Doc# OMA-DRM-2008-0514-INP_Corrections_to_OMA_TS_SCE_A2A_V1_0_20081107_D.doc[image: image1.jpg]"sOMaQa

Open Mobile Alliance

Input Contribution

Doc# OMA-DRM-2008-0514-INP_Corrections_to_OMA_TS_SCE_A2A_V1_0_20081107_D.doc
Input Contribution

Input Contribution

	Title:
	Corrections to OMA-TS-SCE_A2A-V1_0-20081107-D
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	OMA DRM WG

	Submission Date:
	09 Dec 2008

	Source:
	David Kravitz, Motorola
David.Kravitz@Motorola.com

	Attachments:
	n/a
	

	Replaces:
	n/a

1 Reason for Contribution

This contribution is being made in order to correct and/or clarify certain portions of the A2A TS draft that was submitted for Candidacy.
2 Summary of Contribution

Technical changes identified here are specifically presented in 3 (Detailed Proposal) below, and additional (editorial) changes are listed in 3 also.

1. 9.7 4 h is in error – Instead of “If the LRM’s certificate only has the localRightsManagerDomain extended key purpose (see [SCE-LRM]…” (in order to match 9.7 1 b i) this should say “If the LRM’s certificate does not have the localRightsManagerDevice extended key purpose (see [SCE-LRM])…” because whether or not an LRM has a rightsIssuer extended key purpose is irrelevant to an SCE Device. Note that if an LRM does not have the localRightsManagerDevice extended key purpose then by definition it has the localRightsManagerDomain extended key purpose (since in order to be an LRM at least one of these two extended key purposes is required), and it may or may not also have the rightsIssuer extended key purpose.
2. The phrase “Rights Issuer or LRM that created the original RO” appears several times. But this use of ‘original RO’ conflicts with originalIssuer construct in REL TS and DRM TS since the RO that is used in the A2A TS may have been generated by an RI as a result of a Move via RI, and thus this RO is not necessarily the original RO that was created by the original issuer. Recommendation is to simply remove the word ‘original’ from each occurrence of the phase “Rights Issuer or LRM that created the original RO” since the intent is that an RI or LRM is involved in creation, as opposed to a Device as DRM Requester. This is made concrete in the next suggestion.
3. To avoid ambiguity and potential attack explicitly state the following in 9.7, 9.8, 9.9, and 9.10: “The DRM Agent MUST reject the RO if the <signature> element over the <rights> element has been generated by an entity other than an RI or an LRM.”
4. 9.7 1 c is unnecessarily ambiguous with regard to the User Domain Authorization being that of the RI/LRM within the RO vs. the User Domain Authorization of the Device: “It checks if the RO has a <userDomain> constraint. If the constraint is present, the DRM Requester checks its User Domain Authorization (see [SCE-DOM]). If the User Domain Authorization is expired, the Move RO transaction is terminated.” Suggestion is to add the word ‘own’ (i.e. “…checks its own User Domain Authorization…”) in order to avoid confusion with the User Domain Authorization within the <party> element of the RO.
5. 9.7 4 i viii is in error – Rather than as it appears in the A2A TS draft, “If the DRM Agent is already a member of the User Domain, it checks that the User Domain generation of the UserDomainAuthorization field is greater than or equal to the User Domain generation of the User Domain Authorization in the <party> element of the RO. If not, the DRM Agent sets MoveRoResponse.Status to LowUserDomainGeneration and proceeds to step 5.” – to conform to CR0419 against the DOM TS (which was not agreed since it was decided to put these checks into A2A rather than DOM) and to not contradict the immediately previous step 9.7 4 i vii, it should say “If the DRM Agent is already a member of the User Domain, it checks that the User Domain generation of the UserDomainAuthorization field is greater than or equal to the User Domain generation of the DRM Agent’s User Domain Authorization. If not, the DRM Agent sets MoveRoResponse.Status to LowUserDomainGeneration and proceeds to step 5.” For Copy, 9.8 4 m is wrong and the check of User Domain generation that needs to be done regardless of whether or not the DRM Agent is already a member of the User Domain is actually missing.

6. 9.8 1 a ii is in error: “However, when the state information is sent in the CopyRoRequest, the current copy count MUST be set to zero” – State information is not sent in the CopyRoRequest. Recommendation is to simply remove this sentence. Note that the current A2A TS draft addresses the prohibition of further copying as follows (within 9.8 4 o): “… When installed, this RO loses the <copy> permission, i.e. the DRM Agent, acting as a DRM Requester, SHALL NOT Copy the RO to another DRM Agent…”

3 Detailed Proposal

1. (9.7 4 h)

If the LRM’s certificate does not have the localRightsManagerDevice extended key purpose (see [SCE-LRM]), then the RO MUST have a <userDomain> constraint. If the constraint is not present, the DRM Agent sets MoveRoResponse.Status to InvalidRightsObject and proceeds to step 5.
2. (9.7.1)
· SourceAlias – this field contains an optional alias for the Rights Issuer or LRM that created the RO. It is of type String80 which is defined in section 8.15.

· SourceID – this field contains the identity of the Rights Issuer or LRM that created the RO. It is of type EntityID which is defined in section 8.5.

· RightsObjectContainer – this field contains a RO as defined in section 8.18.

· StateInformation – this field, if present, contains the state information for the Rights being Moved. This field is defined in section 8.19. This field MUST be present if the RO is stateful.

· year – this field contains the year – 2000 of the timestamp. Range is 0 – 16383, corresponding to the years 2000 – 18,383.

· month – this field contains the month of the timestamp, with 0 representing January. Range is 0 – 11.

· day – this field contains the day – 1 of the month of the timestamp. Range is 0 – 30.

· hour – this field contains the hour of the timestamp. Range is 0 – 23.

· minute – this field contains the minute of the timestamp. Range is 0 – 59.

· second – this field contains the seconds of the timestamp. Range is 0 – 59.

· CertificateChain – this field contains the certificate chain for the Rights Issuer or LRM that created the RO. This field is defined in section 8.8.
(9.8.1)

· SourceAlias – this field contains an optional alias for the Rights Issuer or LRM that created the RO. It is defined in section 9.7.1.

· SourceID – this field contains the identity of the Rights Issuer or LRM that created the RO. It is defined in section 9.7.1.

· RightsObjectContainer – this field contains an RO as defined in section 8.18.

· EncryptedRek – this field contains an REK that has been encrypted twice. The REK is first encrypted with the UDK (for the User Domain) using [AES-WRAP] and then the wrapped REK is encrypted with the SK using the negotiated algorithm. The field is of type EncryptedData which is defined in section 8.11. A Rek field is defined in section 9.7.1.

· TimeStamp – this field constains the timestamp of the Rights Issuer or LRM that created the RO. It is defined in section 9.7.1.
· CertificateChain – this field contains the certificate chain for the Rights Issuer or LRM that created the RO. This field is defined in section 8.8.
· UserDomainAuthorization – this field contains the User Domain Authorization for the DRM Requester.

3. (9.7)

The Move RO transaction is used by the DRM Requester to Move a Rights Object (RO) with a <move> permission to a DRM Agent. This transaction MUST take place using a SAC. This transaction MUST NOT be performed if the DRM Requester’s certificate does not have an extKeyUsage extension with oma-kp-sceDrmAgent key purpose set or the DRM Agent’s certificate does not have an extKeyUsage extension with oma-kp-sceDrmAgent key purpose set (see section A.1). The DRM Agent MUST reject the RO if the <signature> element over the <rights> element has been generated by an entity other than an RI or an LRM. The following figure illustrates the Move RO transaction.

(9.8)

The Copy RO operation is only used by a DRM Requester to Copy a <userDomain>-constrained Rights Object (RO) with a <copy> permission to a DRM Agent. This operation MUST take place using a SAC. This operation MUST NOT be performed if the DRM Requester’s certificate does not have an extKeyUsage extension with oma-kp-sceDrmAgent key purpose set or the DRM Agent’s certificate does not have an extKeyUsage extension with oma-kp-sceDrmAgent key purpose set (see section A.1). The DRM Agent MUST reject the RO if the <signature> element over the <rights> element has been generated by an entity other than an RI or an LRM. The following figure illustrates the Copy RO operation.

(9.9)

The Share RO operation is used by the DRM Requester to do Ad Hoc Sharing of a RO. This operation MUST take place using a SAC. This operation MUST NOT be performed if the DRM Requester’s certificate does not have an extKeyUsage extension with oma-kp-sceDrmAgent key purpose set or the DRM Agent’s certificate does not have an extKeyUsage extension with oma-kp-sceDrmAgent key purpose set (see section A.1). The DRM Agent MUST reject the RO if the <signature> element over the <rights> element has been generated by an entity other than an RI or an LRM. The following figure illustrates the Share RO operation.

(9.10)
The Lend RO operation is used by the DRM Requester to do Lending of a RO. This operation MUST take place using a SAC. This operation MUST NOT be performed if the DRM Requester’s certificate does not have an extKeyUsage extension with oma-kp-sceDrmAgent key purpose set or the DRM Agent’s certificate does not have an extKeyUsage extension with oma-kp-sceDrmAgent key purpose set (see section A.1). The DRM Agent MUST reject the RO if the <signature> element over the <rights> element has been generated by an entity other than an RI or an LRM. The following figure illustrates the Lend RO operation.
4. (9.7 1 c)
c. It checks if the RO has a <userDomain> constraint. If the constraint is present, the DRM Requester checks its own User Domain Authorization (see [SCE-DOM]). If the User Domain Authorization is expired, the Move RO transaction is terminated.

5. (9.7 4 i)

i.
It checks whether the RO has a <userDomain> constraint. If not, the DRM Agent proceeds to step 4.j. Otherwise, the DRM Agent performs the following checks:

ii. It checks whether the RO has a <copy> permission. If not, the DRM Agent proceeds to step 4.i.iii.

iii. It checks if it has a current record (whether installed or waiting to be installed) of an RO with the same ROID. If the duplicate RO exists, the DRM Agent sets MoveRoResponse.Status to DuplicateRightsObject and proceeds to step 5.
iv. It checks if an LRM created the RO. If an LRM created the RO, the DRM Agent checks if the LRM’s certificate has the localRightsManagerDomain extended key purpose. If the certificate does not, the DRM Agent sets MoveRoResponse.Status to InvalidRightsObject and proceeds to step 5.
v. It validates the UserDomainAuthorization for the DRM Requester. If the validation fails, the DRM Agent sets MoveRoResponse.Status to InvalidRightsObject and proceeds to step 5. Validation MUST include the following:

a. Verifying the signature

b. User Domain Authorization is not expired

c. Entity ID of User Domain Authorization matches ID of DRM Requester
vi. It checks that the User Domain Authorization of the <party> element of the RO corresponds to the RI/LRM that signed the <rights> element. If <party> element does not, the DRM Agent sets MoveRoResponse.Status to InvalidRightsObject and proceeds to step 5.
vii. It checks that the User Domain baseID of the <userDomainID> element within the User Domain Authorization in the <party> element of the RO is the same as the User Domain baseID of the <userDomainID> element within the UserDomainAuthorization field. If not, the DRM Agent sets MoveRoResponse.Status to InvalidRightsObject and proceeds to step 5.
viii. It checks that the User Domain generation of the UserDomainAuthorization field is greater than or equal to the User Domain generation of the User Domain Authorization in the <party> element of the RO. If not, the DRM Agent sets MoveRoResponse.Status to InvalidRightsObject and proceeds to step 5.

ix. If the DRM Agent is already a member of the User Domain, it checks that the User Domain generation of the UserDomainAuthorization field is greater than or equal to the User Domain generation of the DRM Agent’s User Domain Authorization. If not, the DRM Agent sets MoveRoResponse.Status to LowUserDomainGeneration and proceeds to step 5.
(9.8 4)
4. The DRM Agent processes the request as follows:

a. It processes the request for replay as described in section 7.3.

b. It verifies the integrity of the request. If the integrity check fails, the DRM Agent sets CopyRoResponse.Status to IntegrityVerificationFailed and proceeds to step 5.

c. It validates the fields of the CopyRoRequest. If any field is invalid, the DRM Agent sets CopyRoResponse.Status to InvalidField and proceeds to step 5.

d. It verifies the signature on the RO, including the SourceCertificateChain field. If any of the verifications fails, the DRM Agent sets CopyRoResponse.Status to InvalidRightsObject and proceeds to step 5.

e. It checks if it has a current record (whether installed or waiting to be installed) of an RO with the same ROID. If the duplicate RO exists, the DRM Agent sets CopyRoResponse.Status to DuplicateRightsObject and proceeds to step 5.
f. It checks that the RO has the <copy> permission. If it does not, the DRM Agent sets CopyRoResponse.Status to InvalidRightsObject and proceeds to step 5.

g. It checks the entity that created the RO. If the RO was created by an RI, the DRM Requester proceeds to step 4.h.

h. If the LRM’s certificate does not have the localRightsManagerDomain extended key purpose (see [SCE-LRM]), the DRM Agent sets CopyRoResponse.Status to InvalidRightsObject and proceeds to step 5.

i. It checks if the RO has a <userDomain> constraint. If the constraint is not present, the DRM Agent sets CopyROResponse.Status to InvalidRightsObject and proceeds to step 5.
j. It validates the UserDomainAuthorization for the DRM Requester. If the validation fails, the DRM Agent sets CopyRoResponse.Status to InvalidRightsObject and proceeds to step 5. Validation MUST include the following:

a. Verifying the signature

b. User Domain Authorization is not expired

c. Entity ID of User Domain Authorization matches ID of DRM Requester
k. It checks that the User Domain Authorization of the <party> element of the RO corresponds to the RI/LRM that signed the <rights> element. If it does not, the DRM Agent sets CopyRoResponse.Status to InvalidRightsObject and proceeds to step 5.
l. It checks that the User Domain baseID of the <userDomainID> element within the User Domain Authorization in the <party> element of the RO is the same as the User Domain baseID of the <userDomainID> element within the UserDomainAuthorization field. If not, the DRM Agent sets CopyRoResponse.Status to InvalidRightsObject and proceeds to step 5.
m. It checks that the User Domain generation of the UserDomainAuthorization field is greater than or equal to the User Domain generation of the User Domain Authorization in the <party> element of the RO. If not, the DRM Agent sets CopyRoResponse.Status to InvalidRightsObject and proceeds to step 5.

n. If the DRM Agent is already a member of the User Domain, it checks that the User Domain generation of the UserDomainAuthorization field is greater than or equal to the User Domain generation of the DRM Agent’s User Domain Authorization. If not, the DRM Agent sets CopyRoResponse.Status to LowUserDomainGeneration and proceeds to step 5.
o. It checks if it has enough room to install the RO. If it does not, it sets CopyRoResponse.Status to NotEnoughSpace and proceeds to step 5.

p. If the DRM Agent is already a member of the User Domain, it installs the RO per [DRM-v2.1] except that the replay cache is not considered. When installed, this RO loses the <copy> permission, i.e. the DRM Agent, acting as a DRM Requester, SHALL NOT Copy the RO to another DRM Agent. Note: if the DRM Agent is not a member of the User Domain, it will not be able to decrypt the REK and install the RO until it joins the User Domain and receives a copy of the UDK.

q. It sets CopyRoResponse.Status to Success.
6. (9.8 1 a ii)

ii. If there is a <count> constraint, then it checks the current count value in the state information of the RO. If the current copy count is 0, the DRM Requester terminates the Copy RO operation. Otherwise, it decrements the current copy count value in the state information of the RO.
Additional EDITORIAL:

RFC3280 cited but missing from References

Misspelling: In 9.2.6 (3 instances) and 9.2.7 (1 instance) of ‘negociated’ (incorrect) instead of ‘negotiated’ (correct)
Typo: ‘is’ should be added in 9.7 1 a ii between ‘transaction’ and ‘terminated’: “If the current move count is 0, then the Move RO transaction is terminated.”

Typo: In 9.7 1 d, ‘unsuable’ (incorrect) instead of ‘unusable’ (correct)
Typo: In 9.8.1, ‘imeStampPresent’ (incorrect) instead of ‘timeStampPresent’ (correct)
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

The author recommends that the OMA DRM WG “tentatively agree” this Input Contribution.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 5)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20080101-I]

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Page 5 (of 5)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20080101-I]

