Doc# OMA-DLDRM-2006-0549R01-CR_SRM_Move_Protocol.doc[image: image9.jpg]
Change Request

Doc# OMA-DLDRM-2006-0549R01-CR_SRM_Move_Protocol.doc
Change Request

Change Request

	Title:
	SRM Move Protocol
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	DLDRM

	Doc to Change:
	OMA-TS-SRM-V1_0-20061120-D

	Submission Date:
	6 Dec 2006

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	David Kravitz, Motorola, david.kravitz@motorola.com

Aram Perez, QUALCOMM, aramp@qualcomm.com

	Replaces:
	n/a

1 Reason for Change

To update the SRM TS with the Move Protocol presented in Input Contribution OMA-DLDRM-2006-0503R04-INP_SRM_SCE_Move_Protocol. The conventions used in this document follow the conventions used in OMA DRM V2.0 as discussed in the Move Framework dedicated call of December 5, 2006.

2 Impact on Backward Compatibility

None.

3 Impact on Other Specifications

None.

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

That the DLDRM group agreed to the Change Request.

6 Detailed Change Proposal

Change 1 Add the following new sections (not clear where)

DRM Agent and SRM Agent Communications

The basic unit of exchange between a DRM Agent and an SRM Agent is a SessionMessage which is exchanged via the communications link. A SessionMessage is defined as follows:

SessionMessage(){

 protectedMessageFlag
1
bslbf

 rfu
7
bslbf

 msgType
8
uimsbf

 if(protectedMessageFlag == 0){

 ProtectedMessage()

 }else {

 ClearTextMessage()

 }

}

SessionMessage consists of the following fields:

· protectedMessageFlag – if this field is ‘1’ then the message is protected when sent, otherwise (if field is ‘0’), the message is sent in the clear.

· rfu – this field is reserved for future use.

· msgType – this field contains a value that identifies the type of message being sent. Table 1 below defines the messages types.

· ProtectedMessage – if protectedMessageFlag is ‘1’, then this field contains a message that will be protected with integrity and confidentiality. This field is defined below.

· ClearTextMessage – if protectedMessageFlag is ‘0’, then this field contains the message that will not be protected. This field is defined below.

The following table defines all the message types and where the message type is defined:

Table 1, Message Types

	Type Value
	Message
	Section

	0
	HelloRequest
	

	1
	HelloResponse
	

	2
	
	

	3
	
	

	4
	
	

	5
	
	

	6
	
	

	7
	
	

	8
	
	

	9
	
	

	10
	
	

	11
	
	

	
	ReuseAkaContextRequest
	

	
	ReuseAkaContextResponse
	

	
	UpdateAkaMkRequest
	

	
	UpdateAkaMkResponse
	

	
	MoveRightsRequest
	5.6.2.3

	
	MoveRightsResponse
	5.6.2.4

	
	QueryRightsRequest
	5.6.2.5

	
	QueryRightsResponse
	5.6.2.6

	
	GetRightsRequest
	5.6.2.3

	
	GetRightsResponse
	5.6.2.4

	
	RemoveRightsRequest
	5.6.2.5

	
	RemoveRightsResponse
	5.6.2.6

	
	
	

	
	
	

A ProtectedMessage is defined as follows:

ProtectedMessage(){

 MessageBody()

 hmacValue
160
bslbf

}

ProtectedMessage consists of the following fields:

· MessageBody – this field contains the body of the message being protected with both integrity and confidentiality.

· hmacValue – this field contains the HMAC-SHA-1 value calculated over the MessageBody.

A MessageBody is defined as follows:

MessageBody(){

 ctrS
16
uimsbf

 msgLen
16
uimsbf

 for(i=0; i<msgLen; i++){

 byte
8
uimsbf

 }

}

MessageBody consists of the following fields:

· ctrS – this field contains the value of the Ctr of the sender of the message.

· msgLen – this field contains the length of the message being protected.

· byte – this field contains one byte of the message being protected.

A ClearTextMessage is defined as follows:

ClearTextMessage()

 msgLen
16
uimsbf

 for(i=0; i<msgLen; i++){

 byte
8
uimsbf

 }

}

A ClearTextMessage consists of the following fields:

· msgLen – this field contains the length of the message.

· byte – this field contains one byte of the message.

Status

The following defines the Status data structure:

Status(){

 status
16
uimsbf

}

The following table defines the values for status:

Table 2, Status Values

	Value
	Description
	Comments

	0
	Success
	The request was completed successfully by the SRM.

	1
	Abort
	

	2
	NotSupported
	

	3
	AccessDenied
	

	4
	NotFound
	The SRM Agent did not find some object the DRM Agent requested.

	5
	MalformedRequest
	

	6
	UnknownCriticalExtension
	

	7
	UnsupportedVersion
	

	8
	UnsupportedAlgorithm
	

	9
	NoCertificateChain
	

	10
	InvalidCertificateChain
	

	11
	TrustedRootCertificateNotPresent
	

	12
	SignatureError
	SRM Agent could not verify the integrity of the request.

	13
	DeviceTimeError
	

	14
	NotRegistered
	

	15
	InvalidDCFHash
	

	16
	InvalidDomain
	

	17
	DomainFull
	

	18
	DomainAccessDenied
	

	19
	RightsExpired
	

	20
	Invalid Secure Channel
	The SRM has not established an AKA with the requested channel.

	21
	CtrS Too Low
	The SRM Agent received a CtrS counter value that is too low. The DRM Agent should resend the request.

The first twenty (0 – 19) values correspond to the Status error messages of DRM V2.0.

AKA Context

After the AKA protocol is performed, a context must be saved to keep track of the communications. This context is known as the AKA Context and MUST be kept in non-volatile memory. An AKA Context is defined as follows:

AkaContext(){

 TmId()

 OtherId()

 initialHmacKey
160
bslbf

 SK()

 ctrMode
1
bslbf

 rfu
7
bslbf

 ctrA
96
bslbf

}

AkaContext consists of the following fields:

· TmId – this field contains the identity of the Trust Model.

· OtherId – this field contains the identity of the entity on the other end of the communications. In a DRM Agent, this field would contain the SRM ID. For the SRM Agent, this field would contain the Device ID. This field is defined below.

· initialHmacKey – this field contains the initial HMAC-SHA-1 key.

· SK – this field contains the session key used to provide confidentiality.

· ctrMode – this field indicates if AES-CTR mode is being used. If ‘0’ then AES-CBC mode is being used.

· rfu – this field is reserved for future use and should be set to zero.

· ctrA – if ctrMode is ‘1’, then this field contains the 96 most significant bits of the counter used in AES-CTR mode. If ctrMode is ‘0’, then this field is set to all zeros.

The TmId is defined as follows:

//Trust Model ID

TmId(){

 EntityId()

}

TmId consists of the following fields:

· EntityId – this field contains the identity of the Trust Model. This field is defined below.

The OtherId is defined as follows:

//Other entity ID

OtherId(){

 EntityId()

}

OtherId consists of the following fields:

· EntityId – this field contains the identity of the Trust Model. This field is defined below.

The SK is defined as follows:

SK(){

 sessionKey
128
bslbf

}

A SK consists of the following fields:

· sessionKey – this field contains the AES session key used to provide confidentiality.

An EntityId is defined as follows:

//Entity ID is the SHA-1 of the entity’s public key

EntityId(){

 id
160
bslbf

}

EntityId consists of the following fields:

· id – this field contains the identity of an entity, which is defined as the SHA-1 of the entity’s public key.

AKA SubContext

In order to reduce the amount of times the AKA Context changes, a sub-context is defined, which can be kept in volatile memory. An AKA SubContext is defined as follows:

AkaSubContext(){

 TmId()

 ctr
16
uimsbf

 MK()

}

AkaSubContext consists of the following fields:

· TmId – this field contains the identity of the Trust Model. This field ties the sub-context to the main context.

· ctr – this field contains the expected ctrS value of a received message.

· MK – this field contains the HMAC-SHA-1 key that is used to provide integrity.

A MK is defined as follows:

MK(){

 messageIntegrityKey
160
bslbf

}

MK consists of the following fields

· messageIntegrityKey – This field contains the HMAC-SHA1 message integrity key. When the AKA is first performed, this field is just a copy of the initialHmacKey from the corresponding AKA Context. A DRM Agent can cause this key to be updated by using the UpdateAkaMkRequest as explained below.

Reusing an AKA Context

Rights SHALL be transferred using the secure channel setup using the AKA protocols and the credentials under the Trust Model under which the initial RO was issued. Since a Device and/or SRM may support multiple Trust Models, a mechanism is required to change the context. The sequence diagram below illustrates the message flow and actions for re-using an AKA Context. All messages are sent in the clear.
[image: image1.png]
Figure 1, Reusing an AKA Context
The steps required re-use an AKA Context are as follows:

1. The DRM Agent sends a ReuseAkaContextRequest message to the SRM Agent which identifies the AKA Context that the DRM Agent wants to use. This message is defined in section x.x.x. The SRM Agent checks if it has a corresponding AKA Context. If it does, the SRM Agent sets Status, a local variable, to Success. It switches to that AKA Context for use with future protected messages and continues with step 2. Otherwise (no matching AKA Context was found), the SRM Agent sets Status to NotFound.

2. The SRM Agent sends the ReuseAkaContextResponse message to the DRM Agent. This message is defined in section x.x.x. If Status is success, the SRM Agent continues with step 3. When the DRM Agent receives the ReuseAkaContextResponse, it checks the Status value. If Status is Success, the DRM Agent continues with step 3. Otherwise, the DRM Agent performs the AKA protocol to establish a new AKA Context and secure channel.

3. The DRM Agent and the SRM Agent change to the AKA Context it specified in the ReuseAkaContextRequest message.

x.x.x ReuseAkaContextRequest Message

The ReuseAkaContextRequest message is defined as follows:

ReuseAkaContextRequest(){

 akaContextId
160
bslbf

}

ReuseAkaContextRequest consists of the following fields:

· akaContextId – this field contains identity of the AKA Context, which is defined as the SHA-1 of the AKA Context (see AkaContext above).

x.x.x ReuseAkaContextResponse Message

The ReuseAkaContextResponse message is defined as follows:

ReuseAkaContextResponse(){

 Status()

}

ReuseAkaContextResponse consists of the following fields:

· Status – this field contains the results of processing a ReuseAkaContextRequest and is defined in section x.x.x.. It can contain the following values:

· Success – The SRM Agent found the requested AKA Context and will use it will future protected messages.

· NotFound – The SRM Agent could not find the requested AKA Context. The DRM Agent should perform an AKA Protocol to establish a secure channel.

Updating the AKA Message Integrity Key

At times it is convenient to update the message integrity key (MK) without having to do the complete AKA protocol. The sequence diagram below illustrates the message flow and actions for updating the AKA message integrity key. All messages are sent in the clear.
[image: image2.png]
Figure 2, Updating the AKA Message Integrity Key
The steps required reset the AKA message integrity key are as follows:

1. The DRM Agent generates a random 80 bit number called MaskA.

2. The DRM Agent sends a UpdateAkaMkRequest message to the SRM Agent which contains MaskA. This message is defined in section x.x.x. The SRM Agent saves MaskA (in volatile memory).

3. The SRM Agent generates a random 80 bit number called MaskB. The SRM Agent proceeds with step 5.

4. The SRM Agent sends the UpdateAkaMkResponse message to the DRM Agent which contains MaskA|MaskB. The DRM Agent saves MaskB (in volatile memory).

5. Both the DRM Agent and SRM Agent set up the new message integrity key in the AKA SubContext as MK = (MaskA | MaskB) (initialHmacKey (from the AK Context). The ctr field in the AKA SubContext is set to 1.

x.x.x UpdateAkaMkRequest Message

The UpdateAkaMkRequest message is defined as follows:

UpdateAkaMkRequest(){

 MaskA()

}

UpdateAkaMkRequest consists of the following fields:

· MaskA – this field contains the MaskA value generated by the DRM Agent.

MaskA is defined as follows:

MaskA(){

 Mask()

}

MaskA consists of the following fields:

· Mask – this field contains a mask value.

Mask is defined as follows:

Mask(){

 mask
80
bslbf

}

Mask consists of the following fields:

· mask – this field contains a random 80 bit value.

x.x.x UpdateAkaMkResponse Message

The UpdateAkaMkResponse message is defined as follows:

UpdateAkaMkResponse(){

 MaskA

 MaskB

}

UpdateAkaMkResponse consists of the following fields:

· MaskA – this field contains the MaskA value sent in the UpdateAkaMkRequest. This field is defined above.

· MaskB – this field contains the MaskB value generated by the SRM Agent.

MaskB is defined as follows:

MaskB(){

 Mask()

}

MaskB consists of the following fields:

· Mask – this field contains a mask value and is defined above.

Change 2 Replace sections 5.6.1 – 5.6.2.5 with the text below

5.6.1 Moving Rights from a Device to an SRM

This section describes the protocol used to Move Rights from a Device to an SRM. This protocol is known as the Push Move because in essence the Device is pushing the Rights to the SRM. This protocol makes the following assumptions:

· That the Rights to be Moved have already been selected
· That the Rights to be Moved can be Moved
· That a secure channel has been set up using the credentials of the trust model under which the Rights to be Moved were originally issued
In this protocol, the term “disabled Rights” is used. Disabled Rights are Rights that are not usable to render Content nor can they be Moved. Once disabled, Rights MUST be enabled to become usable again as specified in this protocol.

The sequence diagram below illustrates the message flow and actions for the Push Move protocol. All messages are sent using the secure channel set up for this Push Move.
[image: image3.png]
Figure 3, Push Move Overview
The steps required to Move Rights from a Device to an SRM are as follows:

1. The DRM Agent checks the Rights to be Moved. If the Rights are not disabled, the DRM Agent disables the Rights to be Moved and sets RetryCount, a local variable, to 5. It continues with step 2. If the Rights are already disabled and the AKA Context is identical, the DRM Agent proceeds with step 5. If the Rights are already disabled and the AKA Context is different, the DRM Agent proceeds with step 7. Note: instead of proceeding to step 7, the DRM Agent may contact the Rights Issuer to get permission to re-enable the Rights (instead of removing it). This is outside the scope of this specification.

2. The DRM Agent sends a MoveRightsRequest message to the SRM Agent. This message is defined in section 5.6.2.3. It contains the Rights being Moved, identified by its ROID. The SRM Agent validates the MoveRightsRequest. If the message is valid, it sets Status, a local variable, to Success and continues with step 3. Otherwise, the SRM Agent sets Status to SignatureError and jumps to step 4.

3. The SRM Agent installs the fully enabled Rights. The Rights is already disabled on the source Device.

4. The SRM Agent sends a MoveRightsResponse message with the value of Status to the DRM Agent. This message is defined in section 5.6.2.4. The DRM Agent validates the MoveRightsResponse message. If the message is valid and Status is Success, the DRM Agent continues with step 7. If the message is valid and Status is SignatureError, the DRM Agent re-enables the Rights and ends the Move protocol. Otherwise (if the DRM Agent times out or receives an invalid MoveRightsResponse), the DRM Agent continues with step 5.

5. The DRM Agent sends a QueryRightsRequest message to the SRM Agent with the ROID of the Rights being Moved. This message is defined in section 5.6.2.5. The SRM Agent validates the QueryRightsRequest. If valid and the SRM Agent finds the Rights matching the ROID, it sets Status to Success. Otherwise, it sets Status to NotFound.

6. The SRM Agent sends a QueryRightsResponse message with the value of Status. This message is defined in section 5.6.2.6. The DRM Agent validates the QueryRightsResponse message. If the message is valid and Status is Success, it continues with step 7. If the message is valid and Status is NotFound, the DRM Agent re-enables the Rights and ends the Push Move protocol. Otherwise (if the DRM Agent timed out or received an invalid message), the DRM Agent decrements RetryCount. If RetryCount is not zero, the DRM Agent proceeds to step 5. If RetryCount is zero, the DRM Agent proceeds with step 7. Note: instead of proceeding to step 7, the DRM Agent may contact the Rights Issuer to get permission to re-enable the Rights (instead of removing it). This is outside the scope of this specification.

7. The DRM Agent removes the Rights that were Moved and ends the Move protocol.

5.6.1.1 Push Move DRM Agent State Machine

The following figure illustrates the state transitions for the DRM Agent performing the Push Move protocol.

[image: image4.png]
Figure 4, Push Move DRM Agent State Diagram
The following table describes the states and what events trigger a transition for the DRM Agent.

	State
	Description
	Transition Event
	Next State

	Begin Move
	The DRM Agent is going to Move the selected Rights. It checks whether the selected Rights is enabled.
	Rights disabled
	Prepare MoveRightsRequest

	
	
	Rights are already disabled AND same SRM Agent
	Prepare QueryRightsRequest

	
	
	Rights are already disabled AND different SRM Agent
	Removing Rights

	Prepare MoveRightsResponse
	The DRM Agent prepares a MoveRightsResponse and sends it to the SRM Agent.
	MoveRightsRequest sent
	Wait For MoveRightsResponse

	Wait For MoveRightsResponse
	The DRM Agent waits for the MoveRightsResponse. When a message is received, the DRM Agent validates it.
	Status = Success
	Removing Rights

	
	
	Status = Nak
	Enabling Rights

	
	
	Timed out OR received invalid message
	Prepare QueryRightsRequest

	Removing Rights
	The DRM Agent removes the Rights that was moved.
	Rights removed
	End the protocol

	Prepare QueryRightsRequest
	The DRM Agent prepares a QueryRightsRequest and sends it to the SRM Agent.
	QueryRightsRequest sent
	Wait For QueryRightsResponse

	Enabling Rights
	The DRM Agent enables the disabled Rights (that was to be Moved).
	Rights re-enabled
	End the protocol

	Wait For QueryRightsResponse
	The DRM Agent waits for the QueryRightsResponse. When a message is received, the DRM Agent validates it.
	Status = Success OR RetryCount = 0
	Removing Rights

	
	
	Status = Nak
	Enabling Rights

	
	
	Timed out OR received invalid message
	Prepare QueryRightsRequest

5.6.2.1 Push Move SRM Agent State Machine

The following figure illustrates the state transitions for the SRM Agent performing the Push Move protocol.

[image: image5.png]
Figure 5, Push Move SRM Agent State Diagram
The following table describes the states and what events trigger a transition for the SRM Agent.

	State
	Description
	Transition Event
	Next State

	Waiting for Request
	The SRM Agent is waiting for any request message.
	MoveRightsRequest received
	Processing MoveRightsRequest

	
	
	QueryRightsRequst received
	Processing QueryRightsRequest

	Processing MoveRightsRequest
	The SRM Agent processes the MoveRightsRequest. If valid, the Moved Rights are installed.
	Rights installed
	Prepare MoveRightsResponse

	
	
	Invalid Request
	Prepare MoveRightsResponse

	Prepare MoveRightsResponse
	The SRM Agent prepares a MoveRightsResponse and sends it to the DRM Agent.
	MoveRightsRequest sent
	Waiting for Request

	Processing QueryRightsRequest
	The SRM Agent processes a QueryRightsRequest. It sends back a QueryRightsResponse to the DRM Agent.
	QueryRightsResponse sent
	Waiting for Request

5.6.2.2 MoveRightsRequest Message

The MoveRightsRequest message is defined as follows:

MoveRightsRequest(){

 Rights()

}

MoveRightsRequest consists of the following fields:

· Rights – this field contains the Rights being Moved. This field is defined in section x.x.x.

5.6.2.3 MoveRightsResponse Message

The MoveRightsResponse message is defined as follows:

MoveRightsResponse(){

 Status()

}

MoveRightsResponse consists of the following fields:

· Status – this field contains the results of processing a MoveRightsRequest and is defined in section x.x.x. It can contain the following values:

· Success – The SRM Agent successfully installed the Rights from the MoveRightsRequest message.

· SignatureError – The SRM Agent could not validate the MoveRightsRequest message.

5.6.2.4 QueryRightsRequest Message

The QueryRightsRequest message is defined as follows:

QueryRightsRequest(){

 ROID()

}

QueryRightsRequest consists of the following fields:

· ROID – this field contains the ROID being queried. This field is defined in section x.x.x.

5.6.2.5 QueryRightsResponse Message

The QueryRightsResponse message is defined as follows:

QueryRightsResponse(){

 Status()

}

QueryRightsResponse consists of the following fields:

· Status - this field contains the results of processing a QueryRightsRequest and is defined in section x.x.x. It can contain the following values:

· Success – The SRM Agent found the Rights that match the ROID in the QueryRightsRequest.

· NotFound – The SRM Agent did not find the Rights that match the ROID in the QueryRightsRequest.

· SignatureError – The SRM Agent could not validate the QueryRightsRequest message.

5.6.2 Moving Rights from an SRM to a Device
This section describes the protocol used to Move Rights from an SRM to a Device. This protocol is known as the Pull Move because in essence the Device is pulling the Rights from the SRM. This protocol makes the following assumptions:

· That the Rights to be Moved have already been selected
· That the Rights to be Moved can be Moved
· That a secure channel has been set up using the credentials of the trust model under which the Rights to be Moved were originally issued
In this protocol, the term “sealed Rights” is used. Sealed Rights are Rights that are not usable (because the CEK is encrypted) and requires a key to unseal the Rights so they are usable (so the CEK can be decrypted). Sealed Rights can not be Moved. This process prevents a compromised DRM Agent from aborting the protocol before receiving acknowledgement that the Rights have been removed from the SRM.

The Pull Move is slightly more complicated than the Push Move above because the source SRM is a slave entity, responding only to requests from the sink Device. Because of the desire to allow retries, the SRM must support the concept of a Move Handle. This value is assigned by the SRM and is used to track the protocol and the Rights being Moved. The Handle is kept in the trust model context, along with the Rights sealing (unsealing) key.

The sequence diagram below illustrates the message flow and actions for the Pull Move protocol. All messages are sent using the secure channel set up for this Pull Move.
[image: image6.png]
Figure 6, Pull Move Overview

The steps required to Move Rights from an SRM to a Device are as follows:

1. The DRM Agent checks if it has Rights that are sealed. If no Rights are sealed, the DRM Agent sets RetryCount, a local variable, to 5. If there are sealed Rights and the AKA Context is identical, the DRM Agent proceeds to step 5. If the AKA Context is different, the DRM Agent removes the sealed Rights and ends the protocol.

2. The DRM Agent sends a GetRightsRequest message to the SRM Agent with the ROID of the Rights to be Moved. This message is defined in section 5.6.2.3. The SRM Agent validates the message. If valid, then the SRM Agent checks the ROID. If the ROID matches an existing Rights, the SRM Agent sets Status, a local variable, to Success and continues with step 3. Otherwise, it sets Status to SignatureError and continues with step 3. If GetRightsRequest is not valid, the SRM Agent takes no action, in effect, cancelling the protocol by allowing the DRM Agent to time out.

3. The SRM Agent sends a GetRightsResponse message to the DRM Agent. This message is defined in section 5.6.2.4. If Status is Success, this message will contain the sealed Rights being Moved (with a sealed CEK), along with a non-zero Handle for the Move. The SRM Agent generates a new random sealing key. The SRM Agent exclusive-ORs the CEK with the sealing key and sends this value in place of the CEK in the Rights sent in the GetRightsResponse. The SRM Agent must store the Handle and sealing key in non-volatile memory. The DRM Agent validates the GetRightsResponse message. If valid and Status is Success, it continues with step 4. Otherwise (Status is not Success, DRM Agent timed out or message was invalid), the DRM Agent decrements RetryCount. If RetryCount is not zero, it proceeds at step 2. If RetryCount is zero, the DRM Agent ends the protocol.

4. The DRM Agent installs the received sealed Rights. The Rights is not usable (even by a compromised DRM Agent) until they are unsealed later in the protocol. The DRM Agent sets RetryCount to 5.

5. The DRM Agent sends a RemoveRightsRequest message with the Handle (sent in the GetRightsResponse) of the Moved Rights. This message is defined in section 5.6.2.5. The SRM Agent validates the message. If invalid, the SRM Agent sets Status to SignatureError and continues with step 7. Otherwise, the SRM Agent sets Status to Success. The SRM Agent then matches its Handle with the Handle from the RemoveRightsRequest. If equal, the SRM Agent continues with step 6. Otherwise, the SRM Agent continues with step 7.

6. The SRM Agent removes the Rights that were Moved and corresponds to the Handle in the RemoveRightsRequest message. The SRM Agent sets Handle to zero.

7. The SRM Agent sends a RemoveRightsResponse message with the Status value to the DRM Agent. This message is defined in section 5.6.2.6. If Status is Success, the sealing key is sent in the message. The DRM Agent validates the message. If valid and Status is Success, it continues with step 8. Otherwise (valid and Status is not Success, timed out or invalid message), the DRM Agent decrements RetryCount. If RetryCount is non-zero, the DRM Agent proceeds to step 5. If RetryCount is zero, DRM Agent removes the sealed Rights that were Moved and ends the protocol.

8. The DRM Agent unseals the Rights that was Moved using the sealing key from the RemoveRightsResponse message.
5.6.2.6 Pull Move DRM Agent State Machine

The following figure illustrates the state transitions for the DRM Agent performing the Pull Move protocol.

[image: image7.png]
Figure 7, Pull Move DRM Agent State Diagram

The following table describes the states and what events trigger a transition for the DRM Agent.

	State
	Description
	Transition Event
	Next State

	Begin Move
	The DRM Agent checks the AKA Context and whether it has sealed Rights. It also sets RetryCount.
	RetryCount set
	Prepare GetRightsRequest

	
	
	Sealed Rights Installed AND AKA Context identical
	Prepare RemoveRightsRequest

	
	
	Sealed Rights Installed AND AKA Context different
	Removing Sealed Rights

	Prepare GetRightsRequest
	The DRM Agent prepares a GetRightsRequest and sends it to the SRM Agent.
	GetRightsRequest sent
	Wait For GetRightsResponse

	Wait For GetRightsResponse
	The DRM Agent waits for a GetRightsResponse from the SRM Agent. When a message is received, the DRM Agent validates the message and decrements RetryCount.
	Status = Success
	Installing Sealed Rights

	
	
	Success != Success OR Timed out OR Received invalid message
	Prepare GetRightsRequest

	
	
	RetryCount = 0
	End the protocol

	Installing Sealed Rights
	The DRM Agent installs the sealed Rights receives in the GetRightsResponse.
	Sealed Rights Installed
	Prepare RemoveRightsRequest

	Prepare RemoveRightsRequest
	The DRM Agents prepares a RemoveRightsRequest and sends it to the SRM Agent.
	RemoveRightsRequest sent
	Wait For RemoveRightsResponse

	Wait For RemoveRightsResponse
	The DRM Agent waits for a RemoveRightsResponse from the SRM Agent. When a message is received, the DRM Agent validates the message and decrements RetryCount.
	Status = Success
	Unsealing Rights

	
	
	Success != Success OR Timed out OR Received invalid message
	Prepare RemoveRightsRequest

	
	
	RetryCount = 0
	Removing Sealed Rights

	Unsealing Rights
	The DRM Agent unseals the sealed Rights by exclusive-ORing the sealed CEK with the sealing key sent in the RemoveRightsResponse.
	Rights unsealed
	End the protocol

	Removing Sealed Rights
	The DRM Agent removes the sealed Rights.
	Rights removed
	End the protocol

5.6.2.7 Pull Move SRM Agent State Machine

The following figure illustrates the state transitions for the SRM Agent performing the Pull Move protocol.

[image: image8.png]
Figure 8, Pull Move SRM Agent State Diagram

The following table describes the states and what events trigger a transition for the SRM Agent.

	State
	Description
	Transition Event
	Next State

	Waiting for Request
	The SRM Agent is waiting for any request message. When a message is received, the SRM Agent validates it.
	GetRightsRequest received
	Processing GetRightsRequest

	
	
	RemoveRightsRequst received
	Processing RemoveRightsRequest

	Processing GetRightsRequest
	The SRM Agent processes the GetRightsRequest. The SRM Agent generates a GetRightsResponse and sends it to the DRM Agent.
	GetRightsResponse sent
	Waiting for Request

	Processing RemoveRightsRequest
	The SRM Agent processes a RemoveRightsRequest. If it has the Rights, the SRM Agent removes the Rights.
	Rights removed
	Prepare RemoveRightsResponse

	
	
	Invalid request OR Rights not found
	Prepare RemoveRightsResponse

	Prepare RemoveRightsResponse
	The SRM Agent prepares a RemoveRightsResponse and sends it to the DRM Agent.
	RemoveRightsResponse sent
	Waiting for Request

5.6.2.8 GetRightsRequest Message

The GetRightsRequest message is defined as follows:

GetRightsRequest(){

 ROID()

}

GetRightsRequest consists of the following fields:

· ROID – this field contains the ROID of the Rights being Moved. This field is defined in section x.x.x.

The GetRightsRequest message is sent in a MessageBody.

5.6.2.9 GetRightsResponse Message

The GetRightsResponse message is defined as follows:

GetRightsResponse(){

 Status()

 if(Status == Success){

 Rights()

 Handle()

 }

}

GetRightsResponse consists of the following fields:

· Status – this field contains the results of processing a RemoveRightsRequest and is defined in section x.x.x. It can contain the following values:

· Success – The SRM Agent found the Rights to be Moved.

· NotFound – The SRM Agent did not find the Rights that match the ROID in the QueryRightsRequest.

· SignatureError – The SRM Agent could not validate the GetRightsRequest message.

· Rights – this field contains the Rights being Moved. This field is defined in section x.x.x.

· Handle – this field contains the Handle for the Rights being Moved. This field is defined in section x.x.x.

The GetRightsResponse message is sent in a MessageBody.

5.6.2.10 RemoveRightsRequest Message

The RemoveRightsRequest message is defined as follows:

RemoveRightsRequest(){

 Handle()

}

RemoveRightsRequest consists of the following fields:

· Handle – this field contains the Handle of the Rights that should be removed. This field is defined in section x.x.x.

5.6.2.11 RemoveRightsResponse Message

The RemoveRightsResponse message is defined as follows:

RemoveRightsResponse(){

 Status()

}

RemoveRightsResponse consists of the following fields:

· Status – this field contains the results of processing a RemoveRightsRequest and is defined in section x.x.x. It can contain the following values:

· Success – The SRM Agent removed the Rights that match the ROID in the RemoveRightsRequest.

· RightsNotFound – The SRM Agent did not find the Rights that match the Handle in the RemoveRightsRequest.

· SignatureError – The SRM Agent could not validate the RemoveRightsRequest message.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 20)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20060101-I]

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 15 (of 21)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20060101-I]

