Doc# OMA-DRM-2008-0074R01-CR_SCE_LRM_RO_Request_Response_Message_Details.doc[image: image1.jpg]
Change Request

Doc# OMA-DRM-2008-0074R01-CR_SCE_LRM_RO_Request_Response_Message_Details.doc
Change Request

Change Request

	Title:
	RO Request Response Message Details
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	DRM WG

	Doc to Change:
	OMA-TS-SCE_LRM-V1_0-20080221-D

	Submission Date:
	21 Feb 2008

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Hosame Abu-Amara, Motorola, Hosame.Abu-Amara@motorola.com
David Kravitz, Motorola, David.Kravitz@motorola.com

	Replaces:
	n/a

1 Reason for Change

The CR provides message details and formats for the Imported-RO Request/Response protocol messages and the A2A Imp-RO Request/Response protocol messages. These protocols are already in the Doc to Change. To describe these details and formats, we add some new attributes, attribute data structures, and error messages. We then add message generation and processing steps.
2 Impact on Backward Compatibility

None

3 Impact on Other Specifications

None

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

DRM WG members to agree this document.

6 Detailed Change Proposal

Change 1: Modify section 6.1.1
6.1.1 Message Types

The message types are listed in Table 1 in decimal for each message supported. The possible attributes of the messages are listed in Table 2.
Table 1: Message Types

	msgType
	Message

	3
	Service Key Request

	4
	Service Key Response

	5
	Ticket Request

	6
	Ticket Response

	8
	SAC Key Request

	9
	SAC Key Response

	11
	Error Message

	12
	Device Registration Request

	13
	Device Registration Response

	24
	Agent Ticket Request

	25
	Agent Ticket Response

	26
	Imported-RO Request

	27
	Imported-RO Response

	28
	A2A Imp-RO Request

	29
	A2A Imp-RO Response

Change 2: Modify Section 6.1.2 to add new attribute values to Table 2
	…
	…

	95
	CsumType

	96
	ClientName

	97
	ServerName

	98
	RO_ID

	99
	IsInitialMove

	100
	BulkTickets

Change 3: New section 6.1.2.41
6.1.2.41 RO_ID

This attribute specifies a string that encodes the RO identifier. The fields for the attribute are defined as follows:

· type – This field has the value 98.

· length – This field encodes a variable length value dependent on the length of the RO identifier.
Change 4: New section 6.1.2.42
6.1.2.42 IsInitialMove
This attribute indicates whether an Imported-RO is to be Moved for the first time from an Import-Recipient Device. This is a Boolean with the possible values of 0 (not first time) and 1 (first time). The fields for the attribute are defined as follows:

· type – This field has the value 99.
· length – This field encodes the value 8 (bits).

Change 5: New section 6.1.3.16
6.1.3.16 BulkTickets
This is an attribute data structure that is generated by a DEA to a client. The data structure is a list of Tickets. The fields for the attribute data structure are defined as follows:

· typeStr – This field has the value 100.
· lengthStr – This field encodes a variable length dependent on the number of Tickets in the list.
· Attributes – The attributes contained in this data structure is a lsequence of the attributes of the Tickets in the list.
Change 6: Modify Section 6.1.4 to add new attribute values to Table 10
	…
	…

	DEA_ERR_SUMTYPE_NOSUPP
	8

	DEA_ERROR_DEA_NOT_TRUSTED
	34

	DEA_ERROR_INVALID_SIG
	35

	ERR_RO_ID_NOT_RECOGNIZED
	82

	ERR_RO_NOT_Available
	83

Change 7: Modify Section 7.2.1
7.2.1 Device Registration and Pairing Protocols
One of the functions of a DEA is to keep track of all the provisioned Devices in a system and the cryptographic data associated with them. Additionally, the DEA authenticates client Devices and issues Tickets for those client Devices to use as trusted tokens during communications with other Devices. The DEA assigns expiration time to Tickets, thus requiring Devices with Tickets to periodically renew them. By allowing Devices to cache these Tickets, the system eliminates the need for Devices to request Pairings when the Tickets have not expired.

If a Device registers with a DEA, then the Device SHALL register with the DEA by using a Device’s digital certificate. The DEA SHALL store the client Device’s unique identity and public key. Once this is done, Devices can obtain Tickets directly from the DEA.

It is anticipated that each Device’s unique cryptographic identity is loaded to the client device in the factory during manufacturing.

Once a first Device registers with a DEA and receives a Ticket for a second Device, the first Device MAY request content to be sent or streamed from the second Device or vice-versa. A secure key request message (discussed below) is sent from the first Device to the second Device by using the Ticket to authenticate itself and to establish a secure session. Once the second Device has authenticated the first Device and has verified the Rights associated with the requested content, the second Device sends the content decryption key and associated Rights to the first Device in a secure manner such that only the first Device can verify the integrity of the message and decrypt the cryptographic data.

In what follows, we assume that an LRM registers with a DEA in the same way that a Device registers with a DEA. Therefore, the protocols in Section 7.2.1.1 apply to both Devices and LRMs. Similarly, an LRM obtains a Service Key for a DEA in the same way that a Device obtains a Service Key for a DEA. Therefore, the protocols in Section 7.2.1.2 apply to both Devices and LRMs. As we discuss, a Device might ask for an LRM Ticket corresponding to an LRM that has not yet registered with the DEA. In this case, the DEA returns an error message to a requesting device.

Change 8: Modify Section 7.2.1.3.5
7.2.1.3.5 Imported-RO Request Message Details

The Imported-RO Request message has the syntax described in Section 6.1. The fields of the message are as follows:

· msgType – This field contains the value 26.
· Pvno – This field contains the value TBD.

· stid – This field is set as discussed in Section 7.2.1.3.5.1.
· dtid – This field is set as discussed in Section 7.2.1.3.5.1.
· retryCount – This field is set as discussed in Section 7.2.1.3.5.1.
· Attributes – This data structure contains the following attributes: ClientName, RO_ID, and ClientDRMtimeSeconds.
· nbrOfAttrs – This field contains the value 3.
· AttributeStructures – This data structure contains no attribute data structures.
· nbrOfAttrStrs – This field contains the value 0.
· Signature – This field is set as discussed in Section 7.2.1.3.5.1.
7.2.1.3.5.1 Generating Imported-RO Request Message

The Device MUST follow the following steps to generate an Imported-RO Request message:

1. Generate a pseudo random number for the stid header field of the message. Make sure that this value does not correspond to any outstanding Imported-RO Request messages. Continue repeating this step until a unique value is generated.
2. Set the dtid header field of the message to 0.
3. Fill in the retryCount field. The value must be 0 for the initial message, 1 for the first retry, etc.

4. Fill in the ClientName attribute.

5. Fill in the RO_ID attribute.

6. Fill in the ClientDRMtimeSeconds attribute.

7. Generate the Signature attribute data structure. Specifically, the DRM Agent chooses a checksum algorithm based on the intersection of the list of algorithms specified in the CsumTypeSet attribute in the LRM Ticket with the list of checksum algorithms supported by the client. The data structure consists of a CsumType attribute and a SigValue attribute. The client then specifies the chosen checksum algorithm identifier in the CsumType attribute. The value in SigValue is calculated over the entire message except for the Signature attribute data structure. Use the SAC Key negotiated with the LRM to compute the checksum.
After the Device sends out the Imported-RO Request message, it MUST save the value of the stid header field in order to later validate the matching Imported-RO Response message from the LRM. The Device MUST keep the stid until a configurable time out value. After the time out, the Device will no longer be able to process the corresponding Imported-RO Response message and must retry and increment the retryCount value.

7.2.1.3.5.2 Processing Imported-RO Request Message

The LRM MUST perform the following steps to verify the Imported-RO Request message:

1. Parse the message header. If the header parsing fails, drop the message and do not return an error.

2. Verify the protocol version number in the header. If this protocol version is not supported, drop the message and do not return an error.

3. Parse the rest of the message. If the message format is found to be illegal, drop the message and do not return an error.
4. If the LRM cannot accommodate one of the requested checksum types, drop the message and do not return an error.

5. Verify the signature attribute. If verification fails for any reason, drop the message and do not return an error.

6. Check the ClientDRMtimeSeconds attribute in the Imported-RO Request message. If the time is outside of the acceptable time window (typically +/- 5 minutes), this message is rejected and a message with the ERR_SKEW error code is returned.

7. If the ClientDRMtimeSeconds value is within an acceptable time window, compute a SHA-1 hash of the Imported-RO Request message and check if there is already a record with this hash value in the Replay Cache. (Each Replay Cache record consists of a request hash value and the ClientDRMtimeSeconds value. Only the entries corresponding to the acceptable time window, e.g. +/- 5 minutes are kept in the Replay Cache.) If the LRM finds a record in the Replay Cache with the same hash value, a replay attack is assumed and a message with the ERR_REPEAT error code is returned. If no such entries are found, the processing of the Imported-RO Request message continues as specified below.

8. At this point, the LRM MUST update the Replay Cache with the record corresponding to this Imported-RO Request message (containing message hash and value of ClientDRMtimeSeconds).
9. If the specified RO_ID is not recognized, return an error message with the code ERR_RO_ID_NOT_RECOGNIZED.

10. If the LRM is no longer authorized to issue the Imported-RO corresponding to the RO_ID to ClientName, return an error message with the code ERR_RO_NOT_Available.
11. If no errors are generated during the processing of the Imported-RO Request message, then the LRM generates an Imported-RO Response message.

Change 9: Modify Section 7.2.1.3.6
7.2.1.3.6 Imported-RO Response Message Details

The Imported-RO Response message has the syntax described in Section 6.1 The fields of the message are as follows:

· msgType – This field contains the value 27.
· Pvno – This field contains the value TBD.

· stid – This field is set as discussed in Section 7.2.1.3.6.1.
· dtid – This field is set as discussed in Section 7.2.1.3.6.1.
· retryCount – This field is set as discussed in Section 7.2.1.3.6.1.
· Attributes – This data structure contains no attributes.
· nbrOfAttrs – This field contains the value 0.
· AttributeStructures – This data structure contains the EncryptedData attribute data structures.
· nbrOfAttrStrs – This field contains the value 1.
· Signature – This field is set as discussed in Section 7.2.1.3.6.1.
7.2.1.3.6.1 Generating Imported-RO Response Message

The LRM MUST follow the following steps to generate an Imported-RO Response message:

1. Set the stid header field of the message to 0.

2. Set the dtid header field of the message to the same value of the stid header field from the preceding Imported-RO Request message, so that the response message is tied to the request message.
3. The retryCount from the preceding Imported-RO Request message is copied to the retryCount in this message.
4. The LRM decrements by one the number of Imported-ROs that the LRM has available for use within the User Domain managed by the DEA corresponding to the LRM.

5. The LRM creates an Imported-RO that contains within the <rights> element the base64 encoded SHA-1 hash over the concatenation of the values of the RO_ID and ClientIdentifier attributes. The <rights> element also contains hash(CEK). The LRM stores the Imported-RO indexed by the stid of the Imported-RO Request message until the Imported-RO Request message no longer exists in the Replay Cache. This allows the LRM to re-send the same Imported-RO if a retry Imported-RO Request message arrives at the LRM.
6. The LRM populates the EncryptedData attribute data structure. The EncType contains the identifier of the NULL Encryption algorithm. The CipherText contains the Imported-RO.

7. Generate the Signature attribute data structure. The data structure consists of a CsumType attribute and a SigValue attribute. The value in the CsumType attribute is the same as the value of the CsumType attribute in the preceding Imported-RO Request message. The value in SigValue is calculated over the entire message except for the Signature attribute data structure. Use the SAC Key negotiated with the LRM to compute the checksum.

 7.2.1.3.6.2 Processing Imported-RO Response Message

The client MUST follow the following procedure to process the Imported-RO Response message. Note that the client does not send an error message back to the LRM. In some cases, the client will retry with another Imported-RO Request message:

1. Parse the message header. If the header parsing fails, pretend that the Imported-RO Response message were never received, i.e. continue waiting for a reply to the initial Imported-RO Request message until a timeout occurs and then retry.
2. Verify the protocol version number in the header. If this protocol version is not supported, pretend the message were never received.

3. The client looks for an outstanding Imported-RO Request message whose stid value matches the dtid header field in the Imported-RO Response message. If there is no match, the client proceeds as if the Imported-RO Response message were never received.

4. Verify that the retryCount in the preceding Imported-RO Request message matches the retryCount in the Imported-RO Response message. If it does not match, the client proceeds as if the reply message were never received.

5. Parse the rest of the Imported-RO Response message. If the message format is found to be illegal, pretend the message were never received.
6. Verify the keyed checksum (by using the shared SAC Key). If the checksum does not verify, this message is dropped and the client proceeds as if the message were never received.
7. If the resulting Imported-RO contains formatting errors, then a fatal error MUST be reported to the user, and the client MUST NOT retry.
8. Verify that the value of the DASignedData attribute shows that the LRM whose signature is in the Imported-RO is associated with the DEA that issued the LRM Ticket to the client. If the DASignedData does not show this association, then a fatal error MUST be reported to the user, and the client MUST NOT retry.
9. If no errors are generated during the processing of the Imported-RO Response message, then the DRM Agent stores the received Imported-RO.

Change 10: Modify Section 7.2.1.4.3
7.2.1.4.3 A2A Imp-RO Request Message Details

The A2A Imp-RO Request message has the syntax described in Section 6.1. The fields of the message are as follows:

· msgType – This field contains the value 28.
· Pvno – This field contains the value TBD.

· stid – This field is set as discussed in Section 7.2.1.4.3.1.
· dtid – This field is set as discussed in Section 7.2.1.4.3.1.
· retryCount – This field is set as discussed in Section 7.2.1.4.3.1.
· Attributes – This data structure contains the following attributes: ClientName, RO_ID, ClientDRMtimeSeconds, and EncTypeSet.
· nbrOfAttrs – This field contains the value 4.
· AttributeStructures – This data structure contains the EncryptedData attribute data structure.
· nbrOfAttrStrs – This field contains the value 1.
· Signature – This field is set as discussed in Section 7.2.1.4.3.1.
7.2.1.4.3.1 Generating A2A Imp-RO Request Message

The Source DRM Agent MUST follow the following steps to generate an A2A Imp-RO Request message:

1. Generate a pseudo random number for the stid header field of the message. Make sure that this value does not correspond to any outstanding A2A Imp-RO Request messages. Continue repeating this step until a unique value is generated.
2. Set the dtid header field of the message to 0.
3. Fill in the retryCount field. The value must be 0 for the initial message, 1 for the first retry, etc.

4. Fill in the ClientName attribute.

5. Fill in the RO_ID attribute.

6. Fill in the ClientDRMtimeSeconds attribute.

7. Fill in the EncTypeSet attribute.

8. Generate the EncryptedData attribute data structure. The EncType contains the identifier of the NULL Encryption algorithm. The CipherText contains the Signature attribute data structures that contain SigValues calculated over the REKs of Imported-ROs and ROs that the Source DRM Agent received as a Guest Device and no longer needs to use.
9. Generate the Signature attribute data structure. Specifically, the Source DRM Agent chooses a checksum algorithm based on the intersection of the list of algorithms specified in the CsumTypeSet attribute in the Agent Ticket with the list of checksum algorithms supported by the Source DRM Agent. The data structure consists of a CsumType attribute and a SigValue attribute. The Source DRM Agent then specifies the chosen checksum algorithm identifier in the CsumType attribute. The value in SigValue is calculated over the entire message except for the Signature attribute data structure. Use the SAC Key negotiated with the Destination DRM Agent to compute the checksum.
After the Source DRM Agent sends out the A2A Imp-RO Request message, it MUST save the value of the stid header field in order to later validate the matching A2A Imp-RO Response message from the LRM. The Source DRM Agent MUST keep the stid until a configurable time out value. After the time out, the Source DRM Agent will no longer be able to process the corresponding A2A Imp-RO Response message and must retry and increment the retryCount value.

 7.2.1.4.3.2 Processing A2A Imp-RO Request Message

The Destination DRM Agent MUST perform the following steps to verify the A2A Imp-RO Request message:

1. Parse the message header. If the header parsing fails, drop the message and do not return an error.

2. Verify the protocol version number in the header. If this protocol version is not supported, drop the message and do not return an error.

3. Parse the rest of the message. If the message format is found to be illegal, drop the message and do not return an error.
4. If the Destination DRM Agent cannot accommodate one of the requested checksum types, drop the message and do not return an error.

5. Verify the signature attribute. If verification fails for any reason, drop the message and do not return an error.

6. Check the ClientDRMtimeSeconds attribute in the A2A Imp-RO Request message. If the time is outside of the acceptable time window (typically +/- 5 minutes), this message is rejected and a message with the ERR_SKEW error code is returned.

7. If the ClientDRMtimeSeconds value is within an acceptable time window, compute a SHA-1 hash of the A2A Imp-RO Request message and check if there is already a record with this hash value in the Replay Cache. (Each Replay Cache record consists of a request hash value and the ClientDRMtimeSeconds value. Only the entries corresponding to the acceptable time window, e.g. +/- 5 minutes are kept in the Replay Cache.) If the Destination DRM Agent finds a record in the Replay Cache with the same hash value, a replay attack is assumed and a message with the ERR_REPEAT error code is returned. If no such entries are found, the processing of the A2A Imp-RO Request message continues as specified below.
8. If the Destination DRM Agent cannot support any of the EncTypeSet identifiers, then the agent returns an error message with code DEA_ERR_ETYPE_NOSUPP.
9. At this point, the Destination DRM Agent MUST update the Replay Cache with the record corresponding to this A2A Imp-RO Request message (containing message hash and value of ClientDRMtimeSeconds).
10. If the specified RO_ID is not recognized, return an error message with the code ERR_RO_ID_NOT_RECOGNIZED.

11. The Destination DRM Agent MUST verify that the value of the DASignedData attribute shows that the LRM whose signature is in the Imported-RO is associated with the DEA that issued the Agent Ticket to the Source DRM Agent. If the DASignedData does not show this association, then the Destination DRM Agent returns an error message with the code ERR_RO_NOT_Available.

12. If no errors are generated during the processing of the A2A Imp-RO Request message, then the Destination DRM Agent stores the EncTypeSet of the Source Destination Agent and generates an A2A Imp-RO Response message.

Change 11: Modify Section 7.2.1.4.4
7.2.1.4.4 A2A Imp-RO Response Message Details

The A2A Imp-RO Response message has the syntax described in Section 6.1. The fields of the message are as follows:

· msgType – This field contains the value 29.
· Pvno – This field contains the value TBD.

· stid – This field is set as discussed in Section 7.2.1.4.4.1.
· dtid – This field is set as discussed in Section 7.2.1.4.4.1.
· retryCount – This field is set as discussed in Section 7.2.1.4.4.1.
· Attributes – This data structure contains no attributes.
· nbrOfAttrs – This field contains the value 0.
· AttributeStructures – This data structure contains the EncryptedData attribute data structure.
· nbrOfAttrStrs – This field contains the value 1.
· Signature – This field is set as discussed in Section 7.2.1.4.4.1.
7.2.1.4.4.1 Generating A2A Imp-RO Response Message

The Destination DRM Agent MUST follow the following steps to generate an A2A Imp-RO Response message:

1. Set the stid header field of the message to 0.

2. Set the dtid header field of the message to the same value of the stid header field from the preceding A2A Imp-RO Request message, so that the response message is tied to the request message.
3. The retryCount from the preceding A2A Imp-RO Request message is copied to the retryCount in this message.
4. The Destination DRM Agent chooses an encryption algorithm based on the intersection of the list of algorithms specified in the EncTypeSet stored for the Source Destination Agent with the list of encryption algorithms supported by the Destination DRM Agent. If this intersection contains more than one encryption algorithm, the Destination DRM Agent MUST select the strongest one.

5. The Destination DRM Agent stores the Imported-RO or RI-created RO indexed by the stid of the A2A Imp-RO Request message until the A2A Imp-RO Request message no longer exists in the Replay Cache. This allows the Destination DRM Agent to re-send the same Imported-RO or RI-created RO if a retry A2A Imp-RO Request message arrives at the Destination DRM Agent.
6. If the Source DRM Agent has a DeviceRegistrationTypeResponse of “User Domain Device”, as specified by the Agent Ticket, then the Destination DRM Agent generates a Signature attribute data structure. The data structure consists of a SigType attribute and a SigValue attribute. The value in SigValue is calculated over the ServerIdentifier, ServerDRMtimeSeconds, ClientIdentifier, and RO_ID attributes. The Destination DRM Agent uses its private key to compute the signature.

The Destination DRM Agent then populates the EncryptedData attribute data structure. The EncType contains the identifier of the Encryption algorithm the Destination DRM Agent chose. The CipherText contains the Imported-RO or RI-created RO, the attributes ServerIdentifier, ServerDRMtimeSeconds, ClientIdentifier, RO_ID, and IsInitialMove, and the Signature attribute data structure that the Destination DRM Agent computed. If this is the initial Move of the Imported-RO, then the Destination DRM Agent sets the value in the IsInitialMove to 1, else it sets the value to 0. The Destination DRM Agent uses the SAC Key for the encryption.

7. If the Source DRM Agent has a DeviceRegistrationTypeResponse of “Not Registered”, as specified by the Agent Ticket, then the Destination DRM Agent verifies that the value of the DASignedData attribute shows that the LRM whose signature is in the Imported-RO is authorized for Guest Devices, i.e. Devices that are not registered. If the DASignedData does not show this authorization, then the Destination DRM Agent returns an error message with the code ERR_RO_NOT_Available.

In all other cases, the Destination DRM Agent generates a Signature attribute data structure. The data structure consists of a SigType attribute and a SigValue attribute. The value in SigValue is calculated over the REK of the Imported-RO or RI-created RO. The Destination DRM Agent uses its public key to compute the signature, and the SigType depends on the type of this public key.

The Destination DRM Agent then populates the EncryptedData attribute data structure. The EncType contains the identifier of the Encryption algorithm the Destination DRM Agent chose. The CipherText contains the Imported-RO or RI-created RO, the CEK of the Imported-RO or RI-created RO, and the Signature attribute data structure that the Destination DRM Agent computed. The Destination DRM Agent uses the SAC Key for the encryption.

8. Generate a Signature attribute data structure. The data structure consists of a CsumType attribute and a SigValue attribute. The value in the CsumType attribute is the same as the value of the CsumType attribute in the preceding A2A Imp-RO Request message. The value in SigValue is calculated over the entire message except for the Signature attribute data structure. Use the SAC Key negotiated with the Source DRM Agent to compute the checksum.

 7.2.1.4.4.2 Processing A2A Imp-RO Response Message

The Source DRM Agent MUST follow the following procedure to process the A2A Imp-RO Response message. Note that the Source DRM Agent does not send an error message back to the Destination DRM Agent. In some cases, the Source DRM Agent will retry with another A2A Imp-RO Request message:

1. Parse the message header. If the header parsing fails, pretend that the A2A Imp-RO Response message were never received, i.e. continue waiting for a reply to the initial A2A Imp-RO Request message until a timeout occurs and then retry.
2. Verify the protocol version number in the header. If this protocol version is not supported, pretend the message were never received.

3. The Source DRM Agent looks for an outstanding A2A Imp-RO Request message whose stid value matches the dtid header field in the A2A Imp-RO Response message. If there is no match, the Source DRM Agent proceeds as if the A2A Imp-RO Response message were never received.

4. Verify that the retryCount in the preceding A2A Imp-RO Request message matches the retryCount in the A2A Imp-RO Response message. If it does not match, the client proceeds as if the reply message were never received.

5. Parse the rest of the A2A Imp-RO Response message. If the message format is found to be illegal, pretend the message were never received.
6. Verify the keyed checksum (by using the shared SAC Key). If the checksum does not verify, this message is dropped and the Source DRM Agent proceeds as if the message were never received.
7. If the resulting A2A Imp-RO contains formatting errors, then a fatal error MUST be reported to the user, and the client MUST NOT retry.
8. The Source DRM Agent decrypts the value of the Ciphertext attribute in EncryptedData in the reply message using the SAC Key. If the value cannot be decrypted because the Source DRM Agent does not support the encryption type of the EncryptedData, a fatal error MUST be reported to the user, and the Source DRM Agent MUST NOT retry. If the resulting clear text contains formatting errors, then a fatal error MUST be reported to the user, and the Source DRM Agent MUST NOT retry.
9. Verify that the value of the DASignedData attribute shows that the LRM whose signature is in the Imported-RO is associated with the DEA that issued the Agent Ticket to the Source DRM Agent. If the DASignedData does not show this association, then a fatal error MUST be reported to the user, and the client MUST NOT retry.
10. If the Source DRM Agent has a DeviceRegistrationTypeResponse of “User Domain Device”, then the Source DRM Agent stores the content of the decrypted CipherText contained in the EncryptedData of the reply message, i.e. the Imported-RO or RI-created RO, the attributes ServerIdentifier, ServerDRMtimeSeconds, ClientIdentifier, RO_ID, and IsInitialMove, and the Signature attribute data structure that the Destination DRM Agent computed. If any of these attributes is missing or mal-formed, then a fatal error MUST be reported to the user, and the Source DRM Agent MUST NOT retry.

11. If the Source DRM Agent has a DeviceRegistrationTypeResponse of “Not Registered”, then the Source DRM Agent verifies that the value of the DASignedData attribute shows that the LRM whose signature is in the Imported-RO is authorized for Guest Devices, i.e. Devices that are not registered. If the DASignedData does not show this authorization, then a fatal error MUST be reported to the user, and the Source DRM Agent MUST NOT retry.

In all other cases, the Source DRM Agent stores the content of the decrypted CipherText contained in the EncryptedData of the reply message, i.e. the Imported-RO or RI-created RO, the CEK of the Imported-RO or RI-created RO, and the Signature attribute data structure that the Destination DRM Agent computed. If any of these attributes is missing or mal-formed, or if the hash of the received CEK does not match hash(CEK) contained in the <rights> element of the Imported-RO or RI-created RO, then a fatal error MUST be reported to the user, and the Source DRM Agent MUST NOT retry.
NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 12)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20080101-I]

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Page 11 (of 12)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20080101-I]

