Doc# OMA-BCAST_v1_1-2008-0043-INP_CR_Proposed_solution_for_SRM_extensions_for_BCAST.doc[image: image5.jpg]"sOMaQa

Open Mobile Alliance

Change Request

Doc# OMA-BCAST_v1_1-2008-0043-INP_CR_Proposed_solution_for_SRM_extensions_for_BCAST.doc
Change Request

Change Request

	Title:
	CR-Proposed_solution_for_SRM_extensions_for_BCAST
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	BCAST 1.1 and SRM

	Doc to Change:
	OMA-TS-SRM-XBCS-V1_0-20080404-D (not yet existing)

	Submission Date:
	04-04-2008

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Menno Bangma, KPN, menno.bangma@tno.nl

	Replaces:
	n/a

1 Reason for Change

In OMA-BCAST-v1_1-2008-0042 input contribution it is explained that the SRM 1.0 specification can easily be extended to support BCAST services. This INP-CR is the technical specification of the ideas outlined in that presentation.

The changes should be incorporated in the baseline document for OMA-TS-SRM-XBCS-V1_0-20080404-D that was presented in document OMA-BCAST-v1_1-2008-0032R01.
2 Impact on Backward Compatibility

N/a
3 Impact on Other Specifications

N/a
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

Agree the proposed changes.
6 Detailed Change Proposal

Change 1: OMA-TS-SRM-XBCS-V1_0-20080404-D – All chapters
3. Terminology and Conventions

3.2 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.3 Definitions

	SRM
	Secure Removable Media

	Composite Object
	A content object that contains one or more Media Objects by means of inclusion. (From [OMADRMv2])

	Device
	A Device is the entity (hardware/software or combination thereof) within a user equipment that implements a DRM Agent. The Device is also conformant to the OMA DRM specifications. The Device may include a smartcard module (e.g. a SIM) or not depending upon implementation.

	DRM Agent
	The entity in the Device that manages Permissions for Media Objects on the Device. (From [OMADRMv2])

	Local Rights Consumption
	Operations in which Rights stored in SRMs are transferred for use by the recipient Device for a limited period of time for rendering purposes.

	Media Object
	A digital work e.g. a ringing tone, a screen saver, a Java game or a Composite Object (From [OMADRMv2])

	Move
	To make Rights existing initially on a source Device or SRM fully or partially available for use by a recipient Device or SRM, such that the Rights or parts thereof that become usable on the recipient Device or SRM can no longer be used on the source Device or SRM.

	Handle
	A random number generated by the DRM Agent, which is stored in the SRM and in the Operation Log (kept in the Device) used for associating the DRM Agent to specific Rights for the Move or Local Rights Consumption operation.

	Operation Log
	A secure file, kept in a Device, in which entries containing transaction information (e.g. ROID, Handle) are stored until corresponding transactions are completed. The information in an entry is relevant for the recovery procedures used by a DRM Agent when a transaction is not completed.

	Permission
	Actual usages or activities allowed (by the Rights Issuer) over DRM Content. (From [OMADRMv2])

	DRM Content
	Media Objects that are consumed according to a set of Permissions in a Rights Object. (From [OMADRMv2])

	Rights
	Rights are the collection of permissions and constraints defining under which circumstances access is granted to DRM Content. For the purposes of this document, Rights consist of a Rights Object, its associated state, and other related information.

	Rights Issuer
	An entity that issues Rights Objects to OMA DRM conformant Devices. (From [OMADRMv2])

	Rights Object
	A collection of Permissions and other attributes which are linked to DRM Content. (From [OMADRMv2])

	Secure Authenticated Channel
	A logical channel that provides message integrity and confidentiality.

	Secure Removable Media
	A removable media that implements means to protect against unauthorized access to its internal data and includes an SRM Agent. (e.g. secure memory card, smart card)

	SRM Agent
	A trusted entity embodied in Secure Removable Media. This entity is responsible for storing and removing Rights Objects in Secure Removable Media, for delivering Rights Objects from/to a DRM Agent in a secure manner, and for enforcing permissions and constraints, including securely maintaining state information for stateful rights. The SRM Agent is a part of Secure Removable Media.

	Long-Term Key Message

	Collection of keys and possibly, depending on the profile, other information like permissions and/or other attributes that are linked to items of content or services.

	User
	The human user of a Device. The User does not necessarily own the Device. (From [OMADRMv2])

	Short-Term Key Message

	Message delivered alongside a protected service, carrying key material to decrypt and optionally authenticate the service, and access rights to delivered content.

3.4 Abbreviations

4. Introduction
(Informative)

Digital Rights Management [DRM-v2] defines the mechanisms to deliver DRM Content and Rights Objects to a consuming device. In the existing specification suite [DRM-v2], devices are assumed to be capable of two-way interaction with other entities, such as a Rights Issuer.
The Secure Removable Media specification [SRM_v1] specifies how rights can be moved from and to a SRM and how to consume rights directly from the SRM including the required security mechanisms for the channel between the SRM and DRM agent.

This specification provides adaptation, extensions and guidelines to involve the SRM in the process of consuming BCAST content that has been protected using the DRM Profile [BCAST10 – ServContProt]. This SRM extension for BCAST support specification does not define new interfaces or a new architecture components, but reuses the interfaces defined in the SRM, DRM and BCAST specifications. Figure xx provides a schematic overview of the relationship between the specifications of BCAST and DRM and the interfaces that are involved in this SRM extension for BCAST support specification.

[image: image1.emf]DRM agent

SRM agent

BCAST Application

SRM

specification

Rights Issuer

OMA DRMv2

specification

BCAST system

BCAST

ServContProt -

DRM profile

BCAST DRM

profile – SRM

extension for

broadcast

support

Figure 1 – schematic overview of the relationship between the SRM
extension for BCAST support and other OMA specifications
The BCAST DRM Profile [BCAST10 ServCntProt] describes the 4 layer key hierarchy that is used to protect broadcasted content. In this model the service encryption key (SEK)/program encryption key (PEK) are packaged in the Rights Object (RO). In addition to the provided keys, it may contain permissions, constraints and attributes linked to the protected content. The DRM profile supports the delivery of ROs over interactive and broadcast channel. The service encryption key (SEK)/program encryption key (PEK) are required to decrypt the Short Term Key messages that in its turn protects the actual broadcasted content.

The SRM extension for BCAST support specification defines how the service encryption key (SEK)/program encryption key (PEK) is protected by the SRM. The benefit of such a mechanism is that in order to break the security of the BCAST system that relies on the DRM profile, both the SRM and the DRM Agent have to be compromised. It furthermore facilitates the renewability. For this purpose the following is defined:

- the Rights Issuer constructs an RO with extensions that is targeted to the DRM Agent and the SRM

- the RO contains an indicator that the Rights Encryption Key is encrypted with the public key of the SRM

- the RO with extensions is moved from the DRM Agent to the SRM

- the SRM decrypts the Rights Encryption Key and subsequently decrypts the service encryption key (SEK)/program encryption key (PEK) and stores it securely.

- the SRM is involved in decrypting the Transport Enryption Keys delivered via the STKM whne BCASt content is consumed that is protected according to the DRM Profile.

- the DRM Agent is responsible for the communication with the SRM and is also responsible for managing the permissions and constraints associated with the RO with extensions.

In general the need for adaptations, extensions and guidelines has been identified for the following OMA Secure Removable Media and BCAST service and content protection items:
· extensions to the RO Payload: this extensions is required in order to indicate to the DRM Agent that the RO contains assets that should be handled by the SRM

· extensions to the DRM key transport mechanisms: since the Rights Encyption Key that is carried in the RO is constructed by using the public key of the SRM the length of the REK will be different from the 128 bit REK.

· Extension to the SRM Hello message: this extension is required to signal the additional support of capabilities for the SRM extensions for BCAST

· Extensions to the Movement and Local Rights Consumption Protocol: an extension to the Move Protocol is required to cater for a RO with different length of the REK key. Furthermore, the construction of the service encryption key (SEK)/program encryption key (PEK) by the SRM and the subsequent decryption of the Transport Encryption Keys by the SRM needs to be defined.

· Extensions to the LTKM and STKM procedure: the service/program key related to the BCAST services is bound to the SRM. Therefore, the service key delivered in the LTKM should be moved to the SRM and stored securely. Furthermore, for subsequent decryption of the STKMs the SRM needs to be involved.
This specification specifies the mentioned mechanisms. This specification is not stand-alone; it must be interpreted in the context of the existing OMA DRM v2.0 suite of specifications and the BCAST service and content protection specification.
5. SRM extensions for the BCAST service

The SRM can be used to increase the security of the BCAST service and content protection [BCAST10-ServContProt]. The DRM Agent and SRM Agent SHALL support the "SRM extensions for BCAST services". In case the DRM agent and SRM do support the "SRM extensions for the BCAST services" it MUST support the Extension of the Right Object Payload type, the Extension for the Long Term Key Message Procedure, the Extension of the BCAST Short Term Key Message procedures, the Extension to the DRM key transport mechanisms and the Extensions to the DRM Agent - SRM Agent Communications described hereafter.

5.2 Extension to the information structure

5.2.1 REKXBCS

REKXBCS is the Rights Object Encryption Key (REK) encrypted with the public key of the SRM in binary form, i.e. no base64 encoding: REKXBCS = Encrypt(PublicKey of SRM, REK)

5.3 Extension of the Right Object Payload type

In case the Rights Encryption Key is bound to the SRM, there SHALL be an additional <REKbySRM> child under the <roap:roResponse > element declaring the SRM ID as specified in Appendix X
,. In case this element is present in the RO Response message, this means that a special Rights Encryption Key – EncryptedREKXBCS - is carried inside the RO, EncryptedREKXBCS == Encrypt(Public key of SRM, REKXBCS). Furthermore, the Encrypted CEK that is delivered in the Rights object, C = AES-WRAP(REKXBCS, CEK). This means that the DRM agent cannot decrypt the Content Encryption Key, but requires the SRM agent to do so..

This applies to the cases where the Content Enryption Key itself is not required to decrypt a content object, but represents the Service Encryption Key or Program Encryption Key for a BCAST service as defined by [BCAST10-ServContProt] and [XBCS DRM extensions-v1.0].

How the Rights Issuer knows the SRM information is out of scope for this specification. However, out of band mechanisms like identifying an IMSI of a smartcard through cellular network connection processes may be used.

Below an example schema fragment is provided for an RO:

<roap:roResponse

 xmlns:roap="urn:oma:bac:dldrm:roap-1.0"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"

 xmlns:o-ex="http://odrl.net/1.1/ODRL-EX"

 xmlns:o-dd="http://odrl.net/1.1/ODRL-DD"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 status="Success">

 <deviceID>

 <keyIdentifier xsi:type="roap:X509SPKIHash">

 <hash>vXENc+Um/9/NvmYKiHDLaErK0gk=</hash>

 </keyIdentifier>

 </deviceID>

<!-- extensions for REKbySRM -->

 <extensions>

 <extension xsi:type="roap:REKbySRM">

 <identifier xsi:type="roap:X509SPKIHash">

<hash>aer+yhnjdkuiolkfjsmlphnm=</hash>

 </identifier>

 </extension>

 <riID>

 <keyIdentifier xsi:type="roap:X509SPKIHash">

 <hash>aXENc+Um/9/NvmYKiHDLaErK0fk=</hash>

 </keyIdentifier>

 </riID>
...

...

</roap:roResponse>

5.4 Extension of the BCAST Long Term Key Message procedures

If the DRM Agent supports the BCAST DRM Profile as specified in [BCAST10-ServContProt] and [XBS DRM extensions-v1.0], and supports SRM extensions for BCAST, then the following MUST be observed.

· DRM Profile protected BCAST service has a Service Content IDentifier extension or Program Content IDentifier extension in the Short Term Key Message.

· This together with the BaseCID refers to a Content Identifier that is associated with an RO.

· When subscribing to the service, the terminal obtains a RO through the mechanisms specified in [BCAST10-Services] and [BCAST10-ServContProt].

· In case this RO contains a REK that is bound to the SRM as specified in 5.1
 the following applies:

· After receiving an RO but before consuming the BCAST service, the DRM agent SHALL move the RO to the SRM for subsequent processing of Short Term Key Messages.

5.5 Extension of the BCAST Short Term Key Message procedures

If the DRM Agent supports the BCAST DRM Profile as specified in [BCAST10-ServContProt] and [XBS DRM extensions-v1.0], and supports SRM extensions for BCAST, then the following MUST be observed.

· DRM Profile protected BCAST service has a Service Content IDentifier extension or Program Content IDentifier extension in the Short Term Key Message.

· This together with the BaseCID refers to a Content Identifier that is associated with an RO.

· In case this RO contains a REK that is bound to the SRM as specified in 5.1
 the following applies:

· In order to decrypt the Transport Encryption Keys of this Short Term Key Message the Service Encryption Key or Program Encryption Key is required

· The Service Encryption Key or Program Encryption Key is carried as the Content Encryption Key inside the RO

· The Content Encryption Key can only be decrypted by the SRM, therefore, the DRM Agent SHALL initiate the DecryptCEK message where the message is populated with the Service Encryption Key or Program Encryption Key as the EncryptedCEK for each service or program that is consumed..

· For subsequent decryption of a Transport Encryption Key, the DRM Agent SHALL initiate the DecryptKey message, which is populated with the Transport Encryption Key as the EncryptedKey for each Transport Encryption Key that has to be decrypted.

5.6 Extension to the DRM Key transport mechanisms

TBD
5.7 Extensions to the DRM Agent - SRM Agent Communications

The SRM extensions for BCAST provides 4 additional messages that have the following identifier.
Table 3: Message Identifier

	Identifier Value
	Description
	Protection
	Mandatory/Optional

	
	
	Request protected by an HMAC
	Response protected by an HMAC
	Support by DRM Agent
	Support by SRM Agent

	24
	DecryptCEK
	Yes
	Yes
	M
	M

	25
	DecryptKey
	Yes
	Yes
	M
	M

	26
	Rights Installation XBCS
	Yes
	Yes
	M
	M

	27
	Rights Retrieval XBCS
	Yes
	Yes
	M
	M

	28 ~ 127
	Reserved For Future Use
	
	
	
	

In Table 3, ‘M’ denotes that the DRM or SRM Agents MUST support the messages, and ‘O’ denotes that the agents MAY support the messages.
These messages are further specified in section 6.

5.7.1 Extension to the Operation Log

An Operation Log is a secure file, that MUST be kept by the Device, in which entries containing information about a transaction are stored until the transaction is completed. It is used for recovery procedures as defined in [SRMv1].
If the function identifier refers to “Local Rights Consumption”, then the DRM Agent makes a record after starting one of the following step:

· DecryptCEK Message

6. Extension to the DRM Agent - SRM Agent Protocol

The DRM Agent - SRM Agent messages follows the notation of messages as defined by [SRM_v1]. All messages specified in section 6 of [SRM_v1] apply unless specified differently. The folowing extensions apply when the Extensions for the BCAST service are supported by the DRM Agent and the SRM Agent.

6.2 Extension to the SRM Hello message

The extension for BCAST support is listed in the SRMResponse as an additional optional messages supported by the SRM.

OptionalMessages() {

 ocspSupported

1
bslbf

 rightsInfoListSupported

1
bslbf

 riCertificateStorageSupported

1
bslbf

 riCertificateRemovalSupported

1
bslbf

 dynamicCodePageSupported

1
bslbf

 changeSacSupported

1
bslbf
 SRMXBCSSupported

1
bslbf

 rfu

9
bslbf

The additional SRMXBCSSupported flag has a meaning as follows:

· SRMXBCSSupported – if ‘0’, the DecryptCEK, DecryptKey, RightsInstallationXBCS and RightsRetrievalXBCS messages in in this section are not supported by the SRM Agent. If ‘1’, the messages are supported by the SRM Agent.

6.3 Extension to the Movement of Rights from Device to SRM

The movement of the rights from device to SRM is extended in order to cater for the extended length of the Rights Encrption Key that is instantiated, as specified in section 5.4. All messages from [SRM-v1] apply except for the Rights Installation message.
6.3.1 Rights installation extension for BCAST support

This message is identical to the Rights Installation message as defined in [SRM-v1] but the REK field in the Request message is replaced by a EncryptedREKXBCS field.

6.3.1.1 Description of Messages

The DRM Agent sends the RightsInstallationXBCSRequest to install the Rights in the SRM. The fields of the request are defined in Table 34.

Table 34: Fields of RightsInstallationXBCSRequest
	Fields
	Protection Requirement
	Description

	Handle
	Integrity & Confidentiality
	Same as the Handle transmitted by the InstallationSetupRequest in Table 31. Refer to section 5.1.3. of [SRM-v1]

	EncryptedREKXBCS
	Integrity & Confidentiality
	Refer to section 5.1.1.

	LAID
	Integrity
	Refer to 5.1.7 of [SRMv1]. This contains the hash value of AssetIDs that are associated with the Rights.

	Rights Information
	Integrity
	Refer to section 5.1.6 of [SRMv1]

Upon receiving the RightsInstallationRequest, the SRM Agent installs the Rights in the SRM. For the installation, the SRM Agent MUST perform the following procedure:

1. Verify the integrity of the request fields

2. Decrypt the Handle and EncryptedREKXBCS with the Session Key
3. Compare the Handle with the Handle in the InstallationSetupRequest
4. Install the Rights Information and EncryptedREKXBCS at a space associated with the Handle.
The SRM Agent sends the RightsInstallationResponse to carry the result of the procedure. The fields of the response are defined in Table 35.

Table 35: Fields of RightsInstallationXBCSResponse

	Fields
	Protection Requirement
	Description

	Status
	Integrity
	The result of processing the RightsInstallationRequest message. The Status values are specified in Table 36.

Table 36: Status of Rights Installation extension for BCAST Message

	Status Value
	Description

	Success
	The request was successfully processed.

	Field Integrity Verification Failed
	The HMAC value of fields in the request did not match the HMAC value generated by the SRM Agent.

	Handle Not Found
	The Handle in the request does not exist in the SRM.

	Handles In-consistent
	The Handle in this request is different from the Handle in the InstallationSetupRequest.

	Not Enough Space
	The size of Rights Information exceeds Size of Rights in Table 31.

	Parameter Failed
	A field in the request has an invalid length or structure.

	Unexpected Request
	This request was received out of sequence or is otherwise not allowed.

	Unknown Error
	Other errors

Upon receiving the response, the DRM Agent verifies the integrity of fields in the response.

If no errors or exceptions (Status = Success), the DRM Agent continues with Rights Removal in Device as specified in [SRM-v1].
6.3.1.2 Format of Messages

The message format (MessageBody) of the RightsInstallationRequest is specified as follows. The messageType is set to ‘0’ and the message is protected by an HMAC.

HandleRekXBCS() {

 Handle()

 EncryptedRekXBCS()

// Defined in X.X.
}

EncryptedHandleRekXBCS() {

 // Contains the encrypted Handle and EncryptedREKXBCS
 EncryptedData()

}

MessageBody() {

 EncryptedHandleRekXBCS()

 Laid()

 RightsInformation()

}

The fields are defined as follows:

· HandleRekXBCS – Handle and EncryptedREKXBCS fields in Table 34
· EncryptedHandleRek – Encrypted HandleRekXBCS with the current Session Key (SK)
· Laid – LAID field in Table 34
· RightsInformation – Rights Meta Data, Rights Object Container, State Information fields in Table 34 (Refer to Appendix C.2.5.4)
The message format (MessageBody) of the RightsInstallationResponse is specified as follows. The messageType is set to ‘1’ and the message is protected by an HMAC.

MessageBody() {

 Status()

// Defined in Appendix C.2.2
}

The field is defined as follows:

· Status - Status field in Table 35
6.3.1.3 Exception Handling

As specified in for the Rights Installation message in [SRM-v1]
6.4 Extension to the Movement of Rights from SRM to Device

The movement of the rights from SRM to device is extended in order to cater for the extended length of the Rights Encrption Key that is instantiated, as specified in section 5.4. All messages from [SRM-v1] apply except for the Rights Retrieval message

6.4.1 Rights Retrieval extension for BCAST

This message is identical to the Rights Installation message as defined in [SRM-v1] but the REK field in the Response message is replaced by a EncryptedREKXBCS field.

6.4.1.1 Description of Messages

The DRM Agent sends the RightsRetrievalRequest to initiate the Move of the Rights from the SRM. The fields of the request are defined in Table 37.

Table 37: Fields of RightsRetrievalXBCSRequest

	Fields
	Protection Requirement
	Description

	Handle
	Integrity
	This identifies Rights that will be Moved from the SRM to the Device. Refer to section 5.1.3 of [SRM-v1].

	New Handle
	Integrity & Confidentiality
	New Handle is a 10 byte random value generated by the DRM Agent for this Move transaction.

Upon receiving the RightsRetrievalRequest, the SRM Agent MUST perform the following procedure:

1. Verify the integrity of the request fields

2. Find Rights corresponding to the Handle
3. If found, then decrypt the New Handle with the Session Key
4. Check if the SRM already has the same Handle with New Handle. If yes, the SRM Agent sets Status to Duplicate Handle. If no, overwrite the Handle in the SRM with the New Handle, and disable the Rights.
The SRM Agent sends the RightsRetrievalResponse to carry the result of the procedure. The fields of the response are defined in Table 38.
Table 38: Fields of RightsRetrievalXBCSResponse

	Fields
	Protection Requirement
	Description

	Status
	Integrity
	The result of processing the RightsRetrievalRequest message. The Status values are specified in Table 39.

If Status contains any error, only this field is present in the RightsRetrievalResponse.

	Rights Information
	Integrity
	Refer to section 5.1.6 of [SRM-v1]

	EncryptedREKXBCS
	Integrity & Confidentiality
	Refer to section 5.1.1.4 of [SRM-v1]

Table 39: Status of Rights Retrieval extension for BCAST Message

	Status Value
	Description

	Success
	The request was successfully processed.

	Field Integrity Verification Failed
	The HMAC value of fields in the request did not match the HMAC value generated by the SRM Agent.

	Handle Not Found
	The Handle in the request does not exist in the SRM.

	Duplicate Handle
	The SRM already has the New Handle and its corresponding Rights.

	Parameter Failed
	A field in the request has an invalid length or structure.

	Unexpected Request
	This request was received out of sequence or is otherwise not allowed.

	Unknown Error
	Other errors

Upon receiving the response, the DRM Agent MUST perform the following procedure:

1. Verify the integrity of fields in the response

2. Decrypt EncryptedREKXBCS with the Session Key
If no errors or exceptions (Status = Success), the DRM Agent continues with the Rights Installation in Device [SRM-v1].
6.4.1.2 Format of Messages

The message format (MessageBody) of the RightsRetrievalRequest is specified as follows. The messageType is set to ’0’ and the message is protected by an HMAC.

MessageBody() {

 Handle()

 EncryptedNewHandle()

// Defined in Appendix X.X
}

The fields are defined as follows:

· Handle –Handle field in Table 37
· EncryptedNewHandle – New Handle field in Table 37 encrypted with the current Session Key (SK)

The message format (MessageBody) of the RightsRetrievalResponse is specified as follows. The messageType is set to ‘1’ and the message is protected by an HMAC.

MessageBody() {

 Status()

 if (Status == 0) {

 RightsInformation()

 DoubleEncryptedRekXBCS()

// Defined in Appendix X.X
 }

}

The fields are defined as follows:

· RightsInformation – Rights Meta Data, Rights Object Container, State Information fields in Table 38
· DoubleEncryptedRekXBCS – EncryptedREKXBCS field in Table 38 (EncryptedRekXBCS in Appendix X.X) encrypted with the current Session Key (SK)

· Status - Status field in Table 38
6.4.1.3 Exception Handling

As specified in for the Rights Retrieval message in [SRM-v1

6.5 Extension to the Local Rights Consumption

[Initiation of Local Rights Consumption for BCAST]
To consume BCAST content by consuming its associated Rights, the DRM Agent may collect Rights Information associated with the DRM Content from the SRM. If there are more than one associated Rights in the SRM, the DRM Agent may perform it multiple times.

The DRM Agent selects one of the Rights for consumption by referring to permissions and constraints in the Rights Information [SRM_v1]. In case the RO contains the <REKbySRM> extension in the RO Payload type the DRM Agent can proceed to instruct the SRM to decrypt the CEK and has it securely stored in the SRM.

[Local Rights Consumption for BCAST]
BCAST that is protected according to the DRM Profile [BCAST10-ServCntProt] can be consumed by decrypting the Transport Encryption Key messages as specified in section x.x.x DecryptKey-message. Local Rights Consumption for BCAST is illustrated in figure xx.
 [image: image2.emf]DRM Agent SRM Agent

HandleListQueryRequest

HandleListQueryResponse

HandleListQueryInSRM

RightsInfoQueryRequest

RightsInfoQueryResponse

RightsInfoQueryInSRM

RightsSelectionInDevice

REKQueryRequest

REKQueryResponse

RightsDisablementInSRM

RightsConsumptionInDevice

RightsEnablementRequest

RightsEnablementResponse

RightsEnablementInSRM

DecryptCEKRequest

DecryptCEKResponse

DecryptKeyResponse

DecryptKeyRequest

Deriving SEK/PEK and

storing securely

Deriving TEK

Reception of STKM

messages

DRM Agent SRM Agent

HandleListQueryRequest

HandleListQueryResponse

HandleListQueryInSRM

RightsInfoQueryRequest

RightsInfoQueryResponse

RightsInfoQueryInSRM

RightsSelectionInDevice

REKQueryRequest

REKQueryResponse

RightsDisablementInSRM

RightsConsumptionInDevice

RightsEnablementRequest

RightsEnablementResponse

RightsEnablementInSRM

DecryptCEKRequest

DecryptCEKResponse

DecryptKeyResponse

DecryptKeyRequest

Deriving SEK/PEK and

storing securely

Deriving TEK

Reception of STKM

messages

Figure 2: Sequence Diagram – Local Rights Consumption for BCAST

The HandleListQuery and RightsInfoQuery messages and the Rights Selection in the Device are defined in the SRM specification [SRM-v1]. For a RO with the <REKbySRM> extension in the RO Payload type the REKQueryRequest is not applicable and SHALL NOT be sent by the DRM agent. In case the SRM Agent receives the REKQueryRequest message it SHALL provide the status code 23 – UnexpectedRequest as defined in [SRM-v1].

6.5.1 DecryptCEK Message
The DRM Agent MAY send a message to the SRM agent to instruct the SRM agent to decrypt the CEK, as illustrated in Figure xx3.

[image: image3.emf]DRM Agent SRM Agent

REKQueryRequest

REKQueryResponse

DecryptCEKRequest

DecryptCEKResponse

DRM Agent SRM Agent

REKQueryRequest

REKQueryResponse

DecryptCEKRequest

DecryptCEKResponse

Figure 3: Sequence Diagram – DecryptCEK

6.5.1.1 Description of Messages

The DRM Agent sends the DecryptCEKRequest for the SRM Agent to identify the REK of a Rights Object that should be used in the process of decrypting a CEK. The parameters of the request are defined in Table xx
.
Table xx: Parameters of DecryptCEKRequest
	Parameters
	Protection Requirement
	Description

	Handle
	Integrity
	This identifies a Right whose REK will be used in the process when decrypting a CEK.

	EncryptedCEK
	Integrity
	The Encrypted CEK that was part of the RO payload that belongs to the same Rights as identified by the Handle. .

Upon receiving the DecryptCEKRequest, the SRM Agent MUST performs the following procedure:

1. Verify the integrity of the request parameters

2. Find a Rights corresponding to the Handle
3. If found, decrypt the EncryptedREKXBCS of the Rights with the SRM's private key, resulting in a REKXBCS
4. Decrypt the EncryptedCEK with the REKXBCS, resulting in the CEK, i.e. CEK == AES-UNWRAP(REKXBCS,EncryptedCEK)
5. Store the CEK in the SRM securely.
6. Associate the CEK in the SRM with the Handle for subsequent procedures.
The SRM Agent sends the DecryptCEKResponse to carry the result of the procedure. The parameters of the response are defined in Table xy
. If any error occurs during the procedure, the error MUST be reported to the DRM Agent. The Status parameter of the DecryptCEKResponse contains the error cases as specified in Table xz.

Table xy: Parameters of DecryptCEKResponse
	Parameters
	Protection Requirement
	Description

	Status
	Integrity
	This indicates if the DecryptSEKRequest is successfully handled or not. The Status value is specified in Table xz.

Table xz: Status of DecryptCEK Message

	Status Value
	Description

	Success
	The request is successfully handled.

	Parameter Integrity Verification Failed
	The HMAC value of parameters in the request is not matched with the HMAC value of the parameters generated by the SRM Agent.

	Parameter Decryption Failed
	The SRM Agent fails to decrypt the encrypted parameters.

	Handle Not Found
	The Handle in the request doesn’t exist in the SRM.

	Request Not Supported
	The SRM does not support the SRM extensions for the BCAST services as defined in this specification.

	Unknown Error
	Other errors

Upon receiving the response, the DRM Agent MUST perform the following procedure:

1. Verify the integrity of parameters in the response.
If no errors or exceptions (Status = Success), the DRM Agent completes the DecryptCEK Message processing.

6.7.4.2 Format of Messages

The message format (MessageBody) of the DecryptCEKRequest is specified as follows. The messageType is set to’0’ and protectedFlag is set to ‘1’.
Handle() {

 HandleString()

}

EncryptedCEK() {

 EncryptedCEKString()

}

Parameters() {

 Handle()

 EncryptedCEK()

}

MessageBody() {

 Parameters()

 Hmac()

}

The fields are defined as follows:

· Handle –Handle parameter in Table xx

· EncryptedCEK – EncryptedCEK parameter in Table xx

· Hmac – HMAC of Parameters generated with the current MAC Key (MK)
The message format (MessageBody) of the DecryptCEKResponse is specified as follows. The messageType is set to ‘1’ and the protectedFlag is set to ‘1’.
Parameters() {

 status

16
uimsbf

}

MessageBody() {

 Parameters()

 Hmac()

}

The fields are defined as follows:

· status - Status parameter in Table xz
· Hmac – HMAC of Parameters with the current MAC Key (MK)
6.7.4.3 Exception Handling

There may be unexpected exceptions during the DecryptCEK Message processing as specified in section 5.5.1 of [SRM-v1]. The exception is classified into one of the following cases.

· Case 1: The DRM Agent receives the DecryptCEKResponse not containing Success in the Status parameter.
· Case 2: The DecryptCEK Message processing is uncompleted for any reason other than those of case 1.
When the exception occurs, the DRM Agent SHOULD immediately recover it. If the DRM Agent fails to detect the exception, it MUST recover the exception by referring to the Operation Log when a new MAKE process is executed.
[Recovery Procedure]

The DRM Agent activates a recovery procedure per case as follows.
· In case 1, the DecryptCEK is terminated without recovery. In case of Handle Not Found in the Status of the DecryptCEKResponse, the DRM Agent may restart it with the Rights Selection in Device processing [SRM-v1].

· In case 2, the DRM Agent may resend the DecryptCEK message. Please note, that the DecryptCEK message exchange does not change the status of the Rights Object in the SRM.
6.7.5 DecryptKey Message
The DRM Agent MAY send a message to the SRM agent to instruct the SRM agent to decrypt a Key with the CEK, as illustrated in Figure xx3.

[image: image4.emf]DRM Agent SRM Agent

REKQueryRequest

REKQueryResponse

DecryptKeyRequest

DecryptKeyResponse

DRM Agent SRM Agent

REKQueryRequest

REKQueryResponse

DecryptKeyRequest

DecryptKeyResponse

Figure 4: Sequence Diagram – DecryptKey

6.7.5.1 Description of Messages

The DRM Agent sends the DecryptKeyRequest for the SRM Agent to initiate a symmetric key decryption by the SRM with the CEK key. The parameters of the request are defined in Table xx
.
Table xx: Parameters of DecryptKeyRequest
	Parameters
	Protection Requirement
	Description

	Handle
	Integrity
	This identifies a Right whose CEKwill be used in the process when decrypting a Key.

	EncryptedKey
	Integrity
	The Encrypted Key that should be decrypted with the CEK that was derived from the Rights identified by the Handle.

Upon receiving the DecryptCEKRequest, the SRM Agent MUST performs the following procedure:

1. Verify the integrity of the request parameters

2. Decrypt the Handle with the Session Key
3. Find a Rights corresponding to the Handle
4. If found, find the CEK, belonging to the corresponding Handle.
5. Decrypt the EncryptedKey with the CEK, resulting in the UnencryptedKey, i.e. UnencryptedKey == AES-UNWRAP(CEK,EncryptedKey)
The SRM Agent sends the DecryptKeyResponse to carry the result of the procedure. The parameters of the response are defined in Table xy
. If any error occurs during the procedure, the error MUST be reported to the DRM Agent. The Status parameter of the EncryptedKeyResponse contains the error cases as specified in Table xz.

Table xy: Parameters of DecryptKeyResponse
	Parameters
	Protection Requirement
	Description

	Status
	Integrity
	This indicates if the DecryptKeyRequest is successfully handled or not. The Status value is specified in Table 40Table xz.
If Status contains any error, only this field is present in the DecryptKeyResponse.

	UnencryptedKey
	Integrity & Confidentiality
	The unencrypted key that results from the DecryptKeyRequest procedure.

Table xz: Status of DecryptKey Message

	Status Value
	Description

	Success
	The request is successfully handled.

	Parameter Integrity Verification Failed
	The HMAC value of parameters in the request is not matched with the HMAC value of the parameters generated by the SRM Agent.

	Parameter Decryption Failed
	The SRM Agent fails to decrypt the encrypted parameters.

	Handle Not Found
	The Handle in the request doesn’t exist in the SRM.

	Request Not Supported
	The SRM does not support the SRM extensions for the BCAST services as defined in this specification.

	Unknown Error
	Other errors

Upon receiving the response, the DRM Agent MUST perform the following procedure:

1 Verify the integrity of parameters in the response.
If no errors or exceptions (Status = Success), the DRM Agent completes the DecryptKey Message processing.

6.7.5.2 Format of Messages

The message format (MessageBody) of the DecryptCEKRequest is specified as follows. The messageType is set to’0’ and protectedFlag is set to ‘1’.
Handle() {

 HandleString()

}

EncryptedKey() {

 EncryptedKeyString()

}

Parameters() {

 Handle()

 EncryptedKey()

}

MessageBody() {

 Parameters()

 Hmac()

}

The fields are defined as follows:

· Handle –Handle parameter in Table xx

· EncryptedKey – EncryptedKey parameter in Table xx

· Hmac – HMAC of Parameters generated with the current MAC Key (MK)
The message format (MessageBody) of the DecryptCEKResponse is specified as follows. The messageType is set to ‘1’ and the protectedFlag is set to ‘1’.
Parameters() {

 status

16
uimsbf
 if (status == 0) {

 EncryptedUnencryptedKey() }

}

MessageBody() {

 Parameters()

 Hmac()

}

The fields are defined as follows:

· status - Status parameter in Table x
z)

· EncryptedUnencryptedKey - UnencryptedKey parameter in Table xy
 encrypted with the Session Key.
· Hmac – HMAC of Parameters with the current MAC Key (MK)
6.7.5.3 Exception Handling

There may be unexpected exceptions during the DecryptKey Message processing as specified in section 5.5.1 of [SRM-v1]. The exception is classified into one of the following cases.

· Case 1: The DRM Agent receives the DecryptKeyResponse not containing Success in the Status parameter.
· Case 2: The DecryptKey Message processing is uncompleted for any reason other than those of case 1.
When the exception occurs, the DRM Agent SHOULD immediately recover it. If the DRM Agent fails to detect the exception, it MUST recover the exception by referring to the Operation Log when a new MAKE process is executed.
[Recovery Procedure]

The DRM Agent activates a recovery procedure per case as follows.
· In case 1, the DecryptKey is terminated without recovery. In case of Handle Not Found in the Status of the REKQueryResponse, the DRM Agent may restart it with the Rights Selection in Device processing [SRM-v1].

· In case 2, the DRM Agent may resend the DecryptKey message. Please note, that the DecryptKey message exchange does not change the status of the Rights Object in the SRM.
Appendix F. Change History
(Informative)

Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

Draft/Candidate Version 1_0 History
	Document Identifier
	Date
	Sections
	Description

	Draft Versions

OMA-TS_SRM-XBS_V1_0

	n/a
	n/a
	Initial Document Template approved

	
	
	
	

	Candidate Version

OMA-TS_SRM-XBS_V1_0
	n/a
	n/a
	

	
	n/a
	n/a
	

Appendix G. Data Format

The common data structure is defined by Appendix C of [SRM-v1]

Message Fields

Encrypted REK extensions for BCAST support

A data structure for a EncryptedREKXBCS (EncryptedRekXBCS) is described as follows:

EncryptedRekXBCS() {

 for(i = 0 ; i < 128 ; i++){

 byte
8
uimsbf

 }

}

Double Encrypted REK extension for BCAST support
A data structure for an encrypted EncryptedREKXBCS (DoubleEncryptedRekXBCS) is described as follows.

DoubleEncryptedRekXBCS() {

 //Contains the encrypted EncryptedREKXBcS
 EncryptedData()

// Defined in Appendix C.1 of [SRM-v1]
}

Encrypted CEK

A data structure for a Encrypted CEK (EncryptedCEK) is described as follows:

EncryptedCEK() {

 for(i = 0 ; i < 16 ; i++){

 byte
8
uimsbf

 }

}

Encrypted Key

A data structure for a Encrypted Key (EncryptedKey) is described as follows:

EncryptedKey() {

 for(i = 0 ; i < 16 ; i++){

 byte
8
uimsbf

 }

}

Encrypted Unencrypted Key

A data structure for a Encrypted UnencryptedKey (EncryptedUnencryptedKey) is described as follows:

DoubleEncryptedRekXBCS() {

 //Contains the encrypted UnencryptedKey
 EncryptedData()

// Defined in Appendix C.1 of [SRM-v1]
}

Appendix H. REKbySRM extension - SRM system constraint in Rights Object (Normative)
This appendix describes the REKbySRM extension that can be sent by the Rights Issuer as part of the RO Response messages, to indicate the REK provided in the RO payload is associated with the SRM.

REKbySRM extension

The following table provides the schema representation of the SRM ID extension. SRMID uniquely identifies Secure Removable Media. The computation of the SRM ID follows DRM 2.0 Device ID, hash computed over the DER-encoded subjectPublicKeyInfo value from the applicable certificate.
<complexType name="REKbySRM">

 <complexContent>

 <extension base="roap:Extension">

 <sequence>

 <element name="identifier" type="roap:KeyIdentifier"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

Appendix I. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [IOPPROC].
a. SCR for Client

	Item
	Function
	Reference
	Status
	Requirement

	
	
	
	
	

b. SCR for Server
	Item
	Function
	Reference
	Status
	Requirement

	
	
	
	
	

c. SCR for SRM Agent
	Item
	Function
	Reference
	Status
	Requirement

	
	
	
	
	

�Editor, please insert correct link to the associated appendix

�Editor please insert correct link

�Editor please insert correct link

�Editor please insert the correct link to the table below.

�Editor, please insert the correct link to the table below

�Editor, please insert the correct link to the table below

�Editor please insert the correct link to the request table.

�Editor please insert the correct link to the request table.

�Editor please insert the correct link to the table below.

�Editor, please insert the correct link to the table below

�Editor, please insert the correct link to the table below

�Editor please insert the correct link to the request table.

�Editor please insert the correct link to the request table.

�Editor, please insert the correct link to the table above

�Editor, please insert the correct link to the table above

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 26)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20080101-I]

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Page 26 (of 26)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20080101-I]

