Doc# OMA-DRM-2008-0060-CR_Render_Operation_Type.doc[image: image3.jpg]"sOMaQa

Open Mobile Alliance

Change Request

Doc# OMA-DRM-2008-0060-CR_Render_Operation_Type.doc
Change Request

Change Request

	Title:
	Render Operation Type
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	OMA DRM

	Doc to Change:
	OMA-TS-SCE_A2A-V1_0_0-20080201-D

	Submission Date:
	20 February 2008

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
3: Clerical

	Source:
	Zhipeng Zhou, Huawei, zhouzp@zhouzp.com

	Replaces:
	n/a

1 Reason for Change

To keep consistent with life experience of operating household appliance, e.g. for DVD-ROM drives render operations always include Pause|Play|Stop|Forward|Backward, this CR proposes to embody the concrete operation types in A2A render operation protocol.
2 Impact on Backward Compatibility

No impact on backward compatibility is anticipated.

3 Impact on Other Specifications

No impact on other specifications is anticipated.

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

The authors request that the CR be agreed and incorporated into the current SCE LRM Technical Specification draft.

6 Detailed Change Proposal

Change 1: modification to Render protocol

7.1 Render Operation

The Render operation is used by the DRM Requestor to start the rendering of DRM Content on the Render Agent. The DRM Content is identified by its Asset ID (see section 8.17). This operation MUST take place using a SAC. This operation MUST NOT be performed if the DRM Requestor’s certificate does not have an extKeyUsage extension with oma-kp-sceRenderSource key purpose set or the Render Agent’s certificate does not have an extKeyUsage extension with oma-kp-sceRenderAgent key purpose set (see section A.1). The following figure illustrates the Render operation.

[image: image1.png]BRequestor

A

Render

Agent
I I
. RenderRequest '
: >
I I
! RenderResponse !
| |
I

Figure 13: Render Operation
In order for this operation to take place, the following MUST be performed:

1. The DRM Requestor generates a RenderRequest.

2. The DRM Requestor sends the RenderRequest to the Render Agent, applying the replay protection mechanism described in section 7.3.

3. The Render Agent processes the request as follows:

a. It processes the request for replay as described in section 7.3.

b. It validates the fields of the RenderRequest. If any field is invalid, it sets RenderResponse.Status to InvalidField and proceeds to step 4.

c. It decrypts the CEK.

d. It creates a Render context with the renderHandle, AssetId, CEK and the DRM Requestor ID.
e. It sets RenderResponse.Status to Success.
4. The Render Agent sends the RenderResponse to the DRM Requestor, applying the replay protection mechanism described in section 7.3.

5. The DRM Requestor processes the response as follows:

a. It processes the response for replay as described in section 7.3.

b. If RenderResponse.Status is not Success, it determines if it can restart the Lend RO operation at step 1. If it does not restart the operation, it terminates the Render operation.

c. It creates a Render context, associating the renderHandle, AssetId and Render Agent ID.

d. At this point the Render operation has successfully completed.

7.1.1 RenderRequest

A RenderRequest is sent as a protected request and its body is defined as follows:

Body(){
 renderHandle
32
uimsbf
 AssetId()
 EncryptedCek()
 OperationType
8
uimsbf
 ShiftTime
32
uimsbf //upto 2^32 seconds

}

The fields are defined as follows:

· renderHandle – this field contains a 32 bit unsigned integer assigned by the DRM Requestor to identify the rendering of the DRM Content. The DRM Requestor can use this value in the Render Status operation (see section 9.12) to get the status of the rendering.

· AssetId – this field contains the identification of the DRM Content that the Render Agent should render. It is defined in section 8.17.

· EncryptedCek – this field contains the Content Encryption Key (CEK) for decrypting the DRM Content. It is defined in section 8.12.
· RenderPlayStatus is the indication of operation type. Its values is defined in the following table :
Table xx: Operation Type Values
	Status Values

	Play

	Stop

	Pause

	Forward

	Backward

· ShiftTime indicates the present time shift when performing the Play operation, i.e. the start of the content or the time shift when performing the latest Pause operation. The value of ShiftTime should be in the scope of 0 to the time length of the content.
If ShiftTime is 0 and operation is Play, then render Agent start to render this content from start, otherwise start to render this content from the assigned Shift Time.
If operation type is Pause or Stop, then CEK stored in the Render Agent Must be cleared and the EncryptedCek in the RenderRequest is discarded.
CEK stored in the Render Agent also shall be cleared when rendering reaches the end the content.

7.1.2 RenderResponse

A RenderResponse is sent as a protected response. The following table lists the valid Status values for this response.

Table xx: RenderResponse Status Values
	Status Values

	Success

	InvalidField

	IntegrityVerificationFailed

If the operationType in RenderRequest is Pause, then in the RenderResponse returns the current shift time so the content can be played at this place next time.
A RenderResponse is defined as follows:

Body(){
 if(operationType == Pause)

currentShiftTime
32
uimsbf //upto 2^32 seconds

}

· currentShiftTime indicates the present time shift when performing the Pause operation.
Change 2: modification to Render status protocol
7.2 Render Status Operation

The Render Status operation is used by the DRM Requestor to query the status of the rendering of DRM Content, started with a Render operation (see section 9.8), from the Render Agent. This operation MUST take place using a SAC. This operation MUST NOT be performed if the DRM Requestor’s certificate does not have an extKeyUsage extension with oma-kp-sceRenderSource key purpose set or the Render Agent’s certificate does not have an extKeyUsage extension with oma-kp-sceRenderAgent key purpose set (see section A.1). The following figure illustrates the Render Status operation.

[image: image2.png]A

DRM Render
Requestor Agent

I I

. RenderStatusRequest '

: >

I

E RenderStatusResponse !

| |

I

Figure 14: Render Status Operation
In order for this operation to take place, the following MUST be performed:

1. The DRM Requestor generates a RenderStatusRequest.

2. The DRM Requestor sends the RenderStatusRequest to the Render Agent, applying the replay protection mechanism described in section 7.3.

3. The Render Agent processes the request as follows:

a. It processes the request for replay as described in section 7.3.

b. It validates the fields of the RenderStatusRequest. If any field is invalid, it sets RenderResponse.Status to InvalidField and proceeds to step 4.

c. It checks that the renderHandle corresponds to a Render context with the renderHandle and the DRM Requestor ID. If it does not, it sets RenderStatusResponse.Status to UnknownRenderHandle and preceeds to step 4.
d. It sets RenderStatusResponse.Status to Success and RenderStatusResponse.Body.renderStatus to the appropriate value.
4. The Render Agent sends the RenderStatusResponse to the DRM Requestor, applying the replay protection mechanism described in section 7.3.

5. The DRM Requestor processes the response as follows:

a. It processes the response for replay as described in section 7.3.

b. If RenderStatusResponse.Status is not Success, it determines if it can restart the Lend RO operation at step 1. If it does not restart the operation, it terminates the Render operation.

c. At this point the Render operation has successfully completed.

7.2.1 RenderStatusRequest

A RenderStatusRequest is sent as a plain request and its body is defined as follows:

Body(){
 renderHandle
32
uimsbf
}

The fields are defined as follows:

· renderHandle – this field contains a 32 bit unsigned integer assigned by the DRM Requestor to identify this operation. The DRM Requestor can use this value in the Render Status operation (section xxx).
7.2.2 RenderStatusResponse

A RenderStatusResponse is sent as a protected response. The following table lists the valid Status values for this response.

Table xx: RenderResponse Status Values
	Status Values

	Success

	InvalidField

	IntegrityVerificationFailed

	UnknownRenderHandle

Table xx: Render Play Status Values
	Status Values

	Pausing

	Playing

	Stoping

The body of a RenderStatusReponse is defined as follows:

Body(){

 renderStatus
8
uimsbf
 if(renderStatus == Success){

renderPlayStatus
8
uimsbf
 if(renderPlayStatus == Playing)

 currentShiftTime
32
uimsbf //upto 2^32 seconds
}

The fields are defined as follows:

· renderStatus – This field contains the status of the rendering as an 8 bit unsigned integer. The following table lists the valid renderStatus values.

Table xx: renderStatus Values
	renderStatus Values
	Description

	0
	Rendering is in progress

	1
	Rendering has not started

	2
	Rendering has completed

	3 – 255
	Reserved for future use

· currentShiftTime indicates the present time shift when the render is playing.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 5)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20080101-I]

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 5)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20080101-I]

