Doc# OMA-DLDRM-2006-0468-CR_Byte_Counter_Mode_and_Salt.doc[image: image4.jpg]
Change Request

Doc# OMA-DLDRM-2006-0468-CR_Byte_Counter_Mode_and_Salt.doc
Change Request

Change Request

	Title:
	Byte Counter Mode and Salt
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	DLDRM

	Doc to Change:
	OMA-TS-DRM_DCF-V2_1_1-20060915-D

	Submission Date:
	3 November 2006

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Bert Greevenbosch, Fraunhofer IIS, bert.greevenbosch@iis.fraunhofer.de
Mercè Serra, Fraunhofer IIS, merce.serra@iis.fraunhofer.de
Stefan Döhla, Fraunhofer IIS, stefan.doehla@iis.fraunhofer.de

	Replaces:
	n/a

1 Reason for Change

In the current (P)DCF file format, there are two possible encryption methods: AES_128_CBC and AES_128_CTR. This CR proposes to rename the last encryption method to AES_128_BLOCK_CTR and introduces a new encryption method AES_128_BYTE_CTR.
The AES_128_BYTE_CTR encryption method is introduced to increase compatibility with ISMACryp and the OMA BCAST 1.0 specifications.

The methods AES_128_BYTE_CTR and AES_128_BLOCK_CTR are very similar, they are both based on AES_128_CTR. However, by AES_128_BLOCK_CTR the counter is increased by one for each KeyBlock, whilst by AES_128_BYTE_CTR the counter is increased by one for each byte of ciphertext. This different counter management allows the use of one KeyBlock over the borders between two AUs, thereby reducing the number of AES encryptions needed.

For the method AES_128_BYTE_CTR, this CR also introduces a Salt. This Salt contains the 64 most significant bits of an Initialization Vector (IV) and is transmitted only once per track in a PDCF. The salt omits the need to send all the bits of the IV in each AU and therefore reduces the overhead in the AU Header.

2 Impact on Backward Compatibility

OMA DRM v2.0 Devices will not be able to decrypt (P)DCFs that use the new AES_128_BYTE_CTR mode.
3 Impact on Other Specifications

Increases compatibility with ISMACryp and OMA BCAST 1.0.
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

For the group to agree the CR.
6 Detailed Change Proposal

Change 1: Add necessary notation
3.3 Abbreviations

	3GPP
	3rd Generation Partnership Project

	4CC
	Four Character Code

	AES
	Advanced Encryption Standard

	CBC
	Cipher Block Chaining

	CEK
	Content Encryption Key

	CTR
	Counter Mode

	DCF
	DRM Content Format

	DRM
	Digital Rights Management

	HTTP
	Hypertext Transfer Protocol

	ISO
	International Standards Organization

	MIME
	Multipurpose Internet Mail Extensions

	OMA
	Open Mobile Alliance

	PDCF
	Packetized DRM Content Format

	PSS
	Packet switched Streaming Service

	RFC
	Request For Comments

	RO
	Rights Object

	ROAP
	Rights Object Acquisition Protocol

	RTP
	Real time Transport Protocol

	RTSP
	Real Time Streaming Protocol

	SDL
	Syntactic Description Language

	SDP
	Session Description Protocol

	URI
	Uniform Resource Indicator

	URL
	Uniform Resource Locator

3.4 Notation

	AES_ENCRYPT{K}(M)
	Encrypts the message M with AES, using the key K.

	ceil(x)
	Rounds up the real value x to the lowest integer N such that x<N.

	floor(x)
	Rounds down the real value x to the highest integer N such that x>N.

	a << b
	Bitwise shift left of a by b bits. The b most significant bits of a are discarded, whilst the b least significant bits after the shift contain zeros.

	a >> b
	Bitwise shift right of a by b bits. The b least significant bits of a are discarded, whilst the b most significant bits after the shift contain zeros.

	a & b
	Bitwise AND of a and b.

Change 2: Define new AES_128_BYTE_CTR algorithm ID
EncryptionMethod Field

The EncryptionMethod field defines how the encrypted content can be decrypted. Values for the field are defined in the table below.

Table 1. Algorithm-id values
	Algorithm-id
	Value
	Semantics

	NULL
	0x00
	No encryption for this object. NULL encrypted Content Objects may be used without acquiring a Rights Object. Value of the PaddingScheme field MUST be 0.

	AES_128_CBC
	0x01
	AES symmetric encryption as defined by NIST [AES].

128 bit keys.

Cipher block chaining mode (CBC).

128 bit initialization vector prefixing the ciphertext (for non-streamable PDCF files this is included in the OMADRMAUHeader).

Padding according to RFC 2630.

	AES_128_BLOCK_CTR
	0x02
	AES symmetric encryption as defined by NIST [AES].

128 bit keys.

Counter mode (CTR).

128 bit initial counter value prefixes the ciphertext (for non-streamable PDCF files this is included in the OMADRMAUHeader).

For each cipherblock the counter is incremented by 1 (modulo 2128).

No padding.

	AES_128_BYTE_CTR
	0x03
	AES symmetric encryption as defined by NIST [AES].

128 bit keys.

Counter mode (CTR).

Maximal 64 bit initial counter value prefixes the ciphertext (for non-streamable PDCF files this is included in the OMADRMAUHeader).

For each byte of ciphertext the counter is incremented by 1.

No padding.

Rights Issuers should take care in using NULL EncryptionMethod because, given a null-encrypted Media Object within a DCF or PDCF, the following statements hold true:

· Null-encrypted Media Objects do not have any Confidentiality protection.

· Null-encrypted Media Objects can always be used without an associated Rights Object.

· Null-encrypted Media Objects may not have any integrity protection.
Change 3: Add new section 5.2.1.3
5.2.1.3 Use of AES counter modes
There are three possible methods to encrypt the content: AES_128_CBC and two AES counter mode algorithms AES_128_BLOCK_CTR and AES_128_BYTE_CTR (see Table 1). This section describes the use of the AES counter mode algorithms.
In both AES counter mode algorithms, a block of plaintext is encrypted to a block of ciphertext by xoring it with a generated pseudorandom KeyBlock based on AES encryption, which is defined as follows:

KeyBlocki = AES_ENCRYPT{CEK}(i),
where i is a 128-bit integer. Each KeyBlock has a length of 16 bytes and uses a new value of i. The bytes in a KeyBlock are numbered from most significant byte to least significant byte, from 0 to 15. The kth byte in a KeyBlocki is denoted by KeyBlocki[k]. Similarly the nth byte of the ciphertext (in an AU or a Content Object Box) is denoted by C[n], and nth byte of the associated plaintext by P[n].
The encrypter/decrypter has an internal variable CTR. This variable is used to calculate i in KeyBlocki. The exact calculation of i depends on the counter mode. To calculate the first value of CTR, the cipher algorithms need an Initialization Vector. In DCF, there is one Initialization Vector per Content Object Box, in PDCF there is one Initialization Vector per AU.
The basic difference between the two AES counter mode algorithms lies in the fact that for AES_128_BLOCK_CTR the CTR is increased by 1 for each (16 byte) KeyBlock, whilst for AES_128_BYTE_CTR the CTR is increased by 1 for each byte. Furthermore, AES_128_BYTE_CTR uses a Salt, whereas AES_128_BLOCK_CTR does not.
5.2.1.3.1 AES_128_BLOCK_CTR
In the case of AES_128_BLOCK_CTR, the initial value of CTR is equal to the value of the Initialization Vector IV. CTR is increased by one for each KeyBlock. The first byte of plaintext is encrypted using the first byte in KeyBlockCTR, with CTR=IV.
The plaintext on byte position n, P[n], is encrypted to the ciphertext on byte position n, C[n], as follows:
C[n] = P[n] xor KeyBlockIV+floor(n/16)[n mod 16]. The decryption is similarly done as follows:
P[n] = C[n] xor KeyBlockIV+floor(n/16)[n mod 16].
If this mode is used in PDCF, it should be avoided to encrypt two different AUs using the same KeyBlock. Therefore encryption in this mode should always start with a fresh CTR value for each AU. This means that possibly unused bytes from the last KeyBlock used to encrypt the previous AU are discarded. The following figure illustrates this:

[image: image1]
5.2.1.3.2 AES_128_BYTE_CTR
In the case of AES_128_BYTE_CTR, the initial value of CTR is also equal to the value of the Initialization vector IV. CTR is increased by one for each byte of ciphertext/plaintext. CTR is used together with a 64-bit integer Salt to calculate the KeyBlock. The Salt is stored in the OMADRMSaltBox in the ExtendedHeaders of the OMACommonDRMHeaders box. The 4 least significant bits of CTR contain the byte offset in the KeyBlocki(CTR) with i(CTR) = ((Salt << 64) | (CTR >> 4)). Notice that i(CTR) is a function i depending on CTR.
The plaintext on byte position n, P[n], is associated with a CTR value CTR = IV + n. P[n] is encrypted to the ciphertext on byte position n, C[n], as follows: C[n] = P[n] xor KeyBlocki(CTR) [CTR & 0xF]. The decryption is similarly done as follows:
P[n] = C[n] xor KeyBlocki(CTR)[CTR & 0xF].
For the encryption of a PDCF in this mode, it is RECOMMENDED to increase the Initialization Vector continuously over the borders of AUs: when the Initialization Vector associated an AU has a value IV and the AU contains B bytes of ciphertext, then the Initialization Vector of the next AU has the value IV+B. This allows possibly unused bytes of the last KeyBlock of one AU to be used for the encryption of the first bytes of the next AU. The following figure illustrates this case:

[image: image2]
If there are no unused KeyBlock bytes left, the next AU starts with a fresh KeyBlock, as is illustrated in the following figure:

[image: image3]
The bitsize of CTR is the same as the bitsize of the Initialization Vector, IVLength. To ensure that the CTR does not overflow, the IV MUST be reset in due time. This can be avoided by choosing the IVLength big enough.
Change 4: Add section 5.2.3.2
5.2.3 Extended Headers

The ExtendedHeaders field MAY include zero or more nested boxes that add functionalities to the common headers. The ExtendedHeaders field continues until the end of the parent box is reached.

5.2.3.1 Group ID

The ExtendedHeaders field MAY include one instance of the OMADRMGroupID Box:
aligned (8) class OMADRMGroupID extends FullBox('grpi', version, 0) {

unsigned int(16) GroupIDLength;

// length of the Group ID URI

unsigned int(8) GKEncryptionMethod;

// Group Key encryption algorithm

unsigned int(16) GKLength;

// length of the encrypted Group Key

char GroupID[GroupIDLength];

// Group ID URI

byte GroupKey[GKLength];

// Encrypted Group Key and encryption information

}

The GroupID value identifies this DCF as part of a group of DCF's whose Rights can be defined in a common group Rights Object instead of (or in addition to) in separate content-specific Rights Objects. The value of GroupID MUST be a URI according to [RFC2396] and MUST contain a globally unique identifier. The value MUST be encoded using US-ASCII encoding.

Generally each content item in a group will be encrypted with a different content item encryption key. A single additional key (used for the whole group) is used to encrypt each content item encryption key for storage in the GroupKey field. This single key is the value of the CEK in an associated group RO. Note that since the Group ID box is part of the OMA DRM container box, it is possible for different content items in a multipart DCF to belong to different groups. The GKEncryptionMethod field defines the algorithm used to encrypt the content item encryption keys, as defined in Section 0. and it defines the structure of the GroupKey field that can contain, next to the actual encrypted content item encryption key (refered to in Section 0 as ‘ciphertext’), additional information such as initialization vector or initial counter value. The NULL EncryptionMethod MUST NOT be used as a GKEncryptionMethod.
Table 2. Group ID box fields
	Field name
	Type
	Purpose

	GroupIDLength
	unsigned int(16)
	Length of the Group ID URI field

	GKEncryptionMethod
	unsigned int(8)
	Group Key encryption algorithm

	GKLength
	unsigned int(16)
	Length of the GroupKey field

	GroupID
	char[]
	Group ID URI

	GroupKey
	byte[EncryptedGKLength]
	Encrypted Group Key and additional encryption information such as initialization vector, counter values, padding as defined in Section 0

5.2.3.2 Salt
When AES_128_BYTE_CTR encryption is used, the ExtendedHeaders field MUST include one instance of the OMADRMSalt box:
aligned (8) class OMADRMSalt extends FullBox('oslt', version, 0) {

unsigned int(8) SaltLength;

// Length of the Salt field in bits. MUST be 64

unsigned int(SaltLength) Salt;

// Salt needed for AES_128_BYTE_CTR
}
The OMADRMSalt box contains the field Salt, which is needed for AES_128_BYTE_CTR encryption method.

...

Key Block with CTR = IV+m

AU with Initial Vector IV

(B bytes)

Key Block�with�CTR = IV

Key Block�with�CTR = IV+1

Next AU with Initial Vector

IV' = IV+ ceil(B/16)

Key Block with�CTR = IV' = �IV+m+1

...

...

Plaintext

XOR

KeyBlocks

AU with Initialization Vector IV

(B bytes)

KeyBlock with�i(IV+16)

KeyBlock with�i(IV+16m) =�KeyBlock with�i(IV')

Next AU with Initialization Vector IV' = IV+ B

KeyBlock with�i(IV'+16(m+1))=�KeyBlock with�i(IV'+16)

...

...

...

Plaintext

XOR

KeyBlocks

KeyBlock with�i(IV)

AU with Initialization Vector IV

(B bytes)

KeyBlock with�i(IV+16)

KeyBlock with�i(IV+16m)

Next AU with Initialization Vector IV' = IV+ B

KeyBlock with�i(IV')

�

...

Plaintext

XOR

KeyBlocks

KeyBlock with�i(IV)

KeyBlock with�i(IV'+16)

...

...

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 7)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20060101-I]

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 4 (of 7)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20060101-I]

