Doc# OMA-DRM-2007-0564-CR_SCE_LRM_Message_Details_of_Some_Import_Protocols.doc[image: image5.jpg]
Change Request

Doc# OMA-DRM-2007-0564-CR_SCE_LRM_Message_Details_of_Some_Import_Protocols.doc
Change Request

Change Request

	Title:
	LRM Message Details of Some Import Protocols
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	OMA DRM

	Doc to Change:
	OMA-TS-SCE_LRM-V1_0-20071129-D

	Submission Date:
	04 Dec 2007

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Hosame Abu-Amara, Motorola, Hosame.Abu-Amara@motorola.com
David Kravitz, Motorola, David.Kravitz@motorola.com

	Replaces:
	n/a

1 Reason for Change

The CR provides message details and formats for several Import protocols: Device Registration Protocol, Service Keys for Devices, Import Protocol, and dmpPair-Protocol. To describe these details and formats, we describe a common generic header for all messages and attribute formats and use.
2 Impact on Backward Compatibility

none
3 Impact on Other Specifications

none
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

OMA DRM is requested to agree document
6 Detailed Change Proposal

Change 1: Change to Section 6.0 (LRM AND DEA PROTOCOLS)

6.1 Generic Message Format for Protocols
7.2 Table 1 shows the common format of all protocol messages discussed in this document. The message header is common to all messages. Immediately following the message header is the list of attributes in TLV (Type–Length-Value) format. The attributes will be described in detail in Section 6.1.2.
7.3 Table 1: Generic Message Format for Protocols
	Field
	Data Type
	Length (bits)
	Description

	MsgType
	uimsbf
	8
	Message Type (seeTable 2)

	Pvno
	uimsbf
	8
	Protocol Version Number. The version number is a <major.minor> representation of the highest protocol version number supported by the sender of the message. For this version of the protocol, Pvno SHALL be set to 2.0.

	STID – Source

Transaction ID
	uimsbf
	32
	Random value that uniquely identifies this key management transaction on the source’s side. The value must be non-zero if the sender expects a reply to this message. Otherwise, the value must be set to 0.

	DTID –

Destination

Transaction ID
	uimsbf
	32
	Random value that uniquely identifies this key management transaction on the destination’s side. The value must be set to the STID from the preceding message in this key management transaction.

	RetryCount
	uimsbf
	8
	Number of times that this key management transaction was restarted due to time outs. The initial value must be set to 0, then 1 for the first retry, etc.

	AttribLength
	uimsbf
	16
	Length of the list of attributes in Attribute List.

	Attribute List
	List of TLV

attributes
	variable
	See Section 6.1.2

6.1.1 Message Types

The message types are listed in Table 2 in decimal for each message supported. All messages contain a header followed by the body of the message. The header is common to all the messages and is shown in Table 1. The header contains Pvno (Protocol Version Number) and msg-type (Message Type), among other fields. The possible attributes of the messages are listed in Table 3. Note that the order of the attributes in the messages is irrelevant because the attributes are all TLV encoded.
Table 2: Message Types

	MsgType
	Message

	5
	Ticket Request

	6
	Ticket Response

	8
	SAC Key Request

	9
	SAC Key Response

	12
	Device Registration Request

	13
	Device Registration Response

	16
	Service Key Request

	17
	Service Key Response

	24
	Agent Ticket Request

	25
	Agent Ticket Response

6.1.2 Attributes

The attributes in protocol messages are encoded in Type-Length-Value (TLV) format for simplicity and efficiency. The TLV format is flexible but at the same time simple enough to implement. A summary of the attribute format is as shown in Figure 1. The fields are defined from left to right.

Octet 0-1
Octet 2-3
Octet 4-...

+-+

| Type

| Length

| Value

+-+
Figure 1 – Summary of Attribute Format
The fields in Figure 1 are as follows:
Type: The type field is two octets and is uimsbf. Entities SHOULD ignore attributes whose Type the entities do not understand. This field specifies a numeric value to the attribute, as shown in Table 3.

Length: This field is defined as two octets and indicates the length of this attribute field in Octets. The length field does not include type and length fields.

Value: The value field is one or more octets and contains information specific to the attribute. The Type and Length fields determine the format and length of the value field. The format of the value field is one of the five data types as shown in Table 4. All Multi Octet integer quantities are in network byte order, i.e. Big Endian (Most Significant Bit first). A String value does not require termination by an ASCII NUL as the attribute already has a length field.
Table 3: Attribute Types

	Type
	Attributes

	0
	Reserved

	1
	Crealm

	2
	Cname

	3
	Srealm

	4
	Sname

	5
	Reserved

	6
	EncTypeSet

	7
	CsumTypeSet

	8
	Ctime

	9
	Signature

	10
	Certificate

	11
	Ticket

	12
	Reserved

	13
	ServiceTicket

	14
	EncryptedData

	15
	Reserved

	16
	CertificateType

	17
	CertificateValue

	18
	GroupSubkeyId

	19
	Reserved

	20
	TktVnum

	21
	Reserved

	22
	AuthTime

	23
	EndTime

	24
	SkeyVnum

	25
	KeyType

	26
	KeyValue

	27
	Reserved

	28
	SigType

	29
	SigValue

	30
	KeyAgreementAlg

	31
	DEACertificateType

	32
	KeyInfo

	33
	CipherText

	34
	PrivateTicketPart

	35
	AuthData

	36
	EncType

	37
	ErrCode

	38
	ErrData

	39
	Reserved

	40
	KeyAgreementInfo

	41
	DOI_ID

	42
	ReturnAuthData

	43
	CipherSuiteSet

	44
	CipherSuiteType

	45
	Reserved

	46
	Reserved

	47
	Reserved

	48
	Reserved

	49
	Reserved

	50
	Reserved

	51
	DEAPubKeyHash

	52
	Reserved

	53
	Reserved

	55
	CertificateChain

	56
	RequestCRLs

	57
	DEAPubKeyIdentifier

	58
	Reserved

	59
	TimeSeconds

	60
	TimeMicroseconds

	61
	AppErrCode

	62
	AppErrData

	63
	Reserved

	64
	PubKeyClientAuthenticator

	65
	PubKeyDEAAuthenticator

	66
	IPv4Address

	67
	Reserved

	68
	Reserved

	69
	Reserved

	70
	IsGroupKey

	71
	NewPrincipalFlag

	72
	Reserved

	73
	Reserved

	74
	Reserved

	75
	Reserved

	76
	Reserved

	77
	Issuer

	78
	CRLList

	79
	CRL

	80
	CRLValue

	81
	IssuerValue

	82
	Reserved

	83
	Reserved

	84
	Reserved

	85
	ContentFormatID

	86
	CipherSuiteID

	87
	DeviceRegistrationTypeRequest

	88
	DeviceRegistrationTypeResponse

	89
	DASignedData

	90
	ImportedRights

	91
	CSubDomain

	92
	SSubDomain

	93
	BridgeSignature

	94
	AgentTicket

Table 4: Data Types in Value Field in TLV
	String
	 One or more Octets

	Uint8
	8-bit uimsbf

	Uint16
	16-bit uimsbf

	Uint32
	32-bit uimsbf

	Uint64
	64-bit uimsbf

	Compound
	Collection of attributes

Crealm: This field specifies the identifier of the User Domain in which the Source client is registered and in which initial authentication took place. The TLV of the attribute is as shown below.
	Type
	Length
	Value

	1
	Length
	String

Cname: This field specifies the identifier of the Source client. The TLV format is as shown below.
	Type
	Length
	Value

	2
	Length
	String

Srealm: This field specifies the identifier of the User Domain for the Destination client. The TLV of the attribute is as shown below.

	Type
	Length
	Value

	3
	Length
	String

Sname: This field specifies the identifier of the intended Destination client. The TLV format is as shown below.
	Type
	Length
	Value

	4
	Length
	String

IPv4Address: This field is used inside a ticket – it was an IPv4 address of a Source client at the time that the DEA issued a ticket for a Destination client in response to a request from the Source client. Destination clients can use the IPv4 address as part of the Source client verification, e.g. to verify the IP address in a raw IP packet header. A Destination client can also use this address in determining the local access network on which the Source client resides and possibly applying authorization criteria specific to the Source client’s access network. The format of this field is a 4-byte binary string, where each byte represents a component of the IP address.

	Type
	Length
	Value

	66
	4
	String

EncTypeSet: This field specifies the encryption algorithms supported by the Source client or encryption type used by the Destination client. The Value is a sequence of 1 or more bytes in preference order.
	Type
	Length
	Value

	6
	Number of supported encryption algorithms
	Series of Uint8

CsumTypeSet: This field specifies the checksum algorithms supported by the Source client. The Destination client can use one of those algorithms to authenticate a reply. It is a sequence of 1 or more bytes in preference order. The preference data type is Uint8, e.g. SHA1, MD5, and SHA1-HMAC.

	Type
	Length
	Value

	7
	Number of preferences
	Series of Uint8

Ctime: This field specifies the current time on the host of the Source client and includes both seconds and microseconds. The microseconds allow the receiver of a Source client message to distinguish between the retries of the same message when the Source client retries several times per second.
	Type
	Length
	Value

	8
	20
	Compound

The TLV format of the compound is the concatenation of the following two TLVs:

	Type
	Length
	Value

	59
	8
	Uint64 (TimeSeconds)

	Type
	Length
	Value

	60
	4
	Uint32 (TimeMicroseconds)

Where TimeSeconds and TimeMicroseconds are as follows:
	Attributes
	Description

	TimeSeconds
	Source client UTC time in seconds since 01 Jan 1970 00:00:00

	TimeMicroseconds
	The microseconds component of the Source client time

KeyAgreementInfo: This field is describes the public key Agreement Algorithm and the corresponding public key value.
	Type
	Length
	Value

	40
	Length
	Compound

The TLV format of the compound is the concatenation of the following two TLVs:
	Type
	Length
	Value

	30
	1
	Uint8 (KeyAgreementAlgorithm)

	Type
	Length
	Value

	32
	Length
	Compound (KeyInfo)

Where KeyAgreementAlgorithm and KeyInfo are as follows:

	Attributes
	Description

	KeyAgreementAlgorithm
	ID for the key agreement cryptographic algorithm, as defined in Table TBD

	KeyInfo
	Value of the corresponding public key. The encoding is dependent on the key type. See KeyInfo attribute below.

Certificate: This attribute consists of a certificate type (e.g. X.509, WAP, etc.) and the actual value of the certificate. In the case of X.509 certificates, the value is DER-encoded.
	Type
	Length
	Value

	10
	Length
	Compound

The TLV format of the compound is the concatenation of the following two TLVs:

	Type
	Length
	Value

	16
	1
	Uint8 (CertificateType)

	Type
	Length
	Value

	17
	Length
	String (CertificateValue)

Where CertificateType and CertificateValue are as follows:

	Attributes
	Description

	CertificateType
	Type of certificate (1=X.509, 2=WAP)

	CertificateValue
	Value of the certificate; the format is type-dependent. For X.509, the format is the DER encoding.

CertificateChain: This attribute is a chain of one or more digital certificates used to verify a signature (e.g. in AS_REQ and AS_REP). The public key of a trusted CA is used to verify the 1st certificate in the chain. The public key from the 1st certificate verifies the 2nd certificate; the public key from the 2nd certificate verifies the 3rd certificate, etc. The last certificate in the chain possesses the public key that verifies the signature on the message itself.
	Type
	Length
	Value

	55
	Length
	Compound

The TLV format of the compound is the concatenation of several TLVs as follows:

	Type
	Length
	Value

	10
	Length
	Compound (Certificate)

	Type
	Length
	Value

	10
	Length
	Compound (Certificate)

etc., where the Certificate attribute is discussed above.
DEACertificateType: This attribute specifies the type of a DEA certificate supported by the client. The TLV format is shown below:

	Type
	Length
	Value

	31
	1
	Uint8 (CertificateType)

Ticket: A Ticket is a record that helps a Source client authenticate to a Destination client. It contains the Source client’s identity, an initial session key, timestamp and other information all encrypted by using the Destination client’s Service Key.

	Type
	Length
	Value

	11
	Length
	Compound

The TLV format of the compound is the concatenation of several TLVs as follows:

	Type
	Length
	Value

	20
	Length
	Uint16 (TktVnum)

	Type
	Length
	Value

	3
	Length
	String (Srealm)

	Type
	Length
	Value

	4
	Length
	String (Sname)

	Type
	Length
	Value

	22
	8
	Uint64 (AuthTime)

	Type
	Length
	Value

	23
	8
	Uint64 (EndTime)

	Type
	Length
	Value

	14
	Length
	Compound (EncryptedData)

	Type
	Length
	Value

	24
	2
	Uint16 (SkeyVnum)

	Type
	Length
	Value

	6
	Length
	Compound (EncTypeSet)

	Type
	Length
	Value

	7
	Length
	Compound (CsumTypeSet)

	Type
	Length
	Value

	9
	Length
	Compound (Signature)

Where TktVnum, Srealm, Sname, AuthTime, EndTime, EncryptedData, SkeyVnum, EncTypeSet, CsumTypeSet, and Signature are as follows:

	Attributes
	Description

	TktVnum
	This field specifies the version number for the Ticket format. The version number is a <major.minor> representation. For this version of the protocol, TktVnum SHALL be set to 2.0.

	Sreal
	This field specifies the identity of the User Domain of the intended Destination client. See the Sreal attribute above.

	Sname
	This field specifies the identity of the intended Destination client. See the Sname attribute above.

	AuthTime
	This field indicates the time of initial authentication for the Destination client. It is UTC time and is represented as seconds since 01 Jan 1970 00:00:00.

	EndTime
	This filed indicates the expiration UTC time of the ticket, after which it is no longer valid. It is represented as seconds since 01 Jan 1970 00:00:00.

	EncryptedData
	This part contains Source client’s identity, session key and other authorization data encrypted with Destination client’s Service Key. The attribute being encrypted is of type PrivateTicketPart. It is encrypted with a Service Key known only to the DEA and to the specified Destination client. See the EncryptedData attribute below.

	SkeyVnum
	Version number of the Service Key (used to encrypt the private part of the ticket).

	EncTypeSet
	Destination Client supported Encryption Types. See the EncTypeSet attribute above.

	CsumTypeSet
	Destination client supported Checksum types. See the CsumTypeSet attribute above.

	Signature
	A checksum over the Ticket, keyed with Destination client’s Service Key. When the keyed checksum is calculated, it is taken over an entire Ticket but without the Signature attribute. During the checksum calculation, the length of the compound Ticket attribute reflects the fact that it is missing the Signature attribute. See the Signature attribute below.

ServiceTicket: A Service Ticket is generated by a DEA to a client. The TLV format is as shown below.
	Type
	Length
	Value

	13
	Length
	Compound (Ticket)

Where the Ticket attribute is specified above.
Signature: This attribute specifies either the digital signature or keyed checksum of the message. The first field specifies the type of the algorithm used to generate the signature or keyed checksum and the second field specifies the value of the signature or checksum.
	Type
	Length
	Value

	9
	Length
	Compound

The TLV format of the compound is the concatenation of two TLVs as follows:

	Type
	Length
	Value

	28
	1
	Uint8 (SigType)

	Type
	Length
	Value

	29
	Length
	String (SigValue)

Where SigType and SigValue are as follows:

	Attributes
	Description

	SigType
	Mechanism used to compute the Signature or Checksum

	SigValue
	Value of the Signature or Checksum

KeyInfo: The EncryptionKey specifies the contents of a key.

	Type
	Length
	Value

	32
	Length
	Compound

The TLV format of the compound is the concatenation of two TLVs as follows:

	Type
	Length
	Value

	25
	1
	Uint8 (KeyType)

	Type
	Length
	Value

	26
	Length
	String (KeyValue)

Where KeyType and KeyValue are as follows:

	Attributes
	Description

	KeyType
	This field specifies the type of a cryptographic key that follows in the KeyValue field. It will almost always correspond to either an encryption algorithm or a key agreement algorithm.

	KeyValue
	This field Contains the key itself encoded as octet string

EncryptedData: This field represents the encrypted data part present in the messages. The actual data encrypted is based on the context of message and is described later.
	Type
	Length
	Value

	14
	Length
	Compound

The TLV format of the compound is the concatenation of two TLVs as follows:

	Type
	Length
	Value

	36
	1
	Uint8 (EncType)

	Type
	Length
	Value

	33
	Length
	String (CipherText)

Where EncType and CipherText are as follows:

	Attributes
	Description

	EncType
	This field identifies which encryption algorithm was used to encrypt the data. See the EncType attribute below.

	CipherText
	EncryptedData encoded as octet string.

EncType: This field specifies the type of encryption used in the encrypted data. The different types were listed in the encryption type set. The TLV format is as shown below.
	Type
	Length
	Value

	36
	1
	Uint8

ErrCode: This field specifies the error code generated by a DEA or Destination client as part of the error message.
	Type
	Length
	Value

	37
	1
	Uint8

ErrData: This field specifies any additional data that describes the error.
	Type
	Length
	Value

	38
	Lenth
	String

AppErrCode: This field specifies an application-specific error code generated by a Destination client as part of the error message.
	Type
	Length
	Value

	61
	1
	Uint8

AppErrData: This field specifies any additional data that describes the application-specific error.

	Type
	Length
	Value

	62
	Lenth
	String

PrivateTicketPart: This field specifies the private part of a ticket – stored in encrypted form inside the Ticket. The reason Source client identity and authorization data are encrypted along with the Session Key is to keep the User identity private. A user might not want others to know the kind of services that he/she has purchased or subscribed to. The PrivateTicketPart is a compound value type.
	Type
	Length
	Value

	34
	Length
	Compound

The TLV format of the compound is the concatenation of several TLVs as follows:

	Type
	Length
	Value

	32
	30
	Compound (KeyInfo)

	Type
	Length
	Value

	1
	Length
	String (Crealm)

	Type
	Length
	Value

	2
	Length
	String (Cname)

	Type
	Length
	Value

	66
	4
	String (IPv4Address)

	Type
	Length
	Value

	35
	Length
	String (AuthData)

Where KeyInfo, Crealm, Cname, IPv4Address, and AuthData are as follows:

	Attributes
	Description

	KeyInfo
	See the attribute KeyInfo above. Contains a 21-Byte Session Key in the KeyValue. The Session Key is not directly used to encrypt or authenticate data. Instead, encryption and authentication keys are derived from this Session Key.

	Crealm
	Identifier of User Domain of Source client. See the Crealm attribute above.

	Cname
	Source client’s identifier. See the Cname attribute above.

	IPv4Address
	Source client’s IPv4 address. Note that when IPv6 clients are supported in the future, a separate attribute type can be defined for IPv6 addresses. See the IPv4Address attribute above.

	AuthData
	This field contains private authorization data associated with the Source client. This data is inserted into the Ticket by the DEA. The contents of this field are application specific. See the AuthData attribute below.

DOI_ID: This ID is used to identify the target protocol. Its value SHALL be 2. The TLV encoding is as shown below.
	Type
	Length
	Value

	41
	1
	Uint8

ReturnAuthData: This field specifies the Boolean flag that is used in Ticket request messages that indicates if the Source client wishes its own copy of authorization data in subsequent Ticket reply messages.
	Type
	Length
	Value

	42
	1
	Uint8

CipherSuiteSet: This field specifies the set of cipher suites supported by the Source client. The TLV format is as shown below.

	Type
	Length
	Value

	43
	Length
	Compound (CipherSuitType)

CipherSuiteType: This field specifies the cipher suite type attribute. The TLV format is as shown below.

	Type
	Length
	Value

	44
	10
	Compound

The TLV format of the compound is the concatenation of two TLVs as follows:

	Type
	Length
	Value

	85
	1
	Uint8 (ContentFormatID)

	Type
	Length
	Value

	86
	1
	Uint8 (CipherSuiteID)

DEAPubKeyIdentifier: This field is a compound attribute, which specifies the 20 byte SHA-1 hash of the DEA’s public key (DEAPubKeyHash) and the corresponding algorithm ID (SigType). The TLV encoding is as shown below.
	Type
	Length
	Value

	57
	29
	Compound

The TLV format of the compound is the concatenation of two TLVs as follows:

	Type
	Length
	Value

	28
	1
	Uint8 (SigType)

	Type
	Length
	Value

	51
	20
	String (DEAPubKeyHash)

RequestCRLs: This field is used in the PubKeyClientAuthenticator attribute to indicate that in a subsequent response message, the DEA is to include an up-to-date list of CRLs inside the PubKeyDEAAuthenticator. The compound TLV for this attribute consists of an array of one or more Issuer attributes, where each Issuer is a compound TLV with the value encoding that is dependent on a particular certificate type. The TLV format of the field is as shown below.
	Type
	Length
	Value

	56
	Length
	Compound

The TLV format of the compound is the concatenation of several TLVs as follows:
	Type
	Length
	Value

	77
	Length
	Compound (Issuer)

	Type
	Length
	Value

	77
	Length
	Compound (Issuer)

etc., where the Issuer attribute is discussed below.
PubKeyClientAuthenticator: This compound attribute is used to authenticate a Source client to the DEA using a digital signature.
	Type
	Length
	Value

	64
	Length
	Compound

The TLV format of the compound is the concatenation of several TLVs as follows:

	Type
	Length
	Value

	2
	Length
	String (Cname)

	Type
	Length
	Value

	1
	Length
	String (Crealm)

	Type
	Length
	Value

	8
	20
	Compound (Ctime)

	Type
	Length
	Value

	56
	Length
	Compound (RequestCRLSs)

	Type
	Length
	Value

	9
	Length
	Compound (Signature)

	Type
	Length
	Value

	57
	29
	Compound (DEAPubKeyIdentifier)

Where Cname, Crealm, Ctime, RequestCRLs, Signature, and DEAPubKeyIdentifier are as follows:

	Attributes
	Description

	Cname
	Source client’s identifier. See the Cname attribute above.

	Crealm
	User Domain identifier of the Source client. See the Crealm attribute above.

	Ctime
	Current time on Source client’s host. See the Ctime attribute above.

	RequestCRLs
	An optional field used by a client that is requesting up-to-date CRLs for the specified list of certificate issuers (CAs). This information is to be returned to the client in the PubKeyDEAAuthenticator attribute in the subsequent reply message. See the RequestCRLs attribute above.

	Signature
	A digital signature over the full message that includes this object, where the to-be-signed message is TLV-encoded without this Signature attribute. See the Signature attribute above.

	DEAPubKeyIdentifier
	Identifier of the DEA’s public key possessed by the client. It includes the 20-byte SHA-1 hash of the public key and an authentication (signature) algorithm id. The DEA must use the corresponding signing key for the signature in the PubKeyDEAAuthenticator object in the reply. See the DEAPubKeyIdentifier attribute above.

PubKeyDEAAuthenticator: This compound attribute is used to authenticate the DEA to a Source client using a digital signature and optional certificate chain.
	Type
	Length
	Value

	65
	Length
	Compound

The TLV format of the compound is the concatenation of several TLVs as follows:

	Type
	Length
	Value

	9
	Length
	Compound (Signature)

	Type
	Length
	Value

	55
	Length
	Compound (CertificateChain)

	Type
	Length
	Value

	78
	Length
	Compound (CRLList)

Where Signature, CertificateChain, and CRLList are as follows:

	Attributes
	Description

	Signature
	Digital Signature over the full reply message without this Signature attribute inside PubKeyDEAAuthenticator. See the Signature attribute above

	CertificateChain
	This optional field may be used when the signature is generated using digital certificate and when the DEA public key identifier listed in the preceding request is not recognized by the DEA. See the CertificateChain attribute above.

	CRLList
	When the CertificateChain attribute is not present, this is a list of CRLs for the requested certificate issuers specified by the client inside the PubKeyClientAuthenticator attribute. If the CertificateChain attribute is present, this is a list of CRLs corresponding to the issuers for the new KDC certificate chain.
If the DEA was unable to obtain some of the CRLs, those CRLs will be omitted from this list. If the DEA was unable to obtain any of the CRLs, this attribute will not be present.
See the CRLList attribute below.

NewPrincipalFlag: This field is used to specify if the DEA is to create a new entry for the specified Source client name. This is a Boolean with the possible values of 1 (TRUE) and 0 (FALSE).
	Type
	Length
	Value

	71
	1
	Uint8

IsGroupKey: This is a Boolean flag that when set to TRUE (1) indicates that the key derivation key to be returned in a key reply message is associated with a group, e.g. for IP Multicast, and the key derivation key is to be returned in the key reply message. Otherwise, the flag is FALSE (0). The TLV format of the field is as shown below.
	Type
	Length
	Value

	70
	1
	Uint8

GroupSubkeyId: Identifier for a group key that was requested in a key request with the IsGroupKey attribute set to TRUE. This attribute can be used in the case of a secure IP Multicast. The value of the GroupSubkeyId is as shown below.
	Type
	Length
	Value

	18
	Length
	String

Issuer: This attribute consists of a certificate type (e.g. X.509, WAP, etc.) and the name of a certificate issuer. The format of the certificate issuer name is dependent on the certificate type. In the case of X.509 certificates, the issuer name is a DER-encoded X.500 distinguished name. The TLV format of the issuer is as shown below.
	Type
	Length
	Value

	77
	Length
	Compound

The TLV format of the compound is the concatenation of two TLVs as follows:

	Type
	Length
	Value

	16
	1
	Uint8 (CertificateType)

	Type
	Length
	Value

	81
	Length
	String (IssuerValue)

Where CertificateType and IssuerValue are as follows:

	Attributes
	Description

	CertificateType
	Type of certificate (1=X.509, 2=WAP).

	IssuerValue
	Value of the certificate issuer; the format is type-dependent. For X.509, it is a DER-encoded X.500 distinguished name.

CRLList: This field is used in the PubKeyDEAAuthenticator to provide an up-to-date list of CRLs. This is a compound TLV that consists of an array of one or more CRL attributes, where each CRL is another compound TLV with the value that is dependent on a particular certificate type used by that certificate issuer. The TLV format of the field is as shown below.
	Type
	Length
	Value

	78
	Length
	Compound

The TLV format of the compound is the concatenation of several TLVs as follows:

	Type
	Length
	Value

	79
	Length
	Compound (CRL)

	Type
	Length
	Value

	79
	Length
	Compound (CRL)

etc., where the CRL attribute is discussed below.

CRL: This attribute consists of a certificate type (e.g. X.509, WAP, etc.) and a CRL (Certificate Revocation List) for a specified certificate issuer. The format of the CRL is dependent on the certificate type. In the case of X.509 certificates, this is a DER-encoded X.509 CRL. The TLV format of the CRL is as shown below.
	Type
	Length
	Value

	79
	Length
	Compound

The TLV format of the compound is the concatenation of two TLVs as follows:

	Type
	Length
	Value

	16
	1
	Uint8 (CertificateType)

	Type
	Length
	Value

	80
	Length
	String (CRLValue)

Where CertificateType and IssuerValue are as follows:

	Attributes
	Description

	CertificateType
	Type of certificate (1=X.509, 2=WAP).

	CRLValue
	Value of the CRL; the format is type-dependent. For X.509, it is a DER-encoded X.500 distinguished name.

AuthData: Authorization data that can appear inside PrivateTicketInfo attribute and that is queried by the DEA via an exchange with a subscriber database. The TLV encoding of this field is as follows.

	Type
	Length
	Value

	35
	Length
	String

DeviceRegistrationTypeRequest: Indicates whether the Devices wants to register as a “User Domain Device” or as a “Guest Device”. This is a Boolean with the possible values of 0 (Guest Device) and 1 (User Domain Device). The TLV encoding of this field is as follows.

	Type
	Length
	Value

	87
	1
	Uint8

DeviceRegistrationTypeResponse: Indicates whether A DEA registered a Devices as a “User Domain Device” or as a “Guest Device”. This is a Boolean with the possible values of 0 (Guest Device) and 1 (User Domain Device). The TLV encoding of this field is as follows.

	Type
	Length
	Value

	88
	1
	Uint8

DASignedData: The format of this attribute is TBD. The value of the Type field is 89.
ImportedRights: This attribute contains Imported-RO <rights> element and <signature> element of the LRM that created the Imported-Rights-Object. The TLV encoding of this field is as follows.
	Type
	Length
	Value

	90
	Length
	String

CSubDomain: This attribute contains a list of the valid sub-domain IDs to which the Source client belongs. The TLV encoding of this field is as follows.
	Type
	Length
	Value

	91
	Length
	String

SSubDomain: This attribute contains a list of the valid sub-domain IDs to which the Destination client belongs. The TLV encoding of this field is as follows.
	Type
	Length
	Value

	92
	Length
	String

BridgeSignature: This field represents an object that contains an Imported-RO identifier and a list of Sub-Domains in which the Imported-RO can be valid, and the start time and end time for the validity of the ImportedRO in each Sub-Domain. The object is signed by the DEA. The TLV encoding of this field is as follows.
	Type
	Length
	Value

	93
	Length
	String (SignedText)

Where SignedText is as follows:

	Attributes
	Description

	SignedText
	Signed object encoded as octet string.

AgentTicket: A Service Ticket is generated by a DEA to a Source client for a Destination client. The TLV format is as shown below.
the valid sub-domain IDs to which the Source DRM Agent belongs, and the valid sub-domain IDs to which the Destination DRM Agent belongs
	Type
	Length
	Value

	94
	Length
	Compound (Ticket)

The TLV format of the compound is the concatenation of several TLVs as follows:

	Type
	Length
	Value

	11
	Length
	Compound (Ticket)

	Type
	Length
	Value

	88
	1
	Uint8 (DeviceRegistrationTypeResponse)

	Type
	Length
	Value

	89
	TBD
	TBD (DASignedData)

	Type
	Length
	Value

	91
	Length
	String (CSubDomain)

	Type
	Length
	Value

	92
	Length
	String (SSubDomain)

Where Ticket, DeviceRegistrationTypeResponse, DASignedData, CSubDomain, and SSubDomain are as follows:

	Attributes
	Description

	Ticket
	See the Ticket attribute above.

	DeviceRegistrationTypeResponse
	See the DeviceRegistrationTypeResponse attribute above.

	DASignedData
	See the DASignedData attribute above.

	CSubDomain
	See the CSubDomain attribute above.

	SSubDomain
	See the SSubDomain attribute above.

6.2 SCE-4-LRMP

…
Change 2: Change to Section 7.2 (Key Transport Mechanisms)
7.3.1 Overview of Device Registration and Pairing Protocols

One of the functions of a DEA is to keep track of all the provisioned client Devices in a system and the cryptographic data associated with them. Additionally, the DEA authenticates client Devices and issues Tickets for those client Devices to use as trusted tokens during Pairing. The DEA assigns expiration time to Tickets requiring client Devices to periodically renew them. By allowing Devices to cache these Tickets, the system eliminates the need for Devices to request Pairings when the Tickets have not expired.

A Device SHALL register with a DEA by using a Device’s digital certificate. The DEA SHALL store the client Device’s unique identity and public key. Once this is done, Devices can obtain Tickets that eventually allow the Devices to decrypt content.

Each Device’s unique cryptographic identity is loaded to the client device in the factory during manufacturing.

Once a first Device is provisioned into a DEA and receives a Ticket for a second Device, the first Device MAY request content to be sent or streamed from the second Device. A secure key request message (discussed below) is sent from the first Device to the second Device by using the Ticket to authenticate itself and to establish a secure session. Once the second Device has authenticated the first Device and has verified the Rights associated with the requested content, the second Device sends the content decryption key and associated Rights to the first Device in a secure manner such that only the first Device can verify the integrity of the message and decrypt the cryptographic data.

7.2.1.1 Device Registration Protocol

This section discusses the Device Registration messages for a Device that interacts with a DEA to Import content from an LRM associated with the DEA. The protocol messages are depicted in Figure 2. In general, it is expected a Device needs to register with a DEA only once, unless, for example, the Device needs to renew its expired digital certificate. A Device MAY register more than once with a DEA. A Device MAY register with more than one DEA. To start the registration process, the Device SHALL send to the DEA a Device Registration Request message that includes the client signature and certificate. The Device MAY specify in the Device Registration Request whether the Devices wants to register as a “User Domain Device” or as a “Guest Device”. The Device Registration Request message is specified in Section 7.2.1.1.1.
[image: image1.wmf]Device

DEA

Device Registration Request

Device Registration Response

Device

DEA

Device Registration Request

Device Registration Response

Figure 2: Device Registration Protocol
Next, the DEA validates the request and verifies that the Device is authorized, so that, e.g., the certificate of the Device is not revoked. If the validation succeeds, then the DEA proceeds as follows.

The DEA MAY prompt a User to check if the User accepts the new Device with the given identifier to be registered in the DEA. This is used, for example, to prevent someone in a parking lot registering over a wireless or WiFi network and getting access to this User’s content without permission. A user can disable this feature and then any Device can register into the DEA seamlessly without any User interaction.
 Next, the DEA checks whether the Device wants to register as a “User Domain Device”. If the Device wants to register as a “User Domain Device” but the maximum number of Devices provisioned with the DEA has been reached, or if the Device does not specify the type of registration, then the DEA registers the Device as a “Guest Device”. Otherwise, the DEA registers the Device as a “User Domain Device”.

Next, the DEA SHALL store the Device public key extracted from the certificate of the Device. Next, the DEA SHALL send a Device Registration Response message that includes an acknowledgement from the DEA, the type of registration (i.e. “User Domain Device” or “Guest Device”), the DEA certificate, DA-signed data that proves that the DEA is authorized to register the Device, and a DEA digital signature. The Device Registration Response message is specified in Section 7.2.1.1.2.
After a Device receives and validates Device Registration Response message, the Device SHALL save the DEA certificate. The Device can use the DEA certificate for validation of future DEA responses.
Device Registration Request Message Details
The Device Registration Request message has the same format as the generic message format in Table 1, where the MsgType field is 12. The Attribute List field consists of the following attributes:
	Attributes
	Mandatory/Optional

	Cname
	M

	Crealm
	M

	NewPrincipalFlag
	M

	PubKeyClientAuthenticator
	M

	CertificateChain
	M

	DeviceRegistrationTypeRequest
	O

7.2.1.1.1 Device Registration Response Message Details

The Device Registration Response message has the same format as the generic message format in Table 1, where the MsgType field is 13. The Attribute List field consists of the following attributes:
	Attributes
	Mandatory/Optional

	PubKeyDEAAuthenticator
	M

	DASignedData
	M

	DeviceRegistrationTypeResponse
	M

Change 3: Change to Section 7.2 (Key Transport Mechanisms)

7.2.1.2 Service Keys for Devices

The DEA SHALL assign a unique symmetric service key to each Device. The symmetric service keys provide faster authentication to the DEA in subsequent ticket requests than authentication with public/private keys. The assignment of the service keys is described below and is shown in Figure 3:

[image: image2.wmf]Device

DEA

Device Registration Request

Device Registration Response

Service Key Request

Service Key Response

Figure 3: Assignment of Service Keys

After the Device provisions its public key with the DEA as described in Section 7.2.1.1, the Device SHALL send to the DEA a Service Key Request message that is authenticated by using the private key of the Device. The message SHALL contain the identity of the Device, the identity of the DEA, and a list of symmetric encryption algorithms that are supported by the Device. To check against replays, this message SHALL also contain a NONCE. The Service Key Request message is specified in Section 7.2.1.2.1.
In response, the DEA SHALL randomly generate a symmetric Service Key, store it, and then send a copy of it in a Service Key Response message to the Device, as specified next. The Service Key Response message SHALL include the Service Key in an encrypted form. The encrypted part of the DEA-Ticket SHALL be encrypted by using a secret key that is kept private by the DEA. The Service Key SHALL be communicated from the DEA to the Device in an encrypted form by using a session key that is derived based on a key agreement algorithm TBD. The entire Service Key Response message SHALL be signed by the DEA private key. The Service Key Response message is specified in Section 7.2.1.2.2.
Each Device that has a Service Key SHALL periodically update its Service Key based on an expiration time returned in the Service Key Response message. Each Service Key update is performed by repeating the Service Key Request/Response exchange. The default value for the Service Key lifetime is RECOMMENDED to be 30 days.
7.2.1.2.1 Service Key Request Message Details

The Service Key Request message has the same format as the generic message format in Table 1, where the MsgType field is 16. The Attribute List field consists of the following attributes:
	Attributes
	Mandatory/Optional

	EncTypeSet
	M

	KeyAgreementInfo
	M

	Srealm
	M

	PubKeyClientAuthenticator
	M

7.2.1.2.2 Service Key Response Message Details

The Service Key Response message has the same format as the generic message format in Table 1, where the MsgType field is 17. The Attribute List field consists of the following attributes:
	Attributes
	Mandatory/Optional

	SkeyVnum
	M

	EndTime
	M

	EncryptedData
	M

	KeyAgreementInfo
	M

	PubKeyDEAAuthenticator
	M

Change 4: Change to Section 7.2 (Key Transport Mechanisms)

7.2.1.3 Import Protocol

Any DRM Agent can request Import from any LRM. For an LRM to Import to a DRM Agent, the Device containing the DRM Agent must be registered with the DEA associated with the LRM. This registration is proved by a Ticket that the DRM Agent uses to obtain an Imported-Rights-Object for the desired Imported-Content.

Figure 4 depicts the messages used in Import. When a DRM Agent wants an Import from an LRM, and the DRM Agent does not have a valid Ticket for the LRM, then the DRM Agent SHALL obtain a Ticket for the LRM. If the DRM Agent wants an Import from an LRM, and the DRM Agent already has a valid Ticket for the LRM, then the DRM Agent MAY obtain a new Ticket for the LRM, in which case the DRM Agent SHALL discard the old Ticket. A DRM Agent SHALL use a Ticket Request message to request from a DEA associated with an LRM a Ticket for the LRM. The Ticket Request message is specified in Section 7.2.1.3.1.
[image: image3.wmf]DRM Agent

DEA

Ticket Request

Ticket Response

SAC Key Request

SAC Key Response

LRM

Imported

-

RO Request

Imported

-

RO Response

DRM Agent

DEA

Ticket Request

Ticket Response

SAC Key Request

SAC Key Response

LRM

Imported

-

RO Request

Imported

-

RO Response

Figure 4: Import Protocol Messages

The Ticket Request message SHALL contain the identity of the LRM
. To check against replays, this message SHALL also contain a NONCE. The DRM Agent SHALL authenticate the message by digitally signing the Ticket Request message with the private key of the Device that contains the DRM Agent.
Once the DEA validates the Ticket Request message from the DRM Agent, the DEA SHALL randomly generate a symmetric Session Key, and then send a copy of it in a Ticket Response message to the DRM Agent, as specified next. The Ticket Response message SHALL include an LRM-Ticket that has both a clear and an encrypted part. The clear part of the LRM-Ticket SHALL include the identity of the LRM and a Ticket validity period. The encrypted part of the LRM-Ticket SHALL contain the identity of the DRM Agent and information pertaining to the symmetric Session Key. The encrypted part of the LRM-Ticket SHALL be encrypted by using the Service Key of the LRM. The LRM-Ticket SHALL be integrity protected by a keyed hash that uses the Service Key of the LRM.

The DEA
SHALL communicate the Session Key to the DRM Agent in an encrypted form by using a key agreement algorithm TBD. The DEA then SHALL sign the Ticket Response message by using the DEA private key. The Ticket Response message is specified in Section 7.2.1.3.2.
Once the DRM Agent validates the Ticket Response message from the DEA, the DRM Agent SHALL send a SAC Key Request message to the LRM. The SAC Key Request message SHALL include the LRM-Ticket. The LRM-Ticket SHALL be integrity protected by a keyed hash that uses the Session Key obtained from the DEA. The SAC Key Request message is specified in Section 7.2.1.3.3.
Once the LRM validates the SAC Key Request message from the DRM Agent, the LRM SHALL use a key agreement algorithm TBD to establish a SAC with the DRM Agent if a valid SAC does not exist between the DRM Agent and the LRM. If a SAC does exist between them, then the LRM and the DRM Agent SHALL use a key agreement algorithm TBD to use the SAC for transport of Imported Rights-Objects. The SAC Key Response message is specified in Section 7.2.1.3.4.
As long as the DRM Agent has a valid LRM-Ticket and a valid SAC, then the DRM Agent SHALL request Imported Rights-Objects by using Imported-RO Request messages. The Imported-RO Request message is specified in Section 7.2.1.3.5. The LRM then SHALL transmit Imported Rights-Objects by using Imported-RO Response messages. The Imported Rights-Objects SHALL contain a <rights> element that is signed by an LRM <signature> element. Details are TBD. The Imported-RO Response message is specified in Section 7.2.1.3.6.
7.2.1.3.1 Ticket Request Message Details

The Ticket Request message has the same format as the generic message format in Table 1, where the MsgType field is 5. The Attribute List field consists of the following attributes:
	Attributes
	Mandatory/Optional

	Srealm
	M

	Sname
	M

	Crealm
	M

	ReturnAuthData
	M

	EncTypeSet
	M

	Ctime
	M

	Signature
	M

The Sname in the Ticket Request message is the identifier of the LRM.
7.2.1.3.2 Ticket Response Message Details

The Ticket Response message has the same format as the generic message format in Table 1, where the MsgType field is 6. The Attribute List field consists of the following attributes:
	Attributes
	Mandatory/Optional

	ServiceTicket
	M

	EncryptedData
	M

	Signature
	M

The ServiceTicket in the Ticket Response message contains the LRM-Ticket.
7.2.1.3.3 SAC Key Request Message Details

The SAC Key Request message has the same format as the generic message format in Table 1, where the MsgType field is 8. The Attribute List field consists of the following attributes:
	Attributes
	Mandatory/Optional

	DOI_ID
	M

	Ctime
	M

	ServiceTicket
	M

	CiphersuiteSet
	M

	IsGroupSubkey
	M

	Signature
	M

7.2.1.3.4 SAC Key Response Message Details

The SAC Key Response message has the same format as the generic message format in Table 1, where the MsgType field is 9. The Attribute List field consists of the following attributes:
	Attributes
	Mandatory/Optional

	DOI_ID
	M

	EncryptedData
	M

	CiphersuiteType
	M

	GroupSubkeyId
	M

	Signature
	M

7.2.1.3.5 Imported-RO Request Message Details

TBD
7.2.1.3.6 Imported-RO Response Message Details

TBD
Change 5: Change to Section 7.2 (Key Transport Mechanisms)

7.2.1.4 dmpPair-Protocol
Any DRM Agent can request Pairing with any other DRM Agent to Move or provide Copy of an Imported-Rights-Object associated with some desired Imported-Content. For two DRM Agents to be Paired, the Devices containing the DRM Agents must be registered with a common DEA. This registration is proved by a Ticket that the DRM Agents obtain from the DEA.

Figure 5 depicts the messages used in Pairing. When a Source DRM Agent wants to Pair with a Destination DRM Agent, and the Source DRM Agent does not have a valid Ticket for the Destination DRM Agent, then the Source DRM Agent SHALL obtain a Ticket for the Destination DRM Agent. If the Source DRM Agent wants to Pair with a Destination DRM Agent, and the Source DRM Agent already has a valid Ticket for the Destination DRM Agent, then the Source DRM Agent MAY obtain a new Ticket for the Destination DRM Agent, in which case the Source DRM Agent SHALL discard the old Ticket. A DRM Agent SHALL use an Agent Ticket Request message to request from a DEA a Ticket for another DRM Agent. The Agent Ticket Request message is specified in Section 7.2.1.4.1.
[image: image4.wmf]Source DRM Agent

DEA

Agent Ticket Request

Agent Ticket Response

SAC Key Request

SAC Key Response

Destination DRM Agent

A2A Imp

-

RO Request

A2A Imp

-

RO Response

Source DRM Agent

DEA

Agent Ticket Request

Agent Ticket Response

SAC Key Request

SAC Key Response

Destination DRM Agent

A2A Imp

-

RO Request

A2A Imp

-

RO Response

Figure 5: Pairing Protocol Messages

The Agent Ticket Request message SHALL contain the identity of the Destination DRM Agent and contain the DEA-Ticket. To check against replays, this message SHALL also contain a NONCE. The message SHALL also contain the Imported-RO <rights> element and <signature> element of the LRM that created the Imported-Rights-Object. The Source DRM Agent SHALL authenticate the message by using a keyed hash that uses the Service Key of the Device that contains the Source DRM Agent.
Once the DEA validates the Agent Ticket Request message from the Source DRM Agent, the DEA SHALL randomly generate a symmetric Session Key (also known as a Pairing Secret), and then send a copy of it in an Agent Ticket Response message to the Source DRM Agent, as specified next. The Agent Ticket Response message SHALL include an Agent-Ticket that has both a clear and an encrypted part. The clear part of the Agent-Ticket SHALL include the identity of the Destination DRM Agent, a Ticket validity period, the type of registration (i.e. “User Domain Device” or “Guest Device”) of the Destination DRM Agent, DA-signed data that proves that the DEA is associated with the LRM that created the Imported-Rights-Object, the valid sub-domain IDs to which the Source DRM Agent belongs, and the valid sub-domain IDs to which the Destination DRM Agent belongs. The encrypted part of the Agent-Ticket SHALL contain the identity of the Source DRM Agent, information pertaining to the symmetric Session Key, the type of registration (i.e. “User Domain Device” or “Guest Device”) of the Source DRM Agent, DA-signed data that proves that the DEA is associated with the LRM that created the Imported-Rights-Object, the valid sub-domain IDs to which the Source DRM Agent belongs, and the valid sub-domain IDs to which the Destination DRM Agent belongs. The encrypted part of the Agent-Ticket SHALL be encrypted by using the Service Key of the Destination DRM Agent. The Agent-Ticket SHALL be integrity protected by a keyed hash that uses the Service Key of the Destination DRM Agent. In addition, the DEA SHALL include an encrypted version of the Session Key in the Agent Ticket Response message. In addition, the DEA SHALL include a Bridge Signature Packet in the Agent Ticket Response message. The DEA also SHALL authenticate the message by using a keyed hash that uses the Service Key of the Device that contains the Source DRM Agent. The Agent Ticket Respone message is specified in Section 7.2.1.4.2.
Once the Source DRM Agent validates the Agent Ticket Response message from the DEA, the Source DRM Agent SHALL send a SAC Key Request message to the Destination DRM Agent. The SAC Key Request message SHALL include the Agent-Ticket. The Agent-Ticket SHALL be integrity protected by a keyed hash that uses the Session Key obtained from the DEA. The SAC Key Request message is specified in Section 7.2.1.3.3.
Once the Destination DRM Agent validates the SAC Key Request message from the Source DRM Agent, the Destination DRM Agent SHALL use a run of the Mutual Authentication and Key Exchange (MAKE) protocol specified in [SCE A2A TS] to establish a SAC with the Source DRM Agent and to create a Session Key. The SAC Key Response message is specified in Section 7.2.1.3.4.
As long as the DRM Agent has a valid Agent-Ticket and a valid SAC, then the Source DRM Agent MAY Move Rights associated with Imported-Content to the Destination DRM Agent, subject to the restrictions imposed by the type of registration (i.e. “User Domain Device” or “Guest Device”) of the two Agents, as discussed in Section 5.3.1 and Section 5.3.4.2
. Details are TBD. The details of the A2A Imp-RO Request message are specified in Section 7.2.1.4.3. The details of the A2A Imp-RO Response message are specified in Section 7.2.1.4.4.
7.2.1.4.1 Agent Ticket Request Message Details

The Agent Ticket Request message has the same format as the generic message format in Table 1, where the MsgType field is 24. The Attribute List field consists of the following attributes:
	Attributes
	Mandatory/Optional

	Srealm
	M

	Sname
	M

	Crealm
	M

	ReturnAuthData
	M

	EncTypeSet
	M

	Ctime
	M

	ImportedRights
	M

	Signature
	M

The Sname in the Agent Ticket Request message is the identifier of the Destination client.

7.2.1.4.2 Agent Ticket Response Message Details

The Agent Ticket Response message has the same format as the generic message format in Table 1, where the MsgType field is 25. The Attribute List field consists of the following attributes:
	Attributes
	Mandatory/Optional

	AgentTicket
	M

	EncryptedData
	M

	BridgeSignature
	M

	Signature
	M

7.2.1.4.3 A2A Imp-RO Request Message Details

TBD
7.2.1.4.4 A2A Imp-RO Response Message Details

TBD

�Editor – Please insert dynamic links

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2007 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 29)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20070101-I]

© 2007 Open Mobile Alliance Ltd. All Rights Reserved.
Page 28 (of 29)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20070101-I]

