OMA-TS-SCE_LRM-V1_0-20080325-D
Page 95 V(103)

	[image: image1.jpg]
	

	Local Rights Manager for Secure Content Exchange

	Draft Version 1.0 – 25 Mar 2008

	Open Mobile Alliance

	OMA-TS-SCE_LRM-V1_0-20080325-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

81.
Scope

2.
References
9
2.1
Normative References
9
2.2
Informative References
9
3.
Terminology and Conventions
10
3.1
Conventions
10
3.2
Definitions
10
3.3
Abbreviations
10
4.
Introduction
11
4.1
Pairing-Key Management (Informative)
11
5.
Overview of LRM Functions
12
5.1
Creation of Imported-ROs
12
5.2
Creation of Imported-Content
12
5.3
Management of ROs and Content
12
5.3.1
Import for Devices
12
5.3.1.1
LRM- and DEA- Management of Imported Rights Objects
12
5.3.1.2
Move Operations
13
5.3.2
Import into OMA DRM v2 Domains
13
5.3.3
Import into User Domains
13
5.3.4
DEA Management for Device Pairings
15
5.3.4.1
Pairing Mechanism
15
5.3.4.2
Import and Transfer Operations on ROs
16
6.
LRM and DEA Protocols
17
6.1
Generic Message Format for Protocols
17
6.1.1
Message Types
19
6.1.2
Attributes
19
6.1.2.1
AuthData
22
6.1.2.2
AuthTime
22
6.1.2.3
CertificateValue
22
6.1.2.4
CipherSuiteID
22
6.1.2.5
CipherText
22
6.1.2.6
ClientDomainBaseID
23
6.1.2.7
ClientIdentifier
23
6.1.2.8
ClientName
23
6.1.2.9
ClientDRMtimeSeconds
23
6.1.2.10
ClientDRMtimeMicroSeconds
23
6.1.2.11
ContentFormatID
24
6.1.2.12
CRLValue
24
6.1.2.13
SigType
24
6.1.2.14
SigTypeSet
24
6.1.2.15
SigValue
25
6.1.2.16
CSumType
25
6.1.2.17
DASignedData
25
6.1.2.18
DEACertificateType
25
6.1.2.19
DEAPubKeyHash
25
6.1.2.20
DeviceRegistrationTypeResponse
26
6.1.2.21
DOI_ID
26
6.1.2.22
EncType
26
6.1.2.23
EncTypeSet
26
6.1.2.24
EndTime
27
6.1.2.25
ErrCode
27
6.1.2.26
GroupSubkeyId
27
6.1.2.27
ImportedRights
27
6.1.2.28
IPv4Address
27
6.1.2.29
IsGroupSubkey
28
6.1.2.30
IssuerValue
28
6.1.2.31
KeyAgreementAlgorithm
28
6.1.2.32
KeyType
28
6.1.2.33
KeyValue
29
6.1.2.34
NewPrincipalFlag
29
6.1.2.35
ReturnAuthData
29
6.1.2.36
ServerDomainBaseID
29
6.1.2.37
ServerIdentifier
30
6.1.2.38
ServerName
30
6.1.2.39
SkeyVnum
30
6.1.2.40
TktVnum
30
6.1.2.41
RO_ID
30
6.1.2.42
IsInitialMove
30
6.1.2.43
DateTime
31
6.1.2.44
ROAuthStatus
31
6.1.3
Attribute Data Structures
31
6.1.3.1
CertificateChain
31
6.1.3.2
CipherSuiteType
31
6.1.3.3
CipherSuiteSet
32
6.1.3.4
CRLList
32
6.1.3.5
DEAPubKeyIdentifier
32
6.1.3.6
EncryptedData
32
6.1.3.7
KeyAgreementInfo
33
6.1.3.8
KeyInfo
33
6.1.3.9
PrivateTicketPart
33
6.1.3.10
PubKeyClientAuthenticator
33
6.1.3.11
PubKeyDEAAuthenticator
34
6.1.3.12
RequestCRLs
34
6.1.3.13
Signature
34
6.1.3.14
Ticket
35
6.1.3.15
AgentTicket
35
6.1.3.16
BulkTickets
35
6.1.3.17
ROAuthRequest
35
6.1.3.18
ROAuthRequestList
36
6.1.3.19
DeviceList
36
6.1.3.20
ROAuthResponse
36
6.1.3.21
ROAuthResponseList
36
6.1.4
Error Message
37
6.2
SCE-4-LRMP
38
6.2.1
LRM-RI Registration Protocol
38
6.2.1.1
Trigger for LRM-RI Registration Protocol
39
6.2.1.2
LRM-RI Hello Request
40
6.2.1.3
LRM-RI Hello Response
40
6.2.1.4
LRM-RI Registration Request
41
6.2.1.5
LRM-RI Registration Response
41
6.2.2
LRM-RI Create RO Protocol
42
6.2.2.1
LRM-RI Create RO Request
43
6.2.2.2
LRM-RI Create RO Response
46
6.3
SCE-5-LRMP
46
6.3.1
Overview
46
6.3.2
Message Format
47
6.3.3
Message Schema
47
6.4
SCE-6-LRMP
47
6.4.1
Overview
47
6.4.1.1
Device Registration and Rights Object Import
47
7.
Key Management
49
7.1
Cryptographic Components
49
7.2
Key Transport Mechanisms
49
7.2.1
Device Registration and Pairing Protocols
49
7.2.1.1
Device Registration Protocol
49
7.2.1.1.1
Device Registration Request Message Details
50
7.2.1.1.1.1. Generating Device Registration Request Message
51
7.2.1.1.1.2. Generating PubKeyClientAuthenticator
51
7.2.1.1.1.3. Processing Device Registration Request Message
51
7.2.1.1.1.4. Processing PubKeyClientAuthenticator
52
7.2.1.1.2
Device Registration Response Message Details
53
7.2.1.1.2.1. Generating Device Registration Response Message
54
7.2.1.1.2.2. Generating PubKeyDEAAuthenticator
54
7.2.1.1.2.3. Processing Device Registration Response Message
54
7.2.1.1.2.4. Processing PubKeyDEAAuthenticator
55
7.2.1.2
Service Keys for Devices
55
7.2.1.2.1
Service Key Request Message Details
56
7.2.1.2.1.1. Generating Service Key Request Message
57
7.2.1.2.1.2. Generating PubKeyClientAuthenticator
57
7.2.1.2.1.3. Processing Service Key Request Message
58
7.2.1.2.1.4. Processing PubKeyClientAuthenticator
58
7.2.1.2.2
Service Key Response Message Details
59
7.2.1.2.2.1. Generating Service Key Response Message
60
7.2.1.2.2.2. Generating Ticket
60
7.2.1.2.2.3. Generating PubKeyDEAAuthenticator
61
7.2.1.2.2.4. Processing Service Key Response Message
61
7.2.1.2.2.5. Ticket Processing by Client
62
7.2.1.2.2.6. Processing PubKeyDEAAuthenticator
62
7.2.1.3
Import Protocol
63
7.2.1.3.1
Ticket Request Message Details
64
7.2.1.3.1.1. Generating Ticket Request Message
65
7.2.1.3.1.2. Processing Ticket Request Message
65
7.2.1.3.1.3. Verifying DEA Ticket
66
7.2.1.3.2
Ticket Response Message Details
67
7.2.1.3.2.1. Generating Ticket Response Message
67
7.2.1.3.2.2. Generating LRM Ticket
68
7.2.1.3.2.3. Processing Ticket Response Message
69
7.2.1.3.2.4. LRM Ticket Processing by Client
69
7.2.1.3.3
SAC Key Request Message Details
70
7.2.1.3.3.1. Generating SAC Key Request Message
70
7.2.1.3.3.2. Processing SAC Key Request Message
71
7.2.1.3.3.3. Verifying LRM Ticket
72
7.2.1.3.4
SAC Key Response Message Details
72
7.2.1.3.4.1. Generating SAC Key Response Message
73
7.2.1.3.4.2. Processing SAC Key Response Message
73
7.2.1.3.5
Imported-RO Request Message Details
74
7.2.1.3.5.1. Generating Imported-RO Request Message
74
7.2.1.3.5.2. Processing Imported-RO Request Message
75
7.2.1.3.6
Imported-RO Response Message Details
75
7.2.1.3.6.1. Generating Imported-RO Response Message
76
7.2.1.3.6.2. Processing Imported-RO Response Message
76
7.2.1.4
dmpPair-Protocol
77
7.2.1.4.1
Agent Ticket Request Message Details
79
7.2.1.4.1.1. Generating Agent Ticket Request Message
79
7.2.1.4.1.2. Processing Agent Ticket Request Message
79
7.2.1.4.1.3. Verifying DEA Ticket
80
7.2.1.4.2
Agent Ticket Response Message Details
81
7.2.1.4.2.1. Generating Agent Ticket Response Message
82
7.2.1.4.2.2. Generating Agent Ticket
82
7.2.1.4.2.3. Processing Agent Ticket Response Message
83
7.2.1.4.2.4. Agent Ticket Processing by Client
84
7.2.1.4.3
A2A Imp-RO Request Message Details
84
7.2.1.4.3.1. Generating A2A Imp-RO Request Message
84
7.2.1.4.3.2. Processing A2A Imp-RO Request Message
85
7.2.1.4.4
A2A Imp-RO Response Message Details
86
7.2.1.4.4.1. Generating A2A Imp-RO Response Message
86
7.2.1.4.4.2. Processing A2A Imp-RO Response Message
87
7.2.1.5
RightsAuth-Protocol
88
7.2.1.5.1
Authorization Request Message Details
88
7.2.1.5.1.1. Generating Authorization Request Message
89
7.2.1.5.1.2. Processing Authorization Request Message
90
7.2.1.5.2
Authorization Response Message Details
90
7.2.1.5.2.1. Generating Authorization Response Message
91
7.2.1.5.2.2. Processing Ticket Response Message
92
7.3
Certificate Handling
92
8.
Protection of Content and Rights
94
8.1
Protection of Content Objects
94
8.2
Protection of Rights
94
8.3
Off-Device Storage of Content and Rights Objects
94
9.
Capability Signaling
95
9.1
Signaling from LRM
95
9.2
Signaling from Devices
95
10.
Super Distribution of Imported Content
96
10.1
Overview
96
10.2
Preview
96
10.3
Transaction Tracking
96
10.4
Content Integrity
96
11.
Security Considerations (Informative)
97
11.1
Trust Model
97
11.2
Threat Analysis
97
11.3
Privacy
97
Appendix A.
Change History (Informative)
98
A.1
Approved Version History
98
A.2
Draft/Candidate Version <current version> History
98
Appendix B.
Static Conformance Requirements (Normative)
100
B.1
SCR for SCE Client
100
B.2
SCR for LRM Server
100
Appendix C.
Certificate Profiles (Normative)
101
C.1
LRM Certificates
101
C.2
CA Certificates
102
Appendix D.
Message Examples (Informative)
103
D.1
LRMRIRegistrationTrigger
103

Figures

16Figure 1 – Import and Subsequent Transfer Operations on ROs

39Figure 2 – The 4-pass LRM-RI Registration Protocol

43Figure 3 – The 2-pass LRM-RI Create RO Protocol

50Figure 4 – Device Registration Protocol

56Figure 5 – Assignment of Service Keys

63Figure 6 – Messages used in Import

77Figure 7 – Pairing Protocol Messages

88Figure 8 - Rights Authorization Protocol Messages

Tables

19Table 1: Message Types

19Table 2: Attribute Types

22Table 3: Supported Content Encryption Algorithms and Their Identifiers

24Table 4: Supported Content Formats and Their Identifiers

24Table 5: Supported Signature Algorithms and Their Identifiers

25Table 6: Supported checksum (hash) Algorithms and Their Identifiers

26Table 6: Supported Encryption Algorithms and Their Identifiers

28Table 7: Supported Key Agreement Algorithms and Their Identifiers

28Table 8: Supported Key Types and Their Identifiers

31Table 9: RO Authorization Status Code

37Table 10: Error Codes

40Table 11: LRMRIRegistrationTrigger Message Elements

41Table 12: LRM-RIRegistrationRequest Message Parameters

42Table 13: LRM-RIRegistrationResponse Message Parameters

43Table 14: LRM-RICreateRORequest Message Parameters

46Table 15: LRM-RICreateROResponse Message Parameters

1. Scope

<< Define as it relates to Open Mobile Alliance Activity. If it adds clarity, define what is not in the scope. DELETE THIS COMMENT >>

2. References

2.1 Normative References

	[CertProf]
	“Certificate and CRL Profiles”, OMA-Security-CertProf-v1_1, Open Mobile Alliance, http://www.openmobilealliance.org

	[DRMDRM2.0]
	“DRM Specification”, Open Mobile Alliance™, OMA-TS-DRM-DRM-V2_0-20060303-A, URL: http://www.openmobilealliance.org/

	[OMA DRM 2.1]
	“DRM Specification”, Open Mobile Alliance™, OMA-TS-DRM_DRM-V2_1-20070724-C, URL: http://www.openmobilealliance.org/

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, http://www.ietf.org/rfc/rfc2119.txt

	[RFC2234]
	“Augmented BNF for Syntax Specifications: ABNF”. D. Crocker, Ed., P. Overell. November 1997, http://www.ietf.org/rfc/rfc2234.txt

	[SCRRULES]
	“SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-SCR_Rules_and_Procedures, http://www.openmobilealliance.org

	[SCE A2A TS]
	

	[SCE-GEN]
	

2.2 Informative References

	[OMADICT]
	“Dictionary for OMA Specifications”, Version x.y, Open Mobile Alliance™,
OMA-ORG-Dictionary-Vx_y, http://www.openmobilealliance.org

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

<< Add definitions in new rows of the following table as needed. DELETE THIS COMMENT >>

	Term 1
	Definition

	Term 2
	Definition

	
	

3.3 Abbreviations

	LRM
	Local Rights Manager

	OMA
	Open Mobile Alliance

	SCE
	Secure Content Exchange

	
	

4. Introduction

<< From a market perspective...

What can you do with this specification?

What problem does this solve?

How can this specification be applied?

Consider the target audience and provide deployment examples as possible.

DELETE THIS COMMENT >>

4.1 Pairing-Key Management (Informative)

This specification includes the use of pairing-key management in order to:

1) instantiate Import to a (SCE) DRM Agent in the case that an LRM exercises its localRightsManagerDomain key purpose, where the LRM and Import-recipient DRM Agent are both registered with a DEA, and

2) control subsequent Rights transfers of such LRM-created Imported-Rights-Objects between DRM Agents that are paired via that same DEA.

The DA plays an oversight role via its generation and distribution of DA-signed data, but does not gain cryptographic access to Imported Content. Pairing-key management thus supports business models where copy-control systems that are upstream of LRMs must remain independent of the OMA DRM service provider infrastructure.

Rights Issuers can create Device Rights Objects such that Device-to-Device Rights transfers are restricted to paired (SCE) DRM Agents without affecting backwards compatibility.

The efficient Kerberos-based methodology makes minimal use of PKI: The use of DEA Tickets, LRM Tickets and Agent Tickets, as well as the acquisition by DRM Agents (via DEA Tickets) of LRM Tickets, and of Agent Tickets (individually or in bulk), does not involve public-key cryptography. In particular, the Secure Authenticated Channel (SAC) that is used between an LRM and a DRM Agent to enable Import, or that is used between two DRM Agents to enable subsequent Rights transfers, can be established without public-key cryptography because of the pair-wise uniqueness of the keys.
The continued secure operation of a User Domain that was established via pairing-key management does not require each remaining User Domain DRM Agent to upgrade domain keys even if one or more removed DRM Agents have been compromised.

While others have recognized the advantages of applying Kerberos-derived techniques to home network- based DRM security architectures (e.g., B.C. Popescu, B. Crispo, A.S. Tanenbaum, and F.L.A.J. Kamperman, DRM ’04, October 25, 2004, Washington, DC), the method introduced into this specification has been optimized to take full advantage of DRM Agents that support DRM Time.
5. Overview of LRM Functions
5.1 Creation of Imported-ROs
<text>

5.2 Creation of Imported-Content
<text>

5.3 Management of ROs and Content
<text>

5.3.1 Import for Devices

5.3.1.1 LRM- and DEA- Management of Imported Rights Objects
[Informative] The LRM is given responsibility to perform certain business-model- related functions such as, respecting upstream provider rules regarding the number of times, if at all, data derived from particular upstream content and associated Rights can be used for an Import operation (i.e., the total number of independently usable OMA-conformant copies of the Rights that may be distributed) and/or whether the Imported-Rights-Object is allowed to be Moved from the Recipient Device to other DRM Agents. Also, a DEA corresponding to the LRM MAY limit, within certain bounds, the number of concurrently registered User Domain Devices, Guest Devices, and/or valid DRM Agent pairings. Such bounds MAY be dynamically specified (e.g., by the DA, by an upstream provider), or hard-coded into a DEA.

[Informative] A reasonable risk management approach within an environment of interspersed unknown-compromised DRM Agents is to: 1.) accept the fact that there can exist some rogue LRMs or DEAs that violate their responsibilities, 2.) cap the damage by, in particular, limiting the reach of each individual DEA, 3.) define how DRM Agents are intended to interact with one another and with LRMs and DEAs, and 4.) establish means by which compliant LRMs and DEAs limit the extent of potential damage caused by LRM-to-DRM Agent, DEA-to-DRM Agent, and Agent-to-Agent protocol communications. The approach is incorporated into the techniques we describe below.

[Informative] The use of User Domain Devices vs. Guest Devices coupled with User Domain-level Rights vs. guest-level Rights enables LRM- and DEA- management of Rights transfers under their auspices via device registration, pairing, and distinguishing User Domain-level Rights from guest-level Rights within LRM- created and digitally signed ROs.

Each LRM MUST Import only to DRM Agents associated with a DEA corresponding to the LRM under a currently valid User Domain Device registration.

LRM-created Imported-Rights-Objects MUST bear an LRM-generated <signature> element computed over the <rights> element. The <signature> element and <rights> element MUST be forwarded as part of each Agent-to-Agent Rights transfer.

An LRM MAY Import an RO to a DRM Agent, where the <rights> element MAY include a <move> permission. An Imported-Rights-Object with a <move> Permission MAY be Moved between paired DRM Agents from a User Domain Device to a User Domain Device. An Imported-Rights-Object with a <move> Permission MAY be Moved between paired DRM Agents from a User Domain Device to a Guest Device unless explicitly prohibited within the <rights> element.

[Informative] Legitimate Rights transfer communications are based on a union of paired (User Domain and/or Guest) Devices, where each DRM Agent need not be aware of those DRM Agents with which it is not currently paired. There is no need for upgrading a User Domain to another generation in order to key out suspected DRM Agent compromises, since there is no domain-wide key. The User Domain size is securely managed without concern about whether a DRM Agent has actually “left” the User Domain, because even an unknown-compromised DRM Agent cannot access an LRM-created Imported-Rights-Object unless another DRM Agent transfers access to it under a current pairing or the LRM Imports it directly to the unknown-compromised DRM Agent. Unlike a Constraint on Move that specifies the total number of (sequential) Moves of Rights corresponding to a particular Imported-Rights-Object and which relies on the complicity of DRM Agents as Source Devices for enforcement, even an unknown-compromised DRM Agent can not successfully transfer an LRM-created Imported-Rights-Object to a compliant DRM Agent with which it is not currently paired under a DEA corresponding to that LRM. Pairings enable a DEA to exercise control without having to actually be present for (or pre-approve) specific Rights transfers. “Pairing secrets” are embedded into “tickets” for access (only) by the intended pair of DRM Agents. The concepts of pairing secrets and tickets are discussed further in Section 5.3.4.1.
5.3.1.2 Move Operations

Devices MUST be currently paired with each other (as specified in Section 5.3.4) in order to successfully complete a Move operation relative to Imported-Rights-Objects created by an LRM. Guest Devices SHALL NOT perform outbound Move operations except Move back to the User Domain device which is the original Rights sender to the guest device on Imported-Rights-Objects digitally signed by an LRM corresponding to a DEA with which they are currently registered as Guest Devices. Because Guest Devices are NOT permitted to perform outbound Move operations except Move back to the User Domain device which is the original Rights sender to the guest device of such Rights, flow to compliant Devices is effectively restricted. Both the Source Device and Guest Device SHALL Move only those Imported-Rights-Objects that include a Move Permission. Imported-Rights-Objects MUST be verified as having been created by an LRM corresponding to a DEA with which the Devices are currently registered. Furthermore, a Rights Object MAY be transferred to a Guest Device accompanied by less information over the Secure Authenticated Channel than if the Rights Object is transferred to a User Domain Device. This can preclude a Device from successfully Moving the Rights Object to a compliant User Domain Device even if the Device is a User Domain Device at the time at which it acts as Source Device. Therefore, Rights Objects received by compliant Guest Devices via a Move operation MAY be relatively limited in their usage in that Permissions MAY be further constrained, e.g., usage MAY be “temporary,” where “temporary” is defined within the LRM-signed portion of the Imported-Rights-Object.

Partial Rights Moves SHALL be permitted, i.e., if an Imported-Rights-Object corresponds to Stateful Rights, the Source Device MAY retain part of the remaining Rights Object usage.
5.3.2 Import into OMA DRM v2 Domains

<text>
5.3.3 Import into User Domains

For the creation of Imported ROs to a User Domain using the shared-key mechanism, the LRM needs a Validity Token (VT). The VT is delivered from the DA to the LRM and allows the LRM to create a limited number of Imported ROs. After the creation of a specified number of ROs, the VT cannot be used to generate new Imported ROs. After the VT becomes unusable, the LRM can acquire a fresh VT by performing the VTDelivery protocol as specified in Section

TBD: validity tokens may be different depending (i.e. include min/maxRONumber / exipirydate / both) on the entity for which they apply, even for the same user domain.
The VT has the following format:

<complexType name="ValidityTokenType">

 <sequence>

 <element name="validityData">

 <complexType>

 <sequence>

 <element name="DAID" type="roap:Identifier"/>

 <element name=”userdomainID” type="dom:DomainIdentifier" maxOccurs=”unbounded”>

 <element name="ID" type="roap:Identifier" minOccurs="0"/>

 <element name="minRONumber" type="xs:decimal" minOccurs="0"/>

 <element name="maxRONumber" type="xs:decimal" minOccurs="0"/>

 <element name="expiryDate" type="dateTime" minOccurs="0"/>

 <choice minOccurs="0" maxOccurs="unbounded">

 <element name="isRI"/>

 <element name="isLRM"/>

 </choice>

 <extensions>

 <any minOccurs="0" maxOccurs="unbounded" processContents="lax"/>

 </extensions>

 </sequence>

 </complexType>
 </element>

 <element name="signature" type="ds:SignatureType"/>

 </sequence>

</complexType>
The <validityData> element MUST contain at least the <DAID>, <userdomainID> and <ID> elements. It MAY contain the <minRONumber> and <maxRONumber> elements, or the <expiryDate> element, or both. The <validity> element is signed by the DA as described below.
For an LRM VT, the <ID> element MUST identify the LRM. It consists of the hash over the LRM's public key info, as it appears in the certificate (i.e. the hash of the complete DER-encoded subjectPublicKeyInfo component in the Rights Issuer’s certificate). The default hash algorithm is SHA-1. This information is part of the LRM Context.

When included, the <minRONumber> element contains the value minRONumber. When the <minRONumber> element is included, the <maxRONumber> element, which contains the value maxRONumber, MUST also be included. Together, these two elements specify the number of ROs that the LRM can generate using this VT.

The <expiryDate> element contains the date and time until which the VT is valid. If included, the LRM SHALL NOT generate Imported ROs using this VT after the expiry date has been passed.

For VTs issued to an LRM, the DA MUST include an <isLRM>, a <minRONumber> and a <maxRONumber> element. VTs issued to an RI contain an <isRI> element.
The <signature> element is of type ds:SignatureType from [XML-DSIG]. The signature SHALL be made over the <validityData> element. The <ds:KeyInfo> child element of the <signature> element SHALL identify the signing key. The signature algorithm SHALL be RSA-PSS, with all parameters having default values (see [PKCS-1], Appendix C).
After the LRM has received a VT, it can generate at most maxRONumber-minRONumber+1 Imported ROs. An Imported RO has the following structure:
<!-- Rights Object Definitions -->

<complexType name="ROPayload">

 <sequence>

 <element name="riID" type="roap:Identifier"/>

 <element name="rights" type="o-ex:rightsType"/>

 <element name="signature" type="ds:SignatureType" minOccurs="0"/>

 <element name="timeStamp" type="dateTime" minOccurs="0"/>

 <element name="encKey" type="xenc:EncryptedKeyType"/>

 <element ref="roap:roPayloadAliases" minOccurs="0"/>

 <element name="validityToken" type="ValidityTokenType"/>

 <element name="roNumber" type="xs:decimal" minOccurs="0"/>

 <element name="lrmSignature" type="ds:SignatureType" minOccurs="0"/>
 <any processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>

 <attribute name="version" type="roap:Version" use="required" />

 <attribute name="id" type="ID" use="required" />

 <attribute name="stateful" type="boolean"/>

 <attribute name="domainRO" type="boolean"/>

 <attribute name="riURL" type="anyURI"/>

</complexType>

The <riID> element contains the LRM ID.

The <rights> element contains the permissions and constraints associated with the Imported Content.

The <timeStamp> value indicates the DRM Time on which the Imported RO was generated. It MUST be given in Universal Coordinated Time (UTC). The <timeStamp> element MUST be included.
The <encKey> element is of type xenc:EncryptedKeyType from [XML-Enc]. It consists of a wrapped concatenation of a MAC key, KMAC and an RO encryption key, KREK. The Id attribute of this element SHALL be present and SHALL have the same value as the value of the URI attribute of the <ds:RetrievalMethod> element in the <ds:KeyInfo> elements (if present) inside the <rights> element. The <ds:KeyInfo> child element of the <encKey> element SHALL identify the wrapping key. Since the Imported Rights Object is intended for a User Domain, it will be of the type <roap:domainID> element, identifying the used key.

The <validityToken> element contains a VT that proves that the LRM was entitled to generate this RO.

The <roNumber> contains the value RONumber, such that minRONumber ≤ RONumber ≤ maxRONumber. Each Imported RO MUST contain a unique RONumber. After the LRM has generated maxRONumber-minRONumber+1 Imported ROs, the LRM MUST request a new VT from the DA. The DRM Agent will not accept two different Imported ROs generated by the same LRM and using the same LRMRONumber. TBD: specify how Device checks that two different Imported ROs are not installed, and what “different” means.
The <signature> element SHALL NOT be included in an Imported RO. Instead, the LRM SHALL include an <lrmSignature> element. The <lrmSignature> element contains the LRM signature over the concatenation of the <riID> element, the <rights> element, the <timeStamp> element, the <encKey> element, the <validityToken> element and the <roNumber> element.

TBD: add informative text to say that the LRM can re-use LRM number at different devices.
5.3.4 DEA Management for Device Pairings
Devices registered with a DEA are “paired” with each other by gaining access to a secret shared only between those two Devices and the DEA. This shared secret MAY be acquired from the DEA directly or from a Device that acquires it from the DEA and MAY be used to establish a fresh confidentiality- and data integrity- enabled Secure Authenticated Channel capability each time the shared secret is used between the two Devices
. Pairings SHALL be generated such that a Device can distinguish whether it has been registered with the DEA as a User Domain Device or as a Guest Device. A Device paired with another Device SHALL be able to distinguish whether the other Device has been registered with the DEA as a User Domain Device or as a Guest Device.

5.3.4.1 Pairing Mechanism
[Informative] It is necessary for the DEA to pair User Domain Devices to User Domain Devices or to Guest Devices in order to enable them to communicate with each other securely relative to Imported-Rights-Objects created by an LRM corresponding to that DEA. Compromised DRM Agents can not successfully misrepresent their current status relative to a specific DEA (as a User Domain Device, Guest Device, or unregistered Device), as discussed below. The use of pairings does not necessarily require DRM Agents to use public-key cryptography or verify DRM Agent certificate revocation status.

A ticket comprises a data packet that can be utilized independently by the two DRM Agents designated therein to retrieve a value (i.e., pairing secret), and to authenticate the origin of the pairing secret as sourced from a specifically identified DEA. A ticket MUST not be usable to retrieve the pairing secret by any DRM Agents other than the designated two DRM Agents.

A (pair-wise unique) pairing secret is delivered directly from the DEA to a ticket-requesting Device in two forms One form is directly accessible by a (registered) ticket-requesting Device. The other form is indirectly accessible to a target Device via a “service key” that is established between the DEA and the target Device as part of a registration of the target Device with the DEA.

A ticket MUST indicate the registration status (User Domain or Guest Device) of the two DRM Agents involved in a pairing, where such status notification is authenticated as originating from the DEA. Note that once a DRM Agent is registered with a DEA as either a User Domain Device or Guest Device, it MAY be paired repeatedly with different DRM Agents without re-registering with the DEA.

Transfers of Imported-Rights-Objects between DRM Agents paired by a DEA corresponding to an LRM that created the Imported-Rights-Objects MAY be done based on a Secure Authenticated Channel (SAC) that is set up using a pairing secret: The pairing secret is used by the ticket-recipient DRM Agent to provide confidentiality and integrity of a randomly generated initialization value. In this case, the initialization value MUST be combined with the pairing secret to provide the shared secret input to a Key Derivation Function (KDF). The outputs of the KDF are used to secure the confidentiality and integrity of the SAC. If either DRM Agent lacks knowledge of the pairing secret, the SAC setup fails. Details are discussed further in Section 5.3.4.2.

DRM Agents MAY have “hard-coded” limitations on the usage of guest-level Rights that would supersede less restrictive limitations incorporated into Rights Objects by (potentially unknown-compromised) LRMs. Guest-level Rights MAY be independent of the Rights retained for “local” use by a Source Device. This would enable ad hoc Rights transfers. Guest-level Rights MAY take the form of enabling temporary or otherwise limited access. As an example, guest-level Rights can allow two hour access while User Domain-level Rights allow permanent access on (compliant) Devices.
5.3.4.2 Import and Transfer Operations on ROs
Figure 1 depicts a high-level representation of Import via an LRM and subsequent Rights transfer via pairings acquired from a DEA corresponding to that LRM.

[image: image2.emf]Upstream

DRM content

protection

Import-

Ready

Data

Guest

Device

Imported-RO\

CEK and

encrypted REK

Imported-RO and REK

User

Domain

Device

Imported-RO

and

REK

User

Domain

Device

LRM

Figure 1 – Import and Subsequent Transfer Operations on ROs
Consistent with OMA DRM V 2.0/2.1, the AES-WRAP of the CEK under the RO encryption key (REK) MUST be included within the <rights> element data that is signed by the LRM, where AES-WRAP includes an inherent integrity check that rejects the recovered value of CEK as invalid if the input value of REK is invalid. REK MAY be required for successful User Domain-level Rights delivery, where the CEK and encrypted REK which is encrypted by User Domain device using the User Device’s public key suffice for guest-level Rights delivery. Because a Guest Device does not receive REK and can not decrypt the encrypted REK, and thus cannot retrieve CEK from the AES-WRAP of CEK under REK, the <rights> element MAY include hash(CEK) as a means of enabling direct verification of the validity of CEK by the recipient Guest Device.
The REK MUST be delivered from the User Domain Device to the User Domain Device under the pairing-based SAC discussed in Section 5.3.4.1. Analogously, the CEK(s) and public-key- encrypted REK MUST be delivered from the User Domain Device to the Guest Device under the pairing-based SAC discussed in Section 5.3.4.1. On the return of Rights, if any, from the Guest Device back to the User Domain Device, the public-key- encrypted REK corresponding to that User Domain Device MUST be delivered under the SAC. Then, the User Domain device SHALL confirm whether itself is just the real original Rights sender by decrypting the public-key- encrypted REK. If decryption is successful, then accept the Rights back.
[Informative] Although a compromised DRM Agent can attempt illicit transfers, it cannot transfer what it does not know. A rogue Source Device that lacks knowledge of the valid REK cannot successfully “upgrade” Rights access from guest-level to User Domain-level by supplying a different REK value. This is true relative to Rights that the DRM Agent received in a Guest Device role, even if that same DRM Agent is currently registered with the DEA as a User Domain Device. One reason a DRM Agent may be registered by a DEA for a given period as a Guest Device rather than as a User Domain Device is to adhere to a policy-defined limit on the number of concurrently registered User Domain Devices.
6. LRM and DEA Protocols
[Informative] A layered security model is used in order to support user privacy and facilitate controlled Rights transfers with minimal need for backend network connectivity. At one layer, the roles of a User Domain Device and a Guest Device are introduced, and a DEA corresponding to an LRM manages the association of DRM Agents with one another relative to transfers that involve LRM-created Rights Objects. At another layer, the DA manages policy-related issues, including, in the case of production of Device-specific DA-signed data, approving the incorporation of specific DRM Agents (perhaps based on DEA administrative user’s request and/or on Device ownership criteria such as service provider accounts) into a pool of candidate User Domain Devices from which the DEA is authorized to choose when registering a Device as a User Domain Device. Any DRM Agent is eligible to be registered as a Guest Device by any DEA.

Within Device-specific DA-signed data, DRM Agents SHALL be specified in the standard manner via hashes of certified public keys. A DRM Agent MAY have Guest Device status with respect to multiple DEAs concurrently. Registration of a Device by a DEA can proceed without knowledge by that DEA of the DRM Agent’s current status with respect to other DEAs.

6.1 Generic Message Format for Protocols

All messages have the following syntax:
Message() {

msgTye

 8
uimsbf

Pvno()

stid

32
uimsbf

dtid

32
uimsbf

 retryCount

 8
uimsbf
 Attributes()

 AttributeStructures()
 Signature()
}

Pvno(){
 major
4
bslbf
 minor
4
bslbf
}

Attributes(){
 nbrOfAttrs 8 uimsbf
 for(i=0; i<nbrOfAttrs; i++){
 Attribute()
 }
}

Attribute(){
 type 16 uimsbf
 OctetString16()
}

AttributeStructures(){
 nbrOfAttrStrs 8 uimsbf
 for(i=0; i<nbrOfAttrStrs; i++){
 AttributeStructure()
 }
}

AttributeStructure(){
 typeStr 16 uimsbf
 lengthStr

16
uimsbf

 for(i = 0; i < lengthStr; i++){

 Attribute()
 }

}

OctetString16(){

 length

16
uimsbf

 for(i = 0; i < length; i++){

 octet

8
uimsbf

 }

}

The fields are defined as follows:

· msgType – This field defines the type of messages being communicated. This is defined in Table 1.
· Pvno – This field is the Protocol Version Number. The version number is a <major.minor> representation of the highest protocol version number supported by the sender of the message. The <major> portion of the version number is encoded in the most significant 4 bits of the field. The <minor> portion the version number is encoded in the least significant 4 bits of the field. For this version of the protocol, Pvno SHALL be set to TBD.

· stid – This field contains a Source Transaction ID. This is a random value that uniquely identifies this key management transaction on the source’s side. The value must be non-zero if the sender expects a reply to this message. Otherwise, the value must be set to 0.
· dtid – This field contains a Destination Transaction ID. This is a random value that uniquely identifies this key management transaction on the destination’s side. The value must be set to the stid from the preceding message in this key management transaction.
· retryCount – This field contains the number of times that this key management transaction was restarted due to time outs. The initial value must be set to 0, then 1 for the first retry, etc.
· Attributes – This data structure contains a list of attributes as specified in Section 6.1.2 and the number of these attributes.
· nbrOfAttrs – This field contains the number of attributes.
· Attribute – This data structure specifies the parameters used in messages. It consists of a field and an octet string of variable length. The field specifies the type of the attribute, and the octet string specifies the value of the attribute. A DRM Agent that does not understand an Attribute type SHALL ignore the Attribute.
· type – This field encodes the attribute type, as specified in Table 2.

· length – This field encodes the length in bytes of the attribute.
· AttributeStructures – This data structure contains a list of attribute data structures as specified in Section 6.1.2 and the number of these attribute data structures.
· nbrOfAttrStrs – This field contains the number of attributes in an Attribute data structure.
· AttributeStructure – This data structure specifies a logical grouping of parameters used as a logical unit in messages. It consists of two fields and a list of attributes. The first field specifies the type of the attribute data structure, and the second field encodes the number of the attributes. A DRM Agent that does not understand an Attribute data structure type SHALL ignore the Attribute data structure.
· typeStr – This field encodes the attribute data structure type, as specified in Table 2.

· lengthStr – This field encodes the number of attributes in an attribute data structure.
· Signature – This data structure specifies either the digital signature or keyed checksum of a message. It is defined as an attribute data structure that contains two attributes: SigType and SigValue. The SigType attribute specifies the type of the algorithm used to generate the signature or keyed checksum, and the SigValue attribute specifies the value of the signature or keyed checksum.
6.1.1 Message Types

The message types are listed in Table 1 in decimal for each message supported. The possible attributes of the messages are listed in Table 2.
Table 1: Message Types

	msgType
	Message

	3
	Service Key Request

	4
	Service Key Response

	5
	Ticket Request

	6
	Ticket Response

	8
	SAC Key Request

	9
	SAC Key Response

	11
	Error Message

	12
	Device Registration Request

	13
	Device Registration Response

	24
	Agent Ticket Request

	25
	Agent Ticket Response

	26
	Imported-RO Request

	27
	Imported-RO Response

	28
	A2A Imp-RO Request

	29
	A2A Imp-RO Response

	30
	Authorization Request

	31
	Authorization Response

In Table 1, the assignment of the msgType values is somewhat arbitrary. The final values are TBD.
6.1.2 Attributes

Table 2 summarizes the attributes defined in this specification. A description of each attribute follows the table.

Table 2: Attribute Types

	Type
	Attributes

	1
	ClientDomainBaseID

	2
	ClientIdentifier

	3
	ServerDomainBaseID

	4
	ServerIdentifier

	6
	EncTypeSet

	7
	SigTypeSet

	9
	Signature

	11
	Ticket

	14
	EncryptedData

	17
	CertificateValue

	18
	GroupSubkeyId

	20
	TktVnum

	22
	AuthTime

	23
	EndTime

	24
	SkeyVnum

	25
	KeyType

	26
	KeyValue

	28
	SigType

	29
	SigValue

	30
	KeyAgreementAlgorithm

	31
	DEACertificateType

	32
	KeyInfo

	33
	CipherText

	34
	PrivateTicketPart

	35
	AuthData

	36
	EncType

	37
	ErrCode

	40
	KeyAgreementInfo

	41
	DOI_ID

	42
	ReturnAuthData

	43
	CipherSuiteSet

	44
	CipherSuiteType

	51
	DEAPubKeyHash

	55
	CertificateChain

	56
	RequestCRLs

	57
	DEAPubKeyIdentifier

	59
	ClientDRMtimeSeconds

	60
	ClientDRMtimeMicroSeconds

	64
	PubKeyClientAuthenticator

	65
	PubKeyDEAAuthenticator

	66
	IPv4Address

	70
	IsGroupSubkey

	71
	NewPrincipalFlag

	78
	CRLList

	80
	CRLValue

	81
	IssuerValue

	85
	ContentFormatID

	86
	CipherSuiteID

	88
	DeviceRegistrationTypeResponse

	89
	DASignedData

	90
	ImportedRights

	94
	AgentTicket

	95
	CsumType

	96
	ClientName

	97
	ServerName

	98
	RO_ID

	99
	IsInitialMove

	100
	BulkTickets

	101
	DateTime

	102
	ROAuthStatus

	103
	ROAuthRequest

	104
	ROAuthRequestList

	105
	DeviceList

	106
	ROAuthResponse

	107
	ROAuthResponseList

In Table 2, the assignment of the Type values is somewhat arbitrary. The final values are TBD.
6.1.2.1 AuthData
This attribute contains private authorization data associated with the Source client. This data is inserted into a ticket by the DEA. (Tickets are discussed in Section 6.1.3.14.) The contents of this field are application specific. This attribute is used to place limits on the Source client authorized rights. The fields for the attribute are defined as follows:

· type – This field has the value 35.
· length – This field encodes a variable length dependent on the length of the data.

6.1.2.2 AuthTime
This attribute indicates the time of initial authentication for the Destination client. This timestamp is kept by the DEA. It is UTC time and is represented as seconds since 01 Jan 1970 00:00:00. The fields for the attribute are defined as follows:

· type – This field has the value 22.
· length – This field encodes the value 64 (bits).

6.1.2.3 CertificateValue

This attribute specifies an X.509 certificate. The attribute specifies the DER-encoding of the X.509 certificate. The fields for the attribute are defined as follows:

· type – This field has the value 17.
· length – This field encodes the length of the DER-encoding of the X.509 certificate.

6.1.2.4 CipherSuiteID
This attribute specifies the identifier of an algorithm used to encrypt the content. The supported formats and their identifiers are described in Table 3.

Table 3: Supported Content Encryption Algorithms and Their Identifiers
	Content Encryption Algorithm
	Identifier

	NULL
	0

	AES_128_CBC
	1

	AES_128_CTR
	2

The fields for the attribute are defined as follows:

· type – This field has the value 86.
· length – This field encodes the value 8 (bits).

6.1.2.5 CipherText

This attribute represents the encrypted data part present in some of the messages. The actual data encrypted is based on the context of messages and is described later. The fields for the attribute are defined as follows:

· type – This field has the value 33.
· length – This field is variable and encodes the length of the encrypted data.

6.1.2.6 ClientDomainBaseID

This attribute specifies the identifier of the User Domain in which the Source client is registered and in which initial authentication took place. The fields for the attribute are defined as follows:

· type – This field has the value 1.
· length – This field encodes a variable length dependent on the length of the identifier of the User Domain.

6.1.2.7 ClientIdentifier
This attribute specifies the identifier of the Source client. The value of the attribute is a 20 byte hash of the client’s public key. The fields for the attribute are defined as follows:
· type – This field has the value 2.
· length – This field encodes the value 160 (bits).
6.1.2.8 ClientName

This attribute specifies a string that encodes a user-friendly name for the Source client. The fields for the attribute are defined as follows:
· type – This field has the value 96.
· length – This field encodes a variable length value dependent on the length of the user-friendly name string.
6.1.2.9 ClientDRMtimeSeconds

This attribute specifies the current time in seconds on the host of the Source client. The attribute specifies the Source client UTC time in seconds since 01 Jan 1970 00:00:00. The fields for the attribute are defined as follows:
· type – This field has the value 59.
· length – This field encodes the value 64 (bits).

6.1.2.10 ClientDRMtimeMicroSeconds

This attribute specifies the microseconds component of the current time on the host of the Source client. The microseconds allow the receiver of a Source client message to distinguish between the retries of the same message when the Source client retries several times per second. The fields for the attribute are defined as follows:
· type – This field has the value 60.
· length – This field encodes the value 32 (bits).

6.1.2.11 ContentFormatID
This attribute specifies the identifier of a format of the content. The supported formats and their identifiers are described in Table 4.

Table 4: Supported Content Formats and Their Identifiers
	Content Format
	Identifier

	DCF
	1

	PDCF
	2

	MDCF
	3

The fields for the attribute are defined as follows:

· type – This field has the value 85.
· length – This field encodes the value 8 (bits).

6.1.2.12 CRLValue

This attribute specifies the DER-encoded X.509 Certificate Revocation List (CRL). The fields for the attribute are defined as follows:

· type – This field has the value 80.
· length – This field encodes a variable length dependent on the length of the DER-encoded X.509 CRL.

6.1.2.13 SigType
This attribute specifies the identifier of a signature (or keyed checksum) algorithm supported by the Source client. Supported signature algorithms and their identifiers are specified in Table 5.

Table 5: Supported Signature Algorithms and Their Identifiers
	Signature Algorithm
	Mandatory/Optional
	Identifier

	
	
	

	RSA signature algorithm formatted according to PKCS#1 v1.5 over a SHA-1 hash.
	M
	1

	HMAC [HMAC] with SHA1 hash.
	M
	2

The fields for the attribute are defined as follows:

· type – This field has the value 28.
· length – This field encodes the value 8 (bits).

6.1.2.14 SigTypeSet
This attribute specifies the identifiers of the signature algorithms supported by the Source client. The Destination client can use one of those algorithms to authenticate a reply. The value of the attribute is a sequence of one or more signature algorithm identifiers as specified in Table 5 in preference order. The value encoded in the length field is equal to the number of bits to specify the sequence of identifiers. The fields for the attribute are defined as follows:
· type – This field has the value 7.
· length – This field encodes a variable length dependent on the number of signature algorithm identifiers in preference order.

6.1.2.15 SigValue

This attribute specifies the result of a signature or a keyed checksum operation. The fields for the attribute are defined as follows:

· type – This field has the value 29.
length – This field encodes a variable length dependent on the length of the result of the signature or keyed checksum operation.
6.1.2.16 CSumType

This attribute specifies the identifier of a checksum (hash) algorithm. Supported signature algorithms and their identifiers are specified in Table 6.

Table 6: Supported checksum (hash) Algorithms and Their Identifiers
	Checksum Algorithm
	Mandatory/Optional
	Identifier

	SHA1 hash.
	M
	1

The fields for the attribute are defined as follows:

· type – This field has the value 95.
· length – This field encodes the value 8 (bits).

6.1.2.17 DASignedData
The format of this attribute is TBD. The value of the Type field is 89.

6.1.2.18 DEACertificateType
This attribute specifies the type of a DEA certificate supported by the client. Its value SHALL be 1 for certificates of type X.509. The fields for the attribute are defined as follows:

· type – This field has the value 31.
· length – This field encodes the value 8 (bits).

6.1.2.19 DEAPubKeyHash
This attribute specifies a 20 byte hash of the DEA’s public key by using one of the checksum algorithms specified in Table 6. The fields for the attribute are defined as follows:

· type – This field has the value 51.
· length – This field encodes the value 160 (bits).

6.1.2.20 DeviceRegistrationTypeResponse

This attribute indicates whether a Device is a “User Domain Device” or “Not Registered” with a DEA. This is a Boolean with the possible values of 0 (Not Registered) and 1 (User Domain Device). Details of when a DEA registers a Device as a “User Domain Device” are discussed in Section7.2.1.1. The fields for the attribute are defined as follows:
· type – This field has the value 88.
· length – This field encodes the value 8 (bits).

6.1.2.21 DOI_ID
This attribute is used to identify the ImportedRights attribute as containing <rights> elements defined by the OMA SCE REL document [Reference TBD]. The value of the attribute SHALL be 2. The fields for the attribute are defined as follows:

· type – This field has the value 41.
· length – This field encodes the value 8 (bits).

6.1.2.22 EncType
This attribute specifies the encryption algorithm used in encrypting data. Supported encryption algorithms and their identifiers are specified in Table 7.
Table 7: Supported Encryption Algorithms and Their Identifiers
	Encryption Algorithm
	Identifier

	Null Encryption
	0

	AES (128-bit block size)
	1

For this specification, support of all encryption algorithms in Table 7 is mandatory.

The fields for the attribute are defined as follows:
· type – This field has the value 36.
· length – This field encodes the value 8 (bits).

6.1.2.23 EncTypeSet
This attribute specifies the identifiers of the encryption algorithms supported by the Source client or encryption type used by the Destination client. The value of the attribute is a sequence of one or more encryption algorithm identifiers as specified in Table 7 in preference order. The value encoded in the length field is equal to the number of bits to specify the sequence of identifiers.

The fields for the attribute are defined as follows:

· type – This field has the value 6.
· length – This field encodes a variable length dependent on the number of encryption algorithm identifiers in preference order.

6.1.2.24 EndTime
This attribute indicates the expiration UTC time of a ticket, after which it is no longer valid. It is represented as seconds since 01 Jan 1970 00:00:00. (Tickets are discussed in Section 6.1.3.14.) The fields for the attribute are defined as follows:

· type – This field has the value 23.
· length – This field encodes the value 64 (bits).

6.1.2.25 ErrCode
This attribute specifies the error code generated by a DEA or Destination client as part of an error message. Error messages are described in Section 6.1.4. The error codes are shown in Table 11. The fields for the attribute are defined as follows:

· type – This field has the value 37.
· length – This field encodes the value 8 (bits).

6.1.2.26 GroupSubkeyId
This attribute specifies an identifier for a group key that was requested in a key request with the IsGroupSubkey attribute set to TRUE. This attribute can be used in the case of a secure IP Multicast. The fields for the attribute are defined as follows:

· type – This field has the value 18.
· length – This field encodes a variable length dependent on the length of the identifier.

6.1.2.27 ImportedRights
This attribute contains Imported-RO <rights> element and <signature> element of the LRM that created the Imported-Rights-Object. The fields for the attribute are defined as follows:

· type – This field has the value 90.
· length – This field encodes a variable length.

6.1.2.28 IPv4Address
This attribute is used inside a Ticket attribute (described in Section 6.1.3.14). It was an IPv4 address of a Source client at the time that the DEA issued a ticket for a Destination client in response to a request from the Source client. Destination clients can use the IPv4 address as part of the Source client verification, e.g. to verify the IP address in a raw IP packet header. A Destination client can also use this address in determining the local access network on which the Source client resides and possibly applying authorization criteria specific to the Source client’s access network. The format of this field is a 4-byte binary string, where each byte represents a component of the IP address. The fields for the attribute are defined as follows:
· type – This field has the value 66.
· length – This field encodes the value 32 (bits).

6.1.2.29 IsGroupSubkey
This attribute specifies a Boolean flag that, when set to TRUE (1), indicates that a key to be returned in a key reply message is associated with a group, e.g. for secure IP Multicast. Otherwise, the flag is FALSE (0). The fields for the attribute are defined as follows:
· type – This field has the value 70.
· length – This field encodes the value 8 (bits).

6.1.2.30 IssuerValue

This attribute specifies the DER-encoded X.500 distinguished name of a certificate issuer. The fields for the attribute are defined as follows:

· type – This field has the value 81.
· length – This field encodes a variable length dependent on the length of the DER-encoded X.500 distinguished name of the certificate issuer.

6.1.2.31 KeyAgreementAlgorithm
This attribute specifies the identifier for a key agreement cryptographic algorithm. The possible values of the attribute and the corresponding algorithms are described in Table 8.

Table 8: Supported Key Agreement Algorithms and Their Identifiers
	Encryption Algorithm
	Mandatory/Optional
	Identifier

	ECDH (Elliptical Curve Diffie-Hellman) – curve secp256r1.
	O
	3

	Diffie-Hellman group #1 with 1024-bit prime.
	M
	6

The fields for the attribute are defined as follows:

· type – This field has the value 30.
· length – This field encodes the value 8 (bits).

6.1.2.32 KeyType
This field specifies the type of a cryptographic key. It corresponds to either an encryption algorithm or a key agreement algorithm. The possible values of the attribute and the corresponding key types are described in Table 9.

Table 9: Supported Key Types and Their Identifiers
	Encryption Algorithm
	Identifier

	AES Encryption Key (128-bit key size)
	1

	Key Derivation Key
	2

	Elliptic Curve Public Key - curve secp256r1. Uncompressed key format must be used, which is the X-coordinate and Y-coordinate concatenated together.
	5

	HMAC SHA-1 Key (160-bit key size).
	6

	Diffie-Hellman public key
	11

	RSA public key. This key type refers to the value of the RSA modulus. RSA public exponent is assumed to be always 0x010001 (65537).
	12

The fields for the attribute are defined as follows:

· type – This field has the value 25.
· length – This field encodes the value 8 (bits).

6.1.2.33 KeyValue

This attribute contains a key encoded as an octet string. The fields for the attribute are defined as follows:

· type – This field has the value 26.
· length – This field is variable and encodes the length of the key.

6.1.2.34 NewPrincipalFlag
This attribute specifies a Boolean flag that a client uses to request the DEA to create a new record in the DEA storage for the specified client name. The value of the attribute is either 1, which indicates that the client wishes to create a new record, or 0, which indicates that the client wants to update an existing record. The fields for the attribute are defined as follows:
· type – This field has the value 71.
· length – This field encodes the value 8 (bits).

6.1.2.35 ReturnAuthData
This attribute specifies a Boolean flag that is used in a Ticket Request message (see Section 7.2.1.3.1) that indicates if the Source client wishes its own copy of authorization data in a subsequent Ticket Response message (see Section 7.2.1.3.2). The value of the attribute is either 1, which indicates that the client wishes to get its own copy of the authorization data, or 0, which indicates that the client is not interested in receiving its own copy of the authorization data. The fields for the attribute are defined as follows:
· type – This field has the value 42.
· length – This field encodes the value 8 (bits).

6.1.2.36 ServerDomainBaseID

This attribute specifies the identifier of the User Domain in which the Destination client is registered. The fields for the attribute are defined as follows:

· type – This field has the value 3.
· length – This field encodes a variable length dependent on the length of the identifier of the User Domain.

6.1.2.37 ServerIdentifier
This attribute specifies the identifier of the Destination client. The value of the attribute is a 20 byte hash of the client’s public key. The fields for the attribute are defined as follows:
· type – This field has the value 4.
· length – This field encodes a variable length value that consists of the sum of 160 and string length.
6.1.2.38 ServerName

This attribute specifies a string that encodes a user-friendly name for the Destination client. The fields for the attribute are defined as follows:
· type – This field has the value 97.
· length – This field encodes a variable length value dependent on the length of the user-friendly name string.
6.1.2.39

	
	
	

	
	
	

	
	
	

·
·
6.1.2.40

·
·
6.1.2.41 SkeyVnum
This attribute specifies an identifier for a Service Key for a client. The default value for a Service Key lifetime is recommended to be changed periodically. When a Service Key is renewed, the value field in the SkeyVnum attribute associated with the Service Key is incremented by one. The fields for the attribute are defined as follows:

· type – This field has the value 24.
· length – This field encodes the value 16 (bits).

6.1.2.42 TktVnum
This attribute specifies the version number for the Ticket format. The version number is a <major.minor> representation. The <major> portion of the version number is encoded in the most significant 4 bits of the field. The <minor> portion the version number is encoded in the least significant 4 bits of the field. For this version of the protocol, TktVnum SHALL be set to 2.0. The fields for the attribute are defined as follows:

· type – This field has the value 20.
· length – This field encodes the value 8 (bits).

6.1.2.43 RO_ID

This attribute specifies a string that encodes the RO identifier. The fields for the attribute are defined as follows:

· type – This field has the value 98.
· length – This field encodes a variable length value dependent on the length of the RO identifier.
6.1.2.44 IsInitialMove
This attribute indicates whether an Imported-RO is to be Moved for the first time from an Import-Recipient Device. This is a Boolean with the possible values of 0 (not first time) and 1 (first time). The fields for the attribute are defined as follows:

· type – This field has the value 99.
· length – This field encodes the value 8 (bits).
6.1.2.45 DateTime

This attribute indicates a date and time value. It is represented as seconds since 01 Jan 1970 00:00:00. The fields for the attribute are defined as follows:

· type – This field has the value 100.
· length – This field encodes the value 64 (bits).
6.1.2.46 ROAuthStatus

This attribute contains a status code of an Authorization Response for a particular Imported-RO. The possible values of the attribute are described in Table 10.

Table 10: RO Authorization Status Code
	Status Code
	Description

	0
	Status OK. Destination DRM Agent can enable the Imported-RO.

	1
	Error. Destination DRM Agent MUST not enable the Imported-RO.

 The fields for the attribute are defined as follows:

· type – This field has the value 102.
· length – This field encodes the value 8 (bits).
6.1.3 Attribute Data Structures

The following data structures specify logical groupings of parameters used as logical units in messages.
6.1.3.1 CertificateChain
This attribute data structure is a chain of one or more digital certificates used to verify a signature. The Device certificate must come first in the list. Each following certificate must directly certify the one preceding it. The fields for the attribute data structure are defined as follows:

· typeStr – This field has the value 55.
· lengthStr – This field encodes a variable length dependent on the number of certificates in the certificate chain.
· Attributes – The attributes contained in this data structure are concatenations of CertificateValue attributes.
6.1.3.2 CipherSuiteType
This attribute data structure specifies the format of the content and the algorithms used to encrypt the content. The data structure has two attributes: ContentFormatID and CipherSuiteID. The fields for the attribute data structure are defined as follows:
· typeStr – This field has the value 44.
· lengthStr – This field encodes the value 2.
· Attributes – The attributes contained in this data structure are ContentFormatID and CipherSuiteID.
6.1.3.3 CipherSuiteSet

This attribute data structure specifies a sequence of CipherSuiteType values in preference order. The fields for the attribute data structure are defined as follows:
· typeStr – This field has the value 43.
· lengthStr – This field encodes a variable even number dependent on the number of ContentFormatID and CipherSuiteID pairs.
· Attributes – The attributes contained in this data structure is a sequence of (ContentFormatID and CipherSuiteID) pairs.
6.1.3.4 CRLList
This attribute data structure is used in the PubKeyDEAAuthenticator attribute data structure to provide an up-to-date list of CRLs. The fields for the attribute data structure are defined as follows:
· typeStr – This field has the value 78.
· lengthStr – This field encodes a variable number dependent on the number CRLValue attributes.
· Attributes –This data structure contains one or more CRLValue attributes.
6.1.3.5 DEAPubKeyIdentifier
This attribute data structure specifies a checksum identifier and a corresponding 20 byte hash of the DEA’s public key. The data structure has two attributes: CsumType and DEAPubKeyHash. The fields for the attribute data structure are defined as follows:
· typeStr – This field has the value 57.
· lengthStr – This field encodes the value 2.
· Attributes – The attributes contained in this data structure are CsumType and DEAPubKeyHash.
6.1.3.6 EncryptedData
This attribute data structure represents the encrypted data part present in some of the attribute data structures. The actual data encrypted is based on the context of attribute data structures and messages. The data structure has two attributes: EncType and CipherText. The fields for the attribute data structure are defined as follows:
· typeStr – This field has the value 14.
· lengthStr – This field encodes the value 2.
· Attributes – The attributes contained in this data structure are EncType and CipherText.
6.1.3.7 KeyAgreementInfo

This field is describes a public key agreement algorithm between a Source Client and a Destination Client and the corresponding public key value. The data structure has three attributes: KeyAgreementAlgorithm, and two attributes of the KeyInfo data structure. The fields for the attribute data structure are defined as follows:
· typeStr – This field has the value 40.
· lengthStr – This field encodes the value 3.
· Attributes – The attributes contained in this data structure are KeyAgreementAlgorithm, KeyType and KeyValue.
6.1.3.8 KeyInfo
This attribute data structure specifies a key type and a corresponding key. The data structure has two attributes: KeyType and KeyValue. The fields for the attribute data structure are defined as follows:
· typeStr – This field has the value 32.
· lengthStr – This field encodes the value 2.
· Attributes – The attributes contained in this data structure are KeyType and KeyValue.
6.1.3.9 PrivateTicketPart
This attribute data structure specifies the private part of a ticket – stored in encrypted form inside a Ticket data structure. (A Ticket data structure is discussed in Section 6.1.3.14.) The data structure has 7 attributes: two attributes of the KeyInfo data structure, ClientDomainBaseID, ClientName, ClientIdentifier, IPv4Address, and AuthData. KeyInfo contains a 21-Byte Session Key in the KeyValue. The Session Key is not directly used to encrypt or authenticate data. Instead, encryption and authentication keys are derived from this Session Key. The fields for the attribute data structure are defined as follows:

· typeStr – This field has the value 34.
· lengthStr – This field encodes the value 7.
· Attributes – The attributes contained in this data structure are KeyType and KeyValue, ClientDomainBaseID, ClientName, ClientIdentifier, IPv4Address, and AuthData.
6.1.3.10 PubKeyClientAuthenticator
This attribute data structure is used to authenticate a Source client to the DEA. The data structure has several attributes: ClientName, ClientDomainBaseID, ClientDRMtimeSeconds, ClientDRMtimeMicroSeconds, attributes of the RequestCRLs data structure, and two attributes of the DEAPubKeyIdentifier data structure. The fields for the attribute data structure are defined as follows:
· typeStr – This field has the value 64.
· lengthStr – This field encodes a variable number dependent on the number of IssuerValue attributes.
· Attributes – The attributes contained in this data structure are ClientName, ClientDomainBaseID, ClientDRMtimeSeconds, ClientDRMtimeMicroSeconds, a variable number of IssuerValue attributes, CsumType and DEAPubKeyHash.
The use of the RequestCRLs attribute data structure is optional. If the PubKeyClientAuthenticator data structure does not contain any IssuerValue attributes, then the RequestCRLs attribute data structure is not present.

6.1.3.11 PubKeyDEAAuthenticator
This attribute data structure is used to authenticate the DEA to a Source client. The data structure has several attributes: attributes of the CertificateChain data structure, and the attributes of the CRLList data structure. The fields for the attribute data structure are defined as follows:
· typeStr – This field has the value 65.
· lengthStr – This field encodes a variable number dependent on the number of CerificateValue and CRLValue attributes.
· Attributes – The attributes contained in this data structure are a variable number of CertificateValue and CRLValue attributes.
The use of the CertificateChain attribute data structure is optional. If the PubKeyDEAAuthenticator data structure does not contain any CertificateValue attributes, then the CertificateChain attribute data structure is not present.

If the CertificateChain attribute is not present, then the list of CRLValue attributes is for the requested certificate issuers specified by the client inside a prior PubKeyClientAuthenticator attribute data structure. On the other hand, if the CertificateChain attribute data structure is present, then the list of CRLValue attributes corresponds to the issuers for the certificate chain.

If the DEA is unable to obtain some of the CRLs, those CRLValue attributes will be omitted from the PubKeyDEAAuthenticator attribute data structure. If the DEA is unable to obtain any of the CRLs, then no CRLValue attribute will be present.

6.1.3.12 RequestCRLs
This attribute data structure is used in the PubKeyClientAuthenticator attribute data structure (described in Section 6.1.3.10) to indicate that in a subsequent response message, the DEA is to include an up-to-date list of CRLs inside the PubKeyDEAAuthenticator attribute data structure. The fields for the attribute data structure are defined as follows:
· typeStr – This field has the value 56.
· lengthStr – This field encodes a variable number dependent on the number IssuerValue attributes.
· Attributes –This data structure contains one or more IssuerValue attributes.
6.1.3.13 Signature

This attribute data structure specifies either the digital signature or keyed checksum of a message. The data structure has two attributes: SigType and SigValue. The fields for the attribute data structure are defined as follows:

· typeStr – This field has the value 9.
· lengthStr – This field encodes the value 2.
· Attributes – The attributes contained in this data structure are SigType and SigValue.
Note that in typical usage of the Signature attribute, the signature is computed over the entire message, including the message header fields specified in Section 6.1.1 but excluding the Signature attribute itself. During signature calculation, the length of compound attributes is adjusted to reflect the missing Signature attribute.
6.1.3.14 Ticket
A Ticket is a record that helps a Source client authenticate to a Destination client. It contains the Source client’s identity, an initial session key, timestamp and other information encrypted by using the Destination client’s Service Key. The data structure has 19 attributes: TktVnum, ServerDomainBaseID, ServerName, ServerIdentifier, AuthTime, EndTime, EncTyep, six attributes of the PrivateTicketPart data structure, SkeyVnum, EncTypeSet, SigTypeSet, and two attributes of the Signature data structure. The fields for the attribute data structure are defined as follows:

· typeStr – This field has the value 11.
· lengthStr – This field encodes the value 19.
· Attributes – The attributes contained in this data structure are TktVnum, ServerDomainBaseID, ServerName, ServerIdentifier, AuthTime, EndTime, EncType, KeyType, KeyValue, ClientDomainBaseID, ClientName, ClientIdentifier, IPv4Address, AuthData, SkeyVnum, EncTypeSet, SigTypeSet, SigType and SigValue.
6.1.3.15 AgentTicket
This is an attribute data structure that is generated by a DEA to a Source client for a Destination client. The data structure has 20 attributes: 19 attributes of the Ticket data structure, and DeviceRegistrationTypeResponse attribute. The fields for the attribute data structure are defined as follows:

· typeStr – This field has the value 94.
· lengthStr – This field encodes the value 20.
· Attributes – The attributes contained in this data structure are TktVnum, ServerDomainBaseID, ServerName, ServerIdentifier, AuthTime, EndTime, EncType, KeyType, KeyValue, ClientDomainBaseID, ClientName, ClientIdentifier, IPv4Address, AuthData, SkeyVnum, EncTypeSet, SigTypeSet, SigType, SigValue, and DeviceRegistrationTypeResponse.
6.1.3.16 BulkTickets

This is an attribute data structure that is generated by a DEA to a client. The data structure is a list of Tickets. The fields for the attribute data structure are defined as follows:

· typeStr – This field has the value 100.
· lengthStr – This field encodes a variable length dependent on the number of Tickets in the list.
· Attributes – The attributes contained in this data structure is a sequence of the attributes of the Tickets in the list.

6.1.3.17 ROAuthRequest

This is an attribute data structure that is generated by a client to a DEA. The data structure contains information regarding one RO that the client is requesting for authorization. The fields for the attribute data structure are defined as follows:

· typeStr – This field has the value 103.
· lengthStr – This field encodes the value 5.
· Attributes – The attributes contained in this data are ClientIdentifier, DateTime, Signature, IsInitialMove, and either ImportedRights or RO_ID (depending on the value of IsInitialMove).

6.1.3.18 ROAuthRequestList

This is an attribute data structure that is generated by a client to a DEA. The data structure is a list of one or more ROAuthRequest. The fields for the attribute data structure are as follows:
· typeStr – This field has the value 104.
· lengthStr – This field encodes a variable number (greater than 0) dependent on the number of ROAuthRequest in the list.
· Attributes – The attributes contained in this data structure is a sequence of ROAuthRequest attribute data structures in the list.
6.1.3.19 DeviceList

This is an attribute data structure that contains a list of one or more Device Identifier (using the ClientIdentifer attribute). The fields for the attribute data structure are as follows:
· typeStr – This field has the value 105.
· lengthStr – This field encodes a variable number (greater than 0) dependent on the number of ClientIdentifier in the list.
· Attributes – The attributes contained in this data structure is a sequence of ClientIdentifier attribute data structures in the list.

6.1.3.20 ROAuthResponse
This is an attribute data structure that is generated by a DEA to a client. The data structure contains status information regarding one RO that the client is requesting for authorization. The fields for the attribute data structure are defined as follows:

· typeStr – This field has the value 106.
· lengthStr – This field encodes the value 2 or 3, depending on whether the DeviceList attribute data structure is present.
· Attributes – The attributes contained in this data are RO_ID, ROAuthStatus, and optionally a DeviceList.
6.1.3.21 ROAuthResponseList

This is an attribute data structure that is generated by a DEA to a client. The data structure is a list of one or more ROAuthResponse. The fields for the attribute data structure are as follows:
· typeStr – This field has the value 107.
· lengthStr – This field encodes a variable number (greater than 0) dependent on the number of ROAuthResponse in the list.
· Attributes – The attributes contained in this data structure is a sequence of ROAuthResponse attribute data structures in the list.

6.1.4 Error Message

An error message is generated when there is an error processing one of the messages. Error messages MUST always be authenticated either with a digital signature or with a keyed checksum. When this is not possible, a DEA or an LRM silently drops the request message that generated the error, and an error message is not returned. Note that client Devices do not send error messages back to a DEA or an LRM.
An Error message has the syntax described in Section 6.1. The fields of the message are as follows:

· msgType – This field contains the value 11.
· Pvno – This field contains the value TBD.

· stid – This field is set to 0.
· dtid – This field has the same value as the stid field in the message that caused the error.
· retryCount – This field has the same value as the retryCount field in the message that caused the error.
· Attributes – This data structure contains the following attributes: ClientDRMtimeSeconds, ClientDRMtimeMicroSeconds, ServerDomainBaseID, ServerName, ClientDomainBaseID, ClientName, and ErrCode
· nbrOfAttrs – This field contains the value 7.
· AttributeStructures – This data structure contains an optional CertificateChain attribute data structure.
· nbrOfAttrStrs – This field contains the value 1 if the CertificateChain attribute data structure; otherwise, the value is 0.
· Signature – This attribute data structure specifies a digital signature or keyed checksum of the message.
The values of the ClientDRMtimeSeconds, ClientDRMtimeMicroSeconds, ServerDomainBaseID, ServerName, ClientDomainBaseID, and ClientName attributes in an error message are the same as the attributes of the message that generated the error. The values of the ErrCode are shown in Table 11. The conditions that cause errors and error messages to occur are described in detail in this specification. A DEA MAY include a CertificateChain attribute data structure in an error message when the signature for the error message is generated using a digital certificate and the DEA public key identifier that the client specified in the request message that caused the error is not recognized by the DEA.

Table 11: Error Codes
	Error Label
	Error Code

	ERR_BAD_INTEGRITY
	24

	ERR_BADKEYVER
	16

	ERR_BADIPADDR
	81

	ERR_CIPHERSUITE_NOSUPP
	45

	ERR_DOI_ID_NOT_RECOGNIZED
	51

	ERR_INAPP_CKSUM
	26

	ERR_NOT_US
	20

	ERR_REPEAT
	14

	ERR_RO_ID_NOT_RECOGNIZED
	82

	ERR_RO_NOT_Available
	83

	ERR_SKEW
	15

	ERR_TICKET
	21

	ERR_TICKET_VERSION
	22

	ERR_TKT_EXPIRED
	13

	ERR_TKT_INAPP_CKSUM
	59

	ERR_TKT_NYV
	23

	ERR_PRIV_TKT_PART
	25

	ERR_REPEAT
	14

	ERR_TICKET
	21

	ERR_TICKET_VERSION
	22

	DEA_ERR_BAD_PVNO
	1

	DEA_ERR_C_PRINCIPAL_UNKNOWN
	2

	DEA_ERR_S_PRINCIPAL_UNKNOWN
	3

	DEA_ERR_CERTTYPE_NOSUPP
	46

	DEA_ERR_CLIENT_REVOKED
	10

	DEA_ERR_DUP_HOSTID
	50

	DEA_ERR_ETYPE_NOSUPP
	7

	DEA_ERR_HOSTID_CHANGE_PROHIBITED
	77

	DEA_ERR_KEYAGR_KEY_TOO_WEAK
	75

	DEA_ERR_OTHER_PRINCIPAL_ALREADY_EXISTS
	57

	DEA_ERR_OTHER_PRINCIPAL_NOT_FOUND
	49

	DEA_ERR_PUBKEY_NOT_FOUND
	76

	DEA_ERR_SIGTYPE_NOSUPP
	8

	DEA_ERROR_DEA_NOT_TRUSTED
	34

	DEA_ERROR_INVALID_SIG
	35

6.2 SCE-4-LRMP
This section defines the protocols by which an LRM communicates with an RI. The protocols include LRM-RI Registration Protocol, LRM-RI Create RO Protocol and so on.
6.2.1 LRM-RI Registration Protocol
The LRM-RI Registration Protocol is a complete security information exchange and handshake between the RI and the LRM and is generally only executed at first contact, but may also be executed when there is a need to update the exchanged security information, or when DRM Time in the LRM is deemed inaccurate by the Rights Issuer. This protocol includes negotiation of protocol parameters and protocol version, cryptographic algorithms, exchange of certificate preferences, optional exchange of certificates, mutual authentication of Device and RI, integrity protection of protocol messages.

Successful completion of the Registration protocol results in the establishment of an RI Context in the LRM containing RI-specific security related information such as agreed protocol parameters, protocol version, and certificate preferences. An RI Context is necessary for execution of the other protocols in the SCE-4-LRMP suite. Figure 2 depicts the 4-pass LRM-RI Registration Protocol.

[image: image3.emf]LRMRights IssuerOCSP Responder

1

2

3

a

b

4

OCSP Request

OCSP Response

L

RM

-R

IH

e

llo

Re

qu

es

t

L

RM

-R

IH

e

llo

Re

sp

on

se

LR

M

-R

IR

eg

ist

rat

io

nR

eq

ue

st

L

R

M

-R

IR

eg

ist

rat

ion

R

esp

on

se

Figure 2 – The 4-pass LRM-RI Registration Protocol
6.2.1.1 Trigger for LRM-RI Registration Protocol
A Rights Issuer MAY send trigger message to an LRM to invoke the LRM-RI registration protocol. The parameters in the trigger message is illustrated in the Table x.
Table 12: LRMRIRegistrationTrigger Message Elements
	element / attribute
	usage
	value

	type
	M
	Specified by specific protocol suite

	version
	M
	Specified by specific protocol suite

	proxy
	O
	Default, as specified in [SCE-GEN], section xyz

	resID
	M
	Default, as specified in [SCE-GEN], section xyz

	reqURL
	M
	Default, as specified in [SCE-GEN], section xyz

	nonce
	O
	Default, as specified in [SCE-GEN], section xyz

	LRMID
	O
	LRM’s ID

The type attribute of the message SHALL be “LRMRIRegistrationTrigger”
The version attribute of the message SHALL be “1.0”
The <resID> element MUST contain Rights Issuer’s identifier.

The <reqURL> element MUST contain the Rights Issuer’s URL address that serves LRM-RI registration protocol.

The <LRMID> element MUST contain the LRM’s Identifier.

<element name="LRMRIRegistrationTrigger" type="gen:DrmTrigger" />

<element name="LRMRIRegistrationTriggerInfo" type="LRMRIRegistrationTriggerInformation" substitutionGroup="gen:triggerInfo" />

<complexType name="LRMRIRegistrationTriggerInformation">

 <complexContent>

 <sequence>
<element name="LRMID" type="roap:Identifier" minOccurs=”0” />

 </sequence>

 </complexContent>
</complexType >
Appendix D.1 shows an example of an LRMRIRegistrationTrigger. If an LRM receives LRMRIRegistrationTrigger, it MUST check if the type attribute has “LRMRIRegistrationTrigger” and if the value of <LRMID> is equal to one of the LRM’s ID. If the checking fails, the LRM ignores the trigger. If the trigger message is verified, the LRM MUST invoke LRMRIRegistration protocol by sending LRMRIRegistrationRequest message to the Rights Issuer (to the address indicated by <reqURL> element).

6.2.1.2 LRM-RI Hello Request
The LRM-RI Hello Request message is sent from the LRM to the Rights Issuer to initiate the 4-pass LRM-RI Registration protocol. This message expresses LRM information and preferences. The request message is an element of type gen:Request, in which the elements are the same as specified in section 6.2 in [SCE-GEN].
6.2.1.3 LRM-RI Hello Response

The LRM-RI Hello Response message is the second message of the 4-pass LRM-RI Registration protocol and is sent from the Rights Issuer to the LRM in response to an LRM-RI Hello Request message. The message expresses RI preferences and decisions based on the values supplied by the LRM. The response message is an element of type gen:Response, in which the elements are the same as specified in section 6.3 in [SCE-GEN].
6.2.1.4 LRM-RI Registration Request

An LRM sends the LRM-RI Registration Request message to an RI to request registration with the RI. The message is sent as the third message in the 4-pass LRM-RI Registration protocol. The request message is an element of type gen:Request,in which the elements are present:
Table 13: LRM-RIRegistrationRequest Message Parameters
	element / attribute
	usage
	value

	sessionID
	M
	Default, as specified in [SCE-GEN], section xyz

	reqID
	M
	Default, as specified in [SCE-GEN], section xyz

	resID
	M
	Default, as specified in [SCE-GEN], section xyz

	nonce
	M
	Default, as specified in [SCE-GEN], section xyz

	time
	M
	Default, as specified in [SCE-GEN], section xyz

	certificateChain
	O
	Default, as specified in [SCE-GEN], section xyz

	reqInfo
	M
	Specified below

	signature
	M
	Default, as specified in [SCE-GEN], section xyz

The “xsi:type” attribute of <reqInfo> element in LRM-RIRegistrationRequest message MUST be set as “lrm:LRMRIRegistrationReqInfo”. The type of “lrm:LRMRIRegistrationReqInfo” is defined as below.

<complexType name="LRMRIRegistrationRequest">
<complexContent>

 <extension base=”gen:RegReqInfo”>

<sequence>
 <element name=”supportedUpstreamDRMs” type=”SetOfDRMSystem”/>
 <element name=”needMoveService” minOccurs=”0”/>

</sequence>
 </extension>

 </complexContent>

</complexType>
<complexType name="SetOfDRMSystem">

<sequence>

<element name="supportedDRMSystem" type="string" maxOccurs="unbounded"/>

</sequence>

</complexType>
Besides the elements included in gen:RegReqInfo, the <reqInfo> element in LRM-RIRegistrationRequest message includes further <supportedUpstreamDRMs> element and one optional <needMoveService> element.
The <supportedUpstreamDRMs> identifies the upstream DRM system that supported by the LRM, i.e. the LRM can import RO from these DRM systems.

The <needMoveService> element, if present, is used by the LRM to indicate to the RI that the LRM needs the RI provides Move service for the ROs created by the LRM, so that the ROs created by the LRM can be Moved via the RI to other Devices.
6.2.1.5 LRM-RI Registration Response

The LRM-RI Registration Response message is sent from the Rights Issuer to the LRM in response to an LRM-RI Registration Request message. This message completes the Registration protocol, and if successful, enables the LRM to establish an RI Context for this RI. The response message is an element of type gen:Response,in which the elements are present:
Table 14: LRM-RIRegistrationResponse Message Parameters
	element / attribute
	usage
	value

	status
	M
	Default, as specified in [SCE-GEN], section xyz

	sessionID
	M
	Default, as specified in [SCE-GEN], section xyz

	errorMessage
	O
	Default, as specified in [SCE-GEN], section xyz

	errorRedirectURL
	O
	Default, as specified in [SCE-GEN], section xyz

	reqID
	M
	Default, as specified in [SCE-GEN], section xyz

	resID
	M
	Default, as specified in [SCE-GEN], section xyz

	certificateChain
	O
	Default, as specified in [SCE-GEN], section xyz

	ocspResponse
	O
	Default, as specified in [SCE-GEN], section xyz

	rspInfo
	M
	Specified below

	signature
	M
	Specified below

The “xsi:type” attribute of <rspInfo> element in LRM-RIRegistrationResponse message MUST be set as “lrm:LRMRIRegistrationRspInfo”. The type of “lrm: LRMRIRegistrationRspInfo” is defined as below:

<complexType name=" LRMRIRegistrationRspInfo ">
<complexContent>

 <extension base=”gen:ResReqInfo”>

<sequence>

 <element name=”selectedUpstreamDRMs” type=”SetOfDRMSystem” minOccurs=”0”/>
 <element name=”provideMoveService” minOccurs=”0”/>

</sequence>
 </extension>

 </complexContent>

</complexType>
Besides the elements included in gen:ResRegInfo, the <rspInfo> element in LRMRIRegistrationResponse message includes further <selectedUpstreamDRMs> element and an optional <provideMoveService> element.
The <selectedUpstreamDRMs> specifies the upstream DRM systems that will be supported by the RI.

The <provideMoveService> element is used by the RI to indicate to the LRM whether the RI will provide Move service for the ROs that the LRM creates:

· If the <provideMoveService> element is present in rspInfo element in LRM-RIRegistrationResponse, the LRM MAY indicate within all the Imported-Rights-Objects that the LRM creates that this particular Rights Issuer is eligible to Move the Rights.

· If the <provideMoveService> element is NOT present in rspInfo element in LRM-RIRegistrationResponse, the LRM SHALL NOT indicate within any Imported-Rights-Object that the LRM creates that this particular Rights Issuer is eligible to Move the Rights.
6.2.2 LRM-RI Create RO Protocol
The 2-pass LRM-RI Create RO Protocol is the protocol by which an LRM enlists the services of a Rights Issuer to Import Rights associated with some DRM Content imported by the LRM from upstream DRM system to a designated DRM2.x Device, so that backward compatibility regarding Import function is achieved, i.e. an LRM can import RO into a DRM2.x Device. This protocol assumes that the LRM and the DRM2.x Device each have a valid RI context for the associated Rights Issuer.
This protocol includes securely transferring of imported Rights and REK to the Rights Issuer whereas ensures that the REK is not exposed to the Rights Issuer. This protocol MAY involve OCSP protocol between Rights Issuer and OCSP Responder for checking status of Rights Issuer’s certificate chain. After successful 2-pass LRM-RI CreateRO Protocol execution, the Rights Issuer MUST conduct RO Acquisition Protocol including optional ROAP-ROAcquisition Trigger as per [DRMDRM2.0], with the designated DRM2.x Device to issue the imported RO. But the RO Acquisition Protocol itself is not part of this protocol.
Each LRM SHALL make sure that the number of recipient Devices is less than some threshold set by some upstream service providers. Such threshold MAY vary over different upstream service providers, and MAY vary depending on the type of Import-Ready Data. Only in the case that the cumulative recipient Device quantity is less than the threshold does the LRM perform the LRM-RI Create RO protocol to issue imported Rights to a recipient 2.x Device.

[TBD4: how is the LRM going to get the DRM2.x Device’s public key]

[image: image4.emf]LRMRights IssuerDRM2.x Device

RO Acquisition Protocol

L

R

M

-

R

IC

r

ea

t

eR

O

R

eq

u

e

s

t

O

C

S

P

 R

e

s

p

o

n

s

e

1

a

b

2

L

R

M

-R

IC

re

a

te

R

O

R

e

s

po

n

s

e

O

C

S

P

 R

e

q

u

e

s

t

OCSP Responder

Figure 3 – The 2-pass LRM-RI Create RO Protocol

6.2.2.1 LRM-RI Create RO Request

An LRM sends the LRM-RI Create RO Request message to an RI to request creating one or more RO for a designated DRM2.x Device. The request message is an element of type gen:Request, in which the elements are present:
Table 15: LRM-RICreateRORequest Message Parameters
	element / attribute
	usage
	value

	reqID
	M
	Default, as specified in [SCE-GEN], section xyz

	resID
	M
	Default, as specified in [SCE-GEN], section xyz

	nonce
	M
	Default, as specified in [SCE-GEN], section xyz

	time
	M
	Default, as specified in [SCE-GEN], section xyz

	certificateChain
	O
	Default, as specified in [SCE-GEN], section xyz

	reqInfo
	M
	Specified below

	signature
	M
	Default, as specified in [SCE-GEN], section xyz

The “xsi:type” attribute of <reqInfo> element in LRMRICreateRORequest message MUST be set as “lrm:CreateROReqInfo”. The type of “lrm:CreateROReqInfo” is defined as below.

<element name=”lrmRICreateRORequest” type=”gen:Request” />

<complexType name="CreateROReqInfo">
<complexContent>

 <extension base=”gen:RequestInformation”>
 <!--multiple sequences are used when importing to multiple Devices-->

<sequence maxOccurs=”unbounded”>
 <element name="recipientDeviceId" type="gen:Identifier"/>
 <!--multiple rights are used when importing multiple RO to a single Device-->

<element name="rights" type="o-ex:rightsType" maxOccurs=”unbounded”/>
 <element name="enc_EncKmacREKs_Kmac" type="xenc:EncryptedKeyType"/>

</sequence>
 </extension>

 </complexContent>

</complexType>

The <reqInfo> element in LRM-RICreateRORequest message includes one or more sequences of one <recipientDeviceId> element, one or more <rights>elements, and one <enc_EncKmacREKs_Kmac> element. It conveys the information about the Rights that the LRM is attempting to import to the designated DRM2.x Device. Based on the information, the RI will issue a DRM2.x compatible Device RO to the designated DRM2.x Device via RO Acquisition protocol specified in [DRM2.x]. The included elements are specified as below:

· The <recipientDeviceId> element

The <recipientDeviceId> elment is of type gen:Identifier specified in [SCE-GEN]. It specifies the hash of the public key of the designated DRM2.x Device to which the Rights will be imported.

· The <rights> element

The <rights> element is of type o-ex:rightsType specified in [DRM2.x-REL]. Within it, only the ContentID indicated by the value of [rights / agreement / asset / context / uid] element, the DCF Hash value indicated by the [rights / agreement / asset / digest / digestValue] element, the encryptedCEK indicated by the value of [rights / asset / KeyInfo / EncryptedKey / CipherData / CipherValue] element, the permissions and constraints indicated by the content of [rights / agreement / permission] elements MUST be provided by the LRM, while the [rights / context / uid] element that represents the ROID MUST NOT be provided by the LRM. But in order to meet the requirement of the schema of o-ex:rightsType type, the [rights / context / uid] element MUST be present but with an arbitrary value. The RI is expected to replace the arbitrary value with a concrete ROID.
 The <rights> element can occur multiple times. When there are multiple <rights> elements, each of which MUST have a different REK.

· The <enc_KeyEncKmacREKs_Kmac> element

The <enc_KeyEncKmacREKs_Kmac> element is of xenc:EncryptedKeyType type. All the elements inside the <enc_EncKmacREKs_Kmac> element MUST be provided by the LRM as below:
· The [enc_EncKmacREKs_Kmac / keyInfo / X509SPKIHash/hash] element carries the hash of the public key of the RI.

· The [enc_EncKmacREKs_Kmac / CipherData / CipherValue] carries C specified below:

From a security point of view, there MUST be a unique REKi for encryption of CEK which is encapsulated in each <rights> element. To prevent the REKi from being exposed to the RI, each REKi MUST be encrypted using the public key of the designated recipient DRM2.x Device as below, yielding EncREKi:

KEKi = KDF(I2OSP(Zi, mLenDevice), NULL, kekLen)
Ci2 = AES-WRAP(KEKi, KMAC | REKi)
Ci1 = I2OSP(RSA.ENCRYPT(PubKeyDevice, Zi), mLenDevice)
EncKmacREKi = Ci1 | Ci2
Where the KDF() function, the I2OSP() function, the AES-WRAP() function, the RSA.ENCRYPT() function and the kekLen are the same as specified in [DRM2.x], and the mLenDevice is the length of the modulus of the recipient DRM2.x Device’s RSA public key in octets, and the Zi is a random integer generated by the LRM based on the modulus of the recipient DRM2.x Device’s RSA public key in the same way as specified in [DRM2.x]. The KMAC is intended to be used by the designated recipient DRM2.x Device to verify integrity protect over the <roPayload> in ROResponse message in subsequent ROAcquisition protocol.

The C is yielded as below:

KEK = KDF(I2OSP(Z, mLenRI), NULL, kekLen)
K = KMAC | EncKmacREK0 | EncKmacREK1 | …| EncKmacREKN, (Suppose there are N <rights> elements)

C2 = AES-WRAP(KEK, K)
C1 = I2OSP(RSA.ENCRYPT(PubKeyRI, Z), mLenRI)
C = C1 | C2
Where the KDF() function, the I2OSP() function, the AES-WRAP() function, the RSA.ENCRYPT() function and the kekLen are the same as specified above, and the mLenRI is the length of the modulus of the RI’s RSA public key in octets, and the Z is a random integer generated by the LRM based on the modulus of the RI’s RSA public key in the same way as specified in [DRM2.x]. The KMAC is the same as above and is intended to be used by the RI to provide integrity protect over the <roPayload> in ROResponse message in subsequent RO Acquisition protocol.

After receiving C, the RI splits it into C1 and C2 and decrypts C1 using its private key (consisting of a private exponent d and the modulus m), yielding Z:
C1 | C2 = C
c1 = OS2IP(C1, mLen)
Z = RSA.DECRYPT(PrivKeyRI, c1)
where the function OS2IP() is the same as specified in [DRM2.x].
Using Z, the RI can derive KEK, and from KEK unwrap C2 to yield K:

KEK = KDF(I2OSP(Z, mLen), NULL, kekLen)

K = AES-UNWRAP(KEK, C2)

KMAC | EncKmacREK0 | EncKmacREK1 | …| EncKmacREKN = K (Suppose there are N <rights> elements)

The RI can yield KMAC and EncKmacREK0…EncKmacREKn by splitting K.
The EncREKi is used by the RI to form an <encKey> element in <roPayload> in subsequent RO Acquisition protocol:

· Set the value of the [enc_EncKmacREKs_Kmac / keyInfo / X509SPKIHash/hash] element as the hash of the public key of the designated DRM2.x Device.

· Set the value of [enc_EncKmacREKs_Kmac / CipherData / CipherValue] as EncREKi.
· Set the value of other elements inside <encKey> element in the same way as specified in [DRM2.x].
· The values of all other elements inside the <enc_EncKmacREKs_Kmac> elements are set in the same way as specified in [DRM2.x].

Upon receiving the LRM-RICreateRORequest message, the RI MUST verify the signature of the LRM and determine whether fulfilling the cumulative number of recipient Devices serviced by the RI on behalf of the particular LRM would result in exceeding the upper bound set for the LRM. This upper bound is typically set by the RI directly or by a Trust Authority. If the upper bound would be exceeded, the RI SHALL reject the particular LRM-RICreateRORequest. In that event, later requests can still be accepted if they identify recipient Devices that are already on the list of recipient Devices for which the RI has provided ROs on behalf of the LRM. If verification of a request is successful and the RO can be provided to the identified recipient Device without exceeding the upper bound, then the RI MUST issue an RO to the designated DRM2.x Device by a subsequent ROAcquisition Protocol, based on the information about the Rights indicated by the <reqInfo>.

The RI SHALL NOT include the <signature> element over the <rights> element in the RO Payload for the recipient DRM Agent.
6.2.2.2 LRM-RI Create RO Response

An RI sends the LRM-RI Create RO Response message to an LRM to indicate the result of creating one or more RO for a designated DRM2.x Device. The response message is an element of type gen:Response, in which the elements are present:
 Table 16: LRM-RICreateROResponse Message Parameters
	element / attribute
	usage
	value

	status
	M
	Default, as specified in [SCE-GEN], section xyz

	errorMessage
	O
	Default, as specified in [SCE-GEN], section xyz

	errorRedirectURL
	O
	Default, as specified in [SCE-GEN], section xyz

	reqID
	M
	Default, as specified in [SCE-GEN], section xyz

	resID
	M
	Default, as specified in [SCE-GEN], section xyz

	nonce
	M
	Default, as specified in [SCE-GEN], section xyz

	certificateChain
	O
	Default, as specified in [SCE-GEN], section xyz

	ocspResponse
	O
	Default, as specified in [SCE-GEN], section xyz

	rspInfo
	M
	Specified below

	signature
	M
	Default, as specified in [SCE-GEN], section xyz

The “xsi:type” attribute of <rspInfo> element in LRMRICreateROResponse message MUST be set as “lrm:CreateRORspInfo”. The type of “lrm:CreateRORspInfo” is defined as below:
 <element name=”lrmRICreateROResponse” type=”gen:Response” />

<complexType name="CreateRORspInfo">
<complexContent>

 <extension base=”gen:ResponseInformation”>

<sequence maxOccurs=”unbounded”>

 <choice>

 <element name="success"/>
 <element name= "failureReason" type= "string"/>

</choice>

</sequence>
 </extension>

 </complexContent>

</complexType>
The <rspInfo> element in LRMRICreateROResponse message includes one or more sequences of choice between <success> element and <failureReason> element.
The <success> element indicates the <reqInfo> corresponding to the sequence was successfully processed and the corresponding RO can be issued to the designated DRM2.x Device.

The <failureReason> element indicates the reason why the <reqInfo> corresponding to the sequence was not successfully processed.

6.3 SCE-5-LRMP
<text>

6.3.1 Overview

<text>

6.3.2 Message Format

<text>

6.3.3 Message Schema

<text>

6.4 SCE-6-LRMP

<text>

6.4.1 Overview

The LRM generates an Imported-Rights-Object and Imported-Content. The specifics of the Imported-Rights-Object format will follow the general form of Rights Objects transferred over the SCE-7-A2AP interface between DRM Agents [SCE A2A TS]. In particular, the Imported-Rights-Object includes a <rights> element and <signature> element. As in a Move of Rights over the SCE-7-A2AP interface [SCE A2A TS], the REK is transferred over a Secure Authenticated Channel that is established using a run of the Mutual Authentication and Key Exchange (MAKE) protocol specified in [SCE A2A TS]. Unlike the Move operation specified in [SCE A2A TS], the Rights Object Encryption Key (REK) is generated by the LRM (or derived from Non-OMA DRM-sourced data securely provided to the LRM). Unlike the Move operation, the <signature> element is generated using the LRM’s private key (rather than having the Move-source forward an RI-generated signature). The DRM Agent MUST verify that the LRM which was used to set up the Secure Authenticated Channel with the DRM Agent is the same LRM that generated the <signature> element.

As a condition of installing an Imported-Rights-Object, the recipient DRM Agent MUST successfully verify DA/DEA-signed data that includes that DRM Agent’s Device ID (as well as the ID of a DEA corresponding to the LRM) or Device-null DA-signed data. There MUST be a means for the DRM Agent to ascertain the current validity status of the DA-signed data. A Device that supports DRM Time can independently ascertain the current validity status of the DA-signed data. DA-signed data MAY be issued by the DA without any start- or end- time restrictions. Appropriate DA-signed data MAY be provided to the Device by the DEA or LRM or an alternative source. As a condition of installing an Imported-Rights-Object, the DRM Agent MUST have verified the validity of the DA certificate chain.

An operation entailing LRM-managed Import to a specific Device is not cryptographically accessible to any Device other than the Import-recipient Device.
6.4.1.1 Device Registration and Rights Object Import

A Device MAY register with a DEA as either a User Domain Device or as a Guest Device. An LRM SHALL be required to limit Import of its Rights Objects to Devices that a DEA corresponding to that LRM has registered as User Domain Devices. This correspondence between a DEA and an LRM MAY be reflexive in that DEA and LRM functionality may be conducted relative to the same certified key pair. Details of the case of an LRM that is distinct from a DEA are TBD. If DA-signed data is Device-specific (i.e., is not Device-null as described in Section 6.4.1), a DRM Agent SHALL reject Import if not presented with a currently valid DA-signed data association of the Device to the DEA corresponding to that LRM (where such DA-signed data is presented either as part of the Import or previous to the Import but still valid). The means of determination by the DRM Agent as to current validity is dependent on whether or not the Device supports DRM Time and is TBD. A Device associated with a DEA SHALL be designated as a “User Domain Device” (i.e., User Domain member DRM Agent) or a “Guest Device” (i.e., guest DRM Agent) according to some policy created by a DA. An OCSP response relative to the DA MAY be cached by the DEA or LRM for distribution to Devices that support DRM Time. Devices SHALL be configured to require verification of DA-signed data as a condition of completing registration as User Domain Devices, and therefore SHALL NOT perform as User Domain Devices relative to inbound Moves (i.e., as Recipient Device) or outbound Moves (i.e., as Source Device) unless such verification is successful.

A DEA MAY be required according to some policy created by a DA to limit the number of User Domain Device registrations that the DEA issues within a given time period, in which case any subsequent registrations issued during that time period SHALL be for Guest Device registrations only. A DEA MAY be required to limit the number of Guest Device registrations that it issues within a given time period. Such requirements MAY be hard-coded within the DEA. Alternatively, such requirements MAY be conveyed to the DEA from the DA as part of some policy.

A Device’s registration status as User Domain Device or as Guest Device relative to a particular DEA MAY change over time. Conditions for such status changes MAY be conveyed to the DEA from the DA as part of some policy. An LRM May be required to limit the number of times it performs an Import operation on given Import-Ready Data, i.e., the collective number of “copies” of the Rights that it distributes.

As a prerequisite (on the DRM Agent end) to completing registration as a User Domain Device, a DRM Agent MUST successfully verify DA-signed data identifying the DEA (and identifying the Device, unless the data is Device-null). DEAs and Devices MUST be identified via public key hashes. If no such currently valid data identifying the DEA is made available to the DRM Agent, a compliant DRM Agent MUST be eligible only for registration as a Guest Device relative to such DEA.

When parsing DA-signed data a DRM Agent determines whether the data is Device-null or Device-specific; if the data is Device-specific and the DRM Agent’s Device ID is absent, then the data MUST be rejected by the DRM Agent. A particular DRM Agent’s Device ID MAY appear in one instance of currently valid DA-signed data while being absent from another. The DEA and LRM roles MAY be exercised by using the same certificate. LRM certificates are distinguishable from DRM Agent certificates and from Rights Issuer certificates (per critical extKeyUsage extension indicated in Appendix C). This does not preclude ownership of multiple certificate types within the same equipment.
7. Key Management
7.1 Cryptographic Components
<text>
7.2 Key Transport Mechanisms
7.2.1 Device Registration and Pairing Protocols
One of the functions of a DEA is to keep track of all the provisioned Devices in a system and the cryptographic data associated with them. Additionally, the DEA authenticates client Devices and issues Tickets for those client Devices to use as trusted tokens during communications with other Devices. The DEA assigns expiration time to Tickets, thus requiring Devices with Tickets to periodically renew them. By allowing Devices to cache these Tickets, the system eliminates the need for Devices to request Pairings when the Tickets have not expired.
The pairing mechanism is a method to transfer Rights between one Device and another entity (Device or LRM) for which there is a Ticket that identifies both entities, i.e. the imported Rights could be imported from LRM to a Device for which there is an LRM-Ticket that identifies both entities and could be transferred by the UserDomain Device to another Device where there is an Agent-Ticket that identifies both Devices.

If a Device registers with a DEA, then the Device SHALL register with the DEA by using a Device’s digital certificate. The DEA SHALL store the client Device’s unique identity and public key. Once this is done, Devices can obtain Tickets directly from the DEA.

It is anticipated that each Device’s unique cryptographic identity is loaded to the client device in the factory during manufacturing.

Once a first Device registers with a DEA and receives a Ticket for a second Device, the first Device MAY request content to be sent or streamed from the second Device or vice-versa. A secure key request message (discussed below) is sent from the first Device to the second Device by using the Ticket to authenticate itself and to establish a secure session. Once the second Device has authenticated the first Device and has verified the Rights associated with the requested content, the second Device sends the content decryption key and associated Rights to the first Device in a secure manner such that only the first Device can verify the integrity of the message and decrypt the cryptographic data.
In what follows, how an LRM registers with a DEA is defined in the same way as that of how a Device registers with a DEA. The protocols in Section 7.2.1.1 apply to both Devices and LRMs. Similarly, an LRM obtains a Service Key for a DEA in the same way that a Device obtains a Service Key for a DEA. The protocols in Section 7.2.1.2 apply to both Devices and LRMs. In practice, it is possible that a Device might ask for an LRM Ticket corresponding to an LRM that has not yet registered with the DEA. In this case, the DEA returns an error message to a requesting device.
7.2.1.1 Device Registration Protocol
This section discusses the Device Registration messages for a Device that interacts with a DEA to Import content from an LRM associated with the DEA. The protocol messages are depicted in Figure 4. In general, it is expected a Device needs to register with a DEA only once, unless, for example, the Device needs to re-register because of an expired digital certificate. A Device MAY register more than once with a DEA, in which case a new registration replaces a previous registration. A Device MAY register with more than one DEA. To start the registration process, the Device SHALL send to the DEA a Device Registration Request message that includes the client signature and certificate. The Device Registration Request message is specified in Section 7.2.1.1.1.

[image: image5.wmf]Device

DEA

Device Registration Request

Device Registration Response

Device

DEA

Device Registration Request

Device Registration Response

Figure 4 – Device Registration Protocol
After receiving the Device Registration Request message, the DEA validates the request and verifies that the Device is authorized, so that, e.g., the certificate of the Device is not revoked. If the validation succeeds, then the DEA proceeds as follows.

The DEA MAY prompt a User to check if the User accepts the new Device with the given identifier to be registered in the DEA. This is used, for example, to prevent someone in a parking lot registering over a wireless or WiFi network and getting access to this User’s content without permission. A user can disable this feature and then any Device can register into the DEA seamlessly without any User interaction.
If the limit for concurrently registered Devices for the DEA has been reached, then the DEA does not register the Device and informs the Device of this fact. Otherwise, the DEA registers the Device as a “User Domain Device”.
Next, the DEA SHALL store the Device public key extracted from the certificate of the Device. Next, the DEA SHALL send a Device Registration Response message that includes an acknowledgement from the DEA, the type of registration (i.e. “User Domain Device” or “Not Registered”), the DEA certificate, DA-signed data that proves that the DEA is authorized to register the Device, and a DEA digital signature. Note that DA-signed data does not include Guest Device identities, and the DA is not made aware of Guest Device identities. The Device Registration Response message is specified in Section 7.2.1.1.2.
After a Device receives and validates Device Registration Response message, the Device SHALL save the DEA certificate until the DEA certificate expires or until the Device becomes aware that the certificate has been revoked. The Device can use the DEA certificate for validation of future DEA responses.
7.2.1.1.1 Device Registration Request Message Details

The Device Registration Request message has the syntax described in Section 6.1. The fields of the message are as follows:

· msgType – This field contains the value 12.
· Pvno – This field contains the value TBD.

· stid – This field is set as discussed in Section 7.2.1.1.1.1.
· dtid – This field is set as discussed in Section 7.2.1.1.1.1.
· retryCount – This field is set as discussed in Section 7.2.1.1.1.1.
· Attributes – This data structure contains the NewPrincipalFlag attribute.
· nbrOfAttrs – This field contains the value 1.
· AttributeStructures – This data structure contains the PubKeyClientAuthenticator attribute data structure and the CertificateChain attribute data structure.
· nbrOfAttrStrs – This field contains the value 2.
· Signature – This attribute data structure specifies a digital signature of the message as discussed in Section 7.2.1.1.1.1.
7.2.1.1.1.1. Generating Device Registration Request Message

The Device MUST follow the following steps to generate a Device Registration Request message:

1. Generate a pseudo random number for the stid header field of the message. Make sure that this value does not correspond to any outstanding Device Registration Request messages. Continue repeating this step until a unique value is generated.
2. Set the dtid header field of the message to 0.
3. Fill in the retryCount field. The value must be 0 for the initial message, 1 for the first retry, etc.

4. Fill in the value of the NewPrincipalFlag – depending on whether the intent is to create a new record in the DEA storage or to update an existing one.

5. Generate the PubKeyClientAuthenticator attribute data structure to authenticate this request as per Section 7.2.1.1.1.2.
6. Generate the CertificateChain attribute data structure.
7. Generate the Signature attribute data structure. The data structure consists of a SigType attribute and a SigValue attribute. The value in SigValue is calculated over the entire message except for the Signature attribute data structure. Use the Device private key to compute the signature.
After the Device sends out the Device Registration Request message, it MUST save the value of the stid header field in order to later validate the matching Device Registration Response message from the DEA. The Device MUST keep the stid until a configurable time out value. After the time out, the Device will no longer be able to process the corresponding Device Registration Response message and must retry and increment the retryCount value.

7.2.1.1.1.2. Generating PubKeyClientAuthenticator
The PubKeyClientAuthenticator attribute data structure is generated in order to authenticate one of several messages sent by a client to the DEA. The generation steps are:

1. Generate ClientName attribute and ClientDomainBaseID attribute. A client MAY set the length field value of ClientDomainBaseID to 0 and not specify a value for ClientDomainBaseID.

2. Fill in the ClientDRMtimeSeconds attribute and the ClientDRMtimeMicroSeconds attribute.

3. Add the DEAPubKeyIdentifier attribute data structure.

4. If the Device previously saved a DEA certificate chain, check if any of the corresponding CRLs are expired. If so, add a RequestCRLs attribute to the PubKeyClientAuthenticator, listing the issuers of the expired CRLs. The DEA will be required to reply with the corresponding up-to-date CRLs.

7.2.1.1.1.3. Processing Device Registration Request Message

The DEA MUST perform the following steps to verify the Device Registration Request message:

1. Parse the message header. If the header parsing fails, drop the message and do not return an error.

2. Verify the protocol version number in the header. If this protocol version is not supported, send an error message with the DEA_ERR_BAD_PVNO error code.

3. Parse the rest of the message. If the message format is found to be illegal, drop the message and do not return an error.

4. Validate the client certificate chain and extract the client’s public key. Compute the ClientIdentifier from the certificate.

5. Process the PubKeyClientAuthenticator attribute data structure as specified in Section 7.2.1.1.1.4.

6. If the value in the NewPrincipalFlag attribute equals 0, and the value of the ClientName in the PubKeyClientAuthenticator attribute data structure already exists in the DEA storage, then the DEA MUST verify that the corresponding ClientIdentifier in the DEA storage has the same value as that extracted from the client certificate chain present in the Device Registration Request message. If the values are different, then the DEA returns an error message with error code DEA_ERR_HOSTID_CHANGE_PROHIBITED. This prevents a new client intentionally registering with an existing ClientName so as to take advantage of the ClientName’s authorizations.

Note that the only reasons a Device sends Device Registration Request message with the value in the NewPrincipalFlag attribute equal to 0 is if the Device updates its certificate, if the Device wishes to add a new value for the ClientName to the ClientIdentifier record in the DEA storage, or if the Device wants to add a new value for the ClientDomainBaseID to the ClientIdentifier record in the DEA storage.
7. If no errors are generated during the processing of this message, then the DEA does one of the following depending on the value of the NewPrincipalFlag attribute:

If the value is 0, then the DEA adds the value of ClientName to the corresponding ClientIdentifier value record (if the value of ClientName is new), adds the value of ClientDomainBaseID to the corresponding ClientIdentifier value record (if the value of ClientDomainBaseID is new), updates in the record the certificate identifying information needed to later check for revocation, and updates the values of EncTypeSet and SigTypeSet associated with the client record. If the ClientDomainBaseID has length 0 in the message, then the DEA SHOULD add a default ClientDomainBaseID value to the corresponding ClientIdentifier value record (if the record does not have this default value already).

If the value is 1, then the DEA creates a new record in the DEA storage. The record includes the value of ClientIdentifier, ClientName, ClientDomainBaseID, DeviceRegistrationTypeResponse, Device public key, certificate identifying information needed to later check for revocation, the values of EncTypeSet and SigTypeSet for the client, and the value of ClientDRMtimeSeconds. If the ClientDomainBaseID has length 0 in the message, then the DEA SHOULD set the value of ClientDomainBaseID to a default value. Regardless of the ClientDomainBaseID value, the DEA verifies that the limit for concurrently registered Devices for the DEA has been not been reached. If the limit has been reached, then the DEA sets the value of the DeviceRegistrationTypeResponse attribute to 0, i.e. “Not Registered” and proceeds to Step 8 below. If the limit has not been reached, then the DEA checks the DA-signed data. If the DA-signed data is Device-specific, and the value of ClientIdentifier is not in the DA-signed data, then sets the value of the DeviceRegistrationTypeResponse attribute to 0, i.e. “Not Registered” and proceeds to Step 8 below. In all other cases, the DEA sets the value of the DeviceRegistrationTypeResponse attribute to 1, i.e. “User Domain Device”.

8. The DEA generates the Device Registration Response message.
7.2.1.1.1.4. Processing PubKeyClientAuthenticator
The DEA MUST verify the PubKeyClientAuthenticator attribute data structure by using the following procedure:

1. Verify the value of the NewPrincipalFlag attribute as follows. If the value is 0, then the Device Registration Request message is an update message. So, the ClientIdentifier of the Device must already exist in the DEA storage. If the ClientIdentifier does not exist in the DEA storage, then the DEA sends an error message with the error code DEA_ERR_OTHER_PRINCIPAL_NOT_FOUND.

If the value of the NewPrincipalFlag attribute is 1, then the values of the ClientName and the ClientIdentifier attributes in the PubKeyClientAuthenticator attribute data structure must not yet exist in the DEA storage. If the value of the ClientIdentifier does exist in the DEA storage, then the DEA sends an error message with the error code DEA_ERR_DUP_HOSTID. If the value of ClientName does exist in the DEA storage, then the DEA sends an error message with the error code DEA_ERR_OTHER_PRINCIPAL_ALREADY_EXISTS. There is one scenario where the presence of the ClientName or ClientIdentifier values in the DEA storage does not result in an error, however:

a) The Device sends a Device Registration Request message to create a new record in the DEA

b) The DEA processes the request, creates the new record and sends back a reply message.

c) The Device times out before getting the reply message and resends the same Device Registration Request message. The request is to create a new record, but the DEA storage record was just created in Step b above. However, since this is a retry, it should not result in an error.

In order to address this scenario, the DEA MUST save the values of the ClientDRMtimeSeconds attribute and the ClientDRMtimeMicroSeconds attribute contained in the PubKeyClientAuthenticator attribute data structure. If the RetryCount field in the Device Registration Request message header is greater than 0, and the DEA finds a record in its storage matching the ClientIdentifier value, ClientDomainBaseID value, and the Ctime value, then the DEA treats the request as an update and not as n error.

2. If the ClientIdentifier has been marked as being revoked in the DEA, then an error message with the error code DEA_ERR_CLIENT_REVOKED is returned.

3. Verify the Signature attribute data structure. If the attribute data structure contains a SigType attribute, then an error message with the error code ERR_INAPP_CKSUM is generated. If the value of the SigType in the Signature attribute data structure is not supported by the DEA, then the DEA generates a DEA_ERR_SIGTYPE_NOSUPP error message. If the signature value that the DEA computes for the Device Registration Request message does not match the value contained in the SigValue attribute contained in the Signature attribute data structure, then an error message with DEA_ERROR_INVALID_SIG is returned.

4. Check the value contained in the ClientDRMtimeSeconds attribute. If the value is outside of an acceptable time window (typically +/- 5 minutes), then the DEA rejects the Device Registration Request message and returns the ERR_SKEW error message.

5. Otherwise, the DEA computes a SHA-1 hash of the full Device Registration Request message and checks if there is already a record for this particular message type (i.e. msgType value 12) with this hash value in a DEA Replay Cache. Each Replay Cache record contains a hash value indexed by a msgType and the ClientDRMtimeSeconds value. Only the entries corresponding to the acceptable time window, e.g. +/- 5 minutes, are kept in the Replay Cache. If the DEA finds a record in the Replay Cache with the same hash value, a replay attack is assumed and the ERR_REPEAT error message is returned. If no such entries are found, the processing continues as specified below.

6. The DEA updates the Replay Cache with a record corresponding to this Device Registration Request message. The record contains a SHA-1 message hash and the value of the ClientDRMtimeSeconds attribute.

7. Make sure that the value contained in the DEAPubKeyHash attribute in the PubKeyClientAuthenticator attribute data structure matches one of the DEA public keys. If the value does not match any of the public keys possessed by the DEA, then the Device Registration Request message MUST be rejected with the error code DEA_ERR_PUBKEY_NOT_FOUND logged into a local file, and the DEA MUST NOT send back an error message (since the Device will be unable to verify it).

7.2.1.1.2 Device Registration Response Message Details

The Device Registration Response message has the syntax described in Section 6.1. The fields of the message are as follows:

· msgType – This field contains the value 13.
· Pvno – This field contains the value TBD.

· stid – This field is set as discussed in Section 7.2.1.1.2.1.
· dtid – This field is set as discussed in Section 7.2.1.1.2.1.
· retryCount – This field is set as discussed in Section 7.2.1.1.2.1.
· Attributes – This data structure contains the DASignedData attribute and the DeviceRegistrationTypeResponse attribute.
· nbrOfAttrs – This field contains the value 2.
· AttributeStructures – This data structure contains the PubKeyDEAAuthenticator attribute data structure.
· nbrOfAttrStrs – This field contains the value 1.
· Signature – This attribute data structure specifies a digital signature of the message as discussed in Section 7.2.1.1.2.1.
7.2.1.1.2.1. Generating Device Registration Response Message

The DEA MUST follow the following steps to generate a Device Registration Response message:

1. Set the stid header field of the message to 0.

2. Set the dtid header field of the message to the same value of the stid header field from the preceding Device Registration Request message, so that the response message is tied to the request message.
3. The retryCount from the preceding Device Registration Request message is copied to the retryCount in this message.

4. Populate the DASignedData attribute and the DeviceRegistrationTypeResponse attribute.

5. Generate the PubKeyDEAAuthenticator attribute data structure to authenticate this request as per Section 7.2.1.1.2.2.
6. Generate the Signature attribute data structure. The data structure consists of a SigType attribute and a SigValue attribute. The value in SigValue is calculated over the entire message except for the Signature attribute data structure. Use the DEA private key to compute the signature.
7.2.1.1.2.2. Generating PubKeyDEAAuthenticator
The PubKeyDEAAuthenticator attribute data structure is generated in order to authenticate one of several messages sent by a DEA to a client. The generation steps are:

1. Find the DEA public key whose hash equals the value in the DEAPubKeyHash attribute present in the PubKeyClientAuthenticator attribute data structure in the preceding Device Registration Request message.

2. In the event that the DEA does not find that public key, the DEA SHOULD choose another public key and include the certificate of that public key in the PubKeyDEAAuthenticator.

3. If the client requested some updated CRLs (in the PubKeyClientAuthenticator), and the DEA is not including a new certificate in the Device Registration Response message, then the DEA SHOULD include the CRLList attribute data structure with a list of requested CRLs. If for whatever reason the DEA is unable to obtain some of the requested CRLs, it should leave them out of the CRLList but MUST NOT return an error. If the DEA was unable to obtain any of the requested CRLs, it MUST omit the CRLList attribute data structure. (It is up to the client policy to decide if it can accept a DEA signature when some of the CRLs are missing.)

4. If the client requested some updated CRLs (in the PubKeyClientAuthenticator), and the DEA included a new certificate in the Device Registration Response message, then the DEA SHOULD include the CRLList attribute data structure with a list of CRLs that correspond to each of the issuers in the DEA certificate chain. If for whatever reason the DEA is unable to obtain some of the CRLs, it should leave them out of the CRLList but MUST NOT return an error. If the DEA was unable to obtain any of the CRLs, it MUST omit the CRLList attribute data structure. (It is up to the client policy to decide if it can accept a DEA signature and a new DEA certificate when some of the CRLs are missing.)

7.2.1.1.2.3. Processing Device Registration Response Message

The client MUST follow the following procedure to process the Device Registration Response message. Note that the client does not send an error message back to the DEA. In some cases, the client will retry with another Device Registration Request message:

1. Parse the message header. If the header parsing fails, pretend that the Device Registration Response message were never received, i.e. continue waiting for a reply to the initial Device Registration Request message until a timeout occurs and then retry.
2. Verify the protocol version number in the header. If this protocol version is not supported, pretend the message were never received.

3. The client looks for an outstanding Device Registration Request message whose stid value matches the dtid header field in the Device Registration Response message. If there is no match, the client proceeds as if the Device Registration Response message were never received.

4. Verify that the retryCount in the preceding Device Registration Request message matches the retryCount in the Device Registration Response message. If it does not match, the client proceeds as if the reply message were never received.

5. Parse the rest of the Device Registration Response message. If the message format is found to be illegal, pretend the message were never received.
6. Verify the signature (by using the DEA public key). If the signature does not verify, this message is dropped and the client proceeds as if the message were never received.
7. Verify that the value of the DASignedData attribute shows that the DEA is authorized by the DA to register the Device. For example, if the DA-signed data is Device-specific, then the value of the DASignedData attribute must include the value of the ClientIdentifier. If the verification fails, then the client MUST abort processing of the message and log the error code DEA_ERROR_DEA_NOT_TRUSTED.

8. Process PubKeyDEAAuthenticator as specified in Section 7.2.1.1.2.4.

9. Store the value of the DeviceRegistrationTypeResponse attribute.
7.2.1.1.2.4. Processing PubKeyDEAAuthenticator

The client MUST verify the PubKeyDEAAuthenticator attribute data structure by using the following procedure:

1. The client verifies the digital signature contained in the Signature attribute data structure by using the pre-provisioned DEA public key if the DEA did not include a DEA certificate in PubKeyDEAAuthenticator. If the DEA included a DEA certificate in PubKeyDEAAuthenticator, then the client verifies the signature by using the public key in the certificate. If the signature does not verify, then the Device Registration Response message is dropped and the client proceeds as if the message were never received.

2. In the case that a DEA certificate chain was included in PubKeyDEAAuthenticator but the client does not support this particular certificate type or does not support parsing of DEA certificates altogether, the client MUST abort processing of the message and log the error code DEA_ERR_CERTTYPE_NOSUPP.

3. If the DEA certificate was included in the Device Registration Response message, the client MUST save the new DEA public key for verifying all future reply messages that contain PubKeyDEAAuthenticator.
7.2.1.2 Service Keys for Devices
The DEA SHALL assign a unique symmetric service key to each Device. The symmetric service keys provide faster authentication to the DEA in subsequent ticket requests than authentication with public/private keys. The assignment of the service keys is described below and is shown in Figure 5.

[image: image6.wmf]Device

DEA

Device Registration Request

Device Registration Response

Service Key Request

Service Key Response

Figure 5 – Assignment of Service Keys

To obtain a Service Key, a Device SHALL send to the DEA a Service Key Request message that is authenticated by using the private key of the Device. The message SHALL contain the identity of the Device, the identity of the DEA, and a list of symmetric encryption algorithms that are supported by the Device. To check against replays, this message SHALL also contain a NONCE. The Service Key Request message is specified in Section 7.2.1.2.1.
In response, the DEA SHALL randomly generate a symmetric Service Key, store it, and then send a copy of it in a Service Key Response message to the Device, as specified next. The Service Key Response message SHALL include the Service Key in a DEA-Ticket that has both a clear and an encrypted part. The clear part of the DEA-Ticket SHALL include the identity of the DEA, a Ticket validity period, and a list of symmetric encryption algorithms that are supported by the DEA. The encrypted part of the DEA-Ticket SHALL contain the identity of the Device and information pertaining to the symmetric Service Key. The encrypted part of the DEA-Ticket SHALL be encrypted by using a secret key that is kept private by the DEA. The encrypted part of the DEA-Ticket SHALL be encrypted by using a secret key that is kept private by the DEA. The DEA-Ticket SHALL be integrity protected by a keyed hash that uses a secret key that is kept private by the DEA. The Service Key SHALL be communicated from the DEA to the Device in an encrypted form by using a session key that is derived based on a key agreement algorithm. Note that the key agreement algorithm uses digital signatures for bi-directional proof-of-origin, so that key confirmation is therefore unnecessary. The entire Service Key Response message SHALL be signed by the DEA private key. The Service Key Response message is specified in Section 7.2.1.2.2.
Each Device that has a Service Key SHALL periodically update its Service Key based on an expiration time returned in the Service Key Response message. Each Service Key update is performed by repeating the Service Key Request/Response exchange. The default value for the Service Key lifetime is RECOMMENDED to be 30 days. When a Service Key is renewed, the value field in the SkeyVnum attribute associated with the Service Key is incremented by one.
7.2.1.2.1 Service Key Request Message Details

The Service Key Request message has the syntax described in Section 6.1. The fields of the message are as follows:

· msgType – This field contains the value 3.
· Pvno – This field contains the value TBD.

· stid – This field is set as discussed in Section 7.2.1.2.1.1.
· dtid – This field is set as discussed in Section 7.2.1.2.1.1.
· retryCount – This field is set as discussed in Section 7.2.1.2.1.1.
· Attributes – This data structure contains the following attributes: EncTypeSet, SigTypeSet, and ReturnAuthData.
· nbrOfAttrs – This field contains the value 3.
· AttributeStructures – This data structure contains the following attribute data structures: KeyAgreementInfo, PubKeyClientAuthenticator, and CertificateChain. The CertificateChain attribute data structure is optional.
· nbrOfAttrStrs – This field contains the value 3 if the CertificateChain attribute data structure is present; else the value is 2.
· Signature – This attribute data structure specifies a digital signature of the message as discussed in Section 7.2.1.2.1.1.
7.2.1.2.1.1. Generating Service Key Request Message

The Device MUST follow the following steps to generate a Service Key Request message:

1. Generate a pseudo random number for the stid header field of the message. Make sure that this value does not correspond to any outstanding Service Key Request messages. Continue repeating this step until a unique value is generated.
2. Set the dtid header field of the message to 0.
3. Fill in the retryCount field. The value must be 0 for the initial message, 1 for the first retry, etc.

4. Fill in list of encryption types supported by the client (EncTypeSet).

5. Fill in list of signature types supported by the client (SigTypeSet).

6. Fill in the value of the ReturnAuthData – depending on whether the Device wants a copy of the value of the AuthData attribute returned in the reply message.

7. Generate key agreement parameters. The public part of those parameters is added to the message in the KeyAgreementInfo attribute data structure, while the private part is saved in order to decrypt a portion of the subsequent Service Key Response message.
8. Generate the PubKeyClientAuthenticator attribute data structure to authenticate this request as per Section 7.2.1.1.1.2.
9. Generate the CertificateChain attribute data structure if the client is not registered with the DEA, or if the client is registered with the DEA and wants to update the client’s certificate chain in the DEA.
10. Generate the Signature attribute data structure. The data structure consists of a SigType attribute and a SigValue attribute. The value in SigValue is calculated over the entire message except for the Signature attribute data structure. Use the Device private key to compute the signature.
After the Device sends out the Service Key Request message, it MUST save the value of the stid header field in order to later validate the matching Service Key Response message from the DEA. The Device MUST keep the stid until a configurable time out value. After the time out, the Device will no longer be able to process the corresponding Service Key Response message and must retry and increment the retryCount value.

7.2.1.2.1.2. Generating PubKeyClientAuthenticator
The PubKeyClientAuthenticator attribute data structure is generated in order to authenticate one of several messages sent by a client to the DEA. The generation steps are:

1. Generate ClientName attribute and ClientDomainBaseID attribute. A client MAY set the length field value of ClientDomainBaseID to 0 and not specify a value for ClientDomainBaseID.

2. Fill in the ClientDRMtimeSeconds attribute and the ClientDRMtimeMicroSeconds attribute.

3. Add the DEAPubKeyIdentifier attribute data structure.

4. If the Device previously saved a DEA certificate chain, check if any of the corresponding CRLs are expired. If so, add a RequestCRLs attribute to the PubKeyClientAuthenticator, listing the issuers of the expired CRLs. The DEA will be required to reply with the corresponding up-to-date CRLs.

7.2.1.2.1.3. Processing Service Key Request Message

The DEA MUST perform the following steps to verify the Service Key Request message:

1. Parse the message header. If the header parsing fails, drop the message and do not return an error.

2. Verify the protocol version number in the header. If this protocol version is not supported, send an error message with the DEA_ERR_BAD_PVNO error code.

3. Parse the rest of the message. If the message format is found to be illegal, drop the message and do not return an error.

4. If the CertificateChain attribute data structure is present in the message, then validate the client certificate chain, extract the client’s public key, and compute the ClientIdentifier from the certificate.

5. Process the PubKeyClientAuthenticator attribute data structure as specified in Section 7.2.1.2.1.4.

6. If the key agreement public key in KeyAgreementInfo specified by the client is of insufficient strength (due to the key size or algorithm used) as determined by DEA policy, then the DEA returns an error message with the error code DEA_ERR_KEYAGR_KEY_TOO_WEAK.

7. If the DEA cannot accommodate the requested encryption type, then the DEA returns an error message with the error code DEA_ERR_ETYPE_NOSUPP.

8. If the DEA cannot accommodate the requested signature type, then the DEA returns an error message with the error code DEA_ERR_SIGTYPE_NOSUPP.

9. If no errors are generated during the processing of this message, then the DEA does one of the following depending on the value of the NewPrincipalFlag attribute:

If the DEA storage has a record that matches the value of the ClientName attribute present in PubKeyClientAuthenticator, and the CertificateChain attribute is not present in the Service Key Request message, then the DEA proceeds to Step 10.

Else, if the DEA storage has a record that matches the value of the ClientName attribute present in PubKeyClientAuthenticator, and the CertificateChain attribute is present in the Service Key Request message, then the DEA updates in the record the certificate identifying information needed to later check for revocation, updates the values of EncTypeSet and SigTypeSet associated with the client, and proceeds to Step 10.

Else, if the DEA storage has no record that matches the value of the ClientName attribute present in PubKeyClientAuthenticator, then the DEA creates a new record in the DEA storage. The record includes the value of ClientIdentifier, ClientName, ClientDomainBaseID, DeviceRegistrationTypeResponse, Device public key, certificate identifying information needed to later check for revocation, the values of EncTypeSet and SigTypeSet for the client, and the value of ClientDRMtimeSeconds. The DEA sets the value of the DeviceRegistrationTypeResponse attribute to 0, i.e. “Not Registered”. If the ClientDomainBaseID has length 0 in the message, then the DEA SHOULD set the ClientDomainBaseID value to a default value.

10. The DEA adds the IPv4Address of the client to the DEA storage record for the client.

11. The DEA generates the Service Key Response message.
7.2.1.2.1.4. Processing PubKeyClientAuthenticator
The DEA MUST verify the PubKeyClientAuthenticator attribute data structure by using the following procedure:

1. Search the DEA storage for a record that matches the value of the ClientName attribute present in PubKeyClientAuthenticator. If a record exists, and the CertificateChain attribute is present in the Service Key Request message, then verify that the ClientIdentifier value present in the record matches the ClientIdentifier value extracted from the CertificateChain. If the values do not match, then the DEA sends an error message with the error code DEA_ERR_HOSTID_CHANGE_PROHIBITED. This prevents a new client intentionally registering with an existing ClientName so as to take advantage of the ClientName’s authorizations.

Else, if a record does not exist in the DEA storage, and the CertificateChain attribute is not present in the Service Key Request message, then the DEA sends an error message with the error code DEA_ERR_OTHER_PRINCIPAL_NOT_FOUND.

2. If the ClientIdentifier has been marked as being revoked in the DEA, then an error message with the error code DEA_ERR_CLIENT_REVOKED is returned.

3. Verify the Signature attribute data structure. If the attribute data structure contains a SigType attribute, then an error message with the error code ERR_INAPP_CKSUM is generated. If the value of the SigType in the Signature attribute data structure is not supported by the DEA, then the DEA generates a DEA_ERR_SIGTYPE_NOSUPP error message. If the signature value that the DEA computes for the Service Key Request message does not match the value contained in the SigValue attribute contained in the Signature attribute data structure, then an error message with DEA_ERROR_INVALID_SIG is returned.

4. Check the value contained in the ClientDRMtimeSeconds attribute. If the value is outside of an acceptable time window (typically +/- 5 minutes), then the DEA rejects the Service Key Request message and returns the ERR_SKEW error message.

5. Otherwise, the DEA computes a SHA-1 hash of the full Service Key Request message and checks if there is already a record for this particular message type (i.e. msgType value 3) with this hash value in a DEA Replay Cache. Each Replay Cache record contains a hash value indexed by a msgType and the ClientDRMtimeSeconds value. Only the entries corresponding to the acceptable time window, e.g. +/- 5 minutes, are kept in the Replay Cache. If the DEA finds a record in the Replay Cache with the same hash value, a replay attack is assumed and the ERR_REPEAT error message is returned. If no such entries are found, the processing continues as specified below.

6. The DEA updates the Replay Cache with a record corresponding to this Service Key Request message. The record contains a SHA-1 message hash and the value of the ClientDRMtimeSeconds attribute.

7. Make sure that the value contained in the DEAPubKeyHash attribute in the PubKeyClientAuthenticator attribute data structure matches one of the DEA public keys. If the value does not match any of the public keys possessed by the DEA, then the Service Key Request message MUST be rejected with the error code DEA_ERR_PUBKEY_NOT_FOUND logged into a local file, and the DEA MUST NOT send back an error message (since the Device will be unable to verify it).

7.2.1.2.2 Service Key Response Message Details

The Service Key Response message has the syntax described in Section 6.1. The fields of the message are as follows:

· msgType – This field contains the value 4.
· Pvno – This field contains the value TBD.

· stid – This field is set as discussed in Section 7.2.1.2.2.1.
· dtid – This field is set as discussed in Section 7.2.1.2.2.1.
· retryCount – This field is set as discussed in Section 7.2.1.2.2.1.
· Attributes – This data structure contains no attributes.
· nbrOfAttrs – This field contains the value 0.
· AttributeStructures – This data structure contains the following attribute data structures: Ticket, EncryptedData, KeyAgreementInfo, and PubKeyDEAAuthenticator.
· nbrOfAttrStrs – This field contains the value 4.
· Signature – This attribute data structure specifies a digital signature of the message as discussed in Section 7.2.1.2.2.1.
7.2.1.2.2.1. Generating Service Key Response Message

The DEA MUST follow the following steps to generate a Service Key Response message:

1. Set the stid header field of the message to 0.

2. Set the dtid header field of the message to the same value of the stid header field from the preceding Service Key Request message, so that the response message is tied to the request message.
3. The retryCount from the preceding Service Key Request message is copied to the retryCount in this message.

4. The DEA randomly generates a Session Key.
5. The DEA generates a Ticket, as per Section 7.2.1.2.2.2.
6. The DEA chooses an encryption algorithm based on the intersection of the list of algorithms specified in the EncTypeSet attribute in the preceding Service Key Request message with the list of encryption algorithms supported by the DEA. If this intersection contains more than one encryption algorithm, the DEA MUST select the strongest one. The encryption algorithm is used to encrypt the data in EncryptedData.

7. Generate key agreement parameters. The public part of those parameters is added to the message as KeyAgreementInfo, while the private part is used (together with the client’s public part from the Service Key Request message) in the key agreement algorithm to generate a symmetric Service Key.
8. The DEA populates the EncryptedData attribute data structure. The EncType contains the identifier of the encryption algorithm that the DEA chose. The CipherText contains the Session Key type in a KeyType attribute and the Session Key in a KeyValue attribute. The CipherText also contains the Service Key version number (SkeyVnum) attribute for the Service Key. If this is the first Service Key created for the client, then the version number is 1. If this is not the first Service Key created for the client, then a Service Key number already is associated with the record for the client in the DEA storage. So, the Service Key number is incremented by one. In addition, if the client set the RetrunAuthData attribute in the preceding Service Key Request message to 1, then the CipherText also includes the AuthData attribute that is included in the Ticket. The value of the CipherText attribute is encrypted by using the symmetric Service Key.
9. The DEA adds the Service Key and the Service Key version number to the record for the client in the DEA storage. It is RECOMMENDED that the DEA keeps at least two generations of Service Keys for clients in the DEA storage. The DEA SHOULD save the old secret keys of a client for at least the maximum duration of Tickets issued by the DEA for this client.

10. Generate the PubKeyDEAAuthenticator attribute data structure to authenticate this request as per Section 7.2.1.2.2.3.
11. Generate the Signature attribute data structure. The data structure consists of a SigType attribute and a SigValue attribute. The value in SigValue is calculated over the entire message except for the Signature attribute data structure. Use the DEA private key to compute the signature.

7.2.1.2.2.2. Generating Ticket

The DEA generates a Ticket attribute data structure as follows:

1. Fill in the TktVnum with the value 2.0.

2. Fill in the ServerDomainBaseID and ServerName values corresponding to the DEA.

3. Fill in the ClientDomainBaseID and ClientName values corresponding to the client.

4. Fill in the AuthTime attribute value. This is the value of ClientDRMtimeSeconds in the record of the client in the DEA storage.

5. Fill in the EndTime attribute value. This is the expiration time for the Ticket and MAY be set according to a policy communicated to the DEA. The format of this policy and the method to communicate the policy to the DEA are outside the scope of these specifications.

6. Fill in the EncType attribute value. This is the identifier of the algorithm the DEA uses to encrypt PrivateTicketPart.

7. Generate the PrivateTicketPart attribute data structure. This data structure contains the Session Key type in a KeyType attribute, the Session Key in a KeyValue attribute, the ClientDomainBaseID attribute, the ClientName attribute, the IPv4 address of the client in the IPv4Address attribute, and authorization data in the AuthData attribute. PrivateTicketPart is encrypted by using a secret key known only to the DEA. This DEA secret key MAY be generated by the DEA or MAY be communicated to the DEA from some entity outside the scope of these specifications.

8. Fill in the Service Key version number in the SkeyVnum attribute. This version number is for the secret key known only to the DEA.

9. Fill in the values of EncTypeSet and SigTypeSet for the DEA.
10. Compute the keyed checksum for the Ticket and populate the Signature attribute data structure. Specifically, the DEA chooses a keyed checksum algorithm based on the intersection of the list of algorithms specified in the SigTypeSet attribute in the preceding Service Key Request message with the list of keyed checksum algorithms supported by the DEA. The DEA then specifies the chosen keyed checksum algorithm identifier in the SigType attribute. The DEA then computes a keyed checksum over the entire Ticket except for the SigType and SigValue attributes and populates SigValue with the computed keyed checksum. (During the keyed checksum calculation, the value of the lengthStr field is adjusted to reflect the missing SigType and SigValue attributes.) The DEA uses the secret key known only to the DEA to compute the keyed checksum for the Ticket.

7.2.1.2.2.3. Generating PubKeyDEAAuthenticator
The PubKeyDEAAuthenticator attribute data structure is generated in order to authenticate one of several messages sent by a DEA to a client. The generation steps are:

1. Find the DEA public key whose hash equals the value in the DEAPubKeyHash attribute present in the PubKeyClientAuthenticator attribute data structure in the preceding Service Key Request message.

2. In the event that the DEA does not find that public key, the DEA SHOULD choose another public key and include the certificate of that public key in the PubKeyDEAAuthenticator.

3. If the client requested some updated CRLs (in the PubKeyClientAuthenticator), and the DEA is not including a new certificate in the Service Key Response message, then the DEA SHOULD include the CRLList attribute data structure with a list of requested CRLs. If for whatever reason the DEA is unable to obtain some of the requested CRLs, it should leave them out of the CRLList but MUST NOT return an error. If the DEA was unable to obtain any of the requested CRLs, it MUST omit the CRLList attribute data structure. (It is up to the client policy to decide if it can accept a DEA signature when some of the CRLs are missing.)

4. If the client requested some updated CRLs (in the PubKeyClientAuthenticator), and the DEA included a new certificate in the Service Key Response message, then the DEA SHOULD include the CRLList attribute data structure with a list of CRLs that correspond to each of the issuers in the DEA certificate chain. If for whatever reason the DEA is unable to obtain some of the CRLs, it should leave them out of the CRLList but MUST NOT return an error. If the DEA was unable to obtain any of the CRLs, it MUST omit the CRLList attribute data structure. (It is up to the client policy to decide if it can accept a DEA signature and a new DEA certificate when some of the CRLs are missing.)

7.2.1.2.2.4. Processing Service Key Response Message

The client MUST follow the following procedure to process the Service Key Response message. Note that the client does not send an error message back to the DEA. In some cases, the client will retry with another Service Key Request message:

1. Parse the message header. If the header parsing fails, pretend that the Service Key Response message were never received, i.e. continue waiting for a reply to the initial Service Key Request message until a timeout occurs and then retry.
2. Verify the protocol version number in the header. If this protocol version is not supported, pretend the message were never received.

3. The client looks for an outstanding Service Key Request message whose stid value matches the dtid header field in the Service Key Response message. If there is no match, the client proceeds as if the Service Key Response message were never received.

4. Verify that the retryCount in the preceding Service Key Request message matches the retryCount in the Service Key Response message. If it does not match, the client proceeds as if the reply message were never received.

5. Parse the rest of the Service Key Response message. If the message format is found to be illegal, pretend the message were never received.
6. Verify the signature (by using the DEA public key). If the signature does not verify, this message is dropped and the client proceeds as if the message were never received.
7. Compute the symmetric Service Key by using the content of KeyAgreementInfo with the private part of the key agreement parameters that the client stored when the client sent the preceding Service Key Request message.

8. The client decrypts the value of the Ciphertext attribute in EncryptedData in the reply message by using the Service Key. If the value cannot be decrypted because the client does not support the encryption type of the EncryptedData, a fatal error MUST be reported to the user, and the client MUST NOT retry. If the resulting clear text contains formatting errors or contains a Session Key with a type that is not supported by this client, then a fatal error MUST be reported to the user, and the client MUST NOT retry.
9. The client processes the Ticket by using the procedure described in Section 7.2.1.2.2.5. If there is an error in the Ticket, then a fatal error is reported to the user, and the client MUST NOT retry.

10. Process PubKeyDEAAuthenticator as specified in Section 7.2.1.2.2.6.
11. If no errors in the Service Key Response message were detected, the client MUST save the full Ticket in a new entry in its ticket cache until the Ticket expires. Also, the client stores the value of the DeviceRegistrationTypeResponse attribute.
7.2.1.2.2.5. Ticket Processing by Client
A client is normally unable to verify the integrity of a Ticket. Still, a client MUST perform some verification on the received Ticket, as specified below. If the verification below fails at any step, the client application reports it as a fatal error to the user, and the client MUST NOT retry:

1. Parse the Ticket. If the general ticket format does not fit the specification, then verification fails.

2. If the ServerName and ServerDomainBaseID in the Ticket does not match what the client was expecting from the DEA, then verification fails.

3. If the end of the Ticket validity period (End Time) is in the past by more than the clock skew period (usually 5 minutes), then verification fails.

7.2.1.2.2.6. Processing PubKeyDEAAuthenticator

The client MUST verify the PubKeyDEAAuthenticator attribute data structure by using the following procedure:
1. The client verifies the digital signature contained in the Signature attribute data structure by using the pre-provisioned DEA public key if the DEA did not include a DEA certificate in PubKeyDEAAuthenticator. If the DEA included a DEA certificate in PubKeyDEAAuthenticator, then the client verifies the signature by using the public key in the certificate. If the signature does not verify, then the Service Key Response message is dropped and the client proceeds as if the message were never received.

2. In the case that a DEA certificate chain was included in PubKeyDEAAuthenticator but the client does not support this particular certificate type or does not support parsing of DEA certificates altogether, the client MUST abort processing of the message and log the error code DEA_ERR_CERTTYPE_NOSUPP.

3. If the DEA certificate was included in the Service Key Response message, the client MUST save the new DEA public key for verifying all future reply messages that contain PubKeyDEAAuthenticator.
7.2.1.3 Import Protocol
Any DRM Agent can Import from any LRM, and an LRM also can import directly to any DRM Agent under the paring mechanism. A DRM Agent that gets an Imported-RO from an LRM MUST be registered with the DEA associated with the LRM. This registration is proved by a Ticket that the DRM Agent uses to obtain an Imported-Rights-Object for the desired Imported-Content.

Figure 6 depicts the messages used in Import. When a DRM Agent wants an Import from an LRM, and the DRM Agent does not have a valid Ticket for the LRM, then the DRM Agent SHALL obtain a Ticket for the LRM before the DRM Agent sends a SAC Key Request message to the LRM. The SAC Key Request message SHALL include an LRM-Ticket, and the LRM-Ticket SHALL be integrity protected by a keyed hash that uses the Session Key obtained from the DEA. There are situations where a DRM Agent with a valid Ticket requests a new Ticket. For example, the DRM Agent may want to renew the expiry date of the Ticket before it actually expires. If the DRM Agent wants an Import from an LRM, and the DRM Agent already has a valid Ticket for the LRM, then the DRM Agent MAY obtain a new Ticket for the LRM, in which case the DRM Agent SHALL discard the old Ticket. A DRM Agent SHALL use a Ticket Request message to request from a DEA associated with an LRM a Ticket for the LRM. The Ticket Request message is specified in Section 7.2.1.3.1.
When an LRM has not setup a connection with a DRM Agent and wants to initiate the Import transaction, the LRM sends Import Initiation message to DRM Agent. The Import Initiation message SHALL contain the IDs of ROs to be imported and the identities of the LRM and DRM Agent. If the DRM Agent does not have a valid Ticket for the LRM, then the DRM Agent SHALL obtain a Ticket for the LRM before the DRM Agent sends a SAC Key Request message to the LRM. The SAC Key Request message SHALL include the LRM-Ticket, and the LRM-Ticket SHALL be integrity protected by a keyed hash that uses the Session Key obtained from the DEA. If the DRM Agent already has a valid Ticket for the LRM, then the DRM Agent MAY obtain a new Ticket for the LRM, in which case the DRM Agent SHALL discard the old Ticket. A DRM Agent SHALL use a Ticket Request message to request from a DEA associated with an LRM a Ticket for the LRM.

[image: image7.emf]

DRM Agent

SAC Key Request

SAC Key Response

Imported

-

RO Request

Imported

-

RO Response

DRM Agent

DEA

Ticket Request

Ticket Response

SAC Key Request

SAC Key Response

LRM

Imported

-

RO Request

Imported

-

RO Response

Import Initiation Request

Figure 6 – Messages used in Import
The Import Initiation Request is to initiate the Import transaction with the DRM Agent, and the Import Initiation Request message SHALL contain the ID of ROs that could be imported and the identities of the LRM and the DRM Agent. To check against replays, this message SHALL also contain a NONCE. If the DRM Agent does not have a valid Ticket for the LRM, then the DRM Agent SHALL obtain a Ticket for the LRM before the DRM Agent sends a SAC Key Request message to the LRM.
The Ticket Request message SHALL contain the identity of the LRM and contain the DEA-Ticket. To check against replays, this message SHALL also contain a NONCE. The DRM Agent SHALL authenticate the message by using a keyed hash that uses the Session Key contained in the DEA Ticket.
Once the DEA validates the Ticket Request message from the DRM Agent, the DEA randomly generates a symmetric Session Key, and then sends a copy of the Session Key in a Ticket Response message to the DRM Agent. The Ticket Response message includes an LRM-Ticket that has both a clear and an encrypted part. The clear part of the LRM-Ticket includes the identity of the LRM and a Ticket validity period. The encrypted part of the LRM-Ticket contains the identity of the DRM Agent and information pertaining to the symmetric Session Key. The encrypted part of the LRM-Ticket is encrypted by using the Service Key of the LRM. The LRM-Ticket is integrity protected by a keyed hash that uses the Service Key of the LRM. Note that the LRM-Ticket is integrity protected to prevent the DRM Agent from tampering with the content of the LRM-Ticket.
The DEA includes in the Ticket Response message a version of the Session Key encrypted with the Service Key of the Device that contains the DRM Agent. The DEA then authenticates the message by using a keyed hash that uses the Session Key contained in the DEA Ticket.

Once the DRM Agent validates the Ticket Response message from the DEA, the DRM Agent sends a SAC Key Request message to the LRM. The SAC Key Request message includes the LRM-Ticket. The SAC Key Request message is integrity protected by a keyed hash that uses the Session Key obtained from the DEA. The SAC Key Request message is specified in Section 7.2.1.3.3.
Once the LRM validates the SAC Key Request message from the DRM Agent, the LRM and DRM Agent use the Session Key to establish a SAC if a valid SAC does not exist between the DRM Agent and the LRM. If a SAC does exist between them, then use the SAC for transport of Imported Rights-Objects. The SAC Key Response message is specified in Section 7.2.1.3.4.
The SAC key material (that cryptographically establishes the SAC) is comprised of a MAC Key and an Encryption Key that are used to provide integrity and confidentiality, respectively, of the Imported-RO Request(s) and Imported-RO Response(s). An alternative to having the key material be generated by just one of the two communicating entities is to do the following, where EncryptedData is set directly as a randomly generated value, and is thus not decrypted by the DRM Agent. By using a Key Derivation Function (KDF), the SAC key material is derived from the Session Key embedded in the LRM-Ticket, and from an additional parameter that ensures key material freshness, namely the SAC Key Response message Signature. Note that the SAC Key Response message Signature is a function of both the stid that is randomly generated by the DRM Agent and the EncryptedData that is generated randomly by the LRM. The LRM does the KDF computation only if the received SAC Key Request message is valid. This KDF computation is done by the LRM prior to transmitting the SAC Key Response message, or the SAC Key Response message Signature is retained until the KDF computation is done. The DRM Agent does the KDF computation only if the received SAC Key Response message is valid. The default KDF is the KDF specified in section 7.1.2 of [DRMDRM2.0]. When using the KDF, set Z = Session Key, and otherInfo = SAC Key Response message Signature.

As long as the DRM Agent has a valid LRM-Ticket and a valid SAC, then the DRM Agent SHALL request Imported Rights-Objects by using Imported-RO Request messages. The Imported-RO Request message is specified in Section 7.2.1.3.5. The LRM then SHALL transmit Imported Rights-Objects by using Imported-RO Response messages. The Imported Rights-Objects SHALL contain a <rights> element that is signed by an LRM <signature> element. The Imported-RO Response message is specified in Section 7.2.1.3.6.
7.2.1.3.1 Ticket Request Message Details

The Ticket Request message has the syntax described in Section 6.1. The fields of the message are as follows:

· msgType – This field contains the value 5.
· Pvno – This field contains the value TBD.

· stid – This field is set as discussed in Section 7.2.1.3.1.1.
· dtid – This field is set as discussed in Section 7.2.1.3.1.1.
· retryCount – This field is set as discussed in Section 7.2.1.3.1.1.
· Attributes – This data structure contains the following attributes: ServerName, ReturnAuthData, EncTypeSet, SigTypeSet, ClientDRMtimeSeconds, and ClientDRMtimeMicroSeconds.
· nbrOfAttrs – This field contains the value 6.
· AttributeStructures – This data structure contains a Ticket attribute data structures.
· nbrOfAttrStrs – This field contains the value 1.
· Signature – This attribute data structure specifies a digital signature of the message as discussed in Section 7.2.1.3.1.1.
7.2.1.3.1.1. Generating Ticket Request Message

The Device MUST follow the following steps to generate a Ticket Request message:

1. Generate a pseudo random number for the stid header field of the message. Make sure that this value does not correspond to any outstanding Ticket Request messages. Continue repeating this step until a unique value is generated.
2. Set the dtid header field of the message to 0.
3. Fill in the retryCount field. The value must be 0 for the initial message, 1 for the first retry, etc.

4. Fill in the ServerName for the LRM.

5. Fill in the value of the ReturnAuthData – depending on whether the Device wants a copy of the value of the AuthData attribute returned in the reply message.

6. Fill in list of encryption types supported by the client (EncTypeSet).

7. Fill in list of signature types supported by the client (SigTypeSet).

8. Fill in the ClientDRMtimeSeconds attribute and the ClientDRMtimeMicroSeconds attribute
9. Insert the Ticket attribute data structure received from the DEA, i.e. the DEA Ticket.
10. Generate the Signature attribute data structure. The data structure consists of a SigType attribute and a SigValue attribute. The value in SigType is the same as the value of the SigType on the DEA Ticket. The value in SigValue is calculated over the entire message except for the Signature attribute data structure. Use the Session Key contained in the DEA Ticket to compute the keyed checksum.
After the Device sends out the Ticket Request message, it MUST save the value of the stid header field in order to later validate the matching Ticket Response message from the DEA. The Device MUST keep the stid until a configurable time out value. After the time out, the Device will no longer be able to process the corresponding Ticket Response message and must retry and increment the retryCount value.

7.2.1.3.1.2. Processing Ticket Request Message

The DEA MUST perform the following steps to verify the Ticket Request message:

1. Parse the message header. If the header parsing fails, drop the message and do not return an error.

2. Verify the protocol version number in the header. If this protocol version is not supported, send an error message with the DEA_ERR_BAD_PVNO error code.

3. Parse the rest of the message. If the message format is found to be illegal, drop the message and do not return an error.

4. Verify the DEA Ticket as specified in Section 7.2.1.3.1.3. If the DEA Ticket verification fails with a Recoverable error code, save the error code and proceed to the next step without returning an error message yet. If the DEA Ticket verification fails with a Non-Recoverable error code, drop the message and do not return an error.

5. Verify the Signature attribute. If verification fails for any reason, drop the message and do not return an error. If the DEA Ticket verification earlier resulted in a Recoverable error code, then the DEA must possess the DEA secret key and can use it to extract the DEA Session Key for verifying the signature. (In the case of the ERR_BADKEYVER error code during DEA Ticket verification, the secret key needed to verify the signature may be an old secret key.)

6. If the DEA Ticket verification earlier resulted in a Recoverable error code, at this time return the corresponding error message. The same Session Key that was used to verify the signature in Step 5 above MUST now be used to generate a keyed checksum for the error message.

7. Check the ClientDRMtimeSeconds attribute in the Ticket Request message. If the time is outside of the acceptable time window (typically +/- 5 minutes), this message is rejected and a message with the ERR_SKEW error code is returned.

8. If the ClientDRMtimeSeconds value is within an acceptable time window, compute a SHA-1 hash of the Ticket Request message and check if there is already a record with this hash value in the Replay Cache. (Each Replay Cache record consists of a request hash value and the ClientDRMtimeSeconds value. Only the entries corresponding to the acceptable time window, e.g. +/- 5 minutes are kept in the Replay Cache.) If the DEA finds a record in the Replay Cache with the same hash value, a replay attack is assumed and a message with the ERR_REPEAT error code is returned. If no such entries are found, the processing of the Ticket Request message continues as specified below.

9. At this point, the DEA MUST update the Replay Cache with the record corresponding to this Ticket Request message (containing message hash and value of ClientDRMtimeSeconds).

10. The DEA can now retrieve the client record for ClientName from its storage to get the up-todate status and other information for this client. If the ClientName value in the request is not found in the storage, or if the registration status of the ClientName is “Not Registered”, then an error message with a DEA_ERR_C_PRINCIPAL_UNKNOWN code is returned. If the credentials of the client have been revoked then an error message DEA_ERR_CLIENT_REVOKED is returned.

11. If the ServerName value is not in the storage, or the DEA is not authorized by the DA to issue tickets for the ServerName, then an error message DEA_ERR_S_PRINCIPAL_UNKNOWN is returned.

12. If the ServerName can accommodate none of the requested encryption type, an error message with code DEA_ERR_ETYPE_NOSUPP is returned.

13. If the ServerName can accommodate none of the requested signature type, an error message with code DEA_ERR_SIGTYPE_NOSUPP is returned.

14. If no errors are generated during the processing of the Ticket Request message, then a Ticket Response message is generated.

7.2.1.3.1.3. Verifying DEA Ticket
The DEA MUST verify the DEA Ticket attribute data structure by using the following procedure:

1. Parse the Ticket. If the general ticket format does not fit the specification, then verification fails with the error code ERR_TICKET.

2. If the DEA does not support the ticket version number, then verification fails with the error code ERR_TICKET_VERSION.

3. If the ServerName and ServerDomainBaseID values in the Ticket do not match that of the DEA, then verification fails with the error code ERR_NOT_US.

4. If the version number of the DEA secret key (used to encrypt the PrivateTicketPart) is not the current version used by the DEA, then the DEA does the following:

• If the DEA still possesses the secret key with the version number specified in the DEA Ticket, the DEA MUST use it to authenticate the DEA Ticket (Step 5 below) and to decrypt the private ticket part and to extract the Session Key (Step 6 below). At this point, an ERR_BADKEYVER error code is generated and saved but the processing of the DEA Ticket continues with the next step. The DEA SHOULD save the old secret keys of the DEA for at least the maximum duration of the DEA Tickets.

• Otherwise, DEA Ticket verification fails immediately with the error code ERR_BADKEYVER.

5. Verify the keyed checksum over the DEA Ticket by using the version of the DEA secret key that is specified in the DEA Ticket. If the DEA no longer supports the signature type, then verification fails with the error code ERR_TKT_INAPP_CKSUM. If the signature verification fails, then the overall DEA Ticket verification fails with the error code ERR_BAD_INTEGRITY.

6. Decrypt the private part of the DEA Ticket and then parse the decrypted data. If decryption fails or if parsing fails, then the overall DEA Ticket verification fails with the error code ERR_PRIV_TKT_PART.

7. If the IPv4Address does not match the IP v4 address in of the request message, then the overall DEA Ticket verification fails with the error code ERR_BADIPADDR.

8. If Step 4 above previously recorded error code ERR_BADKEYVER, now fail the ticket verification with this error code.

9. If the start of the ticket validity period is in the future by more than the acceptable clock skew (usually configured to be 5 minutes), then verification fails with the error code ERR_TKT_NYV.

10. If the end time of the ticket validity period is passed by more than the acceptable clock skew, then the verification fails with the error code ERR_TKT_EXPIRED.

When an error is detected in Steps 1 through 6 above, the corresponding error code must be considered as Non-Recoverable: the error code MUST NOT be returned by the DEA in an error message. Unless Step 6 succeeds with no errors, the Session Key was not successfully extracted from the DEA Ticket, and, therefore, the DEA cannot authenticate an error message.

When an error is detected after Step 6, the corresponding error code MUST be considered as Recoverable: an error message can be authenticated with a keyed checksum that is keyed with the Session Key.
7.2.1.3.2 Ticket Response Message Details

The Ticket Response message has the syntax described in Section 6.1. The fields of the message are as follows:

· msgType – This field contains the value 6.
· Pvno – This field contains the value TBD.

· stid – This field is set as discussed in Section 7.2.1.3.2.1.
· dtid – This field is set as discussed in Section 7.2.1.3.2.1.
· retryCount – This field is set as discussed in Section 7.2.1.3.2.1.
· Attributes – This data structure contains the DASignedData attributes.
· nbrOfAttrs – This field contains the value 1.
· AttributeStructures – This data structure contains the following attribute data structures: Ticket, and EncryptedData.
· nbrOfAttrStrs – This field contains the value 2.
· Signature – This attribute data structure specifies a digital signature of the message as discussed in Section 7.2.1.3.2.1.
7.2.1.3.2.1. Generating Ticket Response Message

The DEA MUST follow the following steps to generate a Ticket Response message:

1. Set the stid header field of the message to 0.

2. Set the dtid header field of the message to the same value of the stid header field from the preceding Ticket Request message, so that the response message is tied to the request message.
3. The retryCount from the preceding Ticket Request message is copied to the retryCount in this message.

4. The DEA randomly generates a Session Key. The DEA MUST assign the type of Session Key based on the intersection of the list of algorithms specified in the EncTypeSet attribute in the preceding Ticket Request message with the list of encryption algorithms supported by the ServerName. If this intersection contains more than one encryption algorithm, the DEA MUST select the strongest one. The encryption algorithm is used to encrypt the data in PrivateTicketPart.
5. The DEA generates an LRM Ticket, as per Section 7.2.1.3.2.2.
6. The DEA chooses an encryption algorithm based on the intersection of the list of algorithms specified in the EncTypeSet attribute in the preceding Ticket Request message with the list of encryption algorithms supported by the DEA. If this intersection contains more than one encryption algorithm, the DEA MUST select the strongest one. The encryption algorithm is used to encrypt the data in EncryptedData.

7. The DEA populates the EncryptedData attribute data structure. The EncType contains the identifier of the encryption algorithm that the DEA chose. The CipherText contains the Session Key type in a KeyType attribute and the Session Key in a KeyValue attribute. In addition, if the client set the RetrunAuthData attribute in the preceding Ticket Request message to 1, then the CipherText also includes the AuthData attribute that is included in the Ticket. The value of the CipherText attribute is encrypted by using the Session Key contained in the DEA Ticket.
8. Populate the DASignedData attribute.
9. Generate the Signature attribute data structure. Specifically, the DEA chooses a keyed checksum algorithm based on the intersection of the list of algorithms specified in the SigTypeSet attribute in the preceding Ticket Request message with the list of keyed checksum algorithms supported by the DEA. The data structure consists of a SigType attribute and a SigValue attribute. The DEA then specifies the chosen keyed checksum algorithm identifier in the SigType attribute. The value in SigValue is calculated over the entire message except for the Signature attribute data structure. Use the Session Key contained in the DEA Ticket to compute the keyed checksum.

7.2.1.3.2.2. Generating LRM Ticket

The DEA generates a Ticket attribute data structure as follows:

1. Fill in the TktVnum with the value 2.0.

2. Fill in the ServerDomainBaseID and ServerName values. The ServerDomainID is the same as the ClientDomainID. The ServerName is copied from the preceding Ticket Request message.
3. Fill in the ClientDomainBaseID and ClientName values corresponding to the client.

4. Fill in the AuthTime attribute value. This is the value of ClientDRMtimeSeconds in the record of the ClientName in the DEA storage.

5. Fill in the EndTime attribute value. This is the expiration time for the Ticket and MAY be set according to a policy communicated to the DEA. The format of this policy and the method to communicate the policy to the DEA are outside the scope of these specifications.

6. Fill in the EncType attribute value. This is the identifier of the algorithm the DEA uses to encrypt PrivateTicketPart.
7. Generate the PrivateTicketPart attribute data structure. This data structure contains the Session Key type in a KeyType attribute, the Session Key in a KeyValue attribute, the ClientDomainBaseID attribute, the ClientName attribute, the IPv4 address of the client in the IPv4Address attribute, and authorization data in the AuthData attribute. PrivateTicketPart is encrypted by using the Service Key for the ServerName.

8. Fill in the Service Key version number in the SkeyVnum attribute. This version number is for the Service Key for the ServerName.

9. Fill in the values of EncTypeSet and SigTypeSet for the ServerName.
10. Compute the keyed checksum for the LRM Ticket and populate the Signature attribute data structure. Specifically, the DEA chooses a checksum algorithm based on the intersection of the list SigTypeSet of algorithms in the ServerName record with the list of keyed checksum algorithms supported by the DEA. If this intersection contains more than one keyed checksum algorithm, the DEA MUST select the strongest one. The DEA then specifies the chosen keyed checksum algorithm identifier in the SigType attribute. The DEA then computes a keyed checksum over the entire Ticket except for the SigType and SigValue attributes and populates SigValue with the computed keyed checksum. (During the keyed checksum calculation, the value of the lengthStr field is adjusted to reflect the missing SigType and SigValue attributes.) The DEA uses the Service Key of the ServerName to compute the keyed checksum for the Ticket.

7.2.1.3.2.3. Processing Ticket Response Message

The client MUST follow the following procedure to process the Ticket Response message. Note that the client does not send an error message back to the DEA. In some cases, the client will retry with another Ticket Request message:

1. Parse the message header. If the header parsing fails, pretend that the Ticket Response message were never received, i.e. continue waiting for a reply to the initial Ticket Request message until a timeout occurs and then retry.
2. Verify the protocol version number in the header. If this protocol version is not supported, pretend the message were never received.

3. The client looks for an outstanding Ticket Request message whose stid value matches the dtid header field in the Ticket Response message. If there is no match, the client proceeds as if the Ticket Response message were never received.

4. Verify that the retryCount in the preceding Ticket Request message matches the retryCount in the Ticket Response message. If it does not match, the client proceeds as if the reply message were never received.

5. Parse the rest of the Ticket Response message. If the message format is found to be illegal, pretend the message were never received.
6. Verify the keyed checksum (by using the shared session key). If the keyed checksum does not verify, this message is dropped and the client proceeds as if the message were never received.
7. The client decrypts the value of the Ciphertext attribute in EncryptedData in the reply message using the Session Key contained in the DEA Ticket. If the value cannot be decrypted because the client does not support the encryption type of the EncryptedData, a fatal error MUST be reported to the user, and the client MUST NOT retry. If the resulting clear text contains formatting errors or contains a Session Key with a type that is not supported by this client, then a fatal error MUST be reported to the user, and the client MUST NOT retry.
8. The client processes the LRM Ticket by using the procedure described in Section 7.2.1.3.2.4. If there is an error in the LRM Ticket, then a fatal error is reported to the user, and the client MUST NOT retry.

9. Verify that the value of the DASignedData attribute shows that the DEA is authorized by the DA to issue Tickets to the Device, and that the LRM is associated with the DEA. For example, if the DA-signed data is Device-specific, then the value of the DASignedData attribute must include the value of the ClientIdentifier. If the verification fails, then the client MUST abort processing of the message and log the error code DEA_ERROR_DEA_NOT_TRUSTED.

10. If no errors in the Ticket Response message were detected, the client MUST save the full LRM Ticket in a new entry in its ticket cache until the LRM Ticket expires.
7.2.1.3.2.4. LRM Ticket Processing by Client
A client is normally unable to verify the integrity of a Ticket. Still, a client MUST perform some verification on the received Ticket, as specified below. If the verification below fails at any step, the client application reports it as a fatal error to the user, and the client MUST NOT retry:

1. Parse the LRM Ticket. If the general ticket format does not fit the specification, then verification fails.

2. If the ServerName and ServerDomainBaseID in the LRM Ticket does not match what the client was expecting from the DEA, then verification fails.

3. If the end of the LRM Ticket validity period (End Time) is in the past by more than the clock skew period (usually 5 minutes), then verification fails.

7.2.1.3.3 SAC Key Request Message Details

The SAC Key Request message has the syntax described in Section 6.1. The fields of the message are as follows:

· msgType – This field contains the value 8.
· Pvno – This field contains the value TBD.

· stid – This field is set as discussed in Section 7.2.1.3.3.1.
· dtid – This field is set as discussed in Section 7.2.1.3.3.1.
· retryCount – This field is set as discussed in Section 7.2.1.3.3.1.
· Attributes – This data structure contains the following attributes: DOI_ID, EncTypeSet, SigTypeSet, ClientDRMtimeSeconds, and ClientDRMtimeMicroSeconds.
· nbrOfAttrs – This field contains the value 5.
· AttributeStructures – This data structure contains the following attribute data structures: Ticket and CiphersuiteSet.
· nbrOfAttrStrs – This field contains the value 2.
· Signature – This attribute data structure specifies a digital signature of the message as discussed in Section 7.2.1.3.3.1.
7.2.1.3.3.1. Generating SAC Key Request Message

The Device MUST follow the following steps to generate a SAC Key Request message:

1. Generate a pseudo random number for the stid header field of the message. Make sure that this value does not correspond to any outstanding SAC Key Request messages. Continue repeating this step until a unique value is generated.
2. Set the dtid header field of the message to 0.
3. Fill in the retryCount field. The value must be 0 for the initial message, 1 for the first retry, etc.

4. Fill in the DOI_ID attribute.

5. Fill in list of encryption types supported by the client (EncTypeSet).

6. Fill in list of signature types supported by the client (SigTypeSet).

7. Fill in the ClientDRMtimeSeconds attribute and the ClientDRMtimeMicroSeconds attribute.
8. Insert the Ticket attribute data structure received from the DEA, i.e. the LRM Ticket.
9. Add the number of ciphersuites and list of ciphersuites that the server can use to generate key. The ciphersuite indicates the content format and an associated combination of cryptographic algorithms (such as authentication and encryption algorithms) supported.

10. Generate the Signature attribute data structure. Specifically, the client chooses a keyed checksum algorithm based on the intersection of the list of algorithms specified in the SigTypeSet attribute in the LRM Ticket with the list of keyed checksum algorithms supported by the client. The data structure consists of a SigType attribute and a SigValue attribute. The client then specifies the chosen keyed checksum algorithm identifier in the SigType attribute. The value in SigValue is calculated over the entire message except for the Signature attribute data structure. Use the Session Key contained in the LRM Ticket to compute the keyed checksum.
After the Device sends out the SAC Key Request message, it MUST save the value of the stid header field in order to later validate the matching SAC Key Response message from the DEA. The Device MUST keep the stid until a configurable time out value. After the time out, the Device will no longer be able to process the corresponding SAC Key Response message and must retry and increment the retryCount value.

7.2.1.3.3.2. Processing SAC Key Request Message

The LRM MUST perform the following steps to verify the SAC Key Request message:

1. Parse the message header. If the header parsing fails, drop the message and do not return an error.

2. Verify the protocol version number in the header. If this protocol version is not supported, send an error message with the DEA_ERR_BAD_PVNO error code.

3. Parse the rest of the message. If the message format is found to be illegal, drop the message and do not return an error.

4. Verify the LRM Ticket as specified in Section 7.2.1.3.3.3. If the LRM Ticket verification fails with a Recoverable error code, save the error code and proceed to the next step without returning an error message yet. If the LRM Ticket verification fails with a Non-Recoverable error code, drop the message and do not return an error.

5. If the LRM can accommodate none of the requested encryption types, then the DEA saves the error code DEA_ERR_ETYPE_NOSUPP and proceeds to the next step without returning an error message yet. This is a Recoverable error.

6. If the LRM can accommodate none of the requested signature types, then the DEA saves the error code DEA_ERR_SIGTYPE_NOSUPP and proceeds to the next step without returning an error message yet. This is a Recoverable error.

7. Verify the signature attribute. If verification fails for any reason, drop the message and do not return an error. If the LRM Ticket verification earlier resulted in a Recoverable error code, then the LRM must possess the LRM Service Key and can use it to extract the LRM Session Key for verifying the signature.

8. If the LRM Ticket verification earlier resulted in a Recoverable error code, at this time return the corresponding error message. The same Session Key that was used to verify the signature in Step 4 above MUST now be used to generate a keyed checksum for the error message.

9. Check the ClientDRMtimeSeconds attribute in the SAC Key Request message. If the time is outside of the acceptable time window (typically +/- 5 minutes), this message is rejected and a message with the ERR_SKEW error code is returned.

10. If the ClientDRMtimeSeconds value is within an acceptable time window, compute a SHA-1 hash of the SAC Key Request message and check if there is already a record with this hash value in the Replay Cache. (Each Replay Cache record consists of a request hash value and the ClientDRMtimeSeconds value. Only the entries corresponding to the acceptable time window, e.g. +/- 5 minutes are kept in the Replay Cache.) If the LRM finds a record in the Replay Cache with the same hash value, a replay attack is assumed and a message with the ERR_REPEAT error code is returned. If no such entries are found, the processing of the SAC Key Request message continues as specified below.

11. At this point, the LRM MUST update the Replay Cache with the record corresponding to this SAC Key Request message (containing message hash and value of ClientDRMtimeSeconds).

12. If the LRM cannot accommodate any of the ciphersuites listed by the client, an error message with code ERR_CIPHERSUITE_NOSUPP is returned.

13. If the specified DOI_ID is not supported, return an error message with the code ERR_DOI_ID_NOT_RECOGNIZED.

14. If no errors are generated during the processing of the SAC Key Request message, then a SAC Key Response message is generated.

7.2.1.3.3.3. Verifying LRM Ticket

The LRM MUST verify the LRM Ticket attribute data structure by using the following procedure:

1. Parse the LRM Ticket. If the general ticket format does not fit the specification, then verification fails with the error code ERR_TICKET.

2. If the LRM does not support the ticket version number, then verification fails with the error code ERR_TICKET_VERSION.

3. If the ServerName and ServerDomainBaseID values in the LRM Ticket do not match that of the LRM, then verification fails with the error code ERR_NOT_US.

4. If the version number of the LRM Service Key (used to encrypt the PrivateTicketPart) is not the current version used by the LRM, then the LRM does the following:

• If the LRM still possesses the Service Key with the version number specified in the LRM Ticket, the LRM MUST use it to authenticate the LRM Ticket (Step 5 below) and to decrypt the private ticket part and to extract the Session Key (Step 6 below). The LRM SHOULD save the old Service Keys of the LRM for at least the maximum duration of the LRM Tickets.

• Otherwise, LRM Ticket verification fails immediately with the error code ERR_BADKEYVER.

5. Verify the keyed checksum over the LRM Ticket by using the version of the LRM Service Key that is specified in the LRM Ticket. If the LRM no longer supports the signature type, then verification fails with the error code ERR_TKT_INAPP_CKSUM. If the signature verification fails, then the overall DEA Ticket verification fails with the error code ERR_BAD_INTEGRITY.

6. Decrypt the private part of the LRM Ticket and then parse the decrypted data. If decryption fails or if parsing fails, then the overall LRM Ticket verification fails with the error code ERR_PRIV_TKT_PART.

7. If the IPv4Address does not match the IP v4 address in of the request message, then the overall DEA Ticket verification fails with the error code ERR_BADIPADDR.

8. If the start of the ticket validity period is in the future by more than the acceptable clock skew (usually configured to be 5 minutes), then verification fails with the error code ERR_TKT_NYV.

9. If the end time of the ticket validity period is passed by more than the acceptable clock skew, then the verification fails with the error code ERR_TKT_EXPIRED.

When an error is detected in Steps 1 through 5 above, the corresponding error code must be considered as Non-Recoverable: the error code MUST NOT be returned by the LRM in an error message. Unless Step 5 succeeds with no errors, the Session Key was not successfully extracted from the LRM Ticket, and, therefore, the DEA cannot authenticate an error message.

When an error is detected after Step 5, the corresponding error code MUST be considered as Recoverable: an error message can be authenticated with a keyed checksum that is keyed with the Session Key.
7.2.1.3.4 SAC Key Response Message Details

The SAC Key Response message has the syntax described in Section 6.1. The fields of the message are as follows:

· msgType – This field contains the value 9.
· Pvno – This field contains the value TBD.

· stid – This field is set as discussed in Section 7.2.1.3.4.1.
· dtid – This field is set as discussed in Section 7.2.1.3.4.1.
· retryCount – This field is set as discussed in Section 7.2.1.3.4.1.
· Attributes – This data structure contains no attributes.
· nbrOfAttrs – This field contains the value 0.
· AttributeStructures – This data structure contains the following attribute data structures: EncryptedData and CiphersuiteType.
· nbrOfAttrStrs – This field contains the value 2.
· Signature – This attribute data structure specifies a digital signature of the message as discussed in Section 7.2.1.3.4.1.
7.2.1.3.4.1. Generating SAC Key Response Message

The LRM MUST follow the following steps to generate a SAC Key Response message:

1. Set the stid header field of the message to 0.

2. Set the dtid header field of the message to the same value of the stid header field from the preceding SAC Key Request message, so that the response message is tied to the request message.

3. The retryCount from the preceding SAC Key Request message is copied to the retryCount in this message.

4. The LRM uses keying material TBD to secure the SAC.

5. The LRM chooses an encryption algorithm based on the intersection of the list of algorithms specified in the EncTypeSet attribute in the preceding SAC Key Request message with the list of encryption algorithms supported by the LRM. If this intersection contains more than one encryption algorithm, the LRM MUST select the strongest one. The encryption algorithm is used to encrypt the data in EncryptedData.

6. The LRM populates the EncryptedData attribute data structure. The EncType contains the identifier of the encryption algorithm that the LRM chose. The CipherText contains the keying material TBD type in a KeyType attribute and the keying material TBD in a KeyValue attribute. The value of the CipherText attribute is encrypted by using the Session Key contained in the LRM Ticket.

7. Populate the CiphersuiteType. This is the ContentFormatID and CipherSuiteID pair chosen by the LRM from the CiphersuiteSet sent by the client in the preceding SAC Key Request message.

8. Generate the Signature attribute data structure. The data structure consists of a SigType attribute and a SigValue attribute. The value in the SigType attribute is the same as the value of the SigType attribute in the preceding SAC Key Request message. The value in SigValue is calculated over the entire message except for the Signature attribute data structure. Use the Session Key contained in the LRM Ticket to compute the keyed checksum.

7.2.1.3.4.2. Processing SAC Key Response Message

The client MUST follow the following procedure to process the SAC Key Response message. Note that the client does not send an error message back to the LRM. In some cases, the client will retry with another SAC Key Request message:

1. Parse the message header. If the header parsing fails, pretend that the SAC Key Response message were never received, i.e. continue waiting for a reply to the initial SAC Key Request message until a timeout occurs and then retry.

2. Verify the protocol version number in the header. If this protocol version is not supported, pretend the message were never received.

3. The client looks for an outstanding SAC Key Request message whose stid value matches the dtid header field in the SAC Key Response message. If there is no match, the client proceeds as if the SAC Key Response message were never received.

4. Verify that the retryCount in the preceding SAC Key Request message matches the retryCount in the SAC Key Response message. If it does not match, the client proceeds as if the reply message were never received.

5. Parse the rest of the SAC Key Response message. If the message format is found to be illegal, pretend the message were never received.

6. Verify the keyed checksum (by using the shared session key). If the keyed checksum does not verify, this message is dropped and the client proceeds as if the message were never received.

10. The client decrypts the value of the Ciphertext attribute in EncryptedData in the reply message using the Session Key contained in the LRM Ticket. If the value cannot be decrypted because the client does not support the encryption type of the EncryptedData, a fatal error MUST be reported to the user, and the client MUST NOT retry. If the resulting clear text contains formatting errors or contains a Session Key with a type that is not supported by this client, then a fatal error MUST be reported to the user, and the client MUST NOT retry.

11. Attempt to decrypt the keying material TBD in the reply by using the shared session key. If the keying material TBD cannot be decrypted, a fatal error MUST be reported to the user, and the client MUST NOT retry. If the keying material TBD is not of the correct type or length, a fatal error MUST also be reported to the user, and the client MUST NOT retry.
12. If no error in the SAC Key Response message was detected, the client MUST save the keying material TBD.
7.2.1.3.5 Imported-RO Request Message Details

The Imported-RO Request message has the syntax described in Section 6.1. The fields of the message are as follows:

· msgType – This field contains the value 26.
· Pvno – This field contains the value TBD.

· stid – This field is set as discussed in Section 7.2.1.3.5.1.
· dtid – This field is set as discussed in Section 7.2.1.3.5.1.
· retryCount – This field is set as discussed in Section 7.2.1.3.5.1.
· Attributes – This data structure contains the following attributes: ClientName, RO_ID, and ClientDRMtimeSeconds.
· nbrOfAttrs – This field contains the value 3.
· AttributeStructures – This data structure contains no attribute data structures.
· nbrOfAttrStrs – This field contains the value 0.
· Signature – This field is set as discussed in Section 7.2.1.3.5.1.
7.2.1.3.5.1. Generating Imported-RO Request Message

The Device MUST follow the following steps to generate an Imported-RO Request message:

1. Generate a pseudo random number for the stid header field of the message. Make sure that this value does not correspond to any outstanding Imported-RO Request messages. Continue repeating this step until a unique value is generated.
2. Set the dtid header field of the message to 0.
3. Fill in the retryCount field. The value must be 0 for the initial message, 1 for the first retry, etc.

4. Fill in the ClientName attribute.

5. Fill in the RO_ID attribute.

6. Fill in the ClientDRMtimeSeconds attribute.

7. Generate the Signature attribute data structure. Specifically, the DRM Agent chooses a keyed checksum algorithm based on the intersection of the list of algorithms specified in the SigTypeSet attribute in the LRM Ticket with the list of keyed checksum algorithms supported by the client. The data structure consists of a SigType attribute and a SigValue attribute. The client then specifies the chosen keyed checksum algorithm identifier in the SigType attribute. The value in SigValue is calculated over the entire message except for the Signature attribute data structure. Use the SAC Key negotiated with the LRM to compute the keyed checksum.
After the Device sends out the Imported-RO Request message, it MUST save the value of the stid header field in order to later validate the matching Imported-RO Response message from the LRM. The Device MUST keep the stid until a configurable time out value. After the time out, the Device will no longer be able to process the corresponding Imported-RO Response message and must retry and increment the retryCount value.

7.2.1.3.5.2. Processing Imported-RO Request Message

The LRM MUST perform the following steps to verify the Imported-RO Request message:

1. Parse the message header. If the header parsing fails, drop the message and do not return an error.

2. Verify the protocol version number in the header. If this protocol version is not supported, drop the message and do not return an error.

3. Parse the rest of the message. If the message format is found to be illegal, drop the message and do not return an error.
4. If the LRM cannot accommodate one of the requested signature types, drop the message and do not return an error.

5. Verify the signature attribute. If verification fails for any reason, drop the message and do not return an error.

6. Check the ClientDRMtimeSeconds attribute in the Imported-RO Request message. If the time is outside of the acceptable time window (typically +/- 5 minutes), this message is rejected and a message with the ERR_SKEW error code is returned.

7. If the ClientDRMtimeSeconds value is within an acceptable time window, compute a SHA-1 hash of the Imported-RO Request message and check if there is already a record with this hash value in the Replay Cache. (Each Replay Cache record consists of a request hash value and the ClientDRMtimeSeconds value. Only the entries corresponding to the acceptable time window, e.g. +/- 5 minutes are kept in the Replay Cache.) If the LRM finds a record in the Replay Cache with the same hash value, a replay attack is assumed and a message with the ERR_REPEAT error code is returned. If no such entries are found, the processing of the Imported-RO Request message continues as specified below.

8. At this point, the LRM MUST update the Replay Cache with the record corresponding to this Imported-RO Request message (containing message hash and value of ClientDRMtimeSeconds).
9. If the specified RO_ID is not recognized, return an error message with the code ERR_RO_ID_NOT_RECOGNIZED.

10. If the LRM is no longer authorized to issue the Imported-RO corresponding to the RO_ID to ClientName, return an error message with the code ERR_RO_NOT_Available.

11. If no errors are generated during the processing of the Imported-RO Request message, then the LRM generates an Imported-RO Response message.

7.2.1.3.6 Imported-RO Response Message Details

The Imported-RO Response message has the syntax described in Section 6.1. The fields of the message are as follows:

· msgType – This field contains the value 27.
· Pvno – This field contains the value TBD.

· stid – This field is set as discussed in Section 7.2.1.3.6.11.
· dtid – This field is set as discussed in Section 7.2.1.3.6.1.
· retryCount – This field is set as discussed in Section 7.2.1.3.6.1.
· Attributes – This data structure contains no attributes.
· nbrOfAttrs – This field contains the value 0.
· AttributeStructures – This data structure contains the EncryptedData attribute data structures.
· nbrOfAttrStrs – This field contains the value 1.
· Signature – This field is set as discussed in Section 7.2.1.3.6.1.
7.2.1.3.6.1. Generating Imported-RO Response Message

The LRM MUST follow the following steps to generate an Imported-RO Response message:

1. Set the stid header field of the message to 0.

2. Set the dtid header field of the message to the same value of the stid header field from the preceding Imported-RO Request message, so that the response message is tied to the request message.
3. The retryCount from the preceding Imported-RO Request message is copied to the retryCount in this message.
4. The LRM decrements by one the number of Imported-ROs that the LRM has available for use within the User Domain managed by the DEA corresponding to the LRM.

5. The LRM creates an Imported-RO that contains within the <rights> element the base64 encoded SHA-1 hash over the concatenation of the values of the RO_ID and ClientIdentifier attributes. The <rights> element also contains hash(CEK). The LRM stores the Imported-RO indexed by the stid of the Imported-RO Request message until the Imported-RO Request message no longer exists in the Replay Cache. This allows the LRM to re-send the same Imported-RO if a retry Imported-RO Request message arrives at the LRM.
6. The LRM populates the EncryptedData attribute data structure. The EncType contains the identifier of the NULL Encryption algorithm. The CipherText contains the Imported-RO.

7. Generate the Signature attribute data structure. The data structure consists of a SigType attribute and a SigValue attribute. The value in the SigType attribute is the same as the value of the SigType attribute in the preceding Imported-RO Request message. The value in SigValue is calculated over the entire message except for the Signature attribute data structure. Use the SAC Key negotiated with the LRM to compute the keyed checksum.

7.2.1.3.6.2. Processing Imported-RO Response Message

The client MUST follow the following procedure to process the Imported-RO Response message. Note that the client does not send an error message back to the LRM. In some cases, the client will retry with another Imported-RO Request message:

1. Parse the message header. If the header parsing fails, pretend that the Imported-RO Response message were never received, i.e. continue waiting for a reply to the initial Imported-RO Request message until a timeout occurs and then retry.
2. Verify the protocol version number in the header. If this protocol version is not supported, pretend the message were never received.

3. The client looks for an outstanding Imported-RO Request message whose stid value matches the dtid header field in the Imported-RO Response message. If there is no match, the client proceeds as if the Imported-RO Response message were never received.

4. Verify that the retryCount in the preceding Imported-RO Request message matches the retryCount in the Imported-RO Response message. If it does not match, the client proceeds as if the reply message were never received.

5. Parse the rest of the Imported-RO Response message. If the message format is found to be illegal, pretend the message were never received.
6. Verify the keyed checksum (by using the shared SAC Key). If the keyed checksum does not verify, this message is dropped and the client proceeds as if the message were never received.
7. If the resulting Imported-RO contains formatting errors, then a fatal error MUST be reported to the user, and the client MUST NOT retry.
8. Verify that the value of the DASignedData attribute shows that the LRM whose signature is in the Imported-RO is associated with the DEA that issued the LRM Ticket to the client. If the DASignedData does not show this association, then a fatal error MUST be reported to the user, and the client MUST NOT retry.
9. If no errors are generated during the processing of the Imported-RO Response message, then the DRM Agent stores the received Imported-RO.
7.2.1.4 dmpPair-Protocol
Any DRM Agent can request Pairing with any other DRM Agent to Move or provide Copy of an Imported-Rights-Object associated with some desired Imported-Content or to receive Rights associated with Imported-Content. For two DRM Agents to be Paired, at least one of the Devices must obtain an Agent-Ticket from a DEA with which the Device is registered or with which the Device is associated as a Guest Device. At least one of the two DRM Agents MUST be registered and both MUST have Service Keys with the same DEA.

Figure 7 depicts the messages used in Pairing. When a Source DRM Agent wants to Pair with a Destination DRM Agent, and the Source DRM Agent does not have a valid Ticket for the Destination DRM Agent, then the Source DRM Agent SHALL obtain a Ticket for the Destination DRM Agent. If the Source DRM Agent wants to Pair with a Destination DRM Agent, and the Source DRM Agent already has a valid Ticket for the Destination DRM Agent, then the Source DRM Agent MAY obtain a new Ticket for the Destination DRM Agent, in which case the Source DRM Agent SHALL discard the old Ticket. A DRM Agent SHALL use an Agent Ticket Request message to request from a DEA a Ticket for another DRM Agent. The Agent Ticket Request message is specified in Section 7.2.1.4.1.
[image: image8.wmf]Source DRM Agent

DEA

Agent Ticket Request

Agent Ticket Response

SAC Key Request

SAC Key Response

Destination DRM Agent

A2A Imp

-

RO Request

A2A Imp

-

RO Response

Source DRM Agent

DEA

Agent Ticket Request

Agent Ticket Response

SAC Key Request

SAC Key Response

Destination DRM Agent

A2A Imp

-

RO Request

A2A Imp

-

RO Response

Figure 7 – Pairing Protocol Messages

The Agent Ticket Request message SHALL contain the identity of the Destination DRM Agent and contain the DEA-Ticket. To check against replays, this message SHALL also contain a NONCE. The Source DRM Agent SHALL authenticate the message by using a keyed hash that uses the Session Key contained in the DEA Ticket.
Once the DEA validates the Agent Ticket Request message from the Source DRM Agent, the DEA SHALL randomly generate a symmetric Session Key (also known as a Pairing Secret), and then send a copy of it in an Agent Ticket Response message to the Source DRM Agent, as specified next.
The Agent Ticket Response message SHALL include an Agent-Ticket that has both a clear and an encrypted part. The clear part of the Agent-Ticket SHALL include the identity of the Destination DRM Agent, a Ticket validity period, and the type of registration (i.e. “User Domain Device” or “Not Registered”) of the Destination DRM Agent. The encrypted part of the Agent-Ticket SHALL contain the identity of the Source DRM Agent, information pertaining to the symmetric Session Key, and the type of registration (i.e. “User Domain Device” or “Not Registered”) of the Source DRM Agent. The encrypted part of the Agent-Ticket SHALL be encrypted by using the Service Key of the Destination DRM Agent. The Agent-Ticket SHALL be integrity protected by a keyed hash that uses the Service Key of the Destination DRM Agent.
The DEA SHALL include an encrypted version of the Session Key in the Agent Ticket Response message. The DEA also SHALL authenticate the message by using a keyed hash that uses the Session Key contained in the DEA Ticket. The Agent Ticket Response message is specified in Section 7.2.1.4.2.
Once the Source DRM Agent validates the Agent Ticket Response message from the DEA, the Source DRM Agent SHALL send a SAC Key Request message to the Destination DRM Agent. The SAC Key Request message SHALL include the Agent-Ticket. The Agent-Ticket SHALL be integrity protected by a keyed hash that uses the Session Key obtained from the DEA. The SAC Key Request message is specified in Section 7.2.1.3.3. The SAC Key Response message is specified in Section 7.2.1.3.4.
Alternatively to acquiring an Agent-Ticket on an as-needed basis, a DRM Agent MAY use a DEA-Ticket (that it acquired within a Service Key Response message) and its knowledge of the Session Key associated with the DEA-Ticket to generate an Agent Ticket Bulk Request message and to process an Agent Ticket Bulk Response Message generated by the DEA. Such Agent Ticket Bulk Response message, if the Agent Ticket Bulk Request message is successfully verified by the DEA, SHALL include an Agent-Ticket corresponding to each Device for which the DEA has a record of a currently valid Service Key. The requesting DRM Agent is identified within the encrypted part of each such Agent-Ticket. The DRM Agent SHALL use the Session Key associated with the DEA-Ticket to verify the Agent Ticket Bulk Response message and to decrypt to recover the Session Key unique to each Agent-Ticket in the Response.
The SAC key material (that cryptographically establishes the SAC) is comprised of a MAC Key and an Encryption Key that are used to provide integrity and confidentiality, respectively, of the A2A Imp-RO Request(s) and A2A Imp-RO Response(s). An alternative to having the key material be generated by just one of the two communicating entities is to do the following, where EncryptedData is set directly as a randomly generated value, and is thus not decrypted by the Source DRM Agent. By using a Key Derivation Function (KDF), the SAC key material is derived from the Session Key embedded in the Agent-Ticket, and from an additional parameter that ensures key material freshness, namely the SAC Key Response message Signature. Note that the SAC Key Response message Signature is a function of both the stid that is randomly generated by the Source DRM Agent and the EncryptedData that is generated randomly by the Destination DRM Agent. The Destination DRM Agent does the KDF computation only if the received SAC Key Request message is valid. This KDF computation is done by the Destination DRM Agent prior to transmitting the SAC Key Response message, or the SAC Key Response message Signature is retained until the KDF computation is done. The Source DRM Agent does the KDF computation only if the received SAC Key Response message is valid. The default KDF is the KDF specified in section 7.1.2 of [DRMDRM2.0]. When using the KDF, set Z = Session Key, and otherInfo = SAC Key Response message Signature.

As long as the DRM Agent has a valid Agent-Ticket and a valid SAC, then the Source DRM Agent MAY Move Rights associated with Imported-Content to the Destination DRM Agent, subject to the restrictions imposed by the type of registration (i.e. “User Domain Device” or “Not Registered”) of the two Agents, as discussed in Section 5.3.1 and Section 5.3.4.2. The details of the A2A Imp-RO Request message are specified in Section 7.2.1.4.3. The details of the A2A Imp-RO Response message are specified in Section 7.2.1.4.4.
Note that for A2A-Imp RO Request and Response messaging either the Source DRM Agent or the Destination DRM Agent can send the Agent Ticket Request, since a Ticket can be used for bi-directional Rights transfers. The Source DRM Agent that transmits the SAC Key Request MAY be the Destination DRM Agent relative to A2A Imp-RO messaging. The Source DRM Agent relative to SAC Key messaging MUST first acquire an appropriate Agent-Ticket. The Destination DRM Agent relative to A2A Imp-RO messaging transfers the Rights to the Source DRM Agent. Thus, as long as one of the two DRM Agents has an appropriate Agent-Ticket, the Rights transfer can occur. Multiple Rights transfers (possibly in both directions) can occur without re-establishing the SAC.
7.2.1.4.1 Agent Ticket Request Message Details

The Agent Ticket Request message has the syntax described in Section 6.1. The fields of the message are as follows:

· msgType – This field contains the value 24.
· Pvno – This field contains the value TBD.

· stid – This field is set as discussed in Section 7.2.1.4.1.1.
· dtid – This field is set as discussed in Section 7.2.1.4.1.1.
· retryCount – This field is set as discussed in Section 7.2.1.4.1.1.
· Attributes – This data structure contains the following attributes: ServerName, ReturnAuthData, EncTypeSet, SigTypeSet, ClientDRMtimeSeconds, and ClientDRMtimeMicroSeconds.
· nbrOfAttrs – This field contains the value 6.
· AttributeStructures – This data structure contains a Ticket attribute data structures.
· nbrOfAttrStrs – This field contains the value 1.
· Signature – This attribute data structure specifies a digital signature of the message as discussed in Section 7.2.1.4.1.1.
7.2.1.4.1.1. Generating Agent Ticket Request Message

The Source client MUST follow the following steps to generate an Agent Ticket Request message:

1. Generate a pseudo random number for the stid header field of the message. Make sure that this value does not correspond to any outstanding Agent Ticket Request messages. Continue repeating this step until a unique value is generated.
2. Set the dtid header field of the message to 0.
3. Fill in the retryCount field. The value must be 0 for the initial message, 1 for the first retry, etc.

4. Fill in the ServerName for the LRM.

5. Fill in the value of the ReturnAuthData – depending on whether the Device wants a copy of the value of the AuthData attribute returned in the reply message.

6. Fill in list of encryption types supported by the Source client (EncTypeSet).

7. Fill in list of keyed checksum types supported by the Source client (SigTypeSet).

8. Fill in the ClientDRMtimeSeconds attribute and the ClientDRMtimeMicroSeconds attribute
9. Insert the Ticket attribute data structure received from the DEA, i.e. the DEA Ticket.
10. Generate the Signature attribute data structure. The data structure consists of a SigType attribute and a SigValue attribute. The value in SigType is the same as the value of the keyed checksum on the DEA Ticket. The value in SigValue is calculated over the entire message except for the Signature attribute data structure. Use the Session Key contained in the DEA Ticket to compute the keyed checksum.
After the Device sends out the Agent Ticket Request message, it MUST save the value of the stid header field in order to later validate the matching Agent Ticket Response message from the DEA. The Device MUST keep the stid until a configurable time out value. After the time out, the Device will no longer be able to process the corresponding Agent Ticket Response message and must retry and increment the retryCount value.

7.2.1.4.1.2. Processing Agent Ticket Request Message

The DEA MUST perform the following steps to verify the Agent Ticket Request message:

1. Parse the message header. If the header parsing fails, drop the message and do not return an error.

2. Verify the protocol version number in the header. If this protocol version is not supported, send an error message with the DEA_ERR_BAD_PVNO error code.

3. Parse the rest of the message. If the message format is found to be illegal, drop the message and do not return an error.

4. Verify the DEA Ticket as specified in Section 7.2.1.4.1.3. If the DEA Ticket verification fails with a Recoverable error code, save the error code and proceed to the next step without returning an error message yet. If the DEA Ticket verification fails with a Non-Recoverable error code, drop the message and do not return an error.

5. Verify the signature attribute. If verification fails for any reason, drop the message and do not return an error. If the DEA Ticket verification earlier resulted in a Recoverable error code, then the DEA must possess the DEA secret key and can use it to extract the DEA Session Key for verifying the signature. (In the case of the ERR_BADKEYVER error code during DEA Ticket verification, the secret key needed to verify the signature may be an old secret key.)

6. If the DEA Ticket verification earlier resulted in a Recoverable error code, at this time return the corresponding error message. The same Session Key that was used to verify the signature in Step 5 above MUST now be used to generate a keyed checksum for the error message.

7. Check the ClientDRMtimeSeconds attribute in the Ticket Request message. If the time is outside of the acceptable time window (typically +/- 5 minutes), this message is rejected and a message with the ERR_SKEW error code is returned.

8. If the ClientDRMtimeSeconds value is within an acceptable time window, compute a SHA-1 hash of the Ticket Request message and check if there is already a record with this hash value in the Replay Cache. (Each Replay Cache record consists of a request hash value and the ClientDRMtimeSeconds value. Only the entries corresponding to the acceptable time window, e.g. +/- 5 minutes are kept in the Replay Cache.) If the DEA finds a record in the Replay Cache with the same hash value, a replay attack is assumed and a message with the ERR_REPEAT error code is returned. If no such entries are found, the processing of the Ticket Request message continues as specified below.

9. At this point, the DEA MUST update the Replay Cache with the record corresponding to this Ticket Request message (containing message hash and value of ClientDRMtimeSeconds).

10. The DEA can now retrieve the client record for ClientName from its storage to get the up-todate status and other information for this client. If the ClientName value in the request is not found in the storage, or if the registration status of the ClientName is “Not Registered”, then an error message with a DEA_ERR_C_PRINCIPAL_UNKNOWN is returned. If the credentials of the client have been revoked then an error message DEA_ERR_CLIENT_REVOKED is returned.

11. If the ServerName value is not in the storage, or the DEA is not authorized by the DA to issue tickets for the ServerName, then an error message then an error message DEA_ERR_S_PRINCIPAL_UNKNOWN is returned.

12. If the ServerName cannot accommodate one of the requested encryption type, an error message with code DEA_ERR_ETYPE_NOSUPP is returned.

13. If the ServerName cannot accommodate one of the requested keyed checksum type, an error message with code DEA_ERR_SIGTYPE_NOSUPP is returned.

14. If no errors are generated during the processing of the Agent Ticket Request message, then a Agent Ticket Response message is generated.

7.2.1.4.1.3. Verifying DEA Ticket

The DEA MUST verify the DEA Ticket attribute data structure by using the following procedure:

1. Parse the Ticket. If the general ticket format does not fit the specification, then verification fails with the error code ERR_TICKET.

2. If the DEA does not support the ticket version number, then verification fails with the error code ERR_TICKET_VERSION.

3. If the ServerName and ServerDomainBaseID values in the Ticket do not match that of the DEA, then verification fails with the error code ERR_NOT_US.

4. If the version number of the DEA secret key (used to encrypt the PrivateTicketPart) is not the current version used by the DEA, then the DEA does the following:

• If the DEA still possesses the secret key with the version number specified in the DEA Ticket, the DEA MUST use it to authenticate the DEA Ticket (Step 5 below) and to decrypt the private ticket part and to extract the Session Key (Step 6 below). At this point, an ERR_BADKEYVER error code is generated and saved but the processing of the DEA Ticket continues with the next step. The DEA SHOULD save the old secret keys of the DEA for at least the maximum duration of the DEA Tickets.

• Otherwise, DEA Ticket verification fails immediately with the error code ERR_BADKEYVER.

5. Verify the keyed checksum over the DEA Ticket by using the version of the DEA secret key that is specified in the DEA Ticket. If the DEA no longer supports the keyed checksum type, then verification fails with the error code ERR_TKT_INAPP_CKSUM. If the keyed checksum verification fails, then the overall DEA Ticket verification fails with the error code ERR_BAD_INTEGRITY.

6. Decrypt the private part of the DEA Ticket and then parse the decrypted data. If decryption fails or if parsing fails, then the overall DEA Ticket verification fails with the error code ERR_PRIV_TKT_PART.

7. If the IPv4Address does not match the IP v4 address in of the request message, then the overall DEA Ticket verification fails with the error code ERR_BADIPADDR.

8. If Step 4 above previously recorded error code ERR_BADKEYVER, now fail the ticket verification with this error code.

9. If the start of the ticket validity period is in the future by more than the acceptable clock skew (usually configured to be 5 minutes), then verification fails with the error code ERR_TKT_NYV.

10. If the end time of the ticket validity period is passed by more than the acceptable clock skew, then the verification fails with the error code ERR_TKT_EXPIRED.

When an error is detected in Steps 1 through 6 above, the corresponding error code must be considered as Non-Recoverable: the error code MUST NOT be returned by the DEA in an error message. Unless Step 6 succeeds with no errors, the Session Key was not successfully extracted from the DEA Ticket, and, therefore, the DEA cannot authenticate an error message.

When an error is detected after Step 6, the corresponding error code MUST be considered as Recoverable: an error message can be authenticated with a keyed checksum that is keyed with the Session Key.
7.2.1.4.2 Agent Ticket Response Message Details

The Ticket Response message has the syntax described in Section 6.1. The fields of the message are as follows:

· msgType – This field contains the value 25.
· Pvno – This field contains the value TBD.

· stid – This field is set as discussed in Section 7.2.1.4.2.1.
· dtid – This field is set as discussed in Section 7.2.1.4.2.1.
· retryCount – This field is set as discussed in Section 7.2.1.4.2.1.
· Attributes – This data structure contains the DASignedData attributes.
· nbrOfAttrs – This field contains the value 1.
· AttributeStructures – This data structure contains the following attribute data structures: Ticket, and EncryptedData.
· nbrOfAttrStrs – This field contains the value 2.
· Signature – This attribute data structure specifies a digital signature of the message as discussed in Section 7.2.1.4.2.1.
7.2.1.4.2.1. Generating Agent Ticket Response Message

The DEA MUST follow the following steps to generate an Agent Ticket Response message:

1. Set the stid header field of the message to 0.

2. Set the dtid header field of the message to the same value of the stid header field from the preceding Agent Ticket Request message, so that the response message is tied to the request message.
3. The retryCount from the preceding Agent Ticket Request message is copied to the retryCount in this message.

4. The DEA randomly generates a Session Key. The DEA MUST assign the type of Session Key based on the intersection of the list of algorithms specified in the EncTypeSet attribute in the preceding Ticket Request message with the list of encryption algorithms supported by the ServerName. If this intersection contains more than one encryption algorithm, the DEA MUST select the strongest one. The encryption algorithm is used to encrypt the data in PrivateTicketPart.
5. The DEA generates an Agent Ticket, as per Section 7.2.1.4.2.2.
6. The DEA chooses an encryption algorithm based on the intersection of the list of algorithms specified in the EncTypeSet attribute in the preceding Ticket Request message with the list of encryption algorithms supported by the DEA. If this intersection contains more than one encryption algorithm, the DEA MUST select the strongest one. The encryption algorithm is used to encrypt the data in EncryptedData.

7. The DEA populates the EncryptedData attribute data structure. The EncType contains the identifier of the encryption algorithm that the DEA chose. The CipherText contains the Session Key type in a KeyType attribute and the Session Key in a KeyValue attribute. In addition, if the client set the RetrunAuthData attribute in the preceding Ticket Request message to 1, then the CipherText also includes the AuthData attribute that is included in the Ticket. The value of the CipherText attribute is encrypted by using the Session Key contained in the DEA Ticket.
8. Populate the DASignedData attribute.
9. Generate the Signature attribute data structure. Specifically, the DEA chooses a keyed checksum algorithm based on the intersection of the list of algorithms specified in the SigTypeSet attribute in the preceding Ticket Request message with the list of keyed checksum algorithms supported by the DEA. The data structure consists of a SigType attribute and a SigValue attribute. The DEA then specifies the chosen keyed checksum algorithm identifier in the SigType attribute. The value in SigValue is calculated over the entire message except for the Signature attribute data structure. Use the Session Key contained in the DEA Ticket to compute the keyed checksum.

7.2.1.4.2.2. Generating Agent Ticket

The DEA generates an AgentTicket attribute data structure as follows:

1. Fill in the TktVnum with the value 2.0.

2. Fill in the ServerDomainBaseID and ServerName values. The ServerDomainID is the same as the ClientDomainID. The ServerName is copied from the preceding Agent Ticket Request message.
3. Fill in the ClientDomainBaseID and ClientName values corresponding to the client.

4. Fill in the AuthTime attribute value. This is the value of ClientDRMtimeSeconds in the record of the ClientName in the DEA storage.

5. Fill in the EndTime attribute value. This is the expiration time for the Agent Ticket and MAY be set according to a policy communicated to the DEA. The format of this policy and the method to communicate the policy to the DEA are outside the scope of these specifications.

6. Fill in the EncType attribute value. This is the identifier of the algorithm the DEA uses to encrypt PrivateTicketPart.
7. Generate the PrivateTicketPart attribute data structure. This data structure contains the Session Key type in a KeyType attribute, the Session Key in a KeyValue attribute, the ClientDomainBaseID attribute, the ClientName attribute, the IPv4 address of the client in the IPv4Address attribute, and authorization data in the AuthData attribute. Also, the DEA includes the DeviceRegistrationTypeResponse attribute for the Source client registration in the AuthData attribute. PrivateTicketPart is encrypted by using the Service Key for the ServerName.

8. Fill in the Service Key version number in the SkeyVnum attribute. This version number is for the Service Key for the ServerName.

9. Fill in the values of EncTypeSet and SigTypeSet for the ServerName.
10. Fill in the DeviceRegistrationTypeResponse attribute based on the status of the Destination client registration.
11. Compute the keyed checksum for the Agent Ticket and populate the Signature attribute data structure. Specifically, the DEA chooses a keyed checksum algorithm based on the intersection of the list SigTypeSet of algorithms in the ServerName record with the list of keyed checksum algorithms supported by the DEA. If this intersection contains more than one keyed checksum algorithm, the DEA MUST select the strongest one. The DEA then specifies the chosen keyed checksum algorithm identifier in the SigType attribute. The DEA then computes a keyed checksum over the entire Ticket except for the SigType and SigValue attributes and populates SigValue with the computed keyed checksum. (During the keyed checksum calculation, the value of the lengthStr field is adjusted to reflect the missing SigType and SigValue attributes.) The DEA uses the Service Key of the ServerName to compute the keyed checksum for the Ticket.

7.2.1.4.2.3. Processing Agent Ticket Response Message

The Source client MUST follow the following procedure to process the Agent Ticket Response message. Note that the client does not send an error message back to the DEA. In some cases, the client will retry with another Agent Ticket Request message:

1. Parse the message header. If the header parsing fails, pretend that the Agent Ticket Response message were never received, i.e. continue waiting for a reply to the initial Ticket Request message until a timeout occurs and then retry.
2. Verify the protocol version number in the header. If this protocol version is not supported, pretend the message were never received.

3. The client looks for an outstanding Agent Ticket Request message whose stid value matches the dtid header field in the Ticket Response message. If there is no match, the client proceeds as if the Agent Ticket Response message were never received.

4. Verify that the retryCount in the preceding Agent Ticket Request message matches the retryCount in the Ticket Response message. If it does not match, the client proceeds as if the reply message were never received.

5. Parse the rest of the Agent Ticket Response message. If the message format is found to be illegal, pretend the message were never received.
6. Verify the keyed checksum (by using the shared session key). If the keyed checksum does not verify, this message is dropped and the client proceeds as if the message were never received.
7. The client decrypts the value of the Ciphertext attribute in EncryptedData in the reply message using the Session Key contained in the DEA Ticket. If the value cannot be decrypted because the client does not support the encryption type of the EncryptedData, a fatal error MUST be reported to the user, and the client MUST NOT retry. If the resulting clear text contains formatting errors or contains a Session Key with a type that is not supported by this client, then a fatal error MUST be reported to the user, and the client MUST NOT retry.
8. The client processes the Agent Ticket by using the procedure described in Section 7.2.1.4.2.4. If there is an error in the Agent Ticket, then a fatal error is reported to the user, and the client MUST NOT retry.

9. Verify that the value of the DASignedData attribute shows that the DEA is authorized by the DA to issue Tickets to the Source Device and Destination Device. For example, if the DA-signed data is Device-specific, then the value of the DASignedData attribute must include the value of the ClientIdentifier. If the verification fails, then the client MUST abort processing of the message and log the error code DEA_ERROR_DEA_NOT_TRUSTED.
10. If no errors in the Agent Ticket Response message were detected, the client MUST save the full Agent Ticket in a new entry in its ticket cache until the Agent Ticket expires. Also, the client MUST store the value of the DeviceRegistrationTypeResponse attribute of the Destination client.

7.2.1.4.2.4. Agent Ticket Processing by Client
A Source client is normally unable to verify the integrity of an Agent Ticket. Still, a client MUST perform some verification on the received Ticket, as specified below. If the verification below fails at any step, the client application reports it as a fatal error to the user, and the client MUST NOT retry:

4. Parse the Agent Ticket. If the general ticket format does not fit the specification, then verification fails.

5. If the ServerName and ServerDomainBaseID in the Agent Ticket does not match what the client was expecting from the DEA, then verification fails.

6. If the end of the Agent Ticket validity period (End Time) is in the past by more than the clock skew period (usually 5 minutes), then verification fails.

7.2.1.4.3 A2A Imp-RO Request Message Details

The A2A Imp-RO Request message has the syntax described in Section 6.1. The fields of the message are as follows:

· msgType – This field contains the value 28.
· Pvno – This field contains the value TBD.

· stid – This field is set as discussed in Section 7.2.1.4.3.1.
· dtid – This field is set as discussed in Section 7.2.1.4.3.1.
· retryCount – This field is set as discussed in Section 7.2.1.4.3.1.
· Attributes – This data structure contains the following attributes: ClientName, RO_ID, ClientDRMtimeSeconds, and EncTypeSet.
· nbrOfAttrs – This field contains the value 4.
· AttributeStructures – This data structure contains the EncryptedData attribute data structure.
· nbrOfAttrStrs – This field contains the value 1.
· Signature – This field is set as discussed in Section 7.2.1.4.3.1.
7.2.1.4.3.1. Generating A2A Imp-RO Request Message

The Source DRM Agent MUST follow the following steps to generate an A2A Imp-RO Request message:

1. Generate a pseudo random number for the stid header field of the message. Make sure that this value does not correspond to any outstanding A2A Imp-RO Request messages. Continue repeating this step until a unique value is generated.
2. Set the dtid header field of the message to 0.
3. Fill in the retryCount field. The value must be 0 for the initial message, 1 for the first retry, etc.

4. Fill in the ClientName attribute.

5. Fill in the RO_ID attribute.

6. Fill in the ClientDRMtimeSeconds attribute.

7. Fill in the EncTypeSet attribute.

8. Generate the EncryptedData attribute data structure. The CipherText contains the Signature attribute data structures that contain the REK values of the Imported-ROs or RI-created ROs that the Source DRM Agent received as a Guest Device from the Destination DRM Agent and no longer needs to use; the CipherText also contains the corresponding Signature attribute data structures that the Source DRM Agent received from the Destination DRM Agent. The EncType contains the identifier of the Encryption algorithm the Destination DRM Agent used to encrypt the REKs when the Destination DRM Agent delivered the REKs to the Source DRM Agent.
9. Generate the Signature attribute data structure. Specifically, the Source DRM Agent chooses a keyed checksum algorithm based on the intersection of the list of algorithms specified in the SigTypeSet attribute in the Agent Ticket with the list of keyed checksum algorithms supported by the Source DRM Agent. The data structure consists of a SigType attribute and a SigValue attribute. The Source DRM Agent then specifies the chosen keyed checksum algorithm identifier in the SigType attribute. The value in SigValue is calculated over the entire message except for the Signature attribute data structure. Use the SAC Key negotiated with the Destination DRM Agent to compute the keyed checksum.
After the Source DRM Agent sends out the A2A Imp-RO Request message, it MUST save the value of the stid header field in order to later validate the matching A2A Imp-RO Response message from the LRM. The Source DRM Agent MUST keep the stid until a configurable time out value. After the time out, the Source DRM Agent will no longer be able to process the corresponding A2A Imp-RO Response message and must retry and increment the retryCount value.

7.2.1.4.3.2. Processing A2A Imp-RO Request Message

The Destination DRM Agent MUST perform the following steps to verify the A2A Imp-RO Request message:

1. Parse the message header. If the header parsing fails, drop the message and do not return an error.

2. Verify the protocol version number in the header. If this protocol version is not supported, drop the message and do not return an error.

3. Parse the rest of the message. If the message format is found to be illegal, drop the message and do not return an error.
4. If the Destination DRM Agent cannot accommodate one of the requested keyed checksum types, drop the message and do not return an error.

5. Verify the signature attribute. If verification fails for any reason, drop the message and do not return an error.

6. Check the ClientDRMtimeSeconds attribute in the A2A Imp-RO Request message. If the time is outside of the acceptable time window (typically +/- 5 minutes), this message is rejected and a message with the ERR_SKEW error code is returned.

7. If the ClientDRMtimeSeconds value is within an acceptable time window, compute a SHA-1 hash of the A2A Imp-RO Request message and check if there is already a record with this hash value in the Replay Cache. (Each Replay Cache record consists of a request hash value and the ClientDRMtimeSeconds value. Only the entries corresponding to the acceptable time window, e.g. +/- 5 minutes are kept in the Replay Cache.) If the Destination DRM Agent finds a record in the Replay Cache with the same hash value, a replay attack is assumed and a message with the ERR_REPEAT error code is returned. If no such entries are found, the processing of the A2A Imp-RO Request message continues as specified below.

8. If the Destination DRM Agent cannot support any of the EncTypeSet identifiers, then the agent returns an error message with code DEA_ERR_ETYPE_NOSUPP.

9. At this point, the Destination DRM Agent MUST update the Replay Cache with the record corresponding to this A2A Imp-RO Request message (containing message hash and value of ClientDRMtimeSeconds).

10. If the specified RO_ID is not recognized, return an error message with the code ERR_RO_ID_NOT_RECOGNIZED.

11. The Destination DRM Agent MUST verify that the value of the DASignedData attribute shows that the LRM whose signature is in the Imported-RO is associated with the DEA that issued the Agent Ticket to the Source DRM Agent. If the DASignedData does not show this association, then the Destination DRM Agent returns an error message with the code ERR_RO_NOT_Available.

12. If no errors are generated during the processing of the A2A Imp-RO Request message, then the Destination DRM Agent stores the EncTypeSet of the Source Destination Agent and generates an A2A Imp-RO Response message.
7.2.1.4.4 A2A Imp-RO Response Message Details

The A2A Imp-RO Response message has the syntax described in Section 6.1. The fields of the message are as follows:

· msgType – This field contains the value 29.
· Pvno – This field contains the value TBD.

· stid – This field is set as discussed in Section 7.2.1.4.4.1.
· dtid – This field is set as discussed in Section 7.2.1.4.4.1.
· retryCount – This field is set as discussed in Section 7.2.1.4.4.1.
· Attributes – This data structure contains no attributes.
· nbrOfAttrs – This field contains the value 0.
· AttributeStructures – This data structure contains the EncryptedData attribute data structure.
· nbrOfAttrStrs – This field contains the value 1.
· Signature – This field is set as discussed in Section 7.2.1.4.4.1.
7.2.1.4.4.1. Generating A2A Imp-RO Response Message

The Destination DRM Agent MUST follow the following steps to generate an A2A Imp-RO Response message:

1. Set the stid header field of the message to 0.

2. Set the dtid header field of the message to the same value of the stid header field from the preceding A2A Imp-RO Request message, so that the response message is tied to the request message.
3. The retryCount from the preceding A2A Imp-RO Request message is copied to the retryCount in this message.
4. The Destination DRM Agent chooses an encryption algorithm based on the intersection of the list of algorithms specified in the EncTypeSet stored for the Source Destination Agent with the list of encryption algorithms supported by the Destination DRM Agent. If this intersection contains more than one encryption algorithm, the Destination DRM Agent MUST select the strongest one.

5. The Destination DRM Agent stores the Imported-RO or RI-created RO indexed by the stid of the A2A Imp-RO Request message until the A2A Imp-RO Request message no longer exists in the Replay Cache. This allows the Destination DRM Agent to re-send the same Imported-RO or RI-created RO if a retry A2A Imp-RO Request message arrives at the Destination DRM Agent.
6. If the Source DRM Agent has a DeviceRegistrationTypeResponse of “User Domain Device”, as specified by the Agent Ticket, then the Destination DRM Agent generates a Signature attribute data structure. The data structure consists of a SigType attribute and a SigValue attribute. The value in SigValue is calculated over the ServerIdentifier, ServerDRMtimeSeconds, ClientIdentifier, and RO_ID attributes. The Destination DRM Agent uses its private key to compute the signature.

The Destination DRM Agent then populates the EncryptedData attribute data structure. The EncType contains the identifier of the Encryption algorithm the Destination DRM Agent chose. The CipherText contains the Imported-RO or RI-created RO, the attributes ServerIdentifier, ServerDRMtimeSeconds, ClientIdentifier, RO_ID, and IsInitialMove, and the Signature attribute data structure that the Destination DRM Agent computed. If this is the initial Move of the Imported-RO, then the Destination DRM Agent sets the value in the IsInitialMove to 1, else it sets the value to 0. The Destination DRM Agent uses the SAC Key for the encryption.

7. If the Source DRM Agent has a DeviceRegistrationTypeResponse of “Not Registered”, as specified by the Agent Ticket, then the Destination DRM Agent verifies that the value of the DASignedData attribute shows that the LRM whose signature is in the Imported-RO is authorized for Guest Devices, i.e. Devices that are not registered. If the DASignedData does not show this authorization, then the Destination DRM Agent returns an error message with the code ERR_RO_NOT_Available.

In all other cases, the Destination DRM Agent generates a Signature attribute data structure. The data structure consists of a SigType attribute and a SigValue attribute. The value in SigValue is calculated over the REK of the Imported-RO or RI-created RO. The Destination DRM Agent uses its public key to compute the signature, and the SigType depends on the type of this public key.

The Destination DRM Agent then populates the EncryptedData attribute data structure. The EncType contains the identifier of the Encryption algorithm the Destination DRM Agent chose. The CipherText contains the Imported-RO or RI-created RO, the CEK of the Imported-RO or RI-created RO, the REK of the Imported-RO or RI-created RO, and the Signature attribute data structure that the Destination DRM Agent computed. The Destination DRM Agent uses the SAC Key for the encryption.

8. Generate a Signature attribute data structure. The data structure consists of a SigType attribute and a SigValue attribute. The value in the SigType attribute is the same as the value of the SigType attribute in the preceding A2A Imp-RO Request message. The value in SigValue is calculated over the entire message except for the Signature attribute data structure. Use the SAC Key negotiated with the Source DRM Agent to compute the keyed checksum.

7.2.1.4.4.2. Processing A2A Imp-RO Response Message

The Source DRM Agent MUST follow the following procedure to process the A2A Imp-RO Response message. Note that the Source DRM Agent does not send an error message back to the Destination DRM Agent. In some cases, the Source DRM Agent will retry with another A2A Imp-RO Request message:

1. Parse the message header. If the header parsing fails, pretend that the A2A Imp-RO Response message were never received, i.e. continue waiting for a reply to the initial A2A Imp-RO Request message until a timeout occurs and then retry.
2. Verify the protocol version number in the header. If this protocol version is not supported, pretend the message were never received.

3. The Source DRM Agent looks for an outstanding A2A Imp-RO Request message whose stid value matches the dtid header field in the A2A Imp-RO Response message. If there is no match, the Source DRM Agent proceeds as if the A2A Imp-RO Response message were never received.

4. Verify that the retryCount in the preceding A2A Imp-RO Request message matches the retryCount in the A2A Imp-RO Response message. If it does not match, the client proceeds as if the reply message were never received.

5. Parse the rest of the A2A Imp-RO Response message. If the message format is found to be illegal, pretend the message were never received.
6. Verify the keyed checksum (by using the shared SAC Key). If the checksum does not verify, this message is dropped and the Source DRM Agent proceeds as if the message were never received.
7. If the resulting A2A Imp-RO contains formatting errors, then a fatal error MUST be reported to the user, and the client MUST NOT retry.
8. The Source DRM Agent decrypts the value of the Ciphertext attribute in EncryptedData in the reply message using the SAC Key. If the value cannot be decrypted because the Source DRM Agent does not support the encryption type of the EncryptedData, a fatal error MUST be reported to the user, and the Source DRM Agent MUST NOT retry. If the resulting clear text contains formatting errors, then a fatal error MUST be reported to the user, and the Source DRM Agent MUST NOT retry.
9. Verify that the value of the DASignedData attribute shows that the LRM whose signature is in the Imported-RO is associated with the DEA that issued the Agent Ticket to the Source DRM Agent. If the DASignedData does not show this association, then a fatal error MUST be reported to the user, and the client MUST NOT retry.
10. If the Source DRM Agent has a DeviceRegistrationTypeResponse of “User Domain Device”, then the Source DRM Agent stores the content of the decrypted CipherText contained in the EncryptedData of the reply message, i.e. the Imported-RO or RI-created RO, the attributes ServerIdentifier, ServerDRMtimeSeconds, ClientIdentifier, RO_ID, and IsInitialMove, and the Signature attribute data structure that the Destination DRM Agent computed. If any of these attributes is missing or mal-formed, then a fatal error MUST be reported to the user, and the Source DRM Agent MUST NOT retry.

11. If the Source DRM Agent has a DeviceRegistrationTypeResponse of “Not Registered”, then the Source DRM Agent verifies that the value of the DASignedData attribute shows that the LRM whose signature is in the Imported-RO is authorized for Guest Devices, i.e. Devices that are not registered. If the DASignedData does not show this authorization, then a fatal error MUST be reported to the user, and the Source DRM Agent MUST NOT retry.

In all other cases, the Source DRM Agent stores the content of the decrypted CipherText contained in the EncryptedData of the reply message, i.e. the Imported-RO or RI-created RO, the CEK of the Imported-RO or RI-created RO, the REK of the Imported-RO or RI-created RO, and the Signature attribute data structure that the Destination DRM Agent computed. If any of these attributes is missing or mal-formed, or if the hash of the received CEK does not match hash(CEK) contained in the <rights> element of the Imported-RO or RI-created RO, then a fatal error MUST be reported to the user, and the Source DRM Agent MUST NOT retry.
7.2.1.5 RightsAuth-Protocol
This protocol is only applicable to an Imported-RO created by an LRM with a <move> permission that is <domain-size>-constrained [SCE REL TS].

A Destination DRM Agent uses the dmpPair-Protocol to pair with a Source DRM Agent in order to perform a Move of an Imported-RO (where both DRM Agents are User Domain Devices). As a result, an Imported-RO is moved from the Source DRM Agent to the Destination DRM Agent. Before the Imported-RO can be enabled at the Destination DRM Agent, it MUST obtain authorization from the DEA by sending an Authorization Request message to the DEA. The Destination DRM Agent MAY request authorization for more than one Imported-RO in one request. These Imported-ROs may have been received from one or more Source DRM Agents. The Authorization Request message is specified in Section 7.2.1.5.1.

After receiving the Authorization Request message, the DEA processes the requests (for each Imported RO) one by one to determine whether the Move is legitimate. The DEA responds to the Destination DRM Agent with an Authorization Response that indicates the status of authorization for each of the Imported-ROs requested. The Authorization Response message is specified in Section 7.2.1.5.2.

After receiving the Authorization Response message, the Destination DRM Agent processes the status responses one by one to determine whether authorization has been granted for each Imported-RO requested. The Destination DRM Agent may only enable those Imported-ROs where authorization has been granted, and MUST NOT enable those Imported-ROs where authorization has not been granted.

The Authorization Request and Response transaction is illustrated in Figure 8 below.

[image: image9.emf]Destination DRM AgentDEA

Auth Request

Auth Response

Figure 8 - Rights Authorization Protocol Messages

7.2.1.5.1 Authorization Request Message Details

The Authorization Request message has the syntax described in Section 6.1. The fields of the message are as follows:

· msgType – This field contains the value 30.
· Pvno – This field contains the value 0.
· stid – This field is set as discussed in Section 7.2.1.5.1.1.
· dtid – This field is set as discussed in Section 7.2.1.5.1.1.
· retryCount – This field is set as discussed in Section 7.2.1.5.1.1.

· Attributes – This data structure contains the following attributes: ClientIdentifier, ClientDRMtimeSeconds, SigTypeSet.
· nbrOfAttrs – This field contains the value 3.
· AttributeStructures – This data structure contains a ROAuthRequestList attribute data structure.
· nbrOfAttrStrs – This field contains the value 1.
· Signature – This attribute data structure specifies a digital signature of the message as discussed in Section 7.2.1.5.1.1.
7.2.1.5.1.1. Generating Authorization Request Message

The Destination DRM Agent MUST perform the following steps to generate an Authorization Request message:

1. Generate a pseudo random number for the stid header field of the message. Make sure that this value does not correspond to any outstanding Authorization Request messages. Continue repeating this step until a unique value is generated.

2. Set the dtid header field of the message to 0.
3. Fill in the retryCount field. The value must be 0 for the initial message, 1 for the first retry, etc.

4. Fill in the ClientIdentifier attribute with the Destination DRM Agent’s Identifier.

5. Fill in the ClientDRMtimeSeconds attribute.

6. Fill in the signature types supported by the Destination DRM Agent (SigTypeSet)

7. For each of the Imported-RO that the Destination DRM Agent wants to request for authorization from DEA, the Destination DRM Agent inserts a ROAuthRequest attribute data structure to the ROAuthRequestList attribute data structure. The fields of each ROAuthRequest attribute data structure are constructed as follows:

a. Fill in the ClientIdentifier attribute with the Source DRM Agent’s Identifier for this Imported-RO. For this purpose, the Source DRM Agent’s ID is stored by the Destination DRM Agent as independently determined by the Destination DRM Agent at the time of the Move (i.e., based on a SAC context rather than a Source Device indication of its ID).
b. Fill in the DateTime attribute as specified by the Source DRM Agent when the Move is performed.

c. Fill in the Signature attribute data structure with the value provided by the Source DRM Agent. This is a keyed checksum of [Source Device ID, Date-Time, Recipient Device ID, ROID] using the Source DRM Agent’s Service Key.

d. Fill in the IsInitialMove attribute as specified by the Source DRM Agent.

e. If this is an initial Move, append an ImportedRights attribute to the ROAuthRequest. The ImportedRights attribute contains the Imported-RO <rights> and <signature> elements. If this is not an initial move, append a RO_ID attribute to the ROAuthRequest. For this purpose, the RO_ID is extracted by the Destination DRM Agent directly from the <rights> element (i.e., not from a Source DRM Agent indication of this value).

f. Proceed to process the next Imported-RO.

8. Generate the Signature attribute data structure. The data structure consists of a SigType attribute and a SigValue attribute. The value in SigValue is calculated over the entire message except for the Signature attribute data structure. Use the Destination DRM Agent’s Service Key to compute the keyed checksum.
After the Destination DRM Agent sends out the Authorization Request message, it MUST save the value of the stid header field in order to later validate the matching Authorization Response message from the DEA. The Destination DRM Agent MUST keep the stid until a configurable time out value. After the time out, the Destination DRM Agent will no longer be able to process the corresponding Authorization Response message and MUST retry and increment the retryCount value.
7.2.1.5.1.2. Processing Authorization Request Message

The DEA MUST perform the following steps to verify the Authorization Request message:

1. Parse the message header. If the header parsing fails, drop the message and do not return an error.

2. Verify the protocol version number in the header. If this protocol version is not supported, send an error message (per section 6.1.4) with the DEA_ERR_BAD_PVNO error code (if the client’s Service Key is found in Step 4).

3. Parse the rest of the message. If the message format is found to be illegal, drop the message and do not return an error.
4. Based on the (outer) ClientIdentifier attribute in the Authorization Request message, the DEA looks up the Service Key of the client (Destination DRM Agent) in the DEA storage. If no record is found, drop the message and do not return an error.
5. Verify the signature attribute using the client’s Service Key. If verification fails for any reason, drop the message and do not return an error.

6. Check the ClientDRMtimeSeconds attribute in the Authorization Request message. If the time is outside of the acceptable time window (typically +/- 5 minutes), this message is rejected and a message with the ERR_SKEW error code is returned.

7. If the ClientDRMtimeSeconds value is within an acceptable time window, compute a SHA-1 hash of the Authorization Request message and check if there is already a record with this hash value in the Replay Cache. (Each Replay Cache record consists of a request hash value and the ClientDRMtimeSeconds value. Only the entries corresponding to the acceptable time window, e.g. +/- 5 minutes are kept in the Replay Cache.) If the DEA finds a record in the Replay Cache with the same hash value, a replay attack is assumed and a message with the ERR_REPEAT error code is returned. If no such entries are found, the processing of the Authorization Request message continues as specified below.

8. At this point, the DEA MUST update the Replay Cache with the record corresponding to this Authorization Request message (containing message hash and value of ClientDRMtimeSeconds).

9. If no errors are generated during the processing of the Authorization Request message, then an Authorization Response message is generated.

7.2.1.5.2 Authorization Response Message Details
The Authorization Response message has the syntax described in Section 6.1. The fields of the message are as follows:

· msgType – This field contains the value 31.
· Pvno – This field contains the value 0.
· stid – This field is set as discussed in Section 7.2.1.5.2.1
· dtid – This field is set as discussed in Section 7.2.1.5.2.1
· retryCount – This field is set as discussed in Section 7.2.1.5.2.1
· Attributes – This data structure contains no attributes.
· nbrOfAttrs – This field contains the value 0.
· AttributeStructures – This data structure contains a ROAuthResponseList attribute data structure.
· nbrOfAttrStrs – This field contains the value 1.
· Signature – This attribute data structure specifies a digital signature of the message as discussed in Section 7.2.1.5.2.1.
7.2.1.5.2.1. Generating Authorization Response Message

The DEA MUST perform the following steps to generate an Authorization Response message:

1. Set the stid header field of the message to 0.

2. Set the dtid header field of the message to the same value of the stid header field from the preceding Authorization Request message (so that the response message is tied to the request message).
3. The retryCount from the preceding Authorization Request message is copied to the retryCount in this message.
4. For each of the ROAuthRequest attribute data structure in the Authorization Request, the DEA determines whether the Destination DRM Agent can enable the RO and constructs a corresponding ROAuthResponse attribute data structure as follows:

a. Fill in the RO_ID attribute of the ROAuthResponse with the RO_ID in the corresponding ROAuthRequest attribute data structure. (Note that if this is an Initial Move, the RO_ID is retrieved from the <rights> element of the ImportedRights attribute.)

b. Based on the ClientIdentifier attribute (that contains the Source DRM Agent’s Identifier) in the ROAuthRequest attribute data structure, the DEA looks up the Service Key of the Source DRM Agent in the DEA storage. If no record is found, fill in the ROAuthStatus attribute with an error status and continue to process the next ROAuthRequest.

c. If this is an Initial Move, the DEA performs the following verifications:

i. Verify that there is no DEA record for that RO_ID

ii. Parse the <rights> element and verify that the LRM that generated the <signature> element is legitimately associated with the DEA per DA-signed data.

iii. Verify that the ClientIdentifier attribute in the ROAuthRequest matches the Import-recipient Device ID in the <rights> element.

iv. Verify the signature attribute in the ROAuthRequest (by comparing it with a keyed checksum computed over the data [Source Device ID, DateTime, Recipient Device ID, RO_ID] using the Source DRM Agent’s Service Key found in Step 4.b above).

v. Verify that DateTime attribute in the ROAuthRequest is earlier than the DEA’s current Date-Time.

If any of the above verifications fails, the DEA fills in the ROAuthStatus with an error status. If all verifications passed, the DEA fills in the ROAuthStatus with a status code of OK. In the latter case, the DEA also records the RO_ID, the value of m (the number of User Domain Devices that are allowed to utilize the RO, as indicated within the Imported-RO), the Destination DRM Agent’s Identifier and the current Date-Time to the DEA storage.

d. If this is not an Initial Move, the DEA performs the following:

i. Based on the RO_ID, the DEA finds the Device ID of the Device that has made the most recent successful request and the Date-Time that this occurred as evidenced by the last Date-Time stored by the DEA for this RO_ID.

ii. Verify that the Device ID found is the same as the Source Device ID as indicated in the ClientIdentifier attribute in the ROAuthRequest.

iii. Verify the signature attribute in the ROAuthRequest (by comparing it with a keyed checksum computed over the data [Source Device ID, DateTime, Recipient Device ID, RO_ID] using the Source DRM Agent’s Service Key found in Step 4.b above).

iv. Verify that Date-Time retrieved from the DEA record is earlier than the DateTime attribute in the ROAuthRequest. Also verify that DateTime attribute in the ROAuthRequest is earlier than the DEA’s current Date-Time.
v. If the value of m as indicated within the Imported-RO is less than the maximum allowable size of the User Domain per Domain Policy, the DEA tracks the Device IDs of those Devices that have utilized the Imported-RO. If the length of this list is smaller than m, the DEA updates the list by appending the Device ID of the Destination DRM Agent if the Destination DRM Agent Device ID is not already included in the list. The DEA also includes a DeviceList attribute data structure jn the ROAuthResponse. The DeviceList attribute data structure includes m-1 Device IDs (where the Destination DRM Agent Device ID is excluded) if the length of the list is m, and is null otherwise. The DEA verifies that if the length of the list is equal to m then the Destination Device ID is on the list. [This verification step is intended to prevent enabling a Move that occurred from a Source DRM Agent in possession of a locally stored copy of the DeviceList to a Destination Device that is not on the DeviceList. The reason the DEA sends the list of Device IDs in the Authorization Response message if the domain-size value m set in the Imported-RO by the LRM has been reached is so that the RO does not get "wasted" by Moving it to a Destination DRM Agent that is not on the list, resulting in the Destination DRM Agent being disallowed to enable the Rights when it does an Authorization Request.]
If any of the above steps fails, the DEA fills in the ROAuthStatus with a status of error. If all verifications passed, the DEA fills in the ROAuthStatus with a status code of OK. In the latter case, the DEA also updates its record corresponding to the particular RO_ID with the current requesting Device ID and Date-Time.

e. The DEA proceeds to process the next ROAuthRequest attribute data structure.
5. Generate the Signature attribute data structure. Specifically, the DEA chooses a keyed checksum algorithm based on the intersection of the list of algorithms specified in the SigTypeSet attribute in the preceding Authorization Request message with the list of keyed checksum algorithms supported by the DEA. The data structure consists of a SigType attribute and a SigValue attribute. The DEA then specifies the chosen keyed checksum algorithm identifier in the SigType attribute. The value in SigValue is calculated over the entire message except for the Signature attribute data structure. Use the client’s Service Key located from the client’s record of the DEA storage to compute the keyed checksum.

7.2.1.5.2.2. Processing Authorization Response Message

The Destination DRM Agent MUST follow the following procedure to process the Authorization Response message. Note that the Destination DRM Agent does not send an error message back to the DEA.
1. Parse the message header. If the header parsing fails, pretend that the Authorization Response message was never received, i.e. continue waiting for a reply to the initial Authorization Request message until a time-out occurs and then retry.
2. Verify the protocol version number in the header. If this protocol version is not supported, pretend the message was never received.

3. The Destination DRM Agent looks for an outstanding Authorization Request message whose stid value matches the dtid header field in the Authorization Response message. If there is no match, the client proceeds as if the Authorization Response message were never received.

4. Verify that the retryCount in the preceding Authorization Request message matches the retryCount in the Authorization Response message. If it does not match, the client proceeds as if the reply message were never received.

5. Parse the rest of the Authorization Response message. If the message format is found to be illegal, pretend the message was never received.
6. Verify the signature attribute by using the Destination DRM Agent’s Service Key. If the keyed checksum does not verify, this message is dropped and the Destination DRM Agent proceeds as if the message were never received.
7. For each ROAuthResponse attribute data structure in the ROAuthResponseList attribute data structure, the Destination DRM Agent performs the following:

a. Verify that the RO_ID corresponds to one of the Imported-RO that the Destination DRM Agent has requested for authorization in the Authorization Request.

b. If the ROAuthStatus indicates that the authorization status is OK, the Destination DRM Agent enables the Imported-RO associated. If a DeviceList attribute data structure is included, the Destination DRM Agent saves the DeviceList if not already present for that RO_ID.

c. If the ROAuthStatus indicates that the authorization status is Error, the Destination DRM Agent MUST NOT enable the associated Imported-RO.

d. The Destination DRM Agent proceeds to process the next ROAuthResponse.

7.3 Certificate Handling

The certificate profiles are specified in Appendix C. The LRM certificate profile ensures that LRM certificates are distinguishable from DRM Agent/Device certificates and from RI certificates by SCE-conformant Devices. This is achieved by mandating inclusion of the oma-kp-localRightsManagerDevice or oma-kp-localRightsManagerDomain key purpose in the certificate for the LRM.
The LRM certificate profile allows to ensure that LRM certificates are distinguishable from RI certificates by OMA DRM Devices that are not conformant to SCE in that such LRM certificates will be rejected for effective use by DRM Agents in such SCE- non-conformant Devices. This is achieved through exclusion of the oma-kp-rightsIssuer key purpose from the certificate.

The LRM certificate profile also allows LRM certificates to be indistinguishable from RI certificates by OMA DRM Devices that are not conformant to SCE, such that LRM certificates can be used as RI certificates by DRM Agents in such SCE- non-conformant Devices. This is achieved through inclusion of the oma-kp-rightsIssuer key purpose in the certificate.
8. Protection of Content and Rights
8.1 Protection of Content Objects
<text>
8.2 Protection of Rights
<text>
8.3 Off-Device Storage of Content and Rights Objects
<text>
9. Capability Signaling
9.1 Signaling from LRM

<text>
9.2 Signaling from Devices

<text>
10. Super Distribution of Imported Content
10.1 Overview
<text>
10.2 Preview
<text>
10.3 Transaction Tracking
<text>
10.4 Content Integrity
<text>
11. Security Considerations (Informative)
11.1 Trust Model
<text>
11.2 Threat Analysis
<text>
11.3 Privacy

<text>
Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

A.2 Draft/Candidate Version <current version> History

	Document Identifier
	Date
	Sections
	Description

	OMA-TS-SCE_LRM-V1_0-20070209-D
	09 Feb 2007
	n/a
	Initial draft

	OMA-TS-SCE_LRM-V1_0-20070423-D
	23 Apr 2007
	7.3; Appendix C; 6.2; 6.3; 2.1; 6.4.1; B.1; B.2
	* Changed the labels of the interfaces in Section 6 to conform to the labels in the SCE Architecture Document.

* Updated SCR tables

* Inserted the following agreed contribution: OMA-DRM-2007-0093R03

	OMA-TS-SCE_LRM-V1_0-20070927-D
	27 Sep 2007
	6.4.1.1; 5.3.4; 5.3.1.1; B.1; B.2
	* Inserted the following agreed contribution: OMA-DRM-2007-0295R01

* Updated SCR tables

	OMA-TS-SCE_LRM-V1_0-20071011-D
	11 Oct 2007
	6; 6.4.1; 6.4.1.1; 5.3.1.1; 5.3.1.2; 5.3.4.1; 5.3.4.2
	* Inserted the following agreed contribution: OMA-DRM-2007-0353R01

	OMA-TS-SCE_LRM-V1_0-20071129-D
	29 Nov 2007
	6.2; 6.2.1; 6.2.2; 7.2.1
	* Inserted the following agreed contribution: OMA-DRM-2007-0534; OMA-DRM-2007-0539

	OMA-TS-SCE_LRM-V1_0-20071205-D
	05 Dec 2007
	5.3.3
	* Inserted the following agreed contribution: OMA-DRM-2007-0513R02

	OMA-TS-SCE_LRM-V1_0-20071220-D
	20 Dec 2007
	7.3; C.1; 6.2.2; 6.2.1; 5.3.3; 2.1
	* Added Normative reference to DRM DRM TS 2.0

* Added Normative reference to DRM TS 2.1

* Inserted the following agreed contributions: OMA-DRM-2007-0547R02; OMA-DRM-2007-0565R01; OMA-DRM-2007-0566; OMA-DRM-2007-0570

	OMA-TS-SCE_LRM-V1_0-20071221-D
	21 Dec 2007
	5.3.3
	* Incorporated a change from OMA-DRM-2007-0570 that was missed in the 20 Dec 2007 draft

	OMA-TS-SCE_LRM-V1_0-20080204-D
	04 Feb 2008
	5.3.1.2; 5.3.4.2; 7.2.1.3; 6.2.1.1; 6.2.1.3; 6.2.1.4; 6.2.1.5; 6.2.2.1
	* Inserted the following agreed contributions: OMA-DRM-2008-0011R01; OMA-DRM-2008-0012; OMA-DRM-2008-0017R01; OMA-DRM-2008-0018

	OMA-TS-SCE_LRM-V1_0-20080221-D
	21 Feb 2008
	6.1; 7.2.1; 7.2.1.1; 7.2.1.2; 7.2.1.3; 7.2.1.4
	* Inserted text from CR OMA-DRM-2007-0564R03, as per the minutes of OMA DRM Conference Call on 21 Feb 2008.

	OMA-TS-SCE_LRM-V1_0-20080304-D
	04 Mar 2008
	6.2.1.1; Appendix D; 6.2.2; 6.2.2.1; 7.2.1; 7.2.1.3; 7.2.1.4; 6.1.1; 6.1.2; 6.1.2.41; 6.1.2.42; 6.1.3.16; 6.1.4; 7.2.1.3.5; 7.2.1.3.6; 7.2.1.4.3; 7.2.1.4.4
	* Inserted the following agreed contributions: OMA-DRM-2008-0054; OMA-DRM-2008-0058R01; OMA-DRM-2008-0061R01; OMA-DRM-2008-0078; OMA-DRM-2008-0074R02

	OMA-TS-SCE_LRM-V1_0-20080320-D
	20 Mar 2008
	4.1
	*Inserted the following agreed contribution: OMA-DRM-2008-0103 (and updated Table of Contents accordingly)

Appendix B. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [IOPPROC].

The following is a model of a set of SCR tables. DELETE THIS COMMENT

B.1 SCR for SCE Client

	Item
	Function
	Reference
	Status
	Requirement

	SCE-IMP-C-001
	LRM-managed Import to a specific Device
	6.4
	M
	

	SCE-IMP-C-002
	Import to a specific Device
	5.3.1
	M
	

	SCE-Pairing-C-003
	DEA Management for Device Pairings
	5.3.4
	M
	

B.2 SCR for LRM Server

	Item
	Function
	Reference
	Status
	Requirement

	SCE-Cert-S-001
	Certificate profile for LRM
	C.1
	M
	

	SCE-IMP-S-002
	LRM-managed Import to a specific Device
	6.4
	M
	

	SCE-IMP-S-003
	Import to a specific Device
	5.3.1
	M
	

	SCE-IMP-S-004
	DEA Management for Device Pairings
	5.3.4
	M
	

Appendix C. Certificate Profiles (Normative)
C.1 LRM Certificates

The profile for LRM certificates follows the profile for "X.509-compliant server certificate" in [CertProf] with the following modifications:

	Signature
	MUST be RSA with SHA-1

	Serial Number
	MUST be less than, or equal to, 20 bytes in length

	Issuer Name
	MUST be present and MUST use a subset of the following naming attributes from [CertProf] – countryName, organizationName, organizationalUnitName, commonName, and stateOrProvinceName.

	Subject Name
	MUST be present and MUST use a subset of the following naming attributes from [CertProf] – countryName, organizationName, organizationalUnitName, commonName, and serialNumber.

The structure and contents of a Device subject name shall be as follows:

[countryName=<Country of manufacturer>]

[organizationName=<Manufacturer company name>]

[organizationalUnitName=<Manufacturing location>]

[commonName=<Model name>]

serialNumber=<Unique identifier for Device, as assigned by the Certificate Issuer. Does not have to be the same as the IMEI>

The serialNumber attribute MUST be present. The countryName, organizationName, organizationalUnitName, and commonName may be present. Other attributes are not allowed and must not be included. For all naming attributes of type DirectoryString, the PrintableString or the UTF8String choice must be used.

Note that the maximum length (in octets) for values of these attributes is as follows: countryName – 2 (country code in accordance with ISO/IEC 3166), organizationName, organizationalUnitName, commonName, and serialNumber – 64.
Example:

C="US";O="DRM Devices 'R Us"; CN="DRM Device Mark VI"; SN="1234567890"

	Extensions
	The extKeyUsage extension SHALL be present, and contain (at least) the oma-kp-localRightsManagerDevice or the oma-kp-localRightsManagerDomain key purpose object identifier:

oma-kp-localRightsManagerDevice OBJECT IDENTIFIER ::= {oma-kp <tba>}
oma-kp-localRightsManagerDomain OBJECT IDENTIFIER ::= {oma-kp <tba>}

CAs MUST set this extension to critical.

If the keyUsage extension is present (recommended), then the digitalSignature bit shall be set. When present, this extension shall be set to critical.

CAs MAY include the certificatePolicy extension, indicating the policy the certificate has been issued under, and possibly containing a URI identifying a source of more information about the policy.

CAs are recommended to not include any other extensions, but may, for compliance with [RFC3280], include the authorityKeyIdentifier extension.

CAs MUST NOT include any other critical extensions.

SCE DRM Agents processing LRM certificates MUST meet the requirements on clients processing "X.509-compliant server certificates" defined in [CertProf]. In addition, SCE DRM Agents:

· MUST be able to process LRM certificates up to 1500 bytes long;

· MUST be able to process LRM certificates with serial numbers 20 bytes long; and

· MUST recognize the presence of the oma-kp-localRightsManagerDevice and oma-kp-localRightsManagerDomain object identifiers defined above in the extKeyUsage extension in LRM certificates. If one (or both) of these is present, then the SCE DRM Agent MUST consider the subject certified by the certificate to be a LRM while processing information received from it.
Note: If the oma-kp-rightsIssuer object identifier defined in [OMA DRM 2.1] for the extKeyUsage extension is present in addition to the oma-kp-localRightsManagerDevice or oma-kp-localRightsManagerDomain defined above, then the SCE DRM Agent MUST still consider the subject certified by the certificate to be an LRM while processing information received from it.
(Editor’s note: the oma-kp-localRightsManager object identifier needs to be assigned by a naming authority.)
C.2 CA Certificates

The CA certificates for use by SCE follows the OMA DRM CA certificate profile specified in Section D.3 of [DRM]. In addition, the following requirements apply:

LRMs and SCE DRM Agents MUST meet the requirements on relying parties defined in [CertProf]. Note that this implies, among other things, a requirement on LRMs and SCE DRM Agents to also recognize the basicConstraints and the subjectKeyIdentifier extensions.
Appendix D. Message Examples (Informative)
D.1 LRMRIRegistrationTrigger
<LRMRIRegistrationTrigger

 xmlns:gen="urn:oma:drm:sce:gen"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 type="LRMRIRegistrationTrigger">

 <body>

 <!-- RI ID -->

 <resID>

 <keyIdentifier xsi:type="gen:X509SPKIHash">

 <hash>aXENc+Um/9/NvmYKiHDLaErK0fk=</hash>

 </keyIdentifier>

 </resID>

<reqURL>http://ri.example.com/ro.cgi?tid=qw683hgew7d</reqURL>
<!-- LRM ID -->
<LRMID>

 <keyIdentifier xsi:type="gen:X509SPKIHash">

 <hash>aXENc+Um/9/NvmYKiHDLaErK0fa=</hash>

 </keyIdentifier>

 </LRMID>
 </body>

</LRMRIRegistrationTrigger>

� Note that there is no reduction in security if the DEA has the cryptographic capability to read the communications between the two Devices, since such communication involves Rights Objects for which an LRM corresponding to that DEA has handled the Import. Note, furthermore, that other Devices will not be able to read such communications.

(2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20070101-I]
(2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20070101-I]

_1258531817.vsd
LRM

Rights Issuer

OCSP Responder

1

2

3

a

b

4

LRM-RIRegistrationResponse

LRM-RIHelloResponse

LRM-RIRegistrationRequest

OCSP Request

OCSP Response

LRM-RIHelloRequest

_1262446755.ppt

Upstream DRM content protection

Import- Ready

Data

Guest Device

Imported-RO\

CEK and encrypted REK

Imported-RO and REK

User Domain Device

Imported-RO and

REK

User Domain Device

LRM

_1270360430.vsd
Destination DRM Agent

DEA

Auth Request

Auth Response

_1258531764.vsd
�

�

1�

LRM

Rights Issuer

DRM2.x Device

LRM-RICreateROResponse

RO Acquisition Protocol

OCSP Request

LRM-RICreateRORequest

OCSP Response

