OMA-TS-SRM-V1_0-20070116-D
Page 37 V(55)

	[image: image1.jpg]«“+OMa

Open Mobile Alliance

	

	OMA Secure Removable Media Specification

	Draft Version 1.0 – 16 January 2007

	Open Mobile Alliance

	OMA-TS-SRM-V1_0-20070116-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

71.
Scope

2.
References
8
2.1
Normative References
8
2.2
Informative References
8
3.
Terminology and Conventions
9
3.1
Conventions
9
3.2
Definitions
9
3.3
Abbreviations
9
4.
Introduction
11
5.
Secure Removable Media Overview
12
5.1
Component and Interface Deployment
12
5.2
Information Structure
13
5.2.1
Rights
13
5.2.2
Other Information
13
5.3
Conceptual Design of Secure Storage
14
5.4
Notations of Functions
14
5.4.1
Messages
15
5.4.2
Actions
15
5.4.3
Parameters
16
5.5
SRM-DP (Secure Removable Media - Detection Protocol)
16
5.5.1
SRM Detection
16
5.5.2
Secure Authenticated Channel
17
5.5.3
MAKE (Mutual Authentication and Key Exchange) Process
19
5.5.4
Key Derivation Function for SRM
21
5.5.5
Revocation Status Checking
21
5.5.6
Message Protection
24
5.6
SRM-AP (Secure Removable Media - Access Protocol)
25
5.6.1
Movement of Rights from Device to SRM
25
5.6.2
Movement of Rights from SRM to Device
27
5.6.3
Initiation of Local Rights Consumption
30
5.6.4
Update of Rights in SRM for Local Consumption
33
5.6.5
LROID Retrieval
37
5.6.6
On-Line Rights Provision in SRM
38
5.6.7
Off-Line Rights Provision in SRM
38
5.7
Function Recovery
39
6.
Transport Mappings
40
6.1
SRM Communication Layer Model
40
6.1.1
Application Layer
40
6.1.2
Other Layers (Informative)
40
Appendix A.
Method for Describing Binary Structures
42
A.1
Mnemonics (Data Types)
42
A.2
Comments
42
A.3
Syntax Description
42
A.4
Padding
43
A.5
Arrays
43
A.6
Optional Variables or Data Structures
44
Appendix B.
Data Format (Normative)
45
B.1
ROID
45
B.2
CID
45
B.3
Rights
46
B.3.1
RO (Rights Object) in WBXML
46
B.3.2
ESF (Extended State Format)
46
B.4
LCID (List of Content Identifier)
46
B.5
LROID (List of Rights Object Identifier)
46
Appendix C.
SRM Transport Protocol
48
C.1
HTTP Mapping
48
C.1.1
HTTP Headers
48
C.1.2
SRM Requests
48
C.1.3
SRM Responses
48
C.1.4
HTTP Response Codes
49
Appendix D.
Certificates and CRL
50
D.1
Certificate Profiles and Requirements
50
D.2
CRL Profiles and Requirements
51
Appendix E.
Move Permission in Rights Object (Normative)
53
E.1
Extension of Permission Model in REL
53
E.1.1
Element <permission>
53
E.1.2
Element <move>
53
Appendix F.
Change History (Informative)
54
F.1
Approved Version History
54
F.2
Draft/Candidate Version <current version> History
54
Appendix G.
Static Conformance Requirements (Normative)
55
G.1
SCR for XYZ Client
55
G.2
SCR for XYZ Server
55

Figures

12Figure 1: Secure Removable Media System - Component and Interface

14Figure 2: Secure Storage Structure

15Figure 3: Notation of Message

15Figure 4: Notation of Action

19Figure 5: Sequence Diagram – MAKE Process

22Figure 6: Sequence Diagram – CRL Delivery from Device to SRM

23Figure 7: Sequence Diagram – CRL Delivery from SRM to Device

25Figure 8: Sequence Diagram – Movement of Rights from Device to SRM

28Figure 9: Sequence Diagram – Movement of Rights from SRM to Device

31Figure 10: Sequence Diagram - Initiation of Local Rights Consumption

34Figure 11: Sequence Diagram - Rights Update

34Figure 12: Sequence Diagram – Rights Release

37Figure 13: Sequence Diagram - LROID Retrieval

40Figure 14: SRM Communication Layer

Tables

16Table 1: Notation of Parameters

18Table 2: Elements for Mutual Authentication

18Table 3: Elements for Message Protection

19Table 4: Parameters of SRMHelloRequest

20Table 5: Parameters of SRMHelloResponse

20Table 6: Error Code of SRMHelloResponse

20Table 7: Parameters of KeyExchangeRequest

21Table 8: Parameters of KeyExchangeResponse

21Table 9: Error Code of KeyExchangeResponse

22Table 10: Parameters of CRLUpdateRequest

23Table 11: Parameters of CRLUpdateResponse

23Table 12: Error Code of CRLUpdateResponse

23Table 13: Parameters of CRLRetrievalRequest

24Table 14: Parameters of CRLRetrievalResponse

24Table 15: Error Code of CRLRetrievalResponse

25Table 16: Parameters of RightsInstallationRequest

26Table 17: Parameters of RightsInstallationResponse

26Table 18: Error Code of RightsInstallationResponse

27Table 19: Parameters of RightsUnsealRequest

27Table 20: Parameters of RightsUnsealResponse

27Table 21: Error Code of RightsUnsealResponse

28Table 22: Parameters of RightsRetrievalRequest

29Table 23: Parameters of RightsRetrievalResponse

29Table 24: Error Code of RightsRetrievalResponse

30Table 25: Parameters of RightsRemovalRequest

30Table 26: Parameters of RightsRemovalResponse

30Table 27: Error Code of RightsRemovalResponse

31Table 28: Parameters of RightsRetrievalRequest

32Table 29: Parameters of RightsRetrievalResponse

32Table 30: Error Code of RightsRetrievalResponse

32Table 31: Parameters of RightsLockRequest

33Table 32: Parameters of RightsLockResponse

33Table 33: Error Code of RightsLockResponse

33Table 34: Rule of Rights Update

35Table 35: Parameters of RightsUpdateRequest

35Table 36: Parameters of RightsUpdateResponse

35Table 37: Error Code of RightsUpdateResponse

36Table 38: Parameters of RightsReleaseRequest

36Table 39: Parameters of RightsReleaseResponse

36Table 40: Error Code of RightsReleaseResponse

37Table 41: Parameters of LROIDRetrievalRequest

38Table 42: Parameters of LROIDRetrievalResponse

38Table 43: Error Code of LROIDRetrievalResponse

42Table 44: Data Types

44Table 45: Ranges

45Table 46: Elements of ROID

45Table 47: Elements of CID

46Table 48: Elements of LROID

50Table 49: SRM Certificate Profile

51Table 50: CRL Profile

52Table 51: RevokedCertificates Entry fields in CRL Profile

1. Scope

The scope of OMA “Secure Removable Media” is to enable the use of the Secure Removable Media based on the OMA DRM version 2.0. This specification defines mechanisms and protocols necessary to implement the Secure Removable Media and the extended part of the OMA DRM version 2.0 system to enable the use of the Secure Removable Media.
2. References

2.1 Normative References

	[CertProf]
	“Certificate and CRL Profiles”, OMA-Security-CertProf-v1_1, Open Mobile Alliance, http://www.openmobilealliance.org

	[IOPPROC]
	“OMA Interoperability Policy and Process”, Version 1.1, Open Mobile Alliance™, OMA-IOP-Process-V1_1, URL:http://www.openmobilealliance.org/

	[OMADRMv2]
	“Digital Rights Management”, Open Mobile Alliance(, OMA-DRM-DRM-V2_0, URL:http://www.openmobilealliance.org/

	[PKCS-1]
	“PKCS #1 v2.1: RSA Cryptography Standard”, RSA Laboratories, June 2002, http://www.rsasecurity.com/rsalabs

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC2234]
	“Augmented BNF for Syntax Specifications: ABNF”. D. Crocker, Ed., P. Overell. November 1997, URL:http://www.ietf.org/rfc/rfc2234.txt

	[RFC3280]
	"Internet Public Key Infrastructure - Certificate and Certificate Revocation List (CRL) Profile", Housley, R., Polk, W., Ford, W. and D. Solo, April 2002. http://www.ietf.org/rfc/rfc3280.txt

	
	

2.2 Informative References

	[SRM-AD]
	“OMA Secure Removable Media Architecture”, Open Mobile Alliance(, OMA-AD-SRM-V1_0, URL:http://www.openmobilealliance.org/

	[SRM-RD]
	“OMA Secure Removable Media Requirements”, Open Mobile Alliance(, OMA-RD-SRM-V1_0, URL:http://www.openmobilealliance.org/

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

	Composite Object
	A content object that contains one or more Media Objects by means of inclusion (From [OMADRMv2])

	Media Object
	A digital work e.g. a ringing tone, a screen saver, a Java game or a Composite Object (From [OMADRMv2])

	Permission
	Actual usages or activities allowed (by the Rights Issuer) over Protected Content (From [OMADRMv2])

	Protected Content
	Media Objects that are consumed according to a set of Permissions in a Rights Object (From [OMADRMv2])

	Rights
	A Rights Object and its associated states.

	Rights Issuer
	An entity that issues Rights Objects to OMA DRM conformant devices (From [OMADRMv2])

	Rights Object
	A collection of Permissions and other attributes which are linked to Protected Content (From [OMADRMv2])

	Secure Removable Media
	A removable media that implements means to protect against unauthorized access to its internal data and includes an SRM Agent. (e.g. secure memory card, smart card)

	
	

	
	

3.3 Abbreviations

	AES
	Advanced Encryption Standard

	CEK
	Content Encryption Key

	CID
	Content Identifier

	CRL
	Certificate Revocation List

	DRM
	Digital Rights Management

	ESF
	Extended State Format

	GUID
	Globally Unique Identifier

	HMAC
	Keyed-Hash Message Authentication Code

	LCID
	List of Content Identifier

	LROID
	List of Rights Object Identifier

	MAKE
	Mutual Authentication and Key Exchange

	OMA
	Open Mobile Alliance

	PKCS
	Public Key Cryptography Standards

	ROID
	Rights Object Identifier

	RITS
	Rights Issuer Time Stamp

	RO
	Rights Object

	ROAP
	Rights Object Acquisition Protocol

	RSA
	Rivest-Shamir-Adelman public key algorithm

	RSA-OAEP
	RSA encryption scheme - Optimal Asymmetric Encryption Padding

	RSA-PSS
	RSA Probabilistic Signature Scheme

	R-UIM
	Removable User Identity Module

	SD
	Secure Digital

	SHA1
	Secure Hash Algorithm

	S-MMC
	Secure MultiMediaCard

	SIM
	Subscriber Identity Module

	SRM
	Secure Removable Media

	SRM-AP
	Secure Removable Media - Access Protocol

	SRM-DP
	Secure Removable Media - Detection Protocol

	USIM
	UMTS Subscriber Identity Module

	
	

4. Introduction

Secure Removable Media is a removable media that implements means to protect against unauthorized access to its internal data and includes an SRM Agent. Example of Secure Removable Media (referred to as SRM hereinafter) may be the secure memory card and the smart card.

The secure memory card has an embedded microprocessor and is capable of storing Rights or contents in a secure manner (e.g. S-MMC, SD). The smart card also has an embedded microprocessor and is capable of storing access codes, user subscription information, secret keys, contents, Rights etc (e.g. SIM, USIM, R-UIM). If a user uses devices with a physical interface to connect SRM, the user can use the SRM as a mean of increasing storage space for contents and portability of Rights. Differently from the secure memory card, the smart card enables users to make a telephone call by using the devices and is issued by a mobile network operator.

OMA DRM with SRM can provide a mechanism to write, read, delete and update Rights in SRM in a secure manner to realize the use cases defined in the OMA SRM requirements document [SRM-RD]. The architecture of the OMA SRM is specified in the OMA SRM architecture document [SRM-AD].
While the OMA DRM version 2.0 [OMADRMv2] defines an end-to-end system for Protected Content and Rights Object distribution among the device, the rights issuer and the content issuer, this specification defines mechanisms and protocols of the SRM to extend the OMA DRM version 2.0 to allow users to move Rights between the device and the SRM and to consume Rights stored in the SRM.
5. Secure Removable Media Overview
This specification defines actions and interfaces of the Rights Issuer, DRM Agent, and SRM Agent.
5.1 Component and Interface Deployment

[image: image2.emf]DRM Agent SRM Agent

Device Secure Removable Media

Secure

Storage

External

Secure Communication

Trusted

Entity

User

Equipment

Internal

Secure Communication

Rights Issuer

ROAP (OMA DRM 2.0)

SRM-DP

SRM-AP

Figure 1: Secure Removable Media System - Component and Interface
The Secure Removable Media system is a set of three entities: Rights Issuer, DRM Agent and SRM Agent. The three entities communicate each other using the following protocols:

· Rights Issuer and DRM Agent: ROAP (Rights Object Acquisition Protocol)

· DRM Agent and SRM Agent: SRM-DP (Secure Removable Media – Detection Protocol) and SRM-AP (Secure Removable Media – Access Protocol)

The Rights Issuer and DRM Agent communicate each other by the ROAP as defined in [OMADRMv2].
The DRM Agent and the SRM Agent detects each other using the SRM-DP in chapter 5.5. After the detection, the DRM Agent and SRM Agent exchange messages using the SRM-AP to realize functions in chapter 5.6.
The SRM Agent has an internal secure communication with the Secure Storage. The implementation of the communication is out of scope of this specification. For the completeness of the security in the Secure Removable Media system, this specification assumes the follows:

· Only the SRM Agent can access the Secure Storage (i.e. the DRM Agent cannot directly access the Secure Storage).

· To perform an action on information in the Secure Storage, the DRM Agent requests the action to the SRM Agent. After performing the action, the SRM Agent passes the result of the action to the DRM Agent (i.e. the DRM Agent cannot receive information from the Secure Storage, if the information is not produced by the SRM Agent.).

5.2 Information Structure
5.2.1 Rights
A Rights consists of Rights Object and Extended State Format.
5.2.1.1 Rights Object
The Rights Object is the <protectedRO> element in an RO Response of ROAP [OMADRMv2]. The Rights Object is compacted using WBXML [WBXML] for transmission of SRM-AP. The compacted Rights Object contains information as follows:

· Globally Unique Rights Object Identification
This is “id” attribute of the <ro> element in the <protectedRO> element which is included in the RO Response of ROAP. The elements (<ro> and <protectedRO>) are defined in [OMADRMv2]. This value is globally unique to identify Rights.
· CEK

This is Content Encryption Key in binary form, i.e., no base64 encoding.
· Associated Content Identification
This conforms to [RFC2396] and is present in the <uid> element when its parent <context> element is included in the <asset>element of the <ro> element. The elements (<uid>, <context>, <asset> and <ro>) are defined in [OMADRMv2]. If the <asset> element is in a parent Rights Object, the WBXML compacted Rights Object includes a subscription identifier. In case of group Rights Object, the <uid> element specifies the GroupID for the corresponding group of DRM contents. In this case, the WBXML compacted Rights Object includes the GroupID. The terms (Parent Rights Object and Group Rights Object) are defined in [OMADRMv2].
· Permission and Constraints
TBD
The chapter B.3.1 specifies the compacted WBXML Rights Object in detail.The Rights Object is referred to as RO hereinafter in this specification.
5.2.1.2 Extended State Format
The Extended State Format is a set of state information. This is attached at an RO if the RO is stateful. The chapter B.3.2 specifies the Extended State Format in detail. The Extended State Format is referred to as ESF hereinafter in this specification.
5.2.2 Other Information

5.2.2.1 Rights Object Identifier
The Rights Object Identifier is the globally unique RO identification of Rights in chapter 5.2.1. The Rights Object Identifier is referred to as ROID hereinafter in this specification.
5.2.2.2 List of Content Identifier
The RO is associated with one DRM content or with multiple DRM contents. The List of Content Identifier is an identifier list of DRM contents which are associated with the RO. The chapter B.4 specifies the List of Content Identifier in detail.
The List of Content Identifier is referred to as LCID hereinafter in this specification.
5.2.2.3 List of Rights Object Identifier
The List of Rights Object Identifier consists of the ROIDs of the Rights which are associated with a specific DRM content. The chapter B.5 specifies the List of Rights Object Identifier in detail. The List of Rights Object Identifier is referred to as LROID hereinafter in this specification.
5.3 Conceptual Design of Secure Storage
The implementation of the Secure Storage is out of scope of the OMA SRM enabler. Therefore, this specification provides only the conceptual design of the Secure Storage.

The Secure Storage consists of “Rights Slots” as in Figure 2. At a Rights Slot, a Rights is stored.

Each Rights Slot is searched by using ROID of a Rights that is stored in the Rights Slot. Two or more Rights Slots don’t share an identical ROID.

[image: image3.emf]Secure Storage

Rights ROID

Rights ROID

Rights ROID

Rights ROID

...

Rights

Slot

Figure 2: Secure Storage Structure
5.4 Notations of Functions
This chapter presents notations used in this specification.
5.4.1 Messages
A message is data communication between the DRM Agent and the SRM Agent in this specification. The communication is based on a request-response mechanism. A message consists of a request and a response. For all messages between the DRM Agent and the SRM Agent, the DRM Agent sends a request to the SRM Agent to perform a specific action. The SRM Agent sends a response back to the DRM Agent for each received request.

[image: image4.emf]Entity A Entity B

{message name}Request

{message name}Response

Figure 3: Notation of Message
In Figure 3, the solid line from the Entity A to the Entity B denotes a request and the solid line from the Entity B to the Entity A denotes a response. The Entity A sends the request to the Entity B to perform a specific action. After this, the Entity B sends the response back to the Entity A.

Each message has a name (e.g. RightsInstallation). All message names are ended with the string “Request” and “Response”.

This notation is used for all messages in this specification.
5.4.2 Actions
An action is a specific operation of the DRM Agent or the SRM Agent. The DRM Agent performs a specific action independently, but the SRM Agent performs a specific action by a request from the DRM Agent. For each action in the SRM, the SRM Agent sends a response to the DRM Agent.

[image: image5.emf]Entity C

{action name}

Figure 4: Notation of Action
In Figure 4, the curved line denotes an action. The Entity C performs an action. Each action has a name (e.g. RightsInstallationInSRM). All action names are ended with the string “In{Place}”, in case that the action is performed in the “Place”.
5.4.3 Parameters
A parameter is a data unit which is passed from an entity to the other entity to make the recipient entity perform an action that uses the parameter.

Messages in this specification carry a set of parameters from the DRM Agent to the SRM Agent or vice versa. The parameters are denoted by using a table as Table 1 below. A request and response have their own parameter tables (i.e. one parameter table for the request and one parameter table for the response).
Table 1: Notation of Parameters
	Parameters
	Protection Requirement
	Description

	A
	Integrity
	

	B
	Confidentiality
	

	C
	Integrity & Confidentiality
	

	D
	No
	

The Table 1 shows that a message carries 4 parameters – A, B, C, and D. The “Protection Requirement” column denotes the minimum security requirement that MUST be protected. (i.e. the integrity of the parameter A MUST be guaranteed, the confidentiality of the parameter B MUST be guaranteed , both of the integrity and confidentiality of the parameter C MUST be guaranteed, and the parameter D is not needed to be protected.) The “Description” column shows detail of parameters.

The protection mechanism is specified in chapter 5.5.6.
5.5 SRM-DP (Secure Removable Media - Detection Protocol)
5.5.1 SRM Detection
When an SRM is connected to a device physically, the device detects the SRM and initiates message exchange between the device and SRM. When the DRM Agent in the device accesses the Secure Storage in the SRM by user’s request via user interface, if the SRM has not been discovered (detected) by the device yet, then the device tries to detect the SRM and initiates message exchange. The specification of this step belongs to the SRM communication layers in chapter 6.1.2.
After the detection, the DRM Agent sends the SRMHelloRequest to the SRM and finds the SRM Agent by receiving the SRMHelloResponse. This specification defines parameters of the messages, actions, and principles of handing errors/exceptions of actions for the DRM Agent and SRM Agent as described in chapter 6.1.1.

Editor's Note: The issue of proximity detection should be considered for a future version of the draft SRM TS
The SRM Detection function MUST be performed in the following cases:

· The DRM Agent receives the SRM Discovery Event.

· The DRM Agent detects exceptions during exchanging messages.
5.5.1.1 SRM Events in Device
The DRM Agent in the device MUST be capable of receiving the following events. The specification of generating these events belongs to the layers in chapter 6.1.2.
· SRM Discovery Event
The DRM Agent receives the SRM Discovery Event if an SRM is physically connected to the device.

· SRM Removal Event
The DRM Agent receives the SRM Removal Event if an SRM is physically removed from the device.
5.5.2 Secure Authenticated Channel
By establishing the Secure Authenticated Channel, DRM Agent and SRM Agent share keys to transmit data securely between them. In order to establish the Secure Authenticated Channel, DRM Agent and SRM Agent perform the MAKE process by exchanging certificates and verifing them. If the certificates are verified, the DRM Agent and SRM Agent exchange a symmetric encryption key (hereinafter, referred to as Session Key), Initial Vector, and MAC Key. These keys are used to guarantee the confidentiality and integrity of transmitted data between the DRM Agent and SRM Agent.

As clarified in chapter 6, the OMA DRM enabler defines the application layer of the Secure Authenticated Channel as below:

· Cryptographic algorithms (refer to chapter 5.5.2.1)

· Elements used in MAKE process (refer to chapter 5.5.2.2)

· MAKE process (refer to chapter 5.5.3)

· Key derivation for the message protection (refer to chapter 5.5.4)

· Certificate revocation status checking (refer to chapter 5.5.5)
· Message protection (refer to chapter 5.5.6)
5.5.2.1 Cryptographic Algorithms

For the MAKE process and message protection, the following cryptographic algorithms are used in this specification. The following algorithms and associated URIs MUST be supported by all DRM Agents and SRM Agents.

Hash algorithms:

SHA-1: http://www.w3.org/2000/09/xmldsig#sha1
MAC algorithms:

HMAC-SHA-1: http://www.w3.org/2000/09/xmldsig#hmac-sha1
Symmetric encryption algorithms:

AES-128-CBC: http://www.w3.org/2001/04/xmlenc#aes128-cbc
Asymmetric encryption algorithms:

RSA-OAEP (v2.1): http://www.rsasecurity.com/rsalabs/pkcs/schemas/pkcs-1
Signature algorithms:

RSA-PSS (v2.1): http://www.rsasecurity.com/rsalabs/pkcs/schemas/pkcs-1
For the RSA algorithm, refer to [PKCS-1].
5.5.2.2 Security Elements

For the MAKE process, the elements in the following Table 2 are used in this specification.
Table 2: Elements for Mutual Authentication
	Name
	Notation
	Description

	SRM Certificate
	CertS
	Certificate of Secure Removable Media

	Device Certificate
	CertD
	Certificate of Device

	SRM Public Key
	PuKeyS
	SRM’s public key used in signature verification and asymmetric encryption

	Device Public Key
	PuKeyD
	Device’s public key used in signature verification and asymmetric encryption

	SRM Private Key
	PrKeyS
	SRM’s private key used in signature and asymmetric decryption

	Device Private Key
	PrKeyD
	Device’s private key used in signature verification and asymmetric decryption

	SRM Identifier
	IDS
	Hash of SRM Public Key by SHA1

	Device Identifier
	IDD
	Hash of Device Public Key by SHA1

	SRM Random Number
	RNS
	Random number generated by SRM Agent

	Device Random Number
	RND
	Random number generated by DRM Agent

	CRL
	CRL
	Certificate Revocation List containing the list of revoked SRM Certificate or Device Certificate

For the message protection between DRM Agent and SRM Agent, the elements in the following Table 3 are used in this specification.These elements are derieved as the result of the MAKE process.
Table 3: Elements for Message Protection
	Name
	Notation
	Description

	Session Key
	KSEK
	Key to hide data transmission between DRM Agent and SRM Agent after the mutual authentication. The encryption is done by AES 128 bit in CBC mode. The length of this key is 16 bytes.

	Initial Vector
	IV
	Initial Vector for AES encryption. The length of this key is 16 bytes.

	MAC Key
	KMAC
	Key to generate MAC value of data transmission between DRM Agent and SRM Agent to guarantee integrity of the data. The length of this key is 16 bytes.

5.5.3 MAKE (Mutual Authentication and Key Exchange) Process

[image: image6.emf]DRM Agent SRM Agent

SRMHelloRequest

1

2

KeyExchangeRequest

SRMHelloResponse

KeyExchangeResponse

Figure 5: Sequence Diagram – MAKE Process
5.5.3.1 SRM Hello Message
The DRM Agent sends the SRMHelloRequest to initiate MAKE process. The parameters of the request are defined in Table 4.
Table 4: Parameters of SRMHelloRequest
	Parameters
	Protection Requirement
	Description

	Device ID (IDD)
	No
	The hash of the device’s public key in the Device Certificate (i.e. the hash of the complete DER-encoded subjectPublicKeyInfo component in the Device Certificate (CertD)). The default hash algorithm is SHA-1.

	Device Certificate Chain
	No
	A certificate chain including the Device Certificate (CertD). The chain MUST NOT include the root certificate. The Device Certificate MUST come first in the list. Each following certificate MUST directly certify the one preceding it. Refer to D.1

Upon receiving the SRMHelloRequest, the SRM Agent verifies the device certificate chain by using RSA algorithm. If the verification proves the device certificate chain is valid, the SRM Agent verifies the integrity of device ID by comparing it with the hash of the device’s public key in the device certificate chain.
After the verification, the SRM Agent generates a random number, and encrypts it with the device’s public key in the device certificate by using RSA algorithm. The notation “RSA.Enc (X, A)” denotes that string ‘A’ is encrypted with public key ‘X’ by using RSA.
After the action, the SRM Agent sends the SRMHelloResponse to carry the result of the action. The parameters of the response are defined in Table 5.
Table 5: Parameters of SRMHelloResponse
	Parameters
	Protection Requirement
	Description

	SRM ID (IDS)
	No
	The hash of the SRM’s public key in the SRM Certificate (i.e. the hash of the complete DER-encoded subjectPublicKeyInfo component in the SRM Certificate (CertS)). The default hash algorithm is SHA-1.

	SRM Certificate Chain
	No
	A certificate chain including the SRM Certificate (CertS). The chain MUST NOT include the root certificate. The SRM Certificate MUST come first in the list. Each following certificate MUST directly certify the one preceding it. Refer to D.1

	RSA.Enc (PuKeyD , RNS)
	No
	SRM Random Number (RNS) encrypted with Device Public Key (PuKeyD) by using RSA

	Error Code
	No
	Refer to Table 6

On receiving the SRMHelloResponse, the DRM Agent verifies the SRM certificate chain by using RSA algorithm. If the verification proves the SRM certificate chain is valid, the DRM Agent verifies the integrity of SRM ID by comparing it with the hash of the SRM’s public key in the SRM certificate chain.
After the verification, the DRM Agent decrypts the SRM Random Number with the device’s private key (PrKeyD) by using RSA algorithm.
The Error Code parameter of the SRMHelloResponse contains the error cases in Table 6.
Table 6: Error Code of SRMHelloResponse
	Error Code
	Description

	No Error
	The device certificate chain and the device ID were verified successfully.

	Generating Parameters in Response Failed
	The SRM Agent failed to generate the parameters in Table 5. (i.e. SRM ID or SRM Certificate Chain)

	Device Certificate Chain Verification Failed
	The SRM Agent fails to verify the device certificate chain.

	Integrity of Device ID verification Failed
	The device ID and the hash of the device’s public key in the device certificate chain are not identical.

If the DRM Agent finds any error, then the DRM Agent MUST terminate the MAKE process.
5.5.3.2 Key Exchange Message

This step performs key exchange and key confirmation.

The DRM Agent sends the KeyExchangeRequest to exchange keys with the SRM Agent.
The DRM Agent generates a random number, and encrypts it with the SRM’s public key in the SRM certificate by using RSA algorithm. The notation “RSA.Enc (X, A)” denotes that string ‘A’ is encrypted with public key ‘X’ by using RSA. The notation “+” denotes that strings are concatenated.
At this step, the DRM Agent also encrypts the SRM Random Number in chapter 5.5.3.1 along with the Device Random Number.

The parameters of the request are defined in Table 7.
Table 7: Parameters of KeyExchangeRequest
	Parameters
	Protection Requirement
	Description

	RSA.Enc (PuKeyS , M)
	No
	M = RND + RNS where Device Random Number (RND) is concatenated with SRM Random Number (RNS). M is encrypted with SRM Public Key (PuKeyS) by using RSA.

On receiving the KeyExchangeRequest, the SRM Agent decrypts the Device Random Number and the SRM Random Number with the SRM’s private key (PrKeyS) by using RSA algorithm. The SRM Agent checks if the decrypted SRM Random Number is identical to the random number (RNS) that the SRM Agent has sent in chapter 5.5.3.1.

After the decryption, the SRM Agent generates the hash of the Device Random Number and SRM Random Number by using SHA-1. The notation “Hash (A)” denotes that string ‘A’ is hashed by using SHA-1 algorithm.
After the action, the SRM Agent sends the KeyExchangeResponse to carry the result of the action. The parameters of the response are defined in Table 8.
Table 8: Parameters of KeyExchangeResponse
	Parameters
	Protection Requirement
	Description

	Hash (M)
	No
	M = RND + RNS where Device Random Number (RND) is concatenated with SRM Random Number (RNS). M is hashed by using SHA-1.

	Error Code
	No
	Refer to Table 9

On receiving the KeyExchangeResponse, the DRM Agent verifies the hash of the Device Random Number and SRM Random Number.

The Error Code parameter of the KeyExchangeResponse contains the error cases in Table 9.
Table 9: Error Code of KeyExchangeResponse
	Error Code
	Description

	No Error
	Random numbers are passed successfully.

	Random Number Decryption Failed
	The SRM Agent fails to decrypt random numbers.

	SRM Random Number Mismatched
	The SRM Random Number from device is not identical to its original value in SRM.

If the DRM Agent finds any error, then the DRM Agent MUST terminate the MAKE process.
After the key exchange and key confirmation are successfully finished, the DRM Agent and SRM Agent generate security elements in Table 3 using the key derivation function in chapter 5.5.4.

5.5.4 Key Derivation Function for SRM
TBD

5.5.5 Revocation Status Checking
The revocation status checking is performed based on the following principles.
· During mutual authentication between the DRM Agent and SRM Agent, revocation status checking is performed locally by using a cached Certificate Revocation List (CRL).
· The functions defined in chapter 5.6 are allowed until a particular threshold is reached.
· Trust model sets thresholds.
· Once a threshold is reached, one or more of the functions in chapter 5.6 can be blocked.
· When the entity (DRM Agent or SRM Agent) receives a fresh CRL, then it resets its threshold counters. Once the threshold counters are reset, the blocked functions of chapter 5.6 are unblocked.
Editor’s Note:

Mutual authentication will be defined

Protocol to realize the certificate revocation status checking will be defined

Unblocking procedures, including receiving fresh CRL, will be defined.

Types of thresholds will be defined

For the DRM Agent and SRM Agent to replace old CRL with new CRL, this document specifies protocols for the following purposes:

· CRL Delivery from Device to SRM (Refer to 5.5.5.1)

The DRM Agent sends its CRL to the SRM Agent. The SRM Agent replaces the CRL in itself with the received CRL.

· CRL Delivery from SRM to Device (Refer to 5.5.5.2)

The DRM Agent retrieves CRL in SRM, and replaces its CRL with the retrieved CRL.

5.5.5.1 CRL Delivery from Device to SRM

[image: image7.emf]DRM Agent SRM Agent

1

CRLUpdateResponse

CRLUpdateRequest

Figure 6: Sequence Diagram – CRL Delivery from Device to SRM
The DRM Agent sends the CRLUpdateRequest to replace the current CRL in the SRM with the CRL in the device. The parameters of the request are defined in Table 10.
Table 10: Parameters of CRLUpdateRequest
	Parameters
	Protection Requirement
	Description

	CRL
	No
	Certificate Revocation List (CRL) contains revocation status information for Device Certificates or SRM Certificates. Refer to D.2

On receiving the CRLUpdateRequest, the SRM Agent verifies the signature over the CRL. If the signature of the CRL is valid, and the received CRL is newer than the CRL of the SRM, then the SRM Agent replaces the current CRL in the SRM with the received CRL. The CRL numbers are compared to determine if the received CRL supersedes the CRL stored in the SRM.
By referring to the authorityKeyIdentifier component in the CRL, the SRM Agent recognizes the issuer of the CRL.
After the action, the SRM Agent sends the CRLUpdateResponse to carry the result of the action. The parameters of the response are defined in Table 11.

Table 11: Parameters of CRLUpdateResponse
	Parameters
	Protection Requirement
	Description

	Error Code
	No
	Refer to Table 12

If any error occurs during this action, the error SHOULD be reported to the DRM Agent. The Error Code parameter of the CRLUpdateResponse contains the error cases in Table 12.
Table 12: Error Code of CRLUpdateResponse
	Error Code
	Description

	No Error
	CRL is updated in SRM successfully

	Old CRL
	CRL in the request is older than the CRL in SRM

	CRL Verification Failed
	The verification of the signature over CRL is failed.

	Unknown Error
	Other errors

5.5.5.2 CRL Delivery from SRM to Device

[image: image8.emf]DRM Agent SRM Agent

1

CRLRetrievalRequest

CRLRetrievalResponse

Figure 7: Sequence Diagram – CRL Delivery from SRM to Device

The DRM Agent sends the CRLRetrievalRequest to retrieve the CRL in the SRM. The parameters of the request are defined in Table 13.
Table 13: Parameters of CRLRetrievalRequest
	Parameters
	Protection Requirement
	Description

	CRL Issuer ID
	No
	The 160-bit SHA-1 hash of the public key corresponding to the private key used to sign the CRL (i.e. the keyIdentifier field of the authorityKeyIdentifier component in the CRL).

On receiving the CRLRetrievalRequest, the SRM Agent retrieves the CRL stored in the SRM. The retrieved CRL includes the CRL Issuer ID in its extension (authorityKeyIdentifier).
After the action, the SRM Agent sends the CRLRetrievalResponse to carry the result of the action. The parameters of the response are defined in Table 14.

Table 14: Parameters of CRLRetrievalResponse
	Parameters
	Protection Requirement
	Description

	CRL
	No
	Certificate Revocation List (CRL) contains revocation status information for Device Certificates or SRM Certificates. Refer to D.2

	Error Code
	No
	Refer to Table 15

On receiving the CRLRetrievalResponse, the DRM Agent verifies the signature over the CRL. If the signature of the CRL is valid, and the retrieved CRL is newer than the CRL of the device, then the DRM Agent replaces the current CRL in the device with the retrieved CRL. The CRL numbers are compared to determine if the received CRL supersedes the CRL stored in the device.
The Error Code parameter of the CRLRetrievalResponse contains the error cases in Table 15.
Table 15: Error Code of CRLRetrievalResponse
	Error Code
	Description

	No Error
	CRL is retrieved from SRM successfully

	CRL Not Found
	There is no CRL including matched CRL Issuer ID.

	Unknown Error
	Other errors

5.5.6 Message Protection
To perform SRM-AP between DRM Agent and SRM Agent, parameters defined in this specification are transmitted between the agents. In this specification, the minimal protection requirement of each parameter is specified as Table 1 in chapter 5.4.3. The format of the table is used in this overall specification.
The way of protection is specified as below:
· Integrity

If it is specified that the integrity of a parameter must be protected, a message to carry the parameter also carries the MAC value of the parameter. The MAC value is calculated by the MAC algorithm (HMAC-SHA1) with the MAC Key (KMAC).

If the MAC value is calculated by the DRM Agent, the SRM Agent can verify the integrity by recalculating it with the shared MAC Key and vice versa.
· Confidentiality

If it is specified that the confidentiality of a parameter must be protected, a message to carry the parameter MUST be encrypted by the symmetric encryption algorithm (AES-128-CBC) with the Session Key (KSEK) and Initial Vector (IV).

If the DRM Agent encrypts the message, the SRM Agent can decrypt the message with the Session Key and Initial Vector and vice versa.

As clarified in chapter 6, the OMA DRM enabler defines the application layer of the message protection mechanism as above. The cryptographic algorithms defined in this specification MUST be supported regardless of the type of SRM. However, the actual message transmission protocol may differ depending on each SRM type. Therefore the protection mechanism defined in this chapter can be applied differently on each SRM type. The layers of chapter 6.1.2 define how to apply the integrity and confidentialty protection mechanism to each SRM. Regardless of the type of SRM, the minimal protection requirement MUST be supported.
5.6 SRM-AP (Secure Removable Media - Access Protocol)
This chapter specifies functions of the technical use cases defined in [SRM-AD].
This chapter defines parameters of messages, actions, and principles of handing errors/exceptions of actions for the DRM Agent and SRM Agent as described in chapter 6.1.1.
5.6.1 Movement of Rights from Device to SRM
A Rights is moved from a device to an SRM by this function. The DRM Agent requests the SRM Agent to install the Rights (i.e. RO, ESF, ROID and LCID) in the SRM. (Refer to chapter 5.6.1.1) The installed Rights is sealed by the DRM Agent just before the installation in the SRM. If the Rights is installed in the SRM successfully, the DRM Agent SHOULD remove the Rights from the originated device. (Refer to chapter 5.6.1.2)

[image: image9.emf]DRM Agent SRM Agent

1

2

3

RightsInstallationResponse

SealedRightsInstallationInSRM

RightsRemovalInDevice

RightsInstallationRequest

RightsUnsealRequest

RightsUnsealResponse

RightsUnsealInSRM

Figure 8: Sequence Diagram – Movement of Rights from Device to SRM
5.6.1.1 Rights Installation Message
The DRM Agent sends the RightsInstallationRequest to install the sealed Rights in the SRM. Hear, sealed Rights are Rights that are not usable (because the CEK is encrypted) and requires a key to unseal the Rights so they are usable (so the CEK can be decrypted). Sealed Rights cannot be moved. The parameters of the request are defined in Table 16.
Table 16: Parameters of RightsInstallationRequest
	Parameters
	Protection Requirement
	Description

	RO
	Integrity & Confidentiality
	Refer to 5.2.1.1

	ESF
	Integrity
	Refer to 5.2.1.2

	ROID
	Integrity
	Refer to 5.2.2.1

	LCID
	Integrity
	Refer to 5.2.2.2

Upon receiving the RightsInstallationRequest, the SRM Agent installs the Rights in the SRM. For the installation, the SRM Agent performs the following actions:

· Decrypt the RO
· Verify the integrity of the request parameters

· Allocate an empty Rights Slot

· Store the RO, ESF, ROID, and LCID (i.e. sealed Rights) at the allocated Rights Slot

After the action, the SRM Agent sends the RightsInstallationResponse to carry the result of the action. The parameters of the response are defined in Table 17. If any error occurs during the action, the error MUST be reported to the DRM Agent. The Error Code parameter of the RightsInstallationResponse contains the error cases in Table 18.
Table 17: Parameters of RightsInstallationResponse
	Parameters
	Protection Requirement
	Description

	Error Code
	Integrity
	Error cases of the RightsInstallationResponse are in Table 18

·
·

·
·
5.6.1.2

·
·
·
·

·

Table 18: Error Code of RightsInstallationResponse
	Error Code
	Description

	No Error
	The action is succeeded.

	No Enough Space
	The SRM doesn’t have enough space to store the Rights.

	Parameter Integrity Verification Failed
	The HMAC value of parameters in the request is not matched with the HMAC value of the parameters generated by the SRM Agent.

	Parameter Decryption Failed
	The SRM Agent fails to decrypt the encrypted parameters.

Upon receiving the response, the DRM Agent verifies the integrity of parameters in the response.
If the DRM Agent fails to receive the response, finds an error by referring to the Error Code, or fails to verify the integrity of parameters, then the DRM Agent MUST perform the following actions:

· The DRM Agent sends the recovery message to the SRM Agent. Refer to chapter 5.7.

· The Move function is terminated.
If the SRM Agent receives a properly formulated recovery message from the DRM Agent, then the SRM Agent MUST perform the following actions:

· The SRM Agent aborts Rights installation if begun, or removes the Rights if already installed.

· The SRM Agent sends the recovery response message to the DRM Agent. Refer to chapter 5.7.
5.6.1.3 Rights Removal in Device
If the sealed Rights is installed successfully in the SRM (i.e. No Error in Error Code parameter of the RightsInstallationResponse), the DRM Agent removes the Rights from the originated device permanently.
If the RO of the Rights is stateful, the DRM Agent removes the RO’s GUID (i.e. ROID) and RITS from the replay caches in [OMADRMv2].

5.6.1.4 Rights Unseal Message

If the Rights is removed from the device by the DRM Agent, the DRM Agent sends the RightsUnsealRequest to unseal the sealed Rights in the SRM.
The parameters of the RightsUnsealRequest are defined in Table 19.
Table 19: Parameters of RightsUnsealRequest
	Parameters
	Protection Requirement
	Description

	ROID
	Integrity
	Refer to 5.2.2.1

	Sealing Key
	Integrity & Confidentiality
	The key to unseal the sealed Rights

Upon receiving the RightsUnsealRequest, the SRM Agent verifies the integrity of parameters in the request and decrypts the sealing key. Then, the SRM Agent unseals the Rights in the SRM with the sealing key.
The unsealed Rights can be consumed to use its associated DRM contents.
After this action, the SRM Agent sends the RightsUnsealResponse to the DRM Agent to carry the result of the action. The parameters of the response are defined in Table 20. If any error occurs during the action, the error MUST be reported to the DRM Agent. The Error Code parameter of the RightsUnsealResponse contains the error cases as defined in Table 21.
Table 20: Parameters of RightsUnsealResponse
	Parameters
	Protection Requirement
	Description

	
	
	

	Error Code
	Integrity
	Error cases of the RightsUnsealResponse are in Table 21

5.6.1.5

Table 21: Error Code of RightsUnsealResponse

	Error Code
	Description

	No Error
	The action is succeeded.

	Invalid ROID
	There is no Rights indicated by the ROID in RightsUnsealRequest

	Invalid Sealing Key
	The sealed Rights cannot be unsealed with the SealingKey indicated in the RightsUnsealRequest.

Upon receiving the response, the DRM Agent verifies the integrity of parameters in the response. If the DRM Agent recognizes the successful unsealing, then the sealing key in the device can be discarded.
If the DRM Agent fails to receive the response, finds an error by referring to the Error Code, or fails to verify the integrity of parameters, then the DRM Agent MUST repeat the RightsUnsealRequest to unseal the sealed Rights in the SRM until timeout.
5.6.2 Movement of Rights from SRM to Device
A Rights is moved from an SRM to a device by this function. The DRM Agent in the device requests the SRM Agent to retrieve the Rights from the SRM. On receiving the retrieval request, the SRM Agent retrieves the Rights from its Secure Storage and sends the retrieved Rights to the DRM Agent. (Refer to chapter 5.6.2.1) Even after the SRM Agent sends the retrieved Rights, the retrieved Rights still remains in the SRM, but it is in disabled state. The DRM Agent installs the received Rights in the device. (Refer to chapter 5.6.2.2) If the installation is successful, the disabled Rights in the originated SRM is removed. (Refer to chapter 5.6.2.3)
Before the movement of Rights, the DRM Agent SHOULD get the latest LROID from the SRM Agent by using the LROID retrieval function in chapter 5.6.5.

[image: image10.emf]DRM Agent SRM Agent

1

2

3

RightsRetrievalInSRM

RightsInstallationInDevice

RightsRemovalInSRM

RightsRetrievalRequest

RightsRemovalRequest

RightsDisablementInSRM

RightsRetrievalResponse

RightsRemovalResponse

Figure 9: Sequence Diagram – Movement of Rights from SRM to Device
5.6.2.1 Rights Retrieval Message
The DRM Agent sends the RightsRetrievalRequest to retrieve the Rights in the SRM. The parameters of the request are defined in Table 22.
Table 22: Parameters of RightsRetrievalRequest
	Parameters
	Protection Requirement
	Description

	ROID
	Integrity
	Refer to 5.2.2.1

	Read Data Flag
	Integrity
	00h: The Rights is disabled after retrieval.
01h: The Rights stays in enabled state after retrieval.
For the move function, the “Read Data Flag” has the value 00h.

Upon receiving the RightsRetrievalRequest, the SRM Agent performs the following actions:

· Verify the integrity of the request parameters

· Find a Rights Slot where the Rights with the matched ROID is installed

· Retrieve the RO and ESF of the Rights from the found Rights Slot
The “Read Data Flag” of the RightsRetrievalRequest in this chapter has the value of 00h. Therefore, after the RO and ESF are retrieved, the original Rights in the Rights Slot MUST be disabled and satisfy the following conditions:

· The Rights can be enabled only by the request of the DRM Agent that has disabled the Rights.

· The Rights cannot be retrieved by other DRM Agents.

· The Rights cannot be disabled by other DRM Agents.
· The Rights cannot be locked to use its associated DRM contents.

· The Rights can be removed only by the request of the DRM Agent that has disabled the Rights.

· If the Rights is enabled, the state of the Rights MUST be identical to the original state of the Rights before the disablement.
After the action, the SRM Agent sends the RightsRetrievalResponse to carry the result of the action. The parameters of the response are defined in Table 23. If any error occurs during the action, the error MUST be reported to the DRM Agent. The Error Code parameter of the RightsRetrievalResponse contains the error cases as defined in Table 24 REF _Ref142810063 \h
.
Table 23: Parameters of RightsRetrievalResponse
	Parameters
	Protection Requirement
	Description

	RO
	Integrity & Confidentiality
	Refer to 5.2.1.1

	ESF
	Integrity
	Refer to 5.2.1.2

	Error Code
	Integrity
	Error cases of the RightsRetrievalResponse are in Table 24 REF _Ref142810063 \h
.

Table 24: Error Code of RightsRetrievalResponse

	Error Code
	Description

	No Error
	The action is succeeded.

	No Rights Found
	The SRM Agent cannot find the matched Rights.

	Parameter Integrity Verification Failed
	The HMAC value of parameters in the request is not matched with the HMAC value of the parameters generated by the SRM Agent.

	Rights Already Disabled or Locked
	The Rights has already been disabled or locked.

Upon receiving the response, the DRM Agent performs the following actions:

· Decrypt the RO
· Verify the integrity of parameters in the response

If the DRM Agent fails to receive the response, finds an error by referring to the Error Code, or fails to verify the integrity of parameters, then the DRM Agent MUST perform the following actions:

· The DRM Agent sends the recovery message to the SRM Agent. Refer to chapter 5.7.

· The Move function is terminated.
5.6.2.2

·
·
·

·
·
·
·
·
·

	
	

	
	

	
	

	
	

	
	

5.6.2.3 Rights Installation in Device
If the RO and ESF of the Rights is retrieved from the SRM successfully (i.e. No Error in Error Code parameter of the RightsInstallationResponse), the DRM Agent installs the RO in the device. The installed RO can be consumed to use its associated DRM contents.

If the RO is stateful, the DRM Agent performs the following actions:

· The DRM Agent converts the ESF of the Rights, retrieved from the SRM in chapter 5.6.2.1, to the device’s local state information format and removes the ESF.

· The DRM Agent inserts the RO’s GUID (i.e. ROID) and RITS in the replay caches in [OMADRMv2].
If the installation is aborted, the Rights MUST be removed from the device and the Rights stored in the SRM MUST be enabled by the request of the DRM Agent that has disabled the Rights. After this, the Move function is terminated.
5.6.2.4 Rights Removal Message
After the Rights is installed in the device, the DRM Agent sends the RightsRemovalRequest to remove the original Rights in the SRM. The parameters of the request are defined in Table 25.
Table 25: Parameters of RightsRemovalRequest
	Parameters
	Protection Requirement
	Description

	ROID
	Integrity
	Refer to 5.2.2.1

Upon receiving the RightsRemovalRequest, the SRM Agent finds a Rights Slot of the ROID and removes the Rights in the Rights Slot permanently. After the Rights removal, the Rights Slot is released. The SRM Agent removes only disabled Rights.
After the action, the SRM Agent sends the RightsRemovalResponse to carry the result of the action. The parameters of the response are defined in Table 26. If any error occurs during the action, the error MUST be reported to the DRM Agent. The Error Code parameter of the RightsRemovalResponse contains the error cases as defined in Table 27.
Table 26: Parameters of RightsRemovalResponse
	Parameters
	Protection Requirement
	Description

	Error Code
	Integrity
	Error cases of the RightsRemovalResponse are in Table 27.

·

5.6.2.5

Table 27: Error Code of RightsRemovalResponse
	Error Code
	Description

	No Error
	The action is succeeded.

	Parameter Integrity Verification Failed
	The HMAC value of parameters in the request is not matched with the HMAC value of the parameters generated by the SRM Agent.

	Invalid ROID
	There is no Rights Slot indicated by the ROID.

	Invalid DRM Agent
	The RightsRemovalRequest is from a DRM Agent that hasn’t disabled the Rights.

	Rights in Enabled State
	The Rights cannot be removed, because it is in enabled state.

Upon receiving the response, the DRM Agent verifies the integrity of parameters in the response.
If the DRM Agent fails to receive the response, finds an error by referring to the Error Code, or fails to verify the integrity of parameters, then the DRM Agent MUST repeat this message to remove the Rights from the SRM.
5.6.3 Initiation of Local Rights Consumption

To use a DRM content by consuming its associated Rights, the DRM Agent collects Rights associated with the DRM content from the SRM. To perform the collection, the DRM Agent requests a retrieval of the Rights to the SRM Agent. On receiving the retrieval request, the SRM Agent retrieves the Rights from its Secure Storage and sends it to the DRM Agent. (Refer to chapter 5.6.3.1) If there are more than one Rights in the SRM associated with the DRM content, the DRM Agent can perform multiple Rights retrievals. The DRM Agent selects associated Rights for consumption. (Refer to chapter 5.6.3.2) After the DRM Agent selects the Rights, the DRM Agent locks the original Rights that remains in the SRM, in order to prohibit consumption of the Rights by other DRM Agents. (Refer to chapter 5.6.3.3)
Before the Local Rights Consumption, the DRM Agent SHOULD get the latest LROID from the SRM Agent by using the LROID retrieval function in chapter 5.6.5.

[image: image11.emf]DRM Agent SRM Agent

RightsRetrievalRequest

RightsRetrievalInSRM

RightsLockRequest

RightsLockInSRM

1

2

RightsSelectionInDevice

3

RightsRetrievalResponse

RightsLockResponse

Figure 10: Sequence Diagram - Initiation of Local Rights Consumption
5.6.3.1 Rights Retrieval Message
The DRM Agent sends the RightsRetrievalRequest to retrieve the Rights from the SRM. The parameters of the request are defined in Table 28.
Table 28: Parameters of RightsRetrievalRequest
	Parameters
	Protection Requirement
	Description

	ROID
	Integrity
	Refer to 5.2.2.1

	Read Data Flag
	Integrity
	00h: The Rights is disabled after retrieval.
01h: The Rights stays in enabled state after retrieval.

For the initiation function, the “Read Data Flag” has the value 01h.

Upon receiving the RightsRetrievalRequest, the SRM Agent performs the following actions:

· Verify the integrity of the request parameters

· Find a Rights Slot where the Rights with the matched ROID is installed

· Retrieve the RO and ESF of the Rights from the found Rights Slot

The “Read Data Flag” of the RightsRetrievalRequest in this chapter has the value of 01h. Therefore, after the RO and ESF are retrieved, the original Rights in the Rights Slot is not disabled.
After the action, the SRM Agent sends the RightsRetrievalResponse to carry the result of the action. The parameters of the response are defined in Table 29. If any error occurs during the action, the error MUST be reported to the DRM Agent. The Error Code parameter of the RightsRetrievalResponse contains the error cases as defined in Table 30.
Table 29: Parameters of RightsRetrievalResponse
	Parameters
	Protection Requirement
	Description

	RO
	Integrity & Confidentiality
	Refer to 5.2.1.1

	ESF
	Integrity
	Refer to 5.2.1.2

	Error Code
	Integrity
	Error cases of the RightsRetrievalResponse are in Table 30.

·
·

·
·
5.6.3.2

·
·
·

Table 30: Error Code of RightsRetrievalResponse
	Error Code
	Description

	No Error
	The action is succeeded.

	No Rights Found
	The SRM Agent cannot find the matched Rights.

	Parameter Integrity Verification Failed
	The HMAC value of parameters in the request is not matched with the HMAC value of the parameters generated by the SRM Agent.

	Rights Already Disabled or Locked
	The Rights has already been disabled or locked.

Upon receiving the response, the DRM Agent performs the following actions:

· Decrypt the RO
· Verify the integrity of parameters in the response

If the DRM Agent fails to receive the response, finds an error by referring to the Error Code, or fails to verify the integrity of parameters, then the DRM Agent MUST perform the following actions:

· The DRM Agent sends the recovery message to the SRM Agent. Refer to chapter 5.7.

· The Initiation of Local Rights Consumption function is terminated.
5.6.3.3 Rights Selection in Device
If there are more than one associated Rights in the SRM or in the device, the DRM Agent selects one Rights in the device or in the SRM.

If a Rights in the device is selected, the consumption of the Rights is performed as specified in [OMADRMv2]. The DRM Agent can also select an associated Rights in the SRM by referring to the Rights retrieved as specified in chapter 5.6.3.1. If there are more than one Rights from the SRM (i.e. the Rights Retrieval message step of chapter 5.6.3.1 is performed multiple times), the DRM Agent selects one of them.
5.6.3.4 Rights Lock Message
If the DRM Agent selects a Rights from an SRM in order to consume it, the DRM Agent sends the RightsLockRequest to lock the original Rights in the SRM. The parameters of the request are defined in Table 31.
Table 31: Parameters of RightsLockRequest
	Parameters
	Protection Requirement
	Description

	ROID
	Integrity
	Refer to 5.2.2.1

Upon receiving the RightsLockRequest, the SRM Agent locks the Rights in the SRM. The locked Rights MUST satisfy the following conditions:

· The ESF of Rights can be updated only by the DRM Agent that has locked the Rights.

· Only the ESF part of the Rights can be updated.

· Even the DRM Agent, that has requested to lock the Rights, cannot modify the RO part.

· The locked Rights can only be released by the DRM Agent that has locked the Rights.

· The locked Rights cannot be disabled.
· The SRM Agent allows only one RightsLockRequest concurrently (i.e. A Rights cannot be locked by multiple RightsLockRequests.)
After the action, the SRM Agent sends the RightsLockResponse to carry the result of the action. The parameters of the response are defined in Table 32. If any error occurs during the action, the error MUST be reported to the DRM Agent. The Error Code parameter of the RightsLockResponse contains the error cases as defined in Table 33.
Table 32: Parameters of RightsLockResponse
	Parameters
	Protection Requirement
	Description

	Error Code
	Integrity
	Error cases of the RightsLockResponse are in Table 33.

·

·
·
·
5.6.3.5

·
·
·
·
·
·

Table 33: Error Code of RightsLockResponse
	Error Code
	Description

	No Error
	The action is succeeded.

	Parameter Integrity Verification Failed
	The HMAC value of parameters in the request is not matched with the HMAC value of the parameters generated by the SRM Agent.

	Invalid ROID
	There is no Rights Slot indicated by the ROID.

	Rights Already Disabled or Locked
	The Rights has already been disabled or locked.

· Upon receiving the response, the DRM Agent verifies the integrity of parameters in the response.
If the DRM Agent fails to receive the response, finds an error by referring to the Error Code, or fails to verify the integrity of parameters, then the DRM Agent MUST perform the following actions:

· The DRM Agent sends the recovery message to the SRM Agent. Refer to chapter 5.7.

· If the DRM Agent receives the successful recovery response, the DRM Agent removes the retrieved Rights in chapter 5.6.3.1 from the device.
· The Initiation of Local Rights Consumption function is terminated.
5.6.4 Update of Rights in SRM for Local Consumption
The DRM Agent consumes the selected Rights in order to use the DRM content. The consumption is performed as specified below:
· Stateless Rights:
If the selected Rights is stateless (i.e. the Rights has unlimited constraint or date/time constraint without interval, count, timed-count, and accumulated constraints), the DRM Agent uses the DRM content based on the constraints of the Rights without updating original Rights stored in the SRM.
· Stateful Rights:
If the Rights is stateful (i.e. the Rights has at least one the following constraints: interval, count, timed-count or accumulated constraints.), the DRM Agent uses the DRM content based on the constraints of the Rights while updating the ESF of the original Rights stored in the SRM. (Refer to chapter 5.6.4.1) The update action is performed as defined in Table 34:
Table 34: Rule of Rights Update
	Constraints
	Update Action

	Count
	Update Rights in SRM at the very beginning of DRM content use

	Timed-count
	Update Rights in SRM after the specified duration of DRM content use. The duration is specified by the timer attribute of <timed-count> element

	Interval
	Update Rights in SRM at the very beginning of DRM content use. The Rights is updated only once at the first consumption of the constraint

	Accumulated
	Update Rights in SRM repeatedly until the end of DRM content use

	Date/time
	No need to update

	Unlimited
	No need to update

The details of the constraints (count, timed-count, interval, accumulated, date/time, and unlimited constraint) are in [OMADRMv2].

[image: image12.emf]DRM Agent SRM Agent

RightsUpdateRequest

RightsUpdateInSRM 1

RightsUpdateResponse

Figure 11: Sequence Diagram - Rights Update
If use of the DRM content is finished or aborted by users, the DRM Agent requests the SRM Agent to release the locked Rights. (Refer to 5.6.4.2) The DRM Agent cannot request the SRM Agent to update the released Rights.

[image: image13.emf]DRM Agent SRM Agent

RightsReleaseRequest

RightsReleaseInSRM 1

RightsReleaseResponse

Figure 12: Sequence Diagram – Rights Release
5.6.4.1 Rights Update Message
Before the DRM Agent requests the SRM Agent to update the ESFof the Rights, the DRM Agent generates a new ESF that replaces the original ESF.

The DRM Agent sends the RightsUpdateRequest to update the ESF of the Rights in the SRM. The parameters of the request are defined in Table 35.
Table 35: Parameters of RightsUpdateRequest
	Parameters
	Protection Requirement
	Description

	ROID
	Integrity
	From the parameter of RightsLockRequest in chapter 5.6.3.3

	New ESF
	Integrity
	A new ESF that replaces the original ESF

Upon receiving the RightsUpdateRequest, the SRM Agent performs the following actions:

· Verify the integrity of the request parameters

· Find an Rights Slot by the ROID in Table 35
· Replace the New ESF with the ESF of the found Rights
After the action, the SRM Agent sends the RightsUpdateResponse to carry the result of the action. The parameters of the response are defined in Table 36. If any error occurs during the action, the error MUST be reported to the DRM Agent. The Error Code parameter of the RightsUpdateResponse contains the error cases as defined in Table 37.
Table 36: Parameters of RightsUpdateResponse
	Parameters
	Protection Requirement
	Description

	Error Code
	Integrity
	Error cases of the RightsUpdateResponse are in Table 37.

·

·
·

5.6.4.2

·
·
·

Table 37: Error Code of RightsUpdateResponse
	Error Code
	Description

	No Error
	The action is succeeded.

	Parameter Integrity Verification Failed
	The HMAC value of parameters in the request is not matched with the HMAC value of the parameters generated by the SRM Agent.

	Invalid ROID
	There is no Rights Slot indicated by the ROID.

	Invalid DRM Agent
	The RightsUpdateRequest is from a DRM Agent that hasn’t locked the Rights.

	Rights Not Locked
	The Rights cannot be updated, because it is not locked.

	Update Failure
	The SRM Agent fails to update Rights.

· Upon receiving the response, the DRM Agent verifies the integrity of parameters in the response
If the DRM Agent fails to receive the response, finds an error by referring to the Error Code, or fails to verify the integrity of parameters, then the DRM Agent MUST perform the following actions:

· The DRM Agent sends the recovery message to the SRM Agent. Refer to chapter 5.7.

· The Update of Rights in SRM for Local Consumption function is terminated.
After the successful update action, the DRM Agent also updates the copy of the ESF in the device to synchronize with the ESF that is updated in the SRM.
5.6.4.3 Rights Release Message
When the use of the DRM content is finished, the DRM Agent sends the RightsReleaseRequest to release the locked Rights. The parameters of the request are defined in Table 38.
Table 38: Parameters of RightsReleaseRequest
	Parameters
	Protection Requirement
	Description

	ROID
	Integrity
	From the parameter of RightsLockRequest in chapter 5.6.3.3

Upon receiving the RightsReleaseRequest, the SRM Agent releases the locked Rights in the SRM.

The released Rights MUST satisfy the following conditions:

· The Rights can be locked by requests from DRM Agents.

· The Rights can be retrieved by requests from DRM Agents.

· The Rights can be disabled by requests from DRM Agents.
After the action, the SRM Agent sends the RightsReleaseResponse to carry the result of the action. The parameters of the response are defined in Table 39. If any error occurs during the action, the error MUST be reported to the DRM Agent. The Error Code parameter of the RightsReleaseResponse contains the error cases as defined in Table 40.
Table 39: Parameters of RightsReleaseResponse
	Parameters
	Protection Requirement
	Description

	Error Code
	Integrity
	Error cases of the RightsReleaseResponse are in Table 40.

·
·

·
·
·
5.6.4.4

·
·
·

Table 40: Error Code of RightsReleaseResponse
	Error Code
	Description

	No Error
	The action is succeeded.

	Parameter Integrity Verification Failed
	The HMAC value of parameters in the request is not matched with the HMAC value of the parameters generated by the SRM Agent.

	Invalid ROID
	There is no Rights Slot indicated by the ROID.

	Invalid DRM Agent
	The RightsUpdateRequest is from a DRM Agent that hasn’t locked the Rights.

	Rights Not Locked
	The Rights cannot be released, because it is not locked.

	Release
	The SRM Agent fails to release Rights.

Upon receiving the response, the DRM Agent performs the following actions:

· Verify the integrity of parameters in the response

· Remove the image of the Rights from the device

If the DRM Agent fails to receive the response, finds an error by referring to the Error Code, or fails to verify the integrity of parameters, then the DRM Agent MUST perform the following actions:

· The DRM Agent sends the recovery message to the SRM Agent. Refer to chapter 5.7.

· If the SRM Agent receives the recovery message, it releases the Rights that has been locked as described in chapter 5.6.3.3.
· The Update of Rights in SRM for Local Consumption function is terminated.

5.6.5 LROID Retrieval
To retrieve Rights from an SRM, the DRM Agent has to be aware of the identifier of the Rights (ROID). The LROID retrieval function is used to read lists of Rights Object identifiers (LROID) from the SRM. By using this message, the DRM Agent SHOULD get the latest LROID from the SRM Agent before the Movement of Rights or local Rights consumption.

[image: image14.emf]DRM Agent SRM Agent

LROIDRetrievalRequest

1 LROIDRetrievalInSRM

LROIDRetrievalResponse

Figure 13: Sequence Diagram - LROID Retrieval
5.6.5.1
The DRM Agent sends the LROIDRetrievalRequest to retrieve the LROID (List of Rights Object Identifier) from the SRM. The parameter of the request is defined in Table 41.
Table 41: Parameters of LROIDRetrievalRequest
	Parameters
	Protection Requirement
	Description

	CID
	Integrity
	Content identification. This conforms to [RFC2396] and is present in the <uid> element when its parent <context> element is included in the <asset>element of the <ro> element of a Rights Object. The elements (<uid>, <context>, <asset> and <ro>) are defined in [OMADRMv2].

	LROID Length
	Integrity
	Maximum LROID length in Kbyte that the DRM Agent can process. If this value is present, the SRM Agent MUST send an LROID shorter than or equal to the LROID Length value.

If an LROID for a specific CID is longer than the LROID Length, the SRM Agent divides the LROID into several chunks.

The CID in the LROIDRetrievalRequest is the identification of a content. The content can be associated with one or multiple Rights. The SRM Agent generates identifier lists of Rights (LROID) that are associated with the content.

Upon receiving the LROIDRetrievalRequest, the SRM Agent performs the following actions:

· Verify the integrity of the request parameters

· In case of absence of CID in the request (i.e. the length of CID is 0), the SRM Agent generates an LROID of all Rights in the SRM.
· In case of presence of CID in the request (i.e. the length of CID is not 0), the SRM Agent generates an LROID of Rights in the SRM that are associated with a specific content. The content is identified by the CID in the request.
After the action, the SRM Agent sends the LROIDRetrievalResponse to carry the result of the action. The parameters of the response are defined in Table 42. If any error occurs during the action, the error MUST be reported to the DRM Agent. The Error Code parameter of the LROIDRetrievalResponse contains the error cases as defined in Table 43.
Table 42: Parameters of LROIDRetrievalResponse
	Parameters
	Protection Requirement
	Description

	LROID
	Integrity
	Refer to 5.2.2.3
This parameter contains an LROID or a chunk of an LROID if the LROID has been divided into several chunks.

	Continuation Flag
	Integrity
	It is assumed that an LROID is divided into several chunks.

00h: The LROID in this response is the last chunk of the whole LROID, or the LROID hasn’t been divided into chunks (i.e. the LROID is shorter than or equal to the LROID Length in the request, or the LROID Length field is not present in the request).

01h: An LROID has been divided into several chunks. The LROID in this response is a chunk of the whole LROID, and there are other chunks that are subsequent to the chunk.

	LROID Length
	Integrity
	This is the KByte length of a chunk, and is present when the length of the chunk is not equal to the LROID Length in the request.

	Error Code
	Integrity
	Error cases of the LROIDRetrievalResponse are in Table 43.

5.6.5.2

·
·
·

Table 43: Error Code of LROIDRetrievalResponse
	Error Code
	Description

	No Error
	The action is succeeded.

	Parameter Integrity Verification Failed
	The HMAC value of parameters in the request is not matched with the HMAC value of the parameters generated by the SRM Agent.

	No Rights Found
	There is no Rights in SRM associated with a specific content that is identified by the CID.

	Unknown Error
	Other errors

Upon receiving the response, the DRM Agent verifies the integrity of parameters in the response.

If the Continuation Flag contains the value 01h, the DRM Agent SHOULD send the LROIDRetrievalRequest again in order to retrieve the next chunk. The DRM Agent repeats the LROIDRetrievalRequest until the response contains the value 00h in the Continuation Flag parameter.

If the DRM Agent sends a different message or sends the LROIDRetrievalRequest with different parameter values than the previous values, then the SRM Agent resets the operation (i.e. the SRM Agent returns the LROID from the first chunk again).

If an LROID is divided into several chunks, a chunk may not maintain the complete data structure in chapter B.5. The DRM Agent MUST concatenate all chunks in sequence from the SRM Agent in order to complete the LROID data structure.

5.6.6 On-Line Rights Provision in SRM
TBD
5.6.7 Off-Line Rights Provision in SRM
TBD
5.7 Function Recovery
TBD
6. Transport Mappings
This chapter shows SRM communication layer model and includes explanation of each layer. This chapter clarifies the scope of OMA SRM enabler and the work-scope of external organizations related to each type of SRM.
6.1 SRM Communication Layer Model

The SRM communication layer model divides the functions of a protocol into a series of layers. Each layer has the property that it only uses the functions of the layer below, and only exports functionality to the layer above. This chapter briefly dictates the specifications on how one layer interacts with another.

[image: image15.emf]Application Layer

Middle Layer

Transformation Layer

SRM Access Layer

Figure 14: SRM Communication Layer
The SRM communication layer model consists of 4 layers: SRM access layer, transformation layer, middle layer and application layer. SRM access layer, transformation layer and middle layer have different property depending on each SRM type. However the application layer defines a common function of a protocol between devices and SRM regardless of the layers below.

6.1.1 Application Layer

The application layer defines services that facilitate communication between DRM Agents and SRM Agents. This layer is independent of lower layers so that this layer is common to all SRM types.

OMA Secure Removable Media enabler specifies this layer.
6.1.2 Other Layers (Informative)

OMA Secure Removable Media enabler doesn’t specify these layers, and these layers are defined by external organizations related to each type of SRM.
6.1.2.1 Middle Layer

The middle layer relieves the application layer of concern regarding syntactical differences in a message's data representation between device and SRM. This layer provides functional interface defined by OMA SRM enabler for DRM agents and SRM Agents in the application layer. The implementation of this layer depends on each type of SRM.
6.1.2.2 Transformation Layer

The transformation layer defines fragmentation and de-fragmentation of the representation of digital data in devices and SRM(s) and data blocks over a data line
6.1.2.3 SRM Access Layer

The SRM access layer defines all the electrical and physical specifications for device and SRM. This includes bus width, data rate, clock frequencies, and SRM form factor. The major functions and services performed by the SRM access layer are:
· Establishment and termination of a connection to a communications medium

· Modulation or conversion between data blocks and the corresponding signals transmitted over a communications channel

· Format of command line and data line
· SRM states and transition between each state
This layer also detects and corrects errors that may occur physically.
Appendix A. Method for Describing Binary Structures
A.1 Mnemonics (Data Types)
Section 2.2.6 of ISO/IEC 13818-1 lists several data types supported by that standard. Most are not needed for SRM. The following table lists the mnemonics and data types that are needed for SRM.
Table 44: Data Types

	Mnemonic
	Data Type
	Equivalent C Type

	bslbf
	Bit string, left bit first, where "left" is the order in which bit strings are written in this document. Bit strings are written as a string of 1s and 0s within single quote marks, e.g. '1000 0001'. Blanks within a bit string are for ease of reading and have no significance.
	None

	tcimsbf
	Two’s complement integer, msb (sign) bit first.
	int

	uimsbf
	Unsigned integer, most significant bit first.
	unsigned int

As seen above, the data types are all big-endian.
A.2 Comments
Comments may be interspersed in the description. Comments follow a C++ style, being preceded by two forward slashes, i.e. “//”. It is suggested that they appear before the data structure or variable needing the comment. Comments are illustrated in the examples provided below.
A.3 Syntax Description
A data structure description starts with a name for the data structure. The name is begins with an upper case letter, followed by one or more upper and lower case letters (A-Z, a-z) and numbers (0-9) and finally ending with “()” (open and close parenthesis). The length of the name should be kept to a reasonable length. This document suggests that only the first letter of words be capitalized. The name of the data structure is followed by a “{“ (open brace) and a newline. Next comes a list of one or more field names (one per line) and followed a “}” (close brace). The following is an example description of a data structure called DsName():

DsName(){

 fieldName1

 .

 .

 fieldNamen
}

A field name represents either another data structure or a variable. If another data structure, the data structure is defined elsewhere. If a variable, then the field name is followed by two elements. Variable names follows the same rules as the name of a data structure except that it MUST begin with a lower case letter and is not followed by “()”. On the same line following variable name, the next element, nbrBits, indicates the size of the variable in bits. The next element is the dataType of the variable, taken from Table 44 above.

The following example is for a data structure that contains an additional data structure and a 16 bit unsigned integer. The inner data structure contains a bit flag and a 32 bit signed integer.
Example(){

 InnerDataStructure()

 //A 16 bit unsigned integer

 uint16Var
16
uimsbf

}

InnerDataStructure(){

 //A 1 bit Boolean flag

 bitFlag
1
bslbf

 //A 32 bit signed integer
 int32Var
32
tcimsbf
}
A.4 Padding
Although it is strictly not required, it is highly recommended that all integer variables and data structures start on byte boundaries. Therefore, when defining bit variables, it is up to the person defining the syntax to ensure that padding bits are defined to align the next variable or data structure on a byte boundary. The InnerDataStructure() example above should be rewritten as follows:

InnerDataStructure(){

 //A 1 bit Boolean flag

 bitFlag
1
bslbf

 //Padding bits, reserved for future use

 rfu
7
bslbf

 //A 32 bit signed integer
 int32Var
32
tcimsbf
}

A.5 Arrays
For describing an array, a C “for loop” is used. For example, the following data structure describes an array of 10 bytes:

FixedArrayExample(){

 for(i=0; i < 10; i++){

 byte
8
uimsbf

 }

}

A more complex example is a variable length (0 – 255) array of signed 16 bit integers.

VariableArrayExample(){

 nbrOfElements
8
uimsbf
 for(i=0; i < nbrOfElements; i++){

 int16
16
tcimsbf

 }

}

For variable sized arrays, there should be a size field (of type uimsbf) that is large enough to hold the maximum number of entries in the array. The following table lists a few of the possible ranges:

Table 45: Ranges
	Number of bits
	Range

	8
	0 - 255

	16
	0 - 65,535

	24
	0 - 16,777,215

	32
	0 - 4,294,967,295

A.6 Optional Variables or Data Structures
Many times there is a need for a variable or a data structure to be optional. In order to indicate whether the variable or data structure is present, a bit flag should be defined to indicate the presence. If multiple fields are optional, the indicator bit flags should be combined to minimize padding. The following example illustrates a data structure with a 16 bit integer, an optional data structure (which will not be defined), an 8 bit variable, an optional 64 bit integer and an optional fixed sized array.
OptionalExample(){

 int16
16
tcimsbf

 dsPresent
1
bslbf

 int64Present
1
bslbf

 arrayPresent
1
bslbf

 //Pad to 8 bit boundary

 rfu
5
bslbf

 if(dsPresent){

 DataStructure()

 }

 uint8
8
uimsbf

 if(int64Present){

 int64
64
tcimsbf

 }

 if(arrayPresent){

 for(i=0; i<10; i++){

 byte
8
uimsbf

 }

 }
}

For variable sized arrays, it is recommended that an optional array be indicated by the size field. So if the size field has a value of 0 (zero), then the array is not present.

Appendix B. Data Format (Normative)
B.1 ROID

A data structure for ROID is described as follows:

Roid () {

 roidLength
16
uimsbf
 for (i = 0 ; i < roidLength ; i++) {

 byte
8
uimsbf

 }

}

Table 46 specifies each variable in the data structure.

Table 46: Elements of ROID
	Elements
	Variables
	Description
	Value

	ROID Length
	roidLength
	Length of globally unique Rights Object Identification
	Unsigned integer from 0000h to FFFFh

	ROID
	byte
	Globally unique Rights Object Identification
	This is the “id” attribute of the <ro> element in the <protectedRO> element which is included in the RO Response of ROAP.

B.2 CID

A data structure for content identification is described as follows:

Cid () {

 cidLength
16
uimsbf
 for (i = 0 ; i < cidLength ; i++) {

 byte
8
uimsbf

 }

}

Table 47 specifies each variable in the data structure.

Table 47: Elements of CID
	Elements
	Variables
	Description
	Value

	CID Length
	cidLength
	Length of Content Identification
	Unsigned integer from 0000h to FFFFh

	CID
	byte
	Content Identification
	This contains the ContentURI value of a DCF. This conforms to [RFC2396] and is present in the <uid> element when its parent <context> element is included in the <asset>element of the <ro> element.

B.3 Rights

B.3.1 RO (Rights Object) in WBXML

TBD

B.3.2 ESF (Extended State Format)
TBD

B.4 LCID (List of Content Identifier)
TBD

B.5 LROID (List of Rights Object Identifier)
A data structure for LROID is described as follows:

Lroid () {

 cidNumber
16
uimsbf
 for (i = 0 ; i < cidNumber ; i++) {
 Cid()

 roidNumber
16
uimsbf
 for (j = 0 ; j < roidNumber ; j++) {
 Roid()

 }
 }

}

Table 48 specifies each variable in the data structure.

Table 48: Elements of LROID
	Elements
	Variables
	Description
	Value

	CID Number
	cidNumber
	Number of CIDs in the LROID. If the LROIDRequestRequest in chapter 5.6.5 sends a content identification, then this contains the value of integer 01h. If not (i.e. the LROIDRetrievalRequest doesn’t include a content identification), then this element has the number of all contents that are associated with Rights in SRM.
	Unsigned integer from 0000h to FFFFh

	CID with its length
	Cid()
	Content Identification. A content identified by this CID is associated with Rights in SRM identified by subsequent ROID(s).
	Refer to B.2

	ROID Number
	roidNumber
	This is the number of Rights in SRM that are associated with the content identified by the CID
	Unsigned integer from 0000h to FFFFh

	ROID with its length
	Roid()
	This identifies Rights in SRM that are associated with the content identified by the CID
	Refer to B.1

Appendix C. SRM Transport Protocol
C.1 HTTP Mapping
An SRM MAY support an HTTP transport layer (as middle layer) to communicate with the DRM agent if it can implement a local HTTP server. In this case the DRM Agent can connect to the SRM as an HTTP client. The data are then transported and exchanged between the two entities over HTTP. This appendix defines this HTTP mapping.

The following sections describe how the data are delivered using the HTTP 1.1 protocol.
C.1.1 HTTP Headers
The HTTP Content-Type header MUST be supported. This header describes the media type that is present in the body part of the HTTP Request/Response.

The DRM Agent MUST include an HTTP Accept header when sending a request over HTTP. The Accept header specifies the media types that the DRM Agent will accept in response to the request.

Implementations MAY support other HTTP headers than those specified herein. The presence of HTTP headers other than those specified here when a message is received over HTTP SHOULD NOT by itself cause termination of the session.
C.1.2 SRM Requests
· The DRM Agent SHALL send SRM requests as the body of HTTP POST requests. Example:

POST /SRM HTTP/1.1

Host: 127.0.0.1:3516

Content-Type: application/vnd.oma.drm.srm-pdu

... [Application Data] ...

In the above example the DRM Agent is using the Request-URI field for specifying the path component. The absolute URI of the SRM is specified using the HTTP Host header.
· The DRM Agent SHALL use the path “/SRM” (without the quotes) to address the SRM Agent

· The DRM Agent SHOULD use persistent connections when sending requests over HTTP.

· The DRM Agent SHALL support chunk as mandated in [HTTP]

· The DRM Agent SHALL indicate to the SRM that the message is a SRM message using the HTTP Content-Type header with value application/vnd.oma.drm.srm-pdu. The following is an example of such a header field:

Content-Type: application/vnd.oma.drm.srm-pdu
· The DRM Agent SHALL use the HTTP Accept header to indicate acceptable media types in response to SRM requests sent over HTTP. The DRM Agent MUST accept at least the following media types:

· application/vnd.oma.drm.srm-pdu

Example:

· Accept: application/vnd.oma.drm.srm-pdu

· HTTP requests from the DRM Agent MUST NOT contain more than one SRM request message.
C.1.3 SRM Responses
· The SRM SHALL send SRM responses as the body of HTTP responses.

· The HTTP Content-Type header MUST be set to application/vnd.oma.drm.srm-pdu when a SRM message constitutes the message-body of a response. Example:

Content-Type: application/vnd.oma.drm.srm-pdu
In case that the HTTP Content-Type header value in the Response does not match any of the Accept types in the corresponding Request, the Device SHALL terminate the session.
· The SRM MUST NOT include more than one response in an HTTP response.

· The SRM MUST include an HTTP Cache-Control header with the value no-transform when sending an integrity-protected SRM message. The no-transform directive prohibits network caches from doing any content transformations. The no-cache option must also be set in order to prevent caching of responses.

The following is an example:

Cache-Control: no-transform; no-cache
C.1.4 HTTP Response Codes
An SRM that refuses to perform a SRM message exchange with a DRM Agent SHOULD return a 403 (Forbidden) response. In the case of an error while processing an HTTP request, the SRM MUST return a 500 (Internal Server Error) response. This type of error SHOULD be returned for HTTP-related errors detected before control is passed to the SRM engine, or when the SRM engine reports an internal error (for example, the SRM schema cannot be located). If the type of a SRM request cannot be determined, the SRM MUST return a 500 (Internal Error) response code.

In these cases (i.e. when the HTTP response code is 4xx or 5xx), the content of the HTTP body is not significant.

In all other cases, the SRM MUST respond with 200 (OK) and a suitable SRM message (possibly with SRM-related error information) in the HTTP body.

DRM Agents MUST be able to handle HTTP response codes specified here (200, 400, 403, and 500).
Appendix D. Certificates and CRL
D.1 Certificate Profiles and Requirements
The profile for Device Certificates follows the profile of the DRM Agent Certificates in OMA DRM v2.0 [OMADRMv2]. The DRM Agent Certificate in OMA DRM v2.0 is referred to as Device Certificate in this specification. SRM Agents processing Device Certificates MUST meet all requirements on entities processing user certificates defined in [CertProf]. In addition, SRM Agents:

· MUST be able to process Device Certificates with serial numbers up to 20 bytes long;

· MUST recognize and require the presence of the oma-kp-drmAgent object identifier defined in the extKeyUsage extension in Device Certificates; and

· MUST support the cRLDistributionPoints extension
The profile for SRM Certificates follows the profile for “User Certificates for Authentication” in [CertProf] with the following modifications in Table 49:
Table 49: SRM Certificate Profile
	Fields
	Values

	Version
	Version 3 (Integer value is 2)

	Signature
	MUST be RSA with SHA-1

	Serial Number
	MUST be less than, or equal to, 20 bytes in length

	Issuer Name
	MUST be present and MUST use a subset of following naming attributes from [CertProf] – countryName, organizationName, organizationalUnitName, commonName, and stateOrProvinceName.

	Subject Name
	MUST be present and MUST use a subset of the following attributes from [CertProf] – countryName, organizationName, organizationalUnitName, commonName, and serialNumber

The structure and contents of an SRM subject name shall be as follows:

[countryName=<Country of manufacturer>]

[organizationName=<Manufacturer company name>]

[organizationalUnitName=<Manufacturing location>]

[commonName=<Model name>]

serialNumber=<Unique identifier for SRM, as assigned by the Certificate Issuer>

The serialNumber attribute MUST be present. The countryName, organizationName, organizationalUnitName, and commonName may be present. Other attributes are not allowed and must not be included. For all naming attributes of type DirectoryString, the PrintableString or the UTF8String choice must be used.

Note that the maximum length (in octets) for values of these attributes is as follows: countryName - 2 (country code in accordance with ISO/IEC 3166), organizationName, organizationalUnitName, commonName, and serialNumber - 64.

Example:

C="US";O="DRM SRMs 'R Us"; CN="DRM SRM Mark V"; SN="1234567890"

	Extensions
	The extKeyUsage extension SHALL be present, and contain (at least) the oma-kp-srmAgent key purpose object identifier:
oma-kp-srmAgent OBJECT IDENTIFIER ::= {oma-kp 3}
The oma-kp object identifier is defined as follows:

oma-kp OBJECT IDENTIFIER ::= {oma 1}

oma OBJECT IDENTIFIER ::= {joint-iso-itu-t(2) identified-organizations(23) wap(43) oma(6)}
CAs are recommended to set this extension to critical.

· If CAs include the keyUsage extension (recommended), then both the digitalSignature bit and the keyEncipherment bit must be set, if the corresponding private key is to be used both for authentication and decryption. Otherwise only the applicable bit shall be set. When present, this extension shall be set to critical.

CAs may include the certificatePolicy extension, indicating the policy the certificate has been issued under, and possibly containing a URI identifying a source of more information about the policy.

CAs are recommended to not include any other extensions, but may, for compliance with [RFC3280], include the authorityKeyIdentifier extension. CAs may also include the authorityInfoAccess extension from [RFC3280] for OCSP responder navigation purposes, and the cRLDistributionPoints extension to identify how CRL information is obtained.

CAs MUST NOT include any other critical extensions.

DRM Agents processing SRM Certificates MUST meet all requirements on entities processing user certificates defined in [CertProf]. In addition, DRM Agents:

· MUST be able to process SRM Certificates with serial numbers up to 20 bytes long;

· MUST recognize and require the presence of the oma-kp-srmAgent object identifier defined in the extKeyUsage extension in SRM Certificates; and

· MUST support the cRLDistributionPoints extension
D.2 CRL Profiles and Requirements
The profile for CRLs follows the CRL profile in the Certificate Revocation List (CRL) profile in [RFC3280] with the following modifications in Table 50:

Table 50: CRL Profile

	Fields
	Values

	Version
	Version 2 (Integer value is 1)

	Signature
	MUST be RSA with SHA-1

	Issuer
	MUST be present and MUST use a subset of following naming attributes from Certificate profiles in [OMADRMv2] – countryName, organizationName, organizationalUnitName, commonName, and stateOrProvinceName.

	ThisUpdate
	The issue date of this CRL

	NextUpdate
	The date by which the next CRL will be issued

	RevokedCertificates entries
	See Table 51

	Extensions
	CAs shall include the Key Identifier extension, identifying the public key corresponding to the private key used to sign a CRL.

CAs may also include the CRL Number extension, determining when a particular CRL supersedes another CRL.
CAs are recommended to not include any other extensions, but may, for compliance with [RFC3280], include the Issuing Distribution Point extension from [RFC3280] to identify how CRL information is obtained.

CAs MUST NOT include any other critical extensions.

When there are no revoked Device Certificates or SRM Certificates, the revoked certificates list MUST be absent. Otherwise, revoked Device Certificates or SRM Certificates are listed by the fields in Table 51.

Table 51: RevokedCertificates Entry fields in CRL Profile

	Fields
	Values

	UserCertificate
	Revoked certificate serial number

	RevocationDate
	Date of revocation decision

	CRL Entry Extensions
	CAs may define private CRL entry extensions to carry information unique to them.

Except the private CRL entry extensions, CAs MUST NOT include any other critical extensions.

Appendix E. Move Permission in Rights Object (Normative)
The Move permission in a Rights Object grants the permission to move the Rights Object between devices and SRMs.
E.1 Extension of Permission Model in REL
This document defines the extension of the OMA DRM REL specification [OMADRMv2] to include the Move permission in Rights Objects.
E.1.1 Element <permission>
	Element
	<!ELEMENT o-ex:permission (o-ex:constraint?, o-ex:asset*, o-dd:play?, o-dd:display?, o-dd:execute?, o-dd:print?, oma-dd:export?, o-dd:move?)>

	Semantics
	A single Rights Object can have only one <move> permission. For the other elements, refer to the OMA DRM REL specification.

E.1.2 Element <move>
	Element
	<!ELEMENT o-dd:move (#PCDATA)>

	Semantics
	The <move> element grants move rights over a Rights Object.

The <move> element has the semantics of moving a Rights Object between devices and SRMs.

Appendix F. Change History
(Informative)

F.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

F.2 Draft/Candidate Version <current version> History

	Document Identifier
	Date
	Sections
	Description

	Draft Versions

OMA-TS-SRM-V1_0-20060517-D
	17 May 2006
	All
	The initial version of this document.

	OMA-TS-SRM-V1_0-20060622-D
	22 May 2006
	9
	Add Transport Mappings text as agreed in OMA-DLDRM-2006-0227R01

	OMA-TS-SRM-V1_0-20060901-D
	1 Sep 2006
	5, Appendix A
	Revise text as agreed in OMA-DLDRM-2006-0325R02-INP_SRMv1.0_TS_Revision

	OMA-TS-SRM-V1_0-20061103-D
	3 Nov 2006
	1,2,3,4,5, Appendix B,C,D
	Revise text as agreed in OMA-DLDRM-2006-0410-TS-SRM-Read-Data-Flag-correction, OMA-DLDRM-2006-0441-CR_SRM_Revocation_Checking, and OMA-DLDRM-2006-0451-CR_SRM_TS_Anchor_Removal
Delete comments from the OMA specification template

	OMA-TS-SRM-V1_0-20061110-D
	10 Nov 2006
	2, 3, 5, Appendix B
	Revise text as agreed in OMA-DLDRM-2006-0469R01-CR_SRM_TS_CRL_Delivery_Protocol
Delete <Additional Information> appendix

	OMA-TS-SRM-V1_0-20061120-D
	20 Nov 2006
	5.5, Appendix B
	Revise text as agreed in OMA-DLDRM-2006-0475-CR_SRM_Certificate_Profile

	OMA-TS-SRM-V1_0-20061208-D
	8 Dec 2006
	Appendix B
	Revise text as agreed in OMA-DLDRM-2006-0398R03-CR_HTTP_Mapping

	OMA-TS-SRM-V1_0-20070112-D
	12 Jan 2007
	All
	Revise text as agreed in
OMA-DLDRM-2006-0487-CR_SRM_TS_Move_Permission,

OMA-DLDRM-2006-0498R01-CR_SRM_MAKE_Process,

OMA-DLDRM-2006-0500R02-CR_SRM_Multi_CRL_Support,
OMA-DLDRM-2006-0531R01-CR_Rights_Release_Correction,
OMA-DLDRM-2006-0538R01-CR_SRM_roID_List_Retrieval,
OMA-DLDRM-2006-0553R01-CR_Method_for_Describing_Binary_Structures,

OMA-DLDRM-2006-0556R01-CR_Formating_Changes, and OMA-DLDRM-2007-0001-CR_SRM_Additional_Formating_Changes

	OMA-TS-SRM-V1_0-20070116-D
	16 Jan 2007
	5.6.1
	Revise text as agreed in OMA-DLDRM-2006-0520R03-CR_Change_to_Rights_Movement_from_Device_to_SRM
Revise text in section 5.6.1 to be consistent with CR-2006-0556R01, CR-2007-0001, and other parts of the document

	
	
	
	

	
	
	
	

	
	
	
	

Appendix G. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [IOPPROC].

G.1 SCR for XYZ Client

	Item
	Function
	Reference
	Status
	Requirement

	XYZ-C-001
	Something mandatory
	Section x.y
	M
	(XYZ-C-001 OR XYZ-C-003) AND
 XYZ-C-002

	XYZ-C-002
	Something optional
	Section x.y
	O
	

	XYZ-C-003
	Dependencies on ZYX
	Section x.y
	M
	ZYX:MCF

	XYZ-C-004
	Dependencies on ZYX
	Section x.y
	O
	ZYX:OCF

G.2 SCR for XYZ Server

	Item
	Function
	Reference
	Status
	Requirement

	XYZ-S-001
	Something mandatory
	Section x.y
	M
	XYZ-S-001 OR XYZ-S-002 OR XYZ-S-003

	XYZ-S-002
	Something optional
	Section x.y
	O
	

	XYZ-S-003
	Dependencies on ZYX
	Section x.y
	M
	ZYX:MSF

	XYZ-S-004
	Dependencies on ZYX
	Section x.y
	O
	ZYX:OSF

(2006 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20060101-I]
(2006 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20060101-I]

_1229242395.vsd
�

�

CRLUpdateResponse

DRM Agent

SRM Agent

CRLUpdateRequest

1

_1229244959.vsd
텍스트�

Secure Storage

Rights

ROID

Rights

ROID

Rights

ROID

Rights

ROID

...

Rights Slot�

_1230104780.vsd
�

�

�

DRM Agent

SRM Agent

1

2

3

RightsUnsealRequest

RightsInstallationResponse

SealedRightsInstallationInSRM�

RightsRemovalInDevice�

RightsInstallationRequest

RightsUnsealResponse

RightsUnsealInSRM�

_1229245017.vsd
�

�

�

DRM Agent

SRM Agent

LROIDRetrievalRequest

1

LROIDRetrievalResponse

LROIDRetrievalInSRM�

_1229242523.vsd
�

�

�

DRM Agent

SRM Agent

1

2

3

RightsRetrievalResponse

RightsRetrievalInSRM�

RightsInstallationInDevice�

RightsRemovalResponse

RightsRemovalInSRM�

RightsRetrievalRequest

RightsRemovalRequest

RightsDisablementInSRM

_1229242594.vsd
�

�

�

RightsUpdateResponse

DRM Agent

SRM Agent

RightsUpdateRequest

RightsUpdateInSRM�

1

_1229242606.vsd
�

�

�

RightsReleaseResponse

DRM Agent

SRM Agent

RightsReleaseRequest

RightsReleaseInSRM�

1

_1229242555.vsd
�

�

�

DRM Agent

SRM Agent

RightsRetrievalRequest

RightsRetrievalInSRM�

RightsLockRequest

RightsLockInSRM�

1

2

RightsLockResponse

RightsSelectionInDevice�

3

RightsRetrievalResponse

_1229242415.vsd
�

�

CRLRetrievalRequest

DRM Agent

SRM Agent

CRLRetrievalResponse

1

_1229242120.vsd
�

�

{message name}Response

Entity A

Entity B

{message name}Request

_1229242342.vsd
�

�

DRM Agent

SRM Agent

SRMHelloRequest

1

SRMHelloResponse

2

KeyExchangeResponse

KeyExchangeRequest

_1214830163.vsd
�

�

�

Entity C

{action name}�

_1216476095.vsd
DRM Agent

SRM Agent

Secure Storage

Device

Secure Removable Media

External
Secure Communication

Trusted Entity

User Equipment

Internal
Secure Communication

Rights Issuer

ROAP (OMA DRM 2.0)

SRM-DP

SRM-AP

_1211286387.vsd
Application Layer

Middle Layer

Transformation Layer

SRM Access Layer

