Doc# OMA-DRM-2008-0476-CR_A2A_TS_Check_for_Context_Required_Constraint.doc[image: image2.jpg]
Change Request

Doc# OMA-DRM-2008-0476-CR_A2A_TS_Check_for_Context_Required_Constraint.doc
Change Request

Change Request

	Title:
	Check for Context Required Constraint
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	DRM

	Doc to Change:
	OMA-TS-SCE_A2A-V1_0-20081023-D

	Submission Date:
	23 October 2008

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	David Kravitz, Motorola, david.kravitz@motorola.com

	Replaces:
	n/a

1 Reason for Change

To accommodate use of <contextRequired> constraint; to fix copy/paste error; to remove unused DBREK acronym.
2 Impact on Backward Compatibility

None.

3 Impact on Other Specifications

None.

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

The author recommends that the DRM group agree this CR.

6 Detailed Change Proposal

Change 1: Remove DBREK from section, since not cited elsewhere in document.

3.2 Definitions

	Ad Hoc Sharing
	Sharing that is intended to allow a source Device to share specified Rights with a recipient Device in spontaneous, unplanned situations (e.g. sharing a song with a new group of friends at a party or playing a video on a hotel room TV while travelling).

	Constraint
	A restriction on a Permission over DRM Content (DRM V2.1).

	Consume
	To Play, Display, Print or Execute DRM Content on a Device or to render DRM Content on a Render Client.

	Content
	One or more Media Objects (DRM V2.1).

	Copy
	To make Rights existing on a source Device available for use by a recipient Device, without affecting availability on the source Device. Rights may be restricted on the recipient Device. Note: this is different from the V2.1 definition.

	
	

	Device
	A Device is the entity (hardware/software or combination thereof) within a user equipment that implements a DRM Agent. The Device is also conformant to the OMA DRM specifications. The Device may include a smart card module (e.g. a SIM) (DRM V2.1).

…
Change 2: Modify section 9.7 (Move RO Transaction) to accommodate use of <contextRequired> constraint. Also fix copy/paste error in step 4.
9.7 Move RO Transaction

The Move RO transaction is used by the DRM Requester to Move a Rights Object (RO) with a <move> permission to a DRM Agent. This transaction MUST take place using a SAC. This transaction MUST NOT be performed if the DRM Requester’s certificate does not have an extKeyUsage extension with oma-kp-sceDrmAgent key purpose set or the DRM Agent’s certificate does not have an extKeyUsage extension with oma-kp-sceDrmAgent key purpose set (see section A.1). The following figure illustrates the Move RO transaction.

[image: image1.png]
Figure 8: Move RO Transaction
In order for this transaction to take place, the following MUST be performed:

1. The DRM Requester performs the following:

a. It checks if the RO has the <move> permission. The “allowPartial” attribute MUST be “true” if a Partial Move is to be performed. If the <move> permission is not present, the Move RO transaction is terminated. Otherwise, the following is performed:

i. If there is a <system> constraint, then it checks the <context> child element(s) of the <system> constraint. If no <context> child element identifies the SCE protocol, then the Move RO transaction is terminated.
ii. If there is a <count> constraint, then it checks the current count value in the state information of the RO. If the current move count is 0, then the Move RO transaction terminated. Otherwise, the DRM Requester decrements the current move count value in the state information of the RO.

b. It checks the entity type that created the RO. If the RO was created by an RI, the DRM Requestor proceeds to step 1.c. Otherwise, the following is performed:

i. If the LRM’s certificate does not have the localRightsManagerDevice extended key purpose (see [SCE-LRM]), then the RO MUST have a <userDomain> constraint. If the constraint is not present, the Move RO transaction is terminated.
ii. If the LRM’s certificate has the localRightsManagerDevice extended key purpose, the RO MUST be a Device RO. If it is not a Device RO, the Move RO transaction is terminated.
c. It checks if the RO has a <userDomain> constraint. If the constraint is present, the DRM Requestor checks its User Domain Authorization (see [SCE-DOM]). If the User Domain Authorization is expired, the Move RO transaction is terminated.

d. It marks the RO being Moved as unusable. If the RO is stateful and just a portion of the RO is being Moved (Partial Rights, see section 5.3), then that portion being Moved is marked as unsuable.

e. It generates a random moveHandle and creates a Move context with the moveHandle, the REK of the RO being Moved, and the DRM Agent ID.
2. The DRM Requester generates a MoveRoRequest with the information for the RO (or portion) being Moved or Copied to the DRM Agent and MoveRoHandle (from step 1.d).

3. The DRM Requester sends the MoveRoRequest to the DRM Agent, applying the replay protection mechanism described in section 7.3.

4. The DRM Agent processes the request as follows:

a. It processes the request for replay as described in section 7.3.

b. It verifies the integrity of the request. If the integrity check fails, it sets MoveRoResponse.Status to IntegrityVerificationFailed and proceeds to step 5.

c. It validates the fields of the MoveRoRequest. If any field is invalid, it sets MoveRoResponse.Status to InvalidField and proceeds to step 5.

d. It verifies the signature on the RO, including the SourceCertificateChain field. If any of the verifications fails, it sets MoveRoResponse.Status to InvalidRightsObject and proceeds to step 5.

e. It checks that the RO has the <move> permission. If it does not, it sets MoveRoResponse.Status to InvalidRightsObject and proceeds to step 5.

f. If the RO is stateful, it validates that the StateInformation is consistent with the original state in the RO (see section 5.5). If any state is invalid, it sets MoveRoResponse.Status to InvalidRightsObject and proceeds to step 5.

g. It checks the entity that created the RO. If the RO was created by an RI, the DRM Requestor proceeds to step 4.i.

h. If the LRM’s certificate only has the localRightsManagerDomain extended key purpose (see [SCE-LRM], then the RO MUST have a <userDomain> constraint. If the constraint is not present, the DRM Agent sets MoveRoResponse.Status to InvalidRightsObject and proceeds to step 5.

i. It checks whether the RO has a <userDomain> constraint. If not, the DRM Agent proceeds to step 4.j. Otherwise, the DRM Agent performs the following checks:

i. It checks whether the RO has a <copy> permission. If not, the DRM Agent proceeds to step 4.i.ii. It checks if it has a current record (whether installed or waiting to be installed) of an RO with the same ROID. If the duplicate RO exists, the DRM Agent sets MoveRoResponse.Status to DuplicateRightsObject and proceeds to step 5.
ii. It checks if an LRM created the RO. If an LRM created the RO, the DRM Agent checks if the LRM’s certificate has the localRightsManagerDomain extended key purpose. If the certificate does not, the DRM Agent sets MoveRoResponse.Status to InvalidRightsObject and proceeds to step 5.
iii. It validates the UserDomainAuthorization for the DRM Requestor. If the validation fails, the DRM Agent sets MoveRoResponse.Status to InvalidRightsObject and proceeds to step 5. Validation MUST include the following:

a. Verifying the signature

b. User Domain Authorization is not expired

c. Entity ID of User Domain Authorization matches ID of DRM Requestor
iv. It checks that the User Domain Authorization of the <party> element of the RO corresponds to the RI/LRM that signed the <rights> element. If <party> element does not, the DRM Agent sets MoveRoResponse.Status to InvalidRightsObject and proceeds to step 5.
v. It checks that the User Domain baseID of the <userDomainID> element within the User Domain Authorization in the <party> element of the RO is the same as the User Domain baseID of the <userDomainID> element within the UserDomainAuthorization field. If not, the DRM Agent sets MoveRoResponse.Status to InvalidRightsObject and proceeds to step 5.
vi. It checks that the User Domain generation of the UserDomainAuthorization field is greater than or equal to the User Domain generation of the User Domain Authorization in the <party> element of the RO. If not, the DRM Agent sets MoveRoResponse.Status to InvalidRightsObject and proceeds to step 5.

vii. If the DRM Agent is already a member of the User Domain, it checks that the User Domain generation of the UserDomainAuthorization field is greater than or equal to the User Domain generation of the User Domain Authorization in the <party> element of the RO. If not, the DRM Agent sets MoveRoResponse.Status to LowUserDomainGeneration and proceeds to step 5.
j. It checks if it has enough room to install the RO. If it does not, it sets MoveRoResponse.Status to NotEnoughSpace and proceeds to step 5.

k. It saves MoveRoHandle and associates MoveRoHandle with the RO (which must be installed yet).

l. It sets MoveRoResponse.Status to Success.
5. The DRM Agent sends the MoveRoResponse to the DRM Requester, applying the replay protection mechanism described in section 7.3.

6. The DRM Requester processes the response as follows:

a. It processes the response for replay as described in section 7.3.

b. If the integrity verification of the response fails or MoveRoResponse.Status is not Success, it determines if it can restart the Move RO transaction at step 2. If it does not restart the transaction, the DRM Requester performs the following:

i. It marks the RO (or portion) as usable.

ii. If the <move> permission had a <count> constraint, it increments the current move counter of the state information.
iii. It terminates the Move RO transaction.

c. It deletes the RO (or portion) that was Moved (but still keeps the corresponding Move context). Note: if the RO being Moved has been backed up, the Backed Up RO MUST NOT be restored.

7. The DRM Requester generates a MoveRekRequest with the data from the Move context.

8. The DRM Requester sends the MoveRekRequest to the DRM Agent, applying the replay protection mechanism described in section 7.3.

9. The DRM Agent processes the request as follows:

a. It processes the request for replay as described in section 7.3.

b. It validates the fields of the MoveRekRequest. If any field is invalid, it sets MoveRoResponse.Status to InvalidField and proceeds to step 10.
c. It verifies the integrity of the request. If the integrity check fails, it sets MoveRekResponse.Status to IntegrityVerificationFailed and proceeds to step 10.

d. It checks if it has an RO that corresponds to the moveHandle. If it does not have a corresponding RO, it set MoveRekResponse.Status to UnknownHandle and continues with step 10.

e. It decrypts MoveRekRequest.Body.EncryptedMoveRoHandleAndRek. Note: if the RO is a User Domain RO with a <userDomain> constraint, and the DRM Agent is not yet a member of the User Domain (i.e. it does not have the UDK), the DRM Agent MUST join the User Domain to receive a copy of the UDK in order to fully decrypt the REK.
f. It checks whether the RO has a <contextRequired> constraint element. If not, it proceeds to step 9.h.
g. It tags the RO that corresponds to the MoveRoHandle as ‘pending RI/LRM Context verification’, and proceeds to step 9.i.
h. It marks the RO that corresponds to the MoveRoHandle as usable.

i. It sets MoveRekResponse.Status to Success.

10. The DRM Agent sends the MoveRekResponse to the DRM Requester, applying the replay protection mechanism described in section 7.3.
11. Note: If the RO that corresponds to the MoveRoHandle has been tagged as ‘pending RI/LRM Context verification’, upon successful verification of an active/current Context with the RI or LRM that generated the <signature> element of the RO, the DRM Agent removes the tag and marks the RO as usable. If the RO has a ‘pending RI/LM Context verification’ tag, the DRM Agent MUST NOT grant any permissions other than <move>.
12. The DRM Requester processes the response as follows:

a. It processes the response for replay as described in section 7.3.
b. It verifies the integrity of the response. If the integrity check failed, the DRM Requester determines if it can restart the Move RO transaction at step 2 or step 7. If it does not restart the transaction, the DRM Requester MUST leave the RO marked as unusable and terminate the Move RO transaction.
c. If MoveRekResponse.Status is not Success, it determines if it can restart the Move RO transaction at step 2 or step 7. If it does not restart the transaction, the DRM Requester performs the following:

i. It marks the RO (or portion) as usable.

ii. If the <move> permission had a <count> constraint, it increments the current move counter of the state information.
iii. It terminates the Move RO transaction.

d. It removes the cached corresponding Move context.

d. At this point the Move RO transaction has successfully completed.

9.7.1 MoveRoRequest

A MoveRoRequest is sent as a protected request and its body is defined as follows:

Body(){
 timeStampPresent
1
bslbf
 stateInfoPresent
1
bslbf
 udaPresent
1
bslbf
 rfu
5
bslbf
 moveHandle
64
uimsbf
 RoAlias()
 SourceAlias()
 SourceId()
 if(timeStampPresent){
 SourceTimeStamp()
 }
 RightsObjectContainer()
 if(stateInfoPresent){
 StateInformation()
 }

 CertificateChain()
 if(udaPresent){
 UserDomainAuthorization()
 }
}

RoAlias(){
 String80()
}

DomainAlias(){
 String80()
}

SourceAlias(){
 String80()
}

SourceId(){
 EntityId()
}

TimeStamp(){
 year
14
uimsbf

 month
4
uimsbf

 day
5
uimsbf

 hour
5
uimsbf

 minute
6
uimsbf

 second
6
uimsbf

}

UserDomainAuthorization(){
 OctetString16()
}

The fields are defined as follows:

· timeStampPresent – this is a boolean field, that if true, indicates that the source (RI or LRM) TimeStamp field is present.

· stateInfoPresent – this is a boolean field, that if true, indicates that the StateInformation field is present.

· rfu – this is a 5 bit field that is reserved for future use. When sending the request, this field MUST be set to 0. When processing this field, its value MUST be ignored.
· moveRoHandle – this field contains a random 64 bit unsigned integer that is used to correlate the MoveRoRequest with the MoveRekRequest.
· RoAlias – this field contains an optional alias for the RO. It is of type String80 which is defined in section 8.15.

· DomainAlias – this field contains an optional alias for the domain if the RO is a domain RO. It is of type String80 which is defined in section 8.15.

· SourceAlias – this field contains an optional alias for the Rights Issuer or LRM that created the original RO. It is of type String80 which is defined in section 8.15.

· SourceId – this field contains the identity of the Rights Issuer or LRM that created the original RO. It is of type EntityId which is defined in section 8.5.

· RightsObjectContainer – this field contains a RO as defined in section 8.18.

· StateInformation – this field, if present, contains the state information for the Rights being Moved. This field is defined in section 8.19. This field MUST be present if the RO is stateful.

· year – this field contains the year – 2000 of the timestamp. Range is 0 – 16383, corresponding to the years 2000 – 18,383.

· month – this field contains the month of the timestamp, with 0 representing January. Range is 0 – 11.

· day – this field contains the day – 1 of the month of the timestamp. Range is 0 – 30.

· hour – this field contains the hour of the timestamp. Range is 0 – 23.

· minute – this field contains the minute of the timestamp. Range is 0 – 59.

· second – this field contains the seconds of the timestamp. Range is 0 – 59.

· CertificateChain – this field contains the certificate chain for the Rights Issuer or LRM that created the original RO. This field is defined in section 8.8.
· MoveRoHandle – this field contains a 10 byte random handle that is used to correlate the REK in this transaction.
· UserDomainAuthorization – this field, if present, contains the User Domain Authorization for the DRM Requestor. This field MUST be present if the RO being Moved has a <userDomain> constraint.
9.7.2 MoveRoResponse

A MoveRoResponse is sent as a protected response. The following table lists the valid Status values for this response.

Table 14: MoveRoResponse Status Values
	Status Values

	Success

	InvalidField

	InvalidRightsObject

	NotEnoughSpace

	NotADomainMember

The body of a MoveRoResponse is empty and is defined as follows:

Body(){

}

9.7.3 MoveRekRequest

A MoveRekRequest is sent as a protected request and its body is defined as follows:

Body(){
 moveHandle
64
uimsbf
 EncryptedRek()
}

EncryptedRek (){
 EncryptedData() //Contains an encrypted REK
}

Rek(){
 for(i = 0; i < 16; i++){

 byte
8
uimsbf

 }

}

The fields are defined as follows:

· moveHandle – this field contains a random 64 bit unsigned integer that is used to correlate the MoveRoRequest with the MoveRekRequest.
· EncryptedRek – this field contains an encrypted REK. If the RO has a <userDomain> constraint, the REK is first encrypted with the (current generation of the) UDK (for the User Domain) using [AES-WRAP] and then the wrapped REK is encrypted with the SK using the negotiated algorithm. If the RO does not have a <userDomain> constraint, the REK is encrypted by the SK using the negotiated algorithm. The field is of type EncryptedData which is defined in section 8.11.

· Rek – this field contains an REK.

9.7.4 MoveRekResponse

A MoveRekResponse is sent as a protected response. The following table lists the valid Status values for this response.

Table 15: MoveRekResponse Status Values
	Status Values

	Success

	InvalidField

	UnknownHandle

	IntegrityVerificationFailed

The MoveRekResponse is empty and is defined as follows:

Body(){

}

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 8)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20080101-I]

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Page 8 (of 8)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20080101-I]

