthResBody OPTIONAL

}

Status ::= ENUMERATED {

 success(0),

 InvalidCertificateChain(1),
 AccessDenied(2),
 ...

}

AuthResBody ::= SEQUENCE {

 certChain CertChain, -- Cert chain for B

 encRanB EncryptedData -- Encrypted RanB

}

EncryptedData ::= OCTET STRING -- RSA OAEP Encrypted data
RanB ::= Random20
-- 20 byte random value

Random20 ::= OCTET STRING (SIZE(20))

ConfirmRequest ::= SEQUENCE {

 -- version Version, -- Do we want a version?
 encData EncryptedData -- Encrypted ConfirmData

}

ConfirmData ::= SEQUENCE {

 ranA Random20,

 hashBA Sha1 -- Hash of RanB | RanA

}

ConfirmResponse ::= SEQUENCE {

 -- version Version, -- Do we want a version?
 status Status,

 -- hash is only present if status == success

 hash Sha1 OPTIONAL -- Hash of KeyConfirmData

}

3.4 Related Issues

The following are issues that are related:

· Should the messages be defines in binary or in XML?

· Can the message be in binary and the Rights Objects in XML?

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

That DLDRM use the proposed mutual authentication protocol for both SRM and SCE.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 6)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20060101-I]

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 6)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20060101-I]

_1221987544.vsd
A

B

AuthRequest =
ArrayOf[H[RootKeyn]|CertChainn]

AuthResponse =
Status|CertChainx|E[RanB]PubA

ConfirmRequest =
E[RanA|H[RanB|RanA]]PubB

ConfirmResponse =
Status|H[RanA|H[RanB|RanA]]

Generate RanA

Generate RanB

Find common Root

Verify certificate chain

Verify certificate chain

Encrypt RanB with A’s Public Key

Calculate H[RanB|RanA]

Encrypt RanA|H[RanB|RanA] with B’s Public Key

Decrypt Message

Verify H[RanB|RanA]

Calculate H[RanA|H[RanB|RanA]]

Decrypt RanB

Verify H[RanA|H[RanB|RanA]]

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Multiple SRM/SCE Operations

Generate SK and MK with Ctr = 1

Generate SK and MK with Ctr = 1

19

18

20

