[image: image20.wmf]

audio

Image(1)

Image(2)

play

display

Print

3 times

Media

Objects

Mulitpart

DCF

<permission>

elements

<rights>

element

Reference by

Content

-

ID

	OMA-DRM-DRM-V2_0-20040108-D
	Page 5 V(123)

	OMA DRM Specification V 2.0

Draft Version <<08-January-2004>>

	

	Open Mobile Alliance

OMA-DRM-DRM-V2_0-20040108-D

	

	This document is considered confidential and may not be disclosed in any manner to any non-member of the
Open Mobile Alliance(, unless there has been prior explicit Board approval.

	This document is a work in process and is not an approved Open Mobile Alliance™ specification. This document is subject to revision or removal without notice. No part of this document may be used to claim conformance or interoperability with the Open Mobile Alliance specifications.

A list of errata and updates to this document is available from the Open Mobile Alliance™ Web site, http://www.openmobilealliance.org/, in the form of SIN documents, which are subject to revision or removal without notice.

© 2002, Open Mobile Alliance Ltd. All rights reserved.

Terms and conditions of use are available from the Open Mobile Alliance(Web site at http://www.openmobilealliance.org/copyright.html.

	You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance™. The Open Mobile Alliance authorises you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services offered by you.

The Open Mobile Alliance™ assumes no responsibility for errors or omissions in this document. In no event shall the Open Mobile Alliance be liable for any special, indirect or consequential damages or any damages whatsoever arising out of or in connection with the use of this information.

	This document is not a Open Mobile Alliance™ specification, is not endorsed by the Open Mobile Alliance and is informative only. This document is subject to revision or removal without notice. No part of this document may be used to claim conformance or interoperability with the Open Mobile Alliance specifications.

Open Mobile Alliance™ members have agreed to use reasonable endeavors to disclose in a timely manner to the Open Mobile Alliance the existence of all intellectual property rights (IPR’s) essential to the present document. However, the members do not have an obligation to conduct IPR searches. The information received by the members is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. Essential IPR is available for license on the basis set out in the schedule to the Open Mobile Alliance Application Form.

No representations or warranties (whether express or implied) are made by the Open Mobile Alliance™ or any Open Mobile Alliance member or its affiliates regarding any of the IPR’s represented on this “OMA IPR Declarations” list, including, but not limited to the accuracy, completeness, validity or relevance of the information or whether or not such rights are essential or non-essential.

This document is available online in PDF format at http://www.openmobilealliance.org/.

Known problems associated with this document are published at http://www.openmobilealliance.org/.

Comments regarding this document can be submitted to the Open Mobile Alliance™ in the manner published at http://www.openmobilealliance.org/documents.html
	Document History

	OMA-DRM-DRM-V2_0-20040108-D
	Current

	OMA-DRM-DRM-V2_0-20031121-D
	post-London OMA version

	OMA-DRM-DRM-V2_0-20030902-D
	version submitted to Berlin TP

	OMA-DRM-DRM-V2_0-20030810-D
	Version submitted to both DLDRM and Security WGs for review before Berlin.

	OMA-DRM-DRM-V2_0-20030715-D
	Version submitted for discussion in Paris.

Contents
3Contents

71.
Scope

82.
References

82.1
Normative References

92.2
Informative References

103.
Terminology and Conventions

103.1
Conventions

103.2
Definitions

113.3
Abbreviations

134.
Introduction

134.1
Architecture Overview

134.1.1
DRM Trust Model

144.1.2
Basic Download

154.1.3
Super Distribution

174.1.4
Streaming Media

184.1.5
Domains

194.1.6
Export

204.1.6
Store & Forward

225.
Capability Negotiation

225.1 HTTP Headers

225.2 User Agent Profile

235.3 Issuer Responsibilities

246.
The Rights Object Acquisition Protocol (ROAP) Suite

246.1
Overview

246.1.1
The 4-pass Registration Protocol

256.1.2
The 2-pass Rights Object Acquisition Protocol

266.1.3
The 1-pass Rights Object Acquisition Protocol

266.1.4
The 2-pass Join Domain Protocol

276.1.5
The 2-pass Leave Domain Protocol

286.1.6
The ROAP Trigger

286.2
ROAP XML Schema basics

286.2.1
Introduction

286.2.2
A note on comparison of ROAP values

286.2.3
The Request type

286.2.4
The Response type

296.2.5
The Status type

306.2.6
The Extensions type

306.2.7
The Protected Rights Object payload type

316.2.8
The ROAP Trigger type

336.3
ROAP Messages

336.3.1
Notation

336.3.2
Registration Protocol

336.3.2.1
Device Hello

336.3.2.1.1
Message description

346.3.2.1.2
Message syntax

366.3.2.2
RI Hello

366.3.2.2.1
Message description

376.3.2.2.2
Message syntax

386.3.2.3
Registration Request

386.3.2.3.1
Message description

406.3.2.3.2
Message syntax

416.3.2.4
Registration Response

416.3.2.4.1
Message description

426.3.2.4.2
Message syntax

436.3.3
RO Acquisition

436.3.3.1
RO Request

436.3.3.1.1
Message description

446.3.3.1.2
Message syntax

456.3.3.2
RO Response

466.3.3.2.1
Message description

476.3.3.2.2
Message syntax

476.3.4
Domain Join/Leave Protocol

476.3.4.1
Join Domain Request

486.3.4.1.1
Message description

496.3.4.1.2
Message syntax

506.3.4.2
Join Domain Response

506.3.4.2.1
Message description

516.3.4.2.2
Message syntax

526.3.4.3
Leave Domain Request

526.3.4.3.1
Message description

536.3.4.3.2
Message syntax

546.3.4.4
Leave Domain Response

546.3.4.4.1
Message description

546.3.4.4.2
Message Syntax

556.3.5
Domain RO processing rules

556.3.5.1
Overview

556.3.5.2
Inbound Domain RO

556.3.5.2.1
Installing a Domain RO

566.3.5.2.2
Postprocessing after installing the Domain RO

566.3.5.3
Outbound DCF

566.4
Key Management

566.4.1
Cryptographic components

566.4.1.1
RSAES-KEM-KWS

576.4.1.2
KDF

576.4.1.3
AES-WRAP

576.4.2
Key transport mechanisms

576.4.2.1
Distributing KREK and KMAC under a device public key

586.4.2.2
Distributing KD and KMAC under a device public key

586.4.2.3
Distributing KREK and KMAC under a domain key KD

586.4.2.4
Distributing KCEK under a rights object encryption key KREK

596.4.3
Use of hash chains for Domain Key generation

596.5
Certificate status checking

596.5.1
Certificate status checking by RI

596.5.2
Certificate status checking by DRM Agents

606.6
Transport Mappings

606.6.1
HTTP/WSP Transport Mapping

606.6.1.1
Initiating the ROAP

616.6.1.2
HTTP Content Negotiation

616.6.1.3
HTTP Features

616.6.1.4
HTTP Authentication

616.6.1.5
RI Hello

616.6.1.6
RO Response

616.6.1.7
Example: Separate Delivery of DCF and Rights Object

636.6.1.8
Example: Combined Delivery of DCF and Rights Object

646.6.1.9
Example: Silent RO Acquisition Triggered by DCF Headers

656.6.2
OMA Download OTA

656.6.2.1
Download Agent and DRM Agent Interaction

656.6.2.1.1
Downloading DRM Content

656.6.2.1.2
Downloading DRM Rights Objects

666.6.2.1.3
Downloading DRM Content and Rights Object Together

666.6.2.2
Example: Separate Delivery of DRM Content and Rights Object

696.6.2.3
Example: Combined Delivery of Content DCF and Rights Object

716.6.3
WAP Push

716.6.3.1
Push Application ID

726.6.3.2
Content Push

726.6.3.3
Service Indication/Service Loading

726.6.4
MMS

737.
Domains

737.1
Overview

737.2
Device joins domain

737.3
Domain RO Acquisition

747.4
Device leaves a domain

747.5
Domain revocation

768.
Protection of Content and Rights

768.1
Protection of Content Objects

768.2
Composite Content Objects and Associated Rights Objects

768.2.1
Multiple Rights for Composite Objects

768.2.1.1
Association of Permissions with Media ObjectsComposite Content Objects and Associated Rights Objects

778.2.1.2
Multiple Rights for Multipart DCFsComposite Objects

788.3
Protection of Rights Objects

798.4
Replay Protection of Stateful Rights Objects

798.4.1
Introduction

808.4.2
Replay Mechanism

808.4.3
Processing rules

808.4.3.1
Stateful ROs with RI Time Stamp (RITS)

818.4.3.2
Stateful ROs without RI Time Stamp (RITS)

818.4.4
Subscription Rights Object

829.
Super Distribution

8310.
Export

8611.
Remote Storage

8712.
Proxy / Store & Forward

8712.1
Proxy

8712.2
Store & Forward

8813.
Binding Rights to User Identities

8813.1
IMSI uid

8813.2
WIM uid

8813.2.1
DRM Agent behavior

8913.2.2
Support for WIM uid

9014.
Security Considerations

9014.1
Protection of key storage

9014.2
Protocol security features

9014.2.1
4-pass

9014.2.2
2-pass

9014.2.3
1-pass

9114.3
Secure Time Source

92Appendix A.
ROAP Schema

101Appendix B.
ROAP protocol exchange examples

101B.1 Registration Protocol

101B.1.1 Device hello

101B.1.2 RI Hello

102B.1.3 Registration Request

102B.1.4 Registration Response

103B.1.5 Rights Object Acquisition

103B.1.5.1 RO Request

103B.1.5.2 RO Response

105B.1.6 Domain RO

106B.1.7 Domain Join Protocol

106B.1.7.1 Join Domain Request

107B.1.7.2 Join Domain Response

108B.1.8 Leave Domain Protocol

108B.1.8.1 Leave Domain Request

108B.1.8.2 Leave Domain Response

109Appendix C.
Backward Compatibility with Release 1.0 (Normative)

110Appendix D.
Exporting to other DRMs (Informative)

110D.1 High-level Example : Exporting to Removable Media

112Appendix E.
Application to Services (Normative)

112E.1 Application to streaming services

112E.1.1. Application to the 3GPP Packet-Switched Streaming Service

114E.1.2 DCF Packaging of Streaming Session Descriptors (Informative)

116Appendix F.
Certificate Profiles and Requirements (Normative)

116F.1 DRM agent certificates

117F.2: Rights Issuer certificates

118F.3 CA certificates

118F.4 OCSP responder certificates

119F.5 User Certificates for Authentication

120Appendix G.
Interactions between the DRM agent and the WIM (Informative)

120G.1 WIM operations in exercising “permission” to bind Rights Objects to the user identity

121G.2 PIN management

122Appendix H.
Static Conformance Requirements (Normative)

123Appendix I.
Change History (Informative)

1. Scope

Open Mobile Alliance (OMA) specifications are the result of continuous work to define industry-wide interoperable mechanisms for developing applications and services that are deployed over wireless communication networks.

The scope of OMA “Digital Rights Management” (DRM) is to enable the distribution and consumption of digital content in a controlled manner. The content is distributed and consumed on authenticated devices per the usage rights expressed by the content owners. OMA DRM work addresses the various technical aspects of this system by providing appropriate specifications for content formats, protocols, and rights expression languages.

A number of DRM specifications have already been defined within the OMA. See [DRM], [DRMCF] and [DRMREL]. These existing specifications are referred to within this document as “release 1”.

This scope for this specification is to define the protocols, messages and mechanisms necessary to implement the DRM system in the mobile environment. This specification addresses the specific requirements enumerated in the Release 2 Requirements document [DRMREQ-v2].

2. References

2.1 Normative References

	[3GPP PSS]
	Transparent end-to-end packet switched streaming service (PSS); 3GPP 26.234; Protocols and codecs - Release 5. http://www.3gpp.org/

	[3GPP TS 24.008]
	Technical Specification Group Core Network; Mobile radio interface layer 3 specification; Core Network Protocols; Stage 3(Release 5)

	[3GPP TS 31.102]
	Technical Specification Group Terminals; Characteristics of the USIM Application (Release 5).

	[3GPP TS 11.11]
	Specification of the Subscriber Identity Module -Mobile Equipment (SIM - ME) interface (Release 5)

	[AES]
	NIST FIPS 197: Advanced Encryption Standard (AES). November 2001.

URL:http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

	[CP]
	OMA Certificate and CRL Profiles, draft version 2003-02-16

	[CREQ]
	“Specification of WAP Conformance Requirements”. Open Mobile Alliance(. WAP‑221‑CREQ. URL:http//www.wapforum.org/ <to be replaced by an OMA ref when available>

	[DRM]
	“Digital Rights Management”, Open Mobile AllianceTM, OMA-Download-DRM-v1_0, http://www.openmobilealliance.org/

	[DRMARCH]
	DRM Architecture Specification, Open Mobile Alliance, OMA-Download_DRMARCH_v1_0

http://www.openmobilealliance.org/

	[DRMCF]
	“DRM Content Format”, Open Mobile AllianceTM, OMA-Download-DRMCF-v1_0, http://www.openmobilealliance.org/

	[DRMCF-v2]
	DRM Content Format, OMA, v2

	[DRMREL]
	“DRM Rights Expression Language”, Open Mobile AllianceTM, OMA-Download-DRMREL-v1_0, http://www.openmobilealliance.org/

	[DRMREL-v2]
	DRM Rights Expression Language, OMA, v2

	[DRMREQ-v2]
	DRM Requirements Specification, OMA, v2

	[HMAC]
	RFC 2104: HMAC: Keyed-Hashing for Message Authentication. H. Krawczyk, M. Bellare, and R. Canetti. Informational, February 1997.

http://www.ietf.org/rfc/rfc2104.txt

	[HTTP]
	RFC 2616. Hypertext Transfer Protocol – HTTP/1.1. J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee. June 1999. http://www.ietf.org/rfc/rfc2616.txt

	[MIME]
	RFC 2045. Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies. N. Freed & N. Borenstein. November 1996.

http://www.ietf.org/rfc/rfc2045.txt

	[OCSP]
	Online Certificate Status Protocol, http://www.ietf.org/rfc/rfc2560.txt

	[OCSP-MP]
	OMA Online Certificate Status Protocol (profile of [OCSP]), draft version 2002-08-09

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”. S. Bradner. March 1997.
http://www.ietf.org/rfc/rfc2119.txt

	[RFC2045]
	"Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies", N. Freed & N. Borenstein, November 1996, http://www.ietf.org/rfc/rfc2045.txt

	[RFC2234]
	“Augmented BNF for Syntax Specifications: ABNF”. D. Crocker, Ed., P. Overell.
November 1997. URL:http://www.ietf.org/rfc/rfc2234.txt

	[RFC2387]
	“The MIME Multipart/Related Content-type”, E. Levinson, 1998, http://www.ietf.org/

	[RFC2396]
	“Uniform Resource Identifiers (URI): Generic Syntax”. T. Berners-Lee, R. Fielding, L. Masinter. August 1998. http://www.ietf.org/rfc/rfc2396.txt

	[RFC2616]
	“Hypertext Transfer Protocol -- HTTP/1.1”. R. Fielding, et al. June 1999.

http://www.ietf.org/rfc/rfc2616.txt.

	[XML-DSIG]
	XML-Signature Syntax and Processing. D. Eastlake, J. Reagle, and D. Solo. W3C Recommendation, February 2002.

http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/

	[XML-Encryption]
	XML Encryption Syntax and Processing. D. Eastlake and J. Reagle. W3C Candidate Recommendation, December 2002.

http://www.w3.org/TR/2002/CR-xmlenc-core-20020802/

	[XML-Schema]
	XML Schema Part 1: Structures D. Beech, M. Maloney, and N. Mendelsohn. W3C Recommendation, May 2001.

http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/

XML Schema Part 2: Datatypes. P. Biron and A. Malhotra. W3C Recommendation, May 2001.

http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/

	[WAPWIM]
	"Wireless Application Protocol Architecture Specification", Open Mobile Alliance(. OMA-WAP-WIM-v1_1-20021024-C

2.2 Informative References

	[DLOTA]
	“OMA Download version 1.0.” Open Mobile Alliance™. OMA-Download-OTA-V1_0. www.openmobilealliance.org/documents.html

	[DRMARCH-v2]
	“OMA DRM Architecture”, Open Mobile Alliance™. OMA-DRM-ARCH-V2_0. www.openmobilealliance.org/documents.html

	[PUSHOTA]
	“Push OTA Protocol Specification.” Open Mobile Alliance™. WAP-235-PushOTA. www.openmobilealliance.org/wapdownload.html

	[PUSHSI]
	“WAP Service Indication Specification.” Open Mobile Alliance™. WAP-167-ServiceInd. www.openmobilealliance.org/wapdownload.html

	[PUSHSL]
	“WAP Service Loading Specification.” Open Mobile Alliance™. WAP-168-ServiceLoad. www.openmobilealliance.org/wapdownload.html

	[UICC]
	“Smart cards; UICC-Terminal interface; Physical and logical characteristics (release 5)”, ETSI 102.221 , http://www.etsi.org

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

This specification uses schema documents conforming to W3C XML Schema [SCHEMA] and normative text to describe the syntax and semantics of XML-encoded ROAP messages.

Listing of Rights Object Acquisition Protocol (ROAP) schemas appear like this.

The following typographical conventions are used in the body of the text: <ROAPElement>, ROAPAttribute, ROAPDatatype, ASN.1ValueOrType.
3.2 Definitions

	Backup/Remote Storage
	Transfering Rights Objects and Content Objects to another location with the intention of transferring them back to the original Device.

	Billing Service Provider
	The entity responsible for collecting payment from a User.

	Combined Delivery
	A Release 1 method for delivering Protected Content and Rights Object. The Rights Object and Protected Content are delivered together in a single entity, the DRM Message.

	Composite Object
	A content object that contains one or more Media Objects by means of inclusion.

	Confidentiality
	The property that information is not made available or disclosed to unauthorised individuals, entities or processes. (From [ISO 7498-2])

	Content
	One or more Media Objects

	Content Issuer
	The entity making content available to the DRM Agent in a Device.

	Content Provider
	An entity that is either a Content Issuer or a Rights Issuer.

	Content Retailer
	An entity that is a Content Issuer and/or a Rights Issuer.

	Content subscription
	A subscription that a User has with a Content Provider for the purposes of paying for Protected Content purchased from that Content Provider and played on a Users Device.

	Device
	A Device is a user equipment with a DRM Agent. The Device MAY include a smartcard module (e.g. a SIM) or not depending upon implementation.

	Device Revocation
	The process of an RI indicating that a Device is no longer trusted to acquire ROs.

	Device Rights Object
	An RO dedicated for a particular Device by means of the Device Public Key.

	Domain
	A set of devices, which are able to share Domain Rights Objects. Devices in a Domain share a Domain Key. A Domain is defined and managed by an RI.

	Domain Identifier
	A unique string identifier of the Domain Key

	Domain Key
	A 128 bit symmetric cipher key

	Domain Generation
	A Counter reflecting the number of times the Domain has been revoked. The Domain Generation is a part of the Domain Identifier (the last two digits).

	Domain Context
	The Domain Context consists of information necessary for the Device to install Domain Rights Objects, such as Domain Key, Domain Identifier and Expiry Time.

	Domain Context Expiry Time
	An absolute time after which the Device is not allowed to install ROs for this Domain. Usage of ROs installed before the expiry time are not affected by the expiry.

	Domain Revocation
	The process of an RI indicating that a Domain Key is not trusted for protection of Domain ROs.

	Domain Rights Object
	An RO that is dedicated to devices in a particular domain by means of a Domain Key.

	DRM Agent
	The entity in the Device that manages Permissions for Media Objects on the Device.

	DRM Message
	An OMA DRM Release 1 term defined in [DRM]

	Forward Lock
	An OMA DRM Release 1 term defined in [DRM]

	Hash Chains
	A Method of derivation of Domain Keys of different Domain Generations.

	Integrity
	The property that data has not been altered or destroyed in an unauthorised manner. (ISO 7498-2)

	Join Domain
	The process of an RI including a Device in a Domain.

	Leave (De-Join) Domain
	The process of an RI excluding a non-revoked Device from a Domain.

	Media Object
	A digital work e.g. a ringing tone, a screen saver, a Java game or a Composite Object.

	Permission
	Actual usages or activities allowed (by the Rights Issuer) over Protected Content (From [ODRL 1.1])

	Play
	To create a transient, perceivable rendition of a resource (From [MPEG21 RDD])

	
	

	Protected Content
	Media Objects that are consumed according to a set of Permissions in a Rights Object.

	Restore
	Transfering the Protected Content and/or Rights Objects from an external location back to the Device from which they were backed up.

	Revoke
	Process of declaring a Device or Rights Issuer certificate as invalid.

	Rights Issuer
	An entity that issues Rights Objects to OMA DRM Conformant Devices.

	Rights Object
	A collection of Permissions and other attributes which are linked to Protected Content.

	Rights Object Acquisition Protocol (ROAP)
	A protocol defined within this specification. This protocol enables devices to request and acquire Rights Objects from a Rights Issuer.

	ROAP Trigger
	A URL that, when received by the Device, initiates the ROAP.

	Separate Delivery
	A Release 1 term defined in [DRM].

	Stateless Rights
	Stateless Rights are Rights Objects for which the Device does not have to maintain state information. For example, if a Rights Object uses the <datetime> constraint, it depicts Stateless Rights, because you don't need to maintain any usage information in order to enforce the constraint

	Stateful Rights
	Stateful Rights are Rights Objects for which the Device has to explicitly maintain state information, so that the constraints and permissions expressed in the RO can be enforced correctly. For example, a RO containing the <interval> constraints are considered Stateful Rights because the Device needs to keep track of the first use of the associated content.

	Superdistribution
	A mechanism that (1) allows a User to distribute Protected Content to other Devices through potentially insecure channels and (2) enables the User of that Device to obtain a Rights Object for the superdistributed Protected Content.

	User
	The human user of a Device. The User does not necessarily own the Device.

3.3 Abbreviations

	3GPP
	3rd Generation Partnership Project

	CA
	Certification Authority

	CD
	Compact Disc

	CEK
	Content Encryption Key

	CI
	Content Issuer

	DCF
	DRM Content Format

	DD
	Download Descriptor

	DRM
	Digital Rights Management

	DVD
	Digital Versatile Disc

	HTTP
	HyperText Transfer Protocol

	ISO
	International Standards Organization

	IMSI
	International Mobile Subscriber Identity

	LAN
	Local Area Network

	ME
	Mobile Equipment

	MMS
	Multimedia Messaging Service

	MPEG
	Moving Picture Expert Group

	MP3
	MPEG audio layer 3; coding scheme for audio compression

	OMA
	Open Mobile Alliance

	OMNA
	Open Mobile Naming Authority (see http://www.openmobilealliance.org/tech/omna/index.htm)

	OCSP
	Online Certificate Status Protocol

	OS
	Operating System

	OTA
	Over The Air (i.e. transfer over a wireless connection)

	PC
	Personal Computer

	PDA
	Personal Digital Assistant

	PDU
	Protocol Data Unit

	PKI
	Public Key Infrastructure

	PKC
	Public Key Certificate

	PKC-ID
	PKC Identifier: the hash of the Public Key Certificate

	REK
	Rights Encryption Key

	RFC
	Request For Comments

	RI
	Rights Issuer

	RO
	Rights Object

	ROAP
	Rights Object Acquisition Protocol

	SA
	Security Association

	SCR
	Static Conformance Requirement

	SIM
	Subscriber Identity Module

	USIM
	Universal Subscriber Identity Module

	SMS
	Short Messaging Service

	TLS
	Transport Layer Security

	URI
	Uniform Resource Indicator

	URL
	Uniform Resource Locator

	WIM
	Wireless Identity Module

	WLAN
	Wireless Local Area Network

4. Introduction

There is a growing need for a rights management system in the mobile industry so that the operators and content providers can make digital content available to consumers in a controlled manner. Digital Rights Management is a set of technologies that provide the means to control the distribution and consumption of the digital media objects. OMA has already published release 1 of the DRM specifications. The release 1 specifications provide some fundamental building blocks for a DRM system. But, they lack the complete security necessary for a robust, end-to-end DRM system that takes into account the need for secure distribution, authentication of Devices, revocation and other aspects. This specification addresses these missing aspects of the OMA DRM.

The OMA DRM enables content providers to grant permissions for media objects that define how they should be consumed. The DRM system is independent of the media object formats and the given operating system or run-time environment. The media objects controlled by the DRM can be a variety of things: games, ring tones, photos, music clips, video clips, streaming media, etc. A content provider can grant appropriate permissions to the user for each of these media objects. The content is distributed with cryptographic protection; hence, the Protected Content is not usable without the associated Rights Object on a Device. Given this fact, fundamentally, the users are purchasing permissions embodied in Rights Objects and the Rights Objects need to be handled in a secure and un-compromising manner.
The Protected Content can be delivered to the Device by any means (over the air, local connectivity, removable media, etc.). But the Rights Objects are tightly controlled and distributed by the Rights Issuer in a controlled manner. The Protected Content and Rights Objects can be delivered to the Device by downloading them together, or by sending them separately. The system does not imply any order or “bundling” of these two objects. It is not within the scope of the DRM system to address the specific payment methods employed by the Rights Issuers. It is assumed that the Rights Issuers will be provided with some user identity for billing purposes during the purchase of the rights for any content.

4.1 Architecture Overview

As described in the DRMARCH-v2 document, the basic functional architecture of the DRM consists of several entities: the DRM Agent on the client Device, Content Issuers, Rights Issuers, Users and Off-Device Storage. Depending on the business arrangements and network architecture, these logical entities can be represented in many different deployment configurations.

4.1.1 DRM Trust Model

The DRM Trust Model required by this specification is based on the Public Key Infrastructure (PKI). In this model, typically, there are groups of principals, verifiers and one or more authentication authorities recognized and trusted by both. A single entity can play both as a principal and a verifier depending on the needs of the solution being crafted. The overall purpose of the infrasturcure is to enable a verifier to authenticate the identity and other attributes of a principal when they communicate over an open, unsecured network. In such a system, typically, the verifier does not have to maintain any sensitive information about the principals it interacts with, for the purposes of authentication. In addition, the CA is not directly involved in transactions between principal and the verifier.
The primary entities of the trust model as it is specified in this specification are the CAs, Devices and Rights Issuers. The authentication and key transfer protocols developed require Rights Issuer to be able to authenticate the Device and the Device to be able to authenticate the Rights Issuer. This mutual authentication is accomplished by the Rights Object Acquisition Protocol (ROAP), later in this specification.
· It is assumed that devices are provisioned (either at manufacturing time or later) with Device public and private keys and associated certificates signed by an appropriate CA. A Device manufacturer could be a CA by itself in order to sign the certificates.
· The Device can be provisioned with more than one certificate. Based on the certificate preferences expressed by the Rights Issuer, the Device has to provide an appropriate certificate.

· It is also required that the Device stores the private keys in local storage with integrity and confidentiality protection.

· The Rights Issuers are also provided with public and private keys and certificates. The certificates would be signed by a CA. The certificate chain is presented to the Device at the time of the authentication protocol so that the Device can validate the certificate path.

· There could be multiple CAs in this system. This specification does not mandate a specific trust model such as a hierarchical trust model or a bridge trust model. The exact nature of these trust models is left upto the marketplace decisions.

· The ROAP protocol also requires that the CA who signs the Rights Issuer certificates runs an OCSP responder for use during the execution of the protocol.

· The CAs are also required to define the appropriate certificate policies to govern the use of the issued certificates.

Irrespective of the deployment configurations, the Media Objects are packaged and delivered to users in a protected and controlled manner. The content issuer delivers Protected Content from a portal to the Device. The Rights Issuer authenticates the Device and provides the necessary Rights Objects so that the content can be used. The DRM Agent on the Device participates in the authentication protocol and implements the necessary security and trust elements so that the Rights Objects are utilized in a conforming manner.

The Rights Objects govern the usage of the Protected Content by specifying the permissions and constraints as needed. These Rights Objects are also protected by encryption such that only the target devices obtain access to the Protected Content.

Within the OMA DRM, the Protected Content and Rights Objects are physically separate entities. But, they are logically associated with each other and this association is protected. The Protected Content and Rights Objects can arrive at the Device in a number of ways – over the air, through local connectivity, through both push and pull mechanisms, etc. The system does not specify any ordering or sequence for the delivery of these objects to the Device either.

One of the fundamental functions of the DRM Agent is to enforce the permissions specified in the Rights Object during content usage. It is required that the secrets and keys that are part of the system security are protected and handled such that un-authorized use is avoided.

The OMA DRM specifies the content formats, rights expression language, authentication/authorization protocols, and protection mechanisms. OMA DRM also specifies how Protected Content and Rights Objects can be transported to devices using a number of transport mechanisms. The following sections describe some example models for content distribution and consumption that are supported by these specifications.

4.1.2 Basic Download

One model for content distribution is using OMA OTA Download mechanisms. The client would launch a browser and connect to a Content Issuer portal. The user would evaluate the content offerings from this portal and make a decision on specific items of content to be downloaded. Once the Protected Content is downloaded, the client can connect to the Rights Issuer portal and engage in the Rights Object Acquisition Protocol to acquire the associated rights. Another model is based on subscription. The subscriber can get Protected Content and Rights Objects pushed to the Device on a regular interval. The third model shown in this picture is one of subscription with the Device invoking the rights acquisition silently as needed. The flow of events between the significant actors of the scenarios are illustrated below.

[image: image1.emf]Client Content Issuer Portal Rights Issuer Portal

Browse Content Offerings

Select Content:X, Select Payment

Download Content

Start Rights Acquisition Protocol for Content:X

Acquire Rights

Figure XX: Basic Download - Pull

and Push Models

Charging

Subscription:Push Content:Y

Subscription Push of Rights for Content:Y

reconciliation

Subscription:Push Content:Z

Start Rights Acquisition Protocol for Content Y : silent

Acquire Rights

reconciliation

1

2

3

4

1. The client initiates a browsing session with the Content Portal. The client selects the specific content from the content offerings on the portal. In addition, the client may select the payment mode during this session. Subsequently, the client downloads the Protected Content from the portal to local storage.

2. The client looks up the Rights Issuer URL within the Protected Content headers and initiates a connection to the Rights Issuer portal. And enages in the Rights Object Acquisition Protocol. The client, at the successful completion of this protocol, acquires the Rights Object associated with the Protected Content.

3. Another scenario shown in this picture is the subscription push of both content and rights. In this model, the client has an established subscription and charging agreement with the Rights Issuer in place. As a result of this, the Rights Issuer can push both Protected Content and Rights Objects to the clients on a regulare interval.

4. Another scenario shown in this picture is the subscription based push that in turn initiates a pull of the Rights Object from the Rights Issuer Portal. The Protected Content is delivered with the ‘silent’ header and the Client, on reception of the content, connects to the Rights Issuer to trigger the Rights Object Acquisition Protocol. On completion of this protocol successfully, the Rights Object is issued to the client.

4.1.3 Super Distribution

A given client who has downloaded content from a Content Issuer can in turn distribute this Protected Content to other devices using various networked links as well as removable media. This Protected Content is encrypted and is not usable by the receiving device/user until the associated rights are acquired for the content. The device that receives this super-distributed content will discover the Rights Issuer URL within the Protected Content headers and use this information to connect to the Rights Issuer portal to acquire the rights. The interaction diagram below illustrates this model of content distribution and the related flow of events amongst the significant actors.

[image: image2.emf]Device:D1 Device:D2 Rights Issuer Portal

Transfer Protected Content:Z

Start Rights Acquisition Protocol for Content:Y

Acquire RO for Y

Figure XX: Super Distribution

Device:D3

Transfer Protected Content:Y

Start Rights Acquisition Protocol for Content:Z

Acquire RO for Z

Request Preview RO for Z

Acquire Preview RO for Z

Instant Preview Y

Transfer Protected Content:X Start Rights Acquisition Protocol for Content:X

Acquire RO for X

charging

charging

charging

charging

1

2

3

4

5

6

1. Device D1 has previously received some Protected Content and has it stored locally. Device D1 wants to share this Protected Content with Device D3, and as a result, transfers this to D3 using local connectivity or removable media. Device D3, on reception of this Protected Content, discovers the Rights Issuer URL from the Protected Content headers and initiates a Rights Object Acquisition Protocol session with the Rights issuer. On completion of this protocol and appropriate payment arrangements, the device D3 obtains the Rights Object associated with Protected Content X. Now, the user of device D3 is able to use this content.

2. Device D2 transfers Protected Content Y to device D3. This Protected Content Y has the ‘preview’ headers and is able to provide an ‘instant preview’ for the content within it. The device D3 can make the ‘preview’ available to the user and the user can make a decision regarding the content purchase.

3. Once the user of device D3 has decided to purchase the rights for content Y, it initiates the Rights Object Acquisition Protocol with the Rights Issuer. On successful completion of this protocol, the device D3 obtains the Rights Object for Protected Content Y.

4. Device D1 transfers Protected Content Z to device D2.

5. On reception of this Protected Content Z, the device D2 discovers that this content can provide a preview if the device obtains a preview Rights Object. As a result, the device D2 connects to the Rights Issuer and obtains the Rights Object to enable a preview. Righst Objects provided are full-fledged Rights Objects, the only difference being that the permissions and constraints are specified to just enable a preview. This may or may not result in charging, depending on the business model.

6. Once the user decides to purchase the rights, the device D2 starts a Rights Object Acquisition Protocol session to acquire rights for content Z. On successful completion of the protocol, the Rights Object for Z is obtained by the device.

4.1.4 Streaming Media

For distributing protected streams, the streaming token
 is acquired from the Content Issuer portal and the access to the streams is governed by the associated Rights Object. The client, after receiving the session headers, can connect to the Rights Issuer and acquire the necessary Rights Object, which in turn will provide the necessary information for the client to be able to decode the streams and render the content. The interaction diagram below illustrates the flow of events and the technical elements necessary for this solution.

[image: image3.emf]Client Content Issuer Portal Rights Issuer Portal Streaming Service

Browse Content

Download Streaming Token

Initiate Streaming Session

Stream Headers Delivered

1

3

4

Request Rights via Rights Acquisition Protocol

Acquire Rights

2

charging

Initiate Streaming Session

DRM Protected Streams Delivered

Figure XX: DRM Protected Streaming Service

Subscription Push: Streaming Token

Subscription Push: Rights Object

reconciliation

1

2

Initiate & Start Streaming Session

DRM Protected Streams Delivered

1. The client connects to the Content Issuer portal and browses for content of interest. Client selects the streaming service of interest, possibly indicates the payment mode, and downloads the streaming token.

2. The Client connectes to the Streaming server and initiates the streaming session. After the stream is initiated, the Client will have the stream properties available. The DRM properties will be included in these stream properties (except for the case of an SDP description token, where the properties are already contained in the token).

3. The Client requests rights by connecting to the Rights Issuer and initiating the Rights Object Acquisition Protocol to acquire the rights for the streamed content. On successful completion of the protocol, the Rights Object for the streaming service is obtained by the client.

4. The client connects to the Streaming server and resumes the streaming session. And, the Protected Streams are delivered to the client.

Push rights

1. Another mode of delivering streaming services is when the rights are delivered in advance or along side the streaming token.

2. The client can then connect to the streaming server and initiate the streaming session. The DRM agent will have rights so the client will be able to immediately start the streaming session instead of going through step 3 above.

Editor’s Note: What is the impact of domain functionality on Streaming Scenarios? The assumption is that you will be able to distribute the streaming token and the RO to other devices in the domain?
4.1.5 Domains

This specification also allows the distribution of content to a group of devices that are enrolled in a domain, that is created, managed and administered by a Rights Issuer. Once the domain is formed and the devices are enrolled in the domain, content and rights distributed to any of the devices in the domain can be shared among the other devices in the domain without connecting back to the Rights Issuer. Alternatively, a device can join a desired domain on reception of content that is targeted for a domain.

[image: image4.emf]Device:D1 Device:D2 Rights Issuer Portal

Figure XX: Domains

Device:D3

1

2

3

4

5

Device:D4

Registration and Join Domain

Registration and Join Domain

Registration and Join Domain

Acquire Content and Rights

Transfer content and rights

Transfer content and rights

Transfer content and rights Registration

Join Domain

1. In the scenario illustrated above, Each of the devices D1, D2, and D3 connect to the RI and complete the registration and join a domain DM1.

2. At a later time, device D1 connects to the RI and acquires content DCF1 and the associated domain RO for the DCF, DRO1. Now since the device D1 is part of the domain DM1, the content and rights are usable on this device.
3. Subsequently, the device D1 forwards the content and the associated domain RO to the other devices D2, & D3.

4. Since D2 & D3 are part of the domain DM1, the content and associated rights are immediately usable on those devices without connecting to the RI.

5. At a later time, conent is also forwarded to device D4. This device D4 has not joined the domain DM1. As a result, the content is not usable on this device. The user can choose to connect to the RI and join the domain DM1 to gain access to this content. Since the domain management is conducted by the RI, the RI can explicitly decide on the composition of the domain and decide on whether D5 can join the domain or not.

4.1.6 Export

Protected content may be exported to some other DRM system, for use on devices that are not OMA DRM compliant but support some other DRM mechanism – e.g. export to copy protected media. The rights issuer may limit export only to specific external DRM systems.

The capabilities of the other DRM system can be provided to the Content Portal so the downloaded content and rights are compatible with the target DRM system. This downloaded content is stored and managed on the original device for later export to a consuming device. OMA DRM does not define how to translate from OMA DRM to other protection mechanisms. It merely allows Rights Issuers to, if they wish, express permission for DRM agents with such a capability to do so.

The interaction diagram below illustrates the flow of content and rights in this model.

[image: image5.wmf]Device D1

Content Issuer Portal

Rights Issuer Portal

Browse Content Offerings

Select Content:X, Select Payment

Download Content

Start Rights Acquisition Protocol for Content:X

Acquire Rights

Figure XX: Export

Charging

1

2

3

non-OMA Device D2

4

Checking Permission

Transcribe Content and RO

Export to Other DRM

Transfer via Media

Removable Media

5

1. The client initiates a browsing session with the Content Portal. The client selects the specific content for future export from the content offerings on the portal. The content should be suitable for the target DRM system. Subsequently, the client downloads the Protected Content from the portal to local storage.

2. Device D1 now connects to the RI to acquire the rights for the content. The rights issued are compatible with the usage rules of the target DRM system.

3. The User wants to transfer the Protected Content to Device D2 that has a different (non-OMA) DRM system using local connectivity or removable media. The OMA DRM agent checks the permissions described in the rights object to determine whether the Rights Issuer allows the content to be exported to the target DRM system, whether its content type is appropriate, and whether its usage rules are compatible with the target DRM system.

4. The OMA DRM Agent transfers the decrypted content and Rights Object to the other (non-OMA) DRM Agent. The other DRM Agent transcribes the compatible rights to the other DRM usage rules according to the specific rules defined by the Rights Issuer and the other DRM system to maintain consistency with the original Rights Object.

5. The User is now able to securely use this content on Device D2.

4.1.6 Store & Forward

Now that domains are finalized, we need to revisit this.
Another method of distributing content to devices is by the use of Store & Forward mechanism. In this model of content distribution, a Store & Forward device such as a PC can connect to a Content Issuer’s portal using available network connections and purchase content for a specific set of devices. The device information can be provided to the Content Portal during this purchase transaction to tailor the content and rights for the device. This downloaded content is stored and managed on the PC for later transfer of the content to the consuming device. The Rights Objects can also be downloaded to the Store & Forward device for passing on to the consuming device. If the Rights Objects are not provided at the time of content download, then the consuming device, on reception of the Protected Content from the Store & Forward device would connect to the RI and engage in the Rights Object Acquisition Protocol to acquire the Rights Objects. The interaction diagram below illustrates the flow of content and rights in this model.

[image: image6.emf]Store & Forward Device Content Issuer Portal Rights Issuer Portal

Browse Content Offerings

Provide Device Identity Info (D1); Select Content:X, Y & Z

Download Content X, Y, & Z

Figure XX: Store & Forward

Device:D1

Transfer X, Y, & Z and associated Rights Objects to Device:D1

Transfer A to Device:D1

Transfer B to Device:D1

Rights Acquisition Protocol for A

Acquire RO for A

Rights Acquisition Protocol for B

Acquire RO for B

reconciliation

reconciliation

1

3

2

5

6

Browse and select Rights for content X, Y, & Z

Download RO for X, Y, Z for Device D1

charging

Provide Device Identity Info (D1); Select Content:A & B

Download Content A & B with 'silent' headers

4

1. The Store & Forward device connects to the Content Issuer portal. After a browsing session to select the content, the Store & Forward device provides the consuming device identity and the appropriate credentials for purchasing this content from the portal. The Protected content X, Y, & Z are downloaded to the Store & Forward device. The Store & Forward device browses more content and downloads A & B. The Protected Content A & B are provided by the Content Issuer portal with the ‘silent’ header to facilitate later silent issual of Rights Objects.
2. The Store & Forward device now connects to the RI to acquire the rights for the content X, Y, & Z. These three pieces of content were encoded such that the Rights Objects can be issued directly to the Store & Forward device for later transfer to the consuming device.

3. At a later time, the Store & Forward device transfers the Protected Content X, Y, & Z along with the associated Rights Objects to device D1 over a local connection.

4. At a later time, the Store & Forward device transfers the Protected Content A & B to device D1. The device notices that the ‘silent’ header is enabled on the content A & B.
5. When needed, the Rights Object for Protected Content A is obtained by successfully initiating and completing the Rights Object Acquisition Protocol with the Rights Issuer.

6. When needed, the Rights Object for Protected Content B is obtained by successfully initiating and completing the Rights Object Acquisition Protocol with the Rights Issuer.

5. Capability Negotiation

When Devices contact Content Issuers and Rights Issuers, the Devices need to advertise their capabilities. This allows Content Issuers and Rights Issuers to customize content, purchase options, and so forth based upon the features and functionalities of the Device, thereby improving the overall user experience. OMA DRM relies upon two mechanisms for advertising Device capabilities: HTTP headers [HTTP] and User Agent Profile [UAProf].

5.1 HTTP Headers

When a Device uses HTTP to communicate with Content Issuers and Rights Issuers, the Device MUST advertise support for the following media types using the HTTP Accept header:

· application/vnd.oma.drm.rights+xml

(DRM Rights Object)

· application/vnd.oma.drm.content

(DRM Content Format)

· application/vnd.oma.drm.roap+xml

(DRM ROAP PDUs)

· application/vnd.oma.drm.roap-trigger+xml
(DRM ROAP Trigger)
A Device MUST advertise support for the following DRM packetised content formats provided they are implemented in the Device:

· video/3gpp

(DRM packetised video content)

· audio/3gpp

(DRM packetised audio content)

In addition to the supported media types, Devices MUST advertise the DRM version using the “<major>.<minor>” format defined below. The version number advertised by OMA DRM v2 Devices MUST match the DRM Enabler Release version that the Device supports.

DRM Version = “DRM-Version” “:” *DIGIT “.” *DIGIT

5.2 User Agent Profile

OMA DRM v2 Devices SHOULD advertise supported DRM methods, permissions, constraints, media types,, version and if supported, its external DRM capabilities using UAProf. "External DRM" refers to a DRM system to which the Device is able to export OMA DRM protected content, for example, a DRM system used on a memory card. See appendix B for an example.
If the Device supports UAProf, then the Device MUST advertise the attributes in the table below as indicated in the “MUST Advertise” column.

The attributes pertaining to an external DRM system MUST be included if the Device is capable of exporting OMA DRM protected content to such a system. The attributes MUST NOT be included if the Device incapable thereof.
	UAProf Attribute
	Description
	Example Values
	MUST Advertise

	DrmClass
	DRM v1 Conformance Classs as defined in [DRM]
	"ForwardLock", "CombinedDelivery", "SeparateDelivery"
	“ForwardLock” plus other supported DRM v1 methods

	DrmPermissions
	Optional DRM permissions that are supported as defined in [DRMREL] or [DRMREL-v2]
	“play”, “display”, “execute”, “print”
	Supported permissions using the same syntax as defined in the REL specification.

	DrmConstraint
	Optional DRM permission constraints as defined in [DRMREL] or [DRMREL-v2]
	"datetime", "interval", “accumulated”
	Supported constraints using the same syntax as defined in the REL specification.

	DrmMediaTypes
	Media types the Device supports in a protected form
	"image/gif", "audio/midi", "video/3gpp"
	Media types supported inside a DCF, expressed as MIME media types [RFC2045].

	DrmVersion
	DRM Enabler Release version supported by the client
	“2.0”
	Supported DRM Enabler Release version in “<major>.<minor>” format.

	ExtDrmPermissions
	Permissions supported by the Device's external DRM
	
	Supported external permissions expressed as OMA DRM permissions as defined in [DRMREL‑v2]

	ExtDrmConstraints
	Constraints supported by the Device's external DRM
	
	Supported external constraints expressed as OMA DRM constraints as defined in [DRMREL‑v2]

	ExtDrmMediaTypes
	Media types supported by the external DRM
	"image/jpeg", "audio/aac"
	Media types supported by the external DRM, expressed as MIME media types [RFC2045].

	ExtDrmName
	Name of the external DRM
	"Very Secure Card"
	A textual name of the external DRM system. Well-defined names for external DRM systems are managed by OMNA.

5.3 Issuer Responsibilities

When a Content Issuer or Rights Issuer receives a request from a Device indicating that the Device supports OMA DRM version 2.x (any minor version of the DRM v2 specs), the:

· Content Issuer MAY issue Forward Locked Content.

· Content Issuer MAY issue Combined Delivery Content only if the Device advertises support for Combined Delivery.

· Content Issuer MAY issue Separate Delivery Content only if the Device advertises support for Separate Delivery.

· Rights Issuer MAY issue a DRM v1 or DRM v2 Rights Object if the client advertises support for Separate Delivery.

· Content Issuer SHOULD issue DRM v2 content.

· Rights Issuer SHOULD send the ROAP Trigger to initiate the ROAP protocol (see section).

6. The Rights Object Acquisition Protocol (ROAP) Suite

6.1 Overview

The Rights Object Acquisition Protocol (ROAP) is the common name for a suite of DRM security protocols between a Rights Issuer (RI) and a DRM Agent in a Device. The protocol suite contains a 4-pass protocol for registration of a Device with an RI and two protocols by which the Device requests and acquires Rights Objects (RO). The 2-pass RO Request/Response protocol encompasses request and delivery of an RO whereas the 1-pass ROAP is only a delivery of an RO from an RI to a Device (e.g. messaging/push). The ROAP suite also includes 2-pass protocols for devices joining and leaving a domain; the Join Domain Request/Response protocol and the Leave Domain Request/Response protocol.

6.1.1 The 4-pass Registration Protocol

The Registration protocol is a complete security information exchange and handshake between the RI and the Device and is generally only executed at first contact, and also, when major changes have been made such as an update of the ROAP or DRM version, or when DRM time in Device is lost. This protocol includes negotiation of protocol parameters and protocol version, exchange of certificate preferences, optional exchange of certificates, mutual authentication of Device and RI, integrity protection of protocol messages and optional time synchronization.

Successful completion of the Registration protocol results in the establishment of an RI Context in the Device containing security related information of this Rights Issuer, including agreed protocol parameters, protocol version, and certificate preferences. An RI Context is necessary for execution of the other protocols: to acquire and install Device ROs and manage domains. The RI may accept other methods for establishment of the RI Context than the 4-pass registration protocol, e.g. a well formed request message with correct parameters using the default algorithms. However, the Registration protocol is needed for fallback e.g. if Device DRM time is inaccurate, or if the RI Context needs to be updated.

[image: image7.emf]Device Rights Issuer OCSP Responder

1

2

3

a

b

4

Figure XX: The 4-pass Registration Protocol

RegistrationRequest

RegistrationResponse

Device Hello

RI Hello

OCSP Request

OCSP Response

As illustrated in the figure above, optionally, the RI does a nonce-based OCSP request for its own certificate (using a nonce supplied by the Device) during the registration protocol. Whether or not to do the nonce-based OCSP request depends on if Device DRM time is out of sync with respect to synchronization as desired by the RI.

6.1.2 The 2-pass Rights Object Acquisition Protocol

The 2-pass ROAP protocol is the request/response protocol with which the Device acquires Rights Objects. This protocol variant includes request and delivery of RO, mutual authentication of Device and RI, establishment of necessary cryptographic information in the trusted device in order to process the RO and perform integrity check of RO and PDU. The protocol requires an RI Context in the Device e.g. as the result of a prior run of the Registration protocol.

[image: image8.emf]Device Rights Issuer

1

2

Figure XX: The 2-pass Rights Object Acquisition Protocol

RO Request

RO Response

6.1.3 The 1-pass Rights Object Acquisition Protocol

The 1-pass ROAP protocol is designed to meet the messaging/push use case. There has to be an existing RI Context for the sending RI in the Device to be able to run this protocol. In contrast to previous protocol variants, it is initiated by the RI and requires no interaction from the Device. One use case is distribution of Rights Objects at regular intervals, e.g. supporting a content subscription. The 1-pass protocol is essentially the last message of the 2-pass variant.

[image: image9.emf]Device Rights Issuer

1

Figure XX: The 1-pass Rights Object Acquisition Protocol

RO Response

1-pass delivery of Domain ROs can alternatively be delivered stand-alone without use of the RO Response PDU.

6.1.4 The 2-pass Join Domain Protocol

The Join Domain protocol is a device initiated request/response protocol whereby a device requests to join an RI-defined domain and receives in the response the Domain Key and other information needed to share ROs in this domain (if successful) or an error message (if not successful). The protocol assumes an existing RI context with this RI.

Successful completion of the Join Domain protocol results in the establishment of a Domain Context in the Device containing security related information of this domain including a Domain Key. A Domain Context is necessary for the Device to be able to install Domain ROs.

[image: image10.emf]Device Rights Issuer

1

2

Figure XX: Join Domain Protocol

JoinDomainRequest

JoinDomainResponse

6.1.5 The 2-pass Leave Domain Protocol

The Leave Domain protocol is a device initiated request/response protocol whereby a device that has removed information about an RI-defined domain requests to leave it and receives an acknowledgement that it has left the domain or an error message.

[image: image11.emf]Device Rights Issuer

1

2

Figure XX: Leave Domain Protocol

LeaveDomainRequest

LeaveDomainResponse

6.1.6 The ROAP Trigger

The suite of protocols included in the ROAP is initiated using the ROAP Trigger. The Rights Issuer sends the ROAP Trigger to the Device to initiate the ROAP. When the Device receives the ROAP Trigger it immediately initiates the ROAP transaction. Since the ROAP comprises several protocols, the ROAP Trigger provides an indication of which actual ROAP (RO acquisition, leave a domain, join a domain) is to be started by the Device. The ROAP Trigger also contains all the information needed by the Device, which it does not already have, to participate in the ROAP.
<Figure TBD ??>

6.2 ROAP XML Schema basics

6.2.1 Introduction

Core parts of the XML schema for ROAP, found in “Appendix A”, are explained in this section. Specific protocol message elements are defined in Section <ROAP Messages>. Examples are found in “Appendix B”.
The XML format for ROAP messages have been designed to be extensible. However, it is possible that the use of extensions will harm interoperability and therefore any use of extensions should be carefully considered.

Types defined in this section are not ROAP messages; rather they provide building blocks that are used by ROAP messages.

6.2.2 A note on comparison of ROAP values

Some ROAP exchanges rely on the parties being able to compare received values with stored values. Unless otherwise noted, all elements in this document that have the XML Schema "string" type, or a type derived from it, MUST be compared using an exact binary comparison. In particular, ROAP implementations MUST NOT depend on case-insensitive string comparisons, normalization or trimming of white space, or conversion of locale-specific formats such as numbers.

The ROAP specification does not define a collation or sorting order for attributes or element values. ROAP implementations MUST NOT depend on specific sorting orders for values.
6.2.3 The Request type

All ROAP requests are defined as extensions to the abstract Request type.

<complexType name="Request" abstract="true"/>

6.2.4 The Response type

All ROAP responses are defined as extensions to the abstract Response type. The elements of the Response type therefore apply to all ROAP responses. All responses contain a status attribute that indicates whether the preceding request was successful or not.

<complexType name="Response" abstract="true">

 <attribute name="status" type="roap:Status" use="required"/>

</complexType >

6.2.5 The Status type

The Status simple type enumerates all possible error messages.

<simpleType name="Status">

<restriction base="string">

<enumeration value="Success"/>

<enumeration value="UnknownError"/>

<enumeration value=”Abort”/>

<enumeration value="NotSupported"/>

<enumeration value="AccessDenied"/>

<enumeration value="NotFound"/>

<enumeration value="MalformedRequest"/>

<enumeration value="UnknownRequest"/>

<enumeration value="UknownCriticalExtension"/>

<enumeration value="UnsupportedVersion"/>

<enumeration value="UnsupportedAlgorithm"/>

<enumeration value="NoCertificateChain"/>

<enumeration value="SignatureError"/>

<enumeration value="DeviceTimeError"/>

<enumeration value="InvalidRegistration"/>

<enumeration value="InvalidDomain"/>

<enumeration value="DomainFull"/>

</restriction>

</simpleType>

UnknownError indicates an internal RI error

Abort indicates that the RI rejected the Device request for unspecified reasons.
NotSupported indicates the Device made a request for a feature currently not supported by the RI.

AccessDenied indicates that the Device is not authorized to contact this RI.
NotFound indicates that the requested object was not found.

MalformedRequest indicates that the RI failed to parse the Device's request.

UnknownRequest indicates that the RI did not recognize the request type.

UnknownCriticalExtension indicates that a critical extension used by the Device was not supported or recognized by the RI.

UnsupportedVersion indicates that the Device used a version not supported by the RI.

UnsupportedAlgorithm indicates that the Device suggested algorithms that are not supported by the RI (should not occur as long as all Devices and all RIs implement the mandatory algorithms).

NoCertificateChain indicates that the server could not verify the signature on a Device request due to not having access to the Device's certificate chain.

SignatureError indicates that the server could not verify the client's signature.

DeviceTimeError indicates that a Device request was invalid due to the Device time being inappropriately synchronized. This triggers a full 4-pass Registration protocol

InvalidRegistration indicates that the Device tried to contact an RI with which it has not completed a valid registration (e.g., resulting in an invalid RI Context in the device)
InvalidDomain indicates that the request was invalid due to an unrecognized Domain Identifier.

DomainFull indicates that no more devices are allowed to join the Domain.

Upon transmission or receipt of a message for which Status is not "Success", both sending and receiving party shall immediately close the connection/terminate the protocol. RI and Device are required to forget any session-identifiers, keys, and secrets associated with a failed run of the ROAP protocol.

6.2.6 The Extensions type

The Extensions type is a list of type-value pairs that define optional ROAP features supported by a Device or an RI. Extensions may be sent with any ROAP message. Please see ROAP message description sections in this document for applicable extensions. Unless an extension is marked as critical, a receiving party need not be able to interpret it, and a receiving party is always free to disregard any (non-critical) extensions.

<complexType name="Extensions">

 <sequence maxOccurs="unbounded">

 <element name="extension" type="roap:Extension"/>

 </sequence>

</complexType>

<complexType name="Extension" abstract="true">

 <attribute name="critical" type="boolean"/>

</complexType>

6.2.7 The Protected Rights Object payload type

The ProtectedRO type is a sequence of an <ro> element of type ROPayload and a <mac> element carrying a MAC value over the <ro> element.

Values of the ROPayload type carries (protected) REL elements and wrapped keys that can be used to unprotect encrypted portions of the REL elements. The ROPayload type is defined as a sequence consisting of a type version number identifier, an identifier for the RI, the REL element, an optional signature (signature MUST be present if the RO is for a domain), optional replay-protection elements (<guid> and <timeStamp>, see Section (Replay Protection), and a wrapped concatenation <encKey> of a RO encryption key KREK and MAC key, KMAC. (for further information, see Key Management Section).

The version referred to here is <major, minor> representation of the highest ROPayload version number supported by the Device. For this version of the protocol, ROPayload Version SHALL be set to <1,0>. Minor version upgrades must always be backwards compatible. The ROPayload version must not be confused with the OMA DRM version which is independent from this. The reason for having different versions is to enable Domain ROs to be shared between devices with different OMA DRM protocol versions.

The <signature> element is of type ds:SignatureType from [XMLDsig].

The <timeStamp> value must be given in Universal Coordinated Time (UTC).

The <encKey> element is of type xenc:EncryptedKeyType from [XMLEnc].

The attribute domainRO indicates if the RO is for a domain (True) or for the Device (False).

To provide key confirmation, the MAC is made over the <ro> element of the ROPayload type, and together, the <ro> element and the <mac> element forms a roap:ProtectedRO value. In the case of domain RO, the <ProtectedRO> element can be shared between devices or sent as a standalone message.

<complexType name="ROPayload">

 <sequence>

 <element name="version" type="roap:Version"/>

 <element name="riID" type="roap:Identifier"/>

 <element name="rel" type="roap:RELElement"/><!-- Temporary -->

 <element name="signature" type="ds:SignatureType" minOccurs="0"/>

 <element name="guid" type="roap:GUID" minOccurs="0"/>

 <element name="timeStamp" type="dateTime" minOccurs="0"/>

 <element name="encKey" type="xenc:EncryptedKeyType"/>

 </sequence>

 <attribute name="domainRO" type="boolean"/>

 <attribute name="id" type="ID"/>

</complexType>

<!-- May be sent standalone (domain ROs) -->

<element name="protectedRO" type="roap:ProtectedRO"/>

<complexType name="ProtectedRO">

 <sequence>

 <element name="ro" type="roap:ROPayload"/>

 <element name="mac" type="ds:SignatureType"/>

 </sequence>

</complexType>

6.2.8 The ROAP Trigger type

The MIME type for the ROAP Trigger is “application/vnd.oma.drm.roap-trigger+xml”.

The schema for the ROAP Trigger is as follows:

<schema

 targetNamespace="http://www.openmobilealliance.org/xmlns/roap-trigger"

 xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:roap-trigger="http://www.openmobilealliance.org/xmlns/roap-trigger"

 xmlns:roap="urn:oma:bac:dldrm:roap-20031217"

 xmlns:roap-core="urn:oma:bac:dldrm:roap-core-20031217"

 elementFormDefault="unqualified"

 attributeFormDefault="unqualified">

<import namespace="urn:oma:bac:dldrm:roap-20031217"

 schemaLocation="roap.xsd"/>

<import namespace="urn:oma:bac:dldrm:roap-core-20031217"

 schemaLocation="roap-core.xsd"/>

<complexType name="ROAcquisitionTrigger">

 <sequence>

 <element name="riID" type="roap:Identifier"/>

 <element name="roapURL" type="anyURI"/>

 <element name="domainID" type="roap-core:DomainIdentifier"

 minOccurs="0"/>

 <element name="roURL" type="anyURI" maxOccurs="unbounded"/>

 </sequence>

</complexType>

<complexType name="DomainTrigger">

 <sequence>

 <element name="riID" type="roap:Identifier"/>

 <element name="roapURL" type="anyURI"/>

 <element name="domainID" type="roap-core:DomainIdentifier"/>

 </sequence>

</complexType>

<!-- ROAP trigger -->

<element name="roapTrigger" type="roap-trigger:RoapTrigger"/>

<complexType name="RoapTrigger">

 <annotation>

 <documentation xml:lang="en">

 Message used to trigger the device to initiate the Rights Object

 Acquisition Protocol.

 </documentation>

 </annotation>

 <sequence>

 <choice>

 <element name="roAcquisition" type="roap-trigger:ROAcquisitionTrigger"/>

 <element name="domainJoin" type="roap-trigger:DomainTrigger"/>

 <element name="domainLeave" type="roap-trigger:DomainTrigger"/>

 </choice>

 <element name="signature" type="base64Binary" minOccurs="0"/>

 </sequence>

</complexType>

</schema>

The riID MUST uniquely identify the rights issuer. The DRM agent MUST use this to verify that it has a valid security association with the Rights Issuer. If the DRM Agent does not have a valid security association with the Rights Issuer identified by riID then the DRM Agent MUST initiate the Registration Protocol before initiating the protocol specified in the protocol element.

The domainID MAY be included in the ROAP Trigger. If included, the Device MUST incorporate the domain ID in the ROAP PDU.
The roURL MAY be included in the ROAP Trigger by the RI to identify the RO to be acquired. The DRM Agent MUST include the roURL in the RO Info portion of the RO Request PDU. The RI MAY specify more than one roURL to initiate download of multiple ROs. The DRM Agent MUST include all roURLs in the RO Request.

The DRM agent MUST use the URL specified by the roapURL when initiating the ROAP transaction. The roapURL is used in conjuction with the protocol¸element as described below to determine which ROAP PDU to POST to the roapURL. The Device MUST immediately started the appropriate protocol upon receipt of the ROAP Trigger. The Device MUST support HTTP (or WSP) at a minimum for transporting ROAP PDUs as described in section 6.6.1 HTTP/WSP Transport Mapping. The Device MAY support other protocols which are indicated in the “scheme” portion of the roapURL.

The ROAP Trigger MAY be signed by the Rights Issuer. If signed, the signature is included in the ROAP Trigger signature element. If the protocol specified in the ROAP Trigger is “DomainLeave” then the RI MUST include the signature element, otherwise the Device SHOULD inform the user and MUST discard the ROAP Trigger. If the signature is included in the ROAP Trigger, the Device MUST verify the signature using information in the Security Association prior to initiating the ROAP. If the Device cannot verify the signature, the Device SHOULD inform the user and MUST discard the ROAP Trigger.
If the DRM Agent has a valid security association with the Rights Issuer, and the DRM Agent has obtained user consent for silent rights retrieval for the rights issuer, then the DRM Agent SHOULD initiate the ROAP transaction without user interaction. If no security association exists between the Device and the Rights Issuer, the DRM Agent MUST notify the user before initiating the ROAP transaction.
6.3 ROAP Messages

In this section, ROAP protocol suite messages, including their parameters, encodings and semantics are defined. The ROAP protocol messages are divided into three categories: ROAP trigger, Registration, RO Acquisition, & Domains.
6.3.1 Notation

In the message parameter tables below, "M" stands for a mandatory parameter and "O" stands for optional.

6.3.2 Registration Protocol
6.3.2.1 Device Hello
The ROAP-DeviceHello message is sent from the Device to the Rights Issuer to initiate the 4-pass Registration protocol. This message expresses device information/preferences.

6.3.2.1.1 Message description

	Parameter
	ROAP-DeviceHello

	Version
	M

	Device ID
	M

	Supported Algorithms
	O

	Extensions
	O

Version is a <major, minor> representation of the highest OMA DRM version number supported by the Device. For this version of the protocol, Version SHALL be set to <2,0>. Minor version upgrades must always be backwards compatible.

Device ID identifies the Device, in one or several ways, to the RI. The only identifier currently defined is the SHA-1 hash of the Device's public key info, as it appears in the certificate (i.e. the SHA-1 hash of the complete DER-encoded subjectPublicKeyInfo component in the Device's certificate). Other identifiers are allowed but interoperability when using them is not guaranteed.

Supported Algorithms identifies the cryptographic algorithms (hash algorithms, MAC algorithms, signature algorithms and key wrap algorithms) that are supported by the device. Algorithms are identified using common URIs. The following algorithms and associated URIs MUST be supported by Devices and RIs:

· Hash algorithms:

· SHA-1: http://www.w3.org/2000/09/xmldsig#sha1
· MAC algorithms:

· HMAC-SHA-1: http://www.w3.org/2000/09/xmldsig#hmac-sha1
· Signature algorithms:

· RSA-PSS-Default: http://www.rsasecurity.com/rsalabs/xml/pkcs-1#rsa-pss-default
· Key transport algorithms:

· RSA-KEM: http://www.rsasecurity.com/rsalabs/xml/pkcs-1#rsa-kem
Use of other algorithm URIs is optional. Since all devices and all RIs must support the algorithms above, they need not be sent. Only URIs for algorithms not in this list needs to be sent in a ROAP-DeviceHello message.
Extensions: The following extensions are defined for the ROAP-DeviceHello message:

-
Certificate Caching: Relates to Device certificate. Indicates to the RI that the Device has a capability to remember whether an RI has stored a Device certificate or not. (Note: This is not about whether the Device has stored information of RI certificates or not. For this, the Peer Key Identifier extension is used - see the ROAP-RegistrationRequest, ROAP-RORequest, and ROAP-JoinDomainRequest messages.)

If the Device has capability to store information on whether the RI has stored a device certificate, then the Device MUST include the Certificate Caching extension set to “True” in the ROAP-DeviceHello message. (The semantics of setting this extension to “False” is the same as not including the extension at all.)
If this extension is used, the RI can use the Peer Key Identifier or Certificate Caching extension in its ROAP-RIHello message to indicate what Device public key it has stored or what capabilities the RI has to store the Device certificate, respectively.

Note: It has been proposed to add a “Purpose” field to allow an extension of this general handshake protocol for other purposes than registration. This could be added as a separate parameter or as an Extension in ROAP-DeviceHello, but no other purposes have yet been identified.

6.3.2.1.2 Message syntax

The <deviceHello> element specifies a ROAP request that is the first message sent in a 4-pass ROAP session. It has complex type DeviceHello, which extends the basic Request type. The response to this request is specified by the <riHello> element, and together they implement the ROAP-DeviceHello and ROAP-RIHello messages.

<element name="deviceHello" type="roap:DeviceHello"/>

<complexType name="DeviceHello">

 <annotation>

 <documentation xml:lang="en">

 Message sent from Device to RI to establish an RI Context.

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Request">

 <sequence>

 <element name="version" type="roap:Version"/>

 <element name="deviceID" type="roap:Identifier"

 maxOccurs="unbounded"/>

 <element name="supportedAlgorithm" type="anyURI"

 minOccurs="0" maxOccurs="unbounded"/>

 <element name="extensions" type="roap:Extensions"

 minOccurs="0"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

The following schema fragment defines the Version type. As noted above, for this version of ROAP, it's value shall be <major>2</major><minor>0</minor>.
<complexType name="Version">

<complexContent>

<sequence>

<element name="majorVersion" type="positiveInteger"/>

<element name="minorVersion" type="positiveInteger"/>

</sequence>

</complexContent>

</complexType>
The following schema fragment defines the Identifier type and it's alternatives. Any non-standard identifier value must be expressed in well-formed XML.

<complexType name="Identifier">

 <choice>

 <element name="keyIdentifier" type="roap:KeyIdentifier"/>

 <any namespace="##other" processContents="strict"/>

 </choice>

</complexType>

<complexType name="KeyIdentifier" abstract="true"/>

A key can be defined by use of a hash of the key. The hash shall be made over the DER-encoded SubjectPublicKeyInfo value from the applicable certificate.

<complexType name="X509SPKIHash">

 <complexContent>

 <extension base="roap:KeyIdentifier">

 <sequence>

 <element name="hash" type="base64Binary"/>

 </sequence>

 <attribute name="hashAlgorithm" type="anyURI"/>

 </extension>

 </complexContent>

</complexType>

<!-- The corresponding ds:KeyInfo type -->

<element name="X509SPKIHash" type="base64Binary"/>

The following extension is defined for the ROAP-DeviceHello message:

<complexType name="CertificateCaching">

 <complexContent>

 <extension base="roap:Extension">

 <attribute name="certCachingCapabilities" type="boolean"/>

 </extension>

 </complexContent>

</complexType>

6.3.2.2 RI Hello

The ROAP-RIHello message is the second message of the Registration protocol and is sent from the Rights Issuer to the Device in response to a ROAP-DeviceHello message. The message expresses RI preferences and decisions based on Device-supplied values.

6.3.2.2.1 Message description

	Parameter
	ROAP-RIHello

	
	Status = “Success”
	Status ≠ “Success”

	Status
	M
	M

	Session ID
	M
	-

	Selected Version
	M
	-

	RI ID
	M
	-

	Selected Algorithms
	O
	-

	RI Nonce
	M
	-

	Trusted Authorities
	O
	-

	Server Info
	O
	-

	Extensions
	O
	-

Status indicates if the ROAP-DeviceHello request was successfully (Status = Success) handled or not. In the latter case an error code as specified in Section 6.2.5 is sent.

Session ID is a protocol session identifier set by the RI. Allows several, concurrent, RI-Device sessions.

Selected Version is the selected OMA DRM version. The selected version will be min(Device suggested version, highest version supported by RI). This information is part of RI Context.
RI ID identifies the RI to the Device. Available identifiers are the same as for the Device ID parameter in ROAP-DeviceHello messages. This information is part of RI Context.

Selected Algorithms specifies the cryptographic algorithms (hash algorithm, signature algorithm, MAC algorithm and key transport algorithm) to use in subsequent ROAP interactions. If the device indicated support of only mandatory algorithms (i.e. left out the supportedAlgorithms element), then the RI need not send this field. Otherwise, the RI MUST provide this parameter and MUST identify one algorithm of each type.

RI Nonce is a random nonce sent by the RI. Nonces MUST be randomly generated and MUST NOT be re-used.

Trusted Authorities is a list of trust anchors recognized by the RI. This parameter is optional. The parameter is not sent if the RI already has the Device's certificate or otherwise is able to verify a signature made by the Device. If the parameter is present but empty, it indicates that the Device is free to choose any Device certificate to authenticate itself. Otherwise the Device MUST choose a certificate chaining back to one of the recognized trust anchors. Trust anchors are identified by hashes of their public keys.

Server Info contains server-specific information that the device must return the ROAP-RegistrationRequest. The client must not attempt to interpret the value of this parameter.

Extensions: The following extensions are defined for the ROAP-RIHello message:

· Peer Key Identifier: An identifier for a Device key stored by the RI. If the identifier matches the Device's current key, it means the Device need not send its certificate chain in a later request message. Keys are identified in the same way as devices are, see above (SHA-1 hash of DER-encoded subjectPublicKeyInfo component). If the RI has stored the Device public key the RI MUST use this extension in the ROAP-RIHello. This extension also informs the Device that the RI has the capability to store information about the Device certificates.

· Certificate Caching This extension relates to Device certificate. Indicates to the Device that the RI has the capability to store information about the Device certificate and that Device certificate chain sending is not necessary in subsequent 2-pass protocol instances. This extension is unnecessary if the Peer Key Identifier is used, since the latter contains even more specific information.
If the Certificate Caching extension was set to “True” in the ROAP-DeviceHello message and the RI has capabilities to store Device certificates, then the RI MUST send either the Peer Key Identifier or the Certificate Caching extension in the ROAP-RIHello message. If the Certificate Caching extension was not present or set to “False” in the ROAP-DeviceHello message, then the RI MUST NOT send the Certificate Caching extension in ROAP-RIHello. If the ROAP-RIHello contains a Peer Key Identifier extension, it SHOULD NOT contain a Certificate Caching indication.

Information about RI storing Device certificate information is part of the RI Context. If either the Peer Key Identifier or the Certificate Caching extension is sent, the RI must store necessary information about the Device certificate and the Device will note Certificate Caching in the RI Context.

6.3.2.2.2 Message syntax

The <riHello> element specifies a ROAP response that is sent in response to a <deviceHello> element. It has complex type RIHello.
<element name="riHello" type="roap:RIHello"/>

<complexType name="RIHello">

 <annotation>

 <documentation xml:lang="en">

 Message sent from RI to Device in response to a DeviceHello.

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Response">

 <sequence minOccurs="0">

 <element name="selectedVersion" type="roap:Version"/>

 <element name="riID" type="roap:Identifier"/>

 <element name="selectedAlgorithms" type="anyURI" maxOccurs="unbounded"

minOccurs="0"/>

 <element name="riNonce" type="roap:Nonce"/>

 <element name="trustedAuthorities" type="roap:KeyIdentifiers" minOccurs="0"/>

 <element name="serverInfo" type="base64Binary" minOccurs="0"/>

 <element name="extensions" type="roap:Extensions" minOccurs="0"/>

 </sequence>

 <attribute name="sessionId" type="hexBinary" use="required"/>

 </extension>

 </complexContent>

</complexType>

<simpleType name="Nonce">

<restriction base='hexBinary'>

<minLength value=''32"/>

</restriction>

</simpleType>

<complexType name="KeyIdentifiers">

 <sequence maxOccurs="unbounded">

 <element name="keyIdentifier" type="roap:KeyIdentifier"/>

 </sequence>

</complexType>

The Certificate Caching extension is described previously. The following schema fragment defines the Peer Key Identifier extension:

<complexType name="PeerKeyIdentifier">

 <complexContent>

 <extension base="roap:Extension">

 <sequence>

 <element name="identifier" type="roap:KeyIdentifier"/>

 </sequence>

 </extension>

 </complexContent>

6.3.2.3 Registration Request

A Device sends the ROAP-RegistrationRequest message to an RI to request registration with the RI. The message is sent as the third message in the 4-pass Registration protocol.

6.3.2.3.1 Message description

	Parameter
	ROAP-RegistrationRequest

	Session ID
	M

	Device Nonce
	M

	Request Time
	M

	Certificate Chain
	O

	Trusted Authorities
	O

	Server Info
	O

	Extensions
	O

	Signature
	M

Session ID shall be identical to the Session ID parameter of the preceding ROAP-RIHello message, otherwise the RI shall terminate the Registration protocol.

Device Nonce is a nonce chosen by the Device. Nonces shall be randomly generated and MUST NOT be re-used.

Request Time is the current DRM time, as measured by the Device.
Certificate Chain: This parameter MUST be present unless the preceding ROAP-RIHello message contained the Peer Key Identifier extension and its value identified the key in the Device's current certificate. When present, the value of a Certificate Chain parameter shall be certificate chain including the Device's certificate. The chain SHALL not include the root certificate. The Device certificate must come first in the list. Each following certificate must directly certify the one preceding it. If the RI indicated trust anchor preferences in the previous ROAP-RIHello message, the Device MUST select a Device certificate and chain which chains back to one of the trust anchors in the RI's list, if possible. This mimics the features of [RFC3546]. If the ROAP-RIHello message contained the Peer Key Identifier or the Certificate Caching extension, then the RI MUST store necessary information about the Device certificate. The RI may need to update this information based on the received Certificate Chain.

Trusted Authorities is a list of trust anchors recognized by the Device. If the parameter is empty, it indicates that the RI is free to choose any certificate. Trust anchors are identified by hashes of their public keys.

Server Info: As discussed above, this parameter will only be present if a Server Info parameter was present in the preceding ROAP-RIHello message. In that case, the Server Info parameter MUST be present and MUST be identical to the ROAP-RIHello message's Server Info parameter.

Extensions: The following extensions are defined for the ROAP-RegistrationRequest message:

· Peer Key Identifier: An identifier for an RI certificate stored in the Device. If the identifier matches the RI's current certificate, it means the RI need not send down its certificate chain in its response message. Certificates are identified by reference.

· No OCSP Response: This extension allows the Device to indicate to the RI that there is no need to send an OCSP Response since the Device has cached a valid OCSP Response for this RI.

· OCSP Responder Key Identifier: This extension identifies an OCSP responder key stored in, and trusted by, the Device and is used to save bandwidth. If the identifier matches the key in the certificate used by the RI's OCSP responder, the RI MAY remove the OCSP Responder certificate chain from the OCSP response before providing the OCSP response to the Device.

If the Device has stored information about the RI certificate, the Device MUST send the Peer Key Identifier extension. If the Device has a valid OCSP Response, the Device MUST send the No OCSP Response extension. If the Device has stored and trusts the OCSP responder key used by this RI, the Device MUST send the OCSP Responder Key Identifier extension.

Signature is a signature on data sent so far in the protocol. The signature is made using the Device's private key on a hash of the two previous messages (ROAP-DeviceHello, ROAP-RIHello) and all parameters of this message (besides the Signature parameter itself). The signature method is as follows:

· The previous messages and the current one except the Signature element is canonicalized using the exclusive canonicalization method defined in [xc14n].

· The three messages are concatenated in their chronological order, starting with the ROAP-DeviceHello message. The resulting data d is considered as input to the signature operation.

· The signature is calculated on d in accordance with the rules of the negotiated signature scheme.

6.3.2.3.2 Message syntax

The <RegistrationRequest> element specifies the ROAP-RegistrationRequest primitive. It has complex type RegistrationRequest, which extends the basic Request type. The response to this request is specified by the <RegistrationResponse> element, and together they implement the ROAP-RegistrationRequest and ROAP-RegistrationResponse messages.

<element name="registrationRequest" type="roap:RegistrationRequest"/>

<complexType name="RegistrationRequest">

 <annotation>

 <documentation xml:lang="en">

 Message sent from Device to RI to request registration.

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Request">

 <sequence>

 <element name="nonce" type="roap:Nonce"/>

 <element name="time" type="dateTime"/>

 <element name="certificateChain" type="roap:CertificateChain"

 minOccurs="0"/>

 <element name="trustedAuthorities" type="roap:KeyIdentifiers"

 minOccurs="0"/>

 <element name="serverInfo" type="base64Binary" minOccurs="0"/>

 <element name="extensions" type="roap:Extensions" minOccurs="0"/>

 <element name="signature" type="base64Binary"/>

 </sequence>

 <attribute name="sessionId" type="hexBinary" use="required"/>

 </extension>

 </complexContent>

</complexType>

The following schema fragment defines the CertificateChain type:

<complexType name="CertificateChain">

 <sequence maxOccurs="unbounded">

 <element name="certificate" type="base64Binary"/>

 </sequence>

</complexType
The following schema fragment defines the extensions defined for the ROAP-RegistrationRequest message (besides the Peer Key Identifier extension already defined):

<complexType name="NoOCSPResponse">

 <complexContent>

 <extension base="roap:Extension">

 <attribute name="NoOCSPResponse" type="boolean"/>

 </extension>

 </complexContent>

</complexType>

<complexType name="OCSPResponderKeyIdentifier">

 <complexContent>

 <extension base="roap:Extension">

 <sequence>

 <element name="identifier" type="roap:KeyIdentifier"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

6.3.2.4 Registration Response

The ROAP-RegistrationResponse message is sent from the Rights Issuer to the Device in response to a ROAP-RegistrationRequest message. The message completes the Registration protocol, and if successful enables the Device to establish an RI Context for this RI.

6.3.2.4.1 Message description

	Parameter
	ROAP-RegistrationResponse

	
	Status = “Success”
	Status ≠ “Success”

	Status
	M
	M

	Session ID
	M
	M

	Certificate Chain
	O
	-

	OCSP Response
	O
	-

	Extensions
	O
	-

	Signature
	M
	-

Status indicates if the ROAP-RegistrationRequest message was successfully (Status = Success) handled or not. In the latter case an error code as specified in Section 6.2.5 is sent.

Session ID shall be identical to the Session ID of the preceding ROAP-RegistrationRequest (and ROAP-RIHello) message. If the Session ID of ROAP-RegistrationResponse does not coincide with the Session ID of the corresponding ROAP-RIHello, the Device MUST terminate the protocol.
Certificate chain: This parameter MUST be present unless the preceding ROAP-RegistrationRequest message contained the Peer Key Identifier extension, the extension was honored by the RI, and its value identified the RI's current key. When present, the value of a Certificate Chain parameter shall be certificate chain including the RI's certificate. The chain MUST NOT include the chain's root certificate. The RI certificate must come first in the list. Each following certificate must directly certify the one preceding it. If the Device indicated trust anchor preferences in its ROAP-RegistrationRequest message, the RI MUST select a certificate and chain which chains back to one of the trust anchors in the Device's list, if possible. This mimics the features of [RFC3546]. The Device SHOULD update stored information about the RI certificate based on the received Certificate Chain.

OCSP Response shall be a valid OCSP response for the RI's certificate. This parameter will not be sent if the Device sent the Extension No OCSP Response in the preceding ROAP-RegistrationRequest (and the RI was able to interpret that extension). An exception to this is when the RI detects that the Device's clock is out of sync, see below.

The RI SHOULD always provide the most recent OCSP Response to the Device (regardless of whether it contains a device-supplied nonce or not, but MAY use a regularly updated time-based OCSP Response. If a Device's DRM time is out of sync then the RI MUST perform a nonce-based (using the Device's nonce) OCSP request and provide the Device with the returned OCSP response.

Extensions: The following extensions are defined for the ROAP-RegistrationResponse message.

· Domain Name Whitelist (TBD)

Signature is a signature on data sent in the protocol. The signature is made using the RI's private key on a hash of the previous message (ROAP-RegistrationRequest) and all elements of this message (besides the Signature element itself). The signature method is as follows:

· The previous message and the current one except the Signature element is canonicalized using the exclusive canonicalization method defined in [xc14n].

· The two messages are concatenated in their chronological order, starting with the ROAP-RegistrationRequest message. The resulting data d is considered as input to the signature operation.

· The signature is calculated on d in accordance with the rules of the negotiated signature scheme

The Device MUST calculate the signature in this way and compare with the Signature received in the ROAP-RegistrationResponse message. If equal, the registration was successful and the Device SHOULD store the RI Context for this RI. If not equal, the registration failed and the Device MUST NOT store the RI Context for this RI.

The RI Context SHALL contain RI ID, Selected Version, Selected Algorithms, and an Certificate Caching indication if the RI has stored the Device certificate or not (all this information is carried in the ROAP-RIHello message). The RI Context MAY also contain RI certificate information, OCSP Responder Key and OCSP Response. The RI Context SHALL also contain an RI Context Expiry Time, which is defined to be the RI certificate expiry time.

If the RI Context has expired, the Device MUST NOT execute any other protocol than the 4-pass Registration protocol with this RI, and upon detection of RI Context expiry the Device SHOULD initiate the Registration protocol. The device SHALL have at most one RI Context with each RI. An existing RI Context SHALL be replaced after successful registration by an RI Context with the same RI ID.

6.3.2.4.2 Message syntax

The <RegistrationResponse> element specifies the ROAP-RegistrationResponse primitive, and constitutes the last message in the Registration protocol. It has complex type RegistrationResponse, which extends the basic Response type.

<element name="registrationResponse" type="roap:RegistrationResponse"/>

<complexType name="RegistrationResponse">

 <annotation>

 <documentation xml:lang="en">

 Message sent from RI to Device in response to a

 registrationRequest message.

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Response">

 <sequence minOccurs="0">

 <element name="certificateChain" type="roap:CertificateChain"

 minOccurs="0"/>

 <element name="ocspResponse" type="base64Binary" minOccurs="0"

 maxOccurs="unbounded"/>

 <element name="extensions" type="roap:Extensions" minOccurs="0"/>

 <element name="signature" type="base64Binary"/>

 </sequence>

 <attribute name="sessionId" type="hexBinary" use="required"/>

 </extension>

 </complexContent>

</complexType>

6.3.3 RO Acquisition
6.3.3.1 RO Request
The ROAP-RORequest message is sent from the Device to the RI to request Rights Objects. This message is the first message of the 2-pass protocol to acquire Rights Objects.

6.3.3.1.1 Message description

	ROAP-RORequest

	Parameter
	Mandatory/Optional

	Device ID
	M

	Domain ID
	O

	RI ID
	M

	Device Nonce
	M

	Request Time
	M

	RO Info
	M

	Certificate Chain
	O

	Extensions
	O

	Signature
	M

Device ID identifies the requesting Device, similar to the ROAP-DeviceHello message.

Domain ID, when present, identifies the domain for which the requested ROs shall be issued.

RI ID identifies the authorizing RI.

Device Nonce is a nonce chosen by the Device. Nonces shall be randomly generated and MUST NOT be re-used.

Request Time is the current UTC time, as seen by the Device.
RO Info identifies the requested Rights Object(s). The parameter consists of a (non-empty) set of Rights Object URLs identifying the requested Rights Objects, and for each RO URL an optional hash of the DCF associated with the requested RO.

Certificate Chain: This parameter is sent unless it is indicated in the RI Context that this RI has stored the necessary information in the Device certificate. When present, the parameter value shall be as described for the Certificate Chain parameter in the ROAP-RegistrationRequest message.

Extensions: The following extensions are defined for the ROAP-RORequest message:
· Peer Key Identifier: An identifier for an RI key stored in the Device. If the identifier matches the RI's current key, it means the RI need not send down its certificate chain in its response message.

· No OCSP Response: This extension allows the Device to indicate to the RI that there is no need to send an OCSP Response since the Device has cached a valid OCSP Response for this RI.

· OCSP Responder Key Identifier: This extension identifies an OCSP responder key stored in the Device. If the identifier matches the key in the certificate used by the RI's OCSP responder, the RI MAY remove the OCSP Responder certificate chain from the OCSP response before providing the OCSP response to the Device.

· Transaction Identifier: Allows a Device to provide RI with information for tracking of transactions, for example relating to loyalty programs (an example of this could be reward scheme information from the DCF scheme).

If the Device has stored the RI certificate, the Device MUST send the Peer Key Identifier extension. If the Device has a valid OCSP Response, the Device MUST send the No OCSP Response extension. If the Device has stored and trusts the OCSP responder key used by this RI, the Device MUST send the OCSP Responder Key Identifier extension.
Signature is a signature on this message (besides the Signature element itself). The signature method is as follows:

· The message except the Signature element is canonicalized using the exclusive canonicalization method defined in [xc14n].

· The result of the canonicalization, d, is considered as input to the signature operation.

· The signature is calculated on d in accordance with the rules of the negotiated signature scheme

6.3.3.1.2 Message syntax

The <roRequest> element specifies the ROAP-RORequest primitive. It has complex type RORequest, which extends the basic roap:Request type. The response to this request is specified by the <roResponse> element, and together they implement the ROAP-RORequest and ROAP-ROResponse messages.

<element name="roRequest" type="roap:RORequest"/>

<complexType name="RORequest">

 <annotation>

 <documentation xml:lang="en">

 Message sent from Device to RI to request an RO.

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Request">

 <sequence>

 <element name="deviceID" type="roap:Identifier"/>

 <element name="domainID" type="roap:DomainIdentifier"

 minOccurs="0" maxOccurs="unbounded"/>

 <element name="riID" type="roap:Identifier"/>

 <element name="nonce" type="roap:Nonce"/>

 <element name="time" type="dateTime"/>

 <element name="roInfo">

 <complexType>

 <sequence maxOccurs="unbounded">

 <element name ="roURL" type="anyURI"/>

 <element name="dcfHash" type="base64Binary" minOccurs="0"/>

 </sequence>

 </complexType>

 </element>

 <element name="certificateChain" type="roap:CertificateChain"

 minOccurs="0"/>

 <element name="extensions" type="roap:Extensions" minOccurs="0"/>

 <element name="signature" type="base64Binary"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

The following schema fragment defines the Transaction Identifier extension:

<complexType name="TransactionIdentifier">

 <complexContent>

 <extension base="roap:Extension">

 <sequence>

 <element name="id" type="string"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>
6.3.3.2 RO Response
The ROAP-ROResponse message is sent from the RI to the Device either in response to a ROAP-RORequest message (two-pass variant) or by RI initiative (one-pass variant). It carries the protected ROs.

6.3.3.2.1 Message description

	Parameter
	ROAP-ROResponse

	
	2-pass

Status = Success
	2-pass

Status ≠ Success
	1-pass

	Status
	M
	M
	M

	Device ID
	M
	-
	M

	RI ID
	M
	-
	M

	Device Nonce
	M
	-
	-

	Protected ROs
	M
	-
	M

	Certificate Chain
	O
	-
	O

	OCSP Response
	O
	-
	M

	Extensions
	O
	-
	O

	Signature
	M
	-
	M

Status indicates if the request was successfully handled or not. In the latter case an error code specified in Section 6.2.5 is sent.

Device ID identifies the requesting Device, in the same manner as in the ROAP-DeviceHello message.

RI ID identifies the RI.
Device Nonce is the nonce that was sent by the Device. The parameter, if present, (2-pass) MUST be identical to the corresponding parameter in ROAP-RORequest.

Protected RO(s) are the Rights Objects (in the form of <ProtectedRO> elements), in which sensitive information (such as CEK) is encrypted using the REK.

Certificate Chain:This parameter MUST be present unless the preceding ROAP-RORequest message contained the Peer Key Identifier extension, the extension was honored by the RI, and its value identified the RI's current key. When present, the value of a Certificate Chain parameter shall be as described for the Certificate Chain parameter of the ROAP-RegistrationResponse message. If the RO Acquisition protocol is successful (see Signature below) and the information in the Certificate Chain parameter differs from the information in the RI Context for this RI, the Device SHOULD update the RI Context (RI Context Expiry Time, RI certificate information such as RI Public Key Identifier) accordingly.

OCSP Response shall be a valid OCSP response for the RI's certificate. This parameter is sent unless the extension No OCSP Response was received in the preceding ROAP-RORequest. If the RO Acquisition protocol is successful (see Signature below) and the information in the OCSP Response parameter differs from the information in the RI Context for this RI, the Device SHOULD update the RI Context (OCSP Response, OCSP Responder Key Identifier) accordingly.

Extensions: The following extensions are defined for the ROAP-ROResponse message:
· Transaction Identifier: Allows an RI to provide a Device with information for tracking of transactions, for example relating to loyalty programs (an example of this could be reward scheme information from the DCFscheme).

Signature is a signature on data sent in the protocol. The signature is computed using the RI's private key and all elements of this message (besides the Signature element itself). The signature method is as follows:

· All elements except the Signature element are canonicalized using the exclusive canonicalization method defined in [xc14n].

· The resulting data d is considered as input to the signature operation.

· The signature is calculated on d in accordance with the rules of the negotiated signature scheme

The Device MUST calculate the signature in this way and compare with the Signature received in the ROAP-ROResponse message. If equal, the RO Acquisition protocol was successful. If not equal, the RO Acquisition protocol failed and the Device MUST NOT install the RO.

If the Protected RO contains a <guid> and optional <timeStamp> element then the Device MUST apply the RO Replay protection mechanism before installing the RO (see Replay Protection Section).
6.3.3.2.2 Message syntax

The <roResponse> element specifies the ROAP-ROResponse primitive. It has complex type ROResponse, which extends the basic Response type.

<element name="roResponse" type="roap:ROResponse"/>

<complexType name="ROResponse">

 <annotation>

 <documentation xml:lang="en">

 Message sent from RI to Device in response to an RORequest.

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Response">

 <sequence minOccurs="0">

 <element name="deviceID" type="roap:Identifier"/>

 <element name="riID" type="roap:Identifier"/>

 <element name="nonce" type="roap:Nonce"/>

 <element name="protectedRO" type="roap:ProtectedRO"/>

 <element name="certificateChain" type="roap:CertificateChain"

 minOccurs="0"/>

 <element name="ocspResponse" type="base64Binary" minOccurs="0"

 maxOccurs="unbounded"/>

 <element name="extensions" type="roap:Extensions"

 minOccurs="0"/>

 <element name="signature" type="base64Binary"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

The Protected RO type is defined in Section <The Protected Rights Object Payload Type>
6.3.4 Domain Join/Leave Protocol
6.3.4.1 Join Domain Request
The ROAP-JoinDomainRequest message is sent from the Device to the RI. This message is the first message in the 2-pass protocol to join a device to a domain.

6.3.4.1.1 Message description

	ROAP-JoinDomainRequest

	Parameter
	Mandatory/Optional

	DeviceID
	M

	RI ID
	M

	Device Nonce
	M

	Request Time
	M

	Domain Identifier
	M

	Certificate Chain
	O

	Extensions
	O

	Signature
	M

Device ID identifies the requesting Device.

RI ID identifies the authorizing RI.

Device Nonce is a nonce chosen by the Device. Nonces shall be randomly generated and MUST NOT be re-used.

Request Time is the current time, as seen by the Device.
Domain Identifier shall identify the domain(s). The parameter consists of a (non-empty) set of domain identifiers.

Certificate Chain: This parameter is sent unless Certificate Caching is indicated in the RI Context with this RI. When present, the parameter value shall be as described for the Certificate Chain parameter in the ROAP-RegistrationRequest message.

Extensions: The following extensions are defined for the ROAP-JoinDomainRequest message:
· Peer Key Identifier: An identifier for an RI key stored in the Device. If the identifier matches the RI's current key, it means the RI need not send down its certificate chain in its response message.

· No OCSP Response: This extension allows the Device to indicate to the RI that there is no need to send an OCSP Response since the Device has cached a valid OCSP Response for this RI.

· OCSP Responder Key Identifier: This extension identifies an OCSP responder key stored in the Device. If the identifier matches the key in the certificate used by the RI's OCSP responder, the RI MAY remove the OCSP Responder certificate chain from the OCSP response before providing the OCSP response to the Device.

· Hash Chain Support: This extension set to “True” signals that the client supports a technique of generating Domain Keys through hash chains, see the Domains Section.

If the Device has stored information about the RI certificate, the Device MUST send the Peer Key Identifier extension. If the Device has a valid OCSP Response, the Device MUST send the No OCSP Response extension. If the Device has stored and trusts the OCSP responder key used by this RI, the Device MUST send the OCSP Responder Key Identifier extension. If the Device supports hash-chained domain keys the Device MUST send the Hash Chain Support extension.
Signature is a signature on this message (besides the Signature element itself). The signature method is as follows:

· The message except the Signature element is canonicalized using the exclusive canonicalization method defined in [xc14n].

· The result of the canonicalization, d, is considered as input to the signature operation.

· The signature is calculated on d in accordance with the rules of the negotiated signature algorithm.

6.3.4.1.2 Message syntax

The <joinDomainRequest> element specifies the ROAP-JoinDomainRequest primitive. It has complex type roap: DomainRequest, which extends the basic roap:Request type. The response to this request is specified by the <joinDomainResponse> element, and together they implement the Join Domain protocol.

<element name="joinDomainRequest" type="roap:DomainRequest">

<complexType name="DomainRequest">

 <annotation>

 <documentation xml:lang="en">

 General PDU for sending domain-related requests from a Device to

 an RI.

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Request">

 <sequence>

 <element name="deviceID" type="roap:Identifier"/>

 <element name="riID" type="roap:Identifier"/>

 <element name="nonce" type="roap:Nonce"/>

 <element name="time" type="dateTime"/>

 <element name="domainIdentifier" type="roap:DomainIdentifier"

 maxOccurs="unbounded"/>

 <element name="certificateChain" type="roap:CertificateChain"

 minOccurs="0"/>

 <element name="extensions" type="roap:Extensions"

 minOccurs="0"/>

 <element name="signature" type="base64Binary"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

The following schema fragment defines the DomainIdentifier type. The last two characters (digits) represent the Domain Generation, see the Domains Section. RIs will always respond with the Domain Key corresponding to the most recent Domain Generation and, if Hash Chains is not supported any earlier ones for this domain.

<simpleType name="DomainIdentifier">

 <restriction base="string">

 <pattern value=".{1,18}\d{2}"/>

 </restriction>

</simpleType>

The following schema fragment defines the "Hash Chain Support" extension:

<complexType name="HashChainSupport">

 <complexContent>

 <extension base="roap:Extension">

 <attribute name="supported" type="boolean"/>

 </extension>

 </complexContent>

</complexType>

6.3.4.2 Join Domain Response
The ROAP-JoinDomainResponse message is sent by an RI to a device in response to a ROAP-JoinDomainRequest message. This message is the second message in the 2-pass protocol to join a device to a domain.

6.3.4.2.1 Message description

	Parameter
	ROAP-JoinDomainResponse

	
	2-pass

Status = Success
	2-pass

Status ≠ Success
	1-pass

	Status
	M
	M
	M

	Device ID
	M
	-
	M

	RI ID
	M
	-
	M

	Device Nonce
	M
	-
	-

	Domain Context
	M
	-
	M

	Certificate chain
	O
	-
	O

	OCSP Response
	O
	-
	M

	Extensions
	O
	-
	O

	Signature
	M
	-
	M

Status indicates if the request was successfully handled or not. In the latter case an error code as specified in Section 6.2.5 is sent.

Device ID identifies the requesting Device, in the same manner as in the ROAP-DeviceHello message.

RI ID identifies the RI.
Device Nonce is the nonce that was sent by the Device. The parameter, if present, (2-pass) MUST be identical to the corresponding parameter in ROAP-RORequest.

Domain Info(s) is the domain information, in which sensitive information (such as the Domain Key(s)) is encrypted using the Device's public key. See Domains Section.

Certificate Chain: This parameter MUST be present unless the preceding ROAP-JoinDomainRequest message contained the Peer Key Identifier extension, the extension was honored by the RI, and its value identified the RI's current key. When present, the value of a Certificate Chain parameter shall be as described for the Certificate Chain parameter of the ROAP-RegistrationResponse message. If the Join Domain protocol is successful (see Signature below) and the information in the Certificate Chain parameter differs from the information in the RI Context for this RI, the Device SHOULD update the RI Context (RI Context Expiry Time, RI certificate information such as RI Public Key Identifier) accordingly.

OCSP Response shall be a valid OCSP response for the RI's certificate. This parameter is sent unless the extension No OCSP Response was received in the preceding ROAP-JoinDomainRequest. If the Join Domain protocol is successful (see Signature below) and the information in the OCSP Response parameter differs from the information in the RI Context for this RI, the Device SHOULD update the RI Context (OCSP Response, OCSP Responder Key Identifier) accordingly.

Extensions: The following extensions are currently defined for the ROAP-JoinDomainResponse message:

· Hash Chain Support: This extension set to “True” means the RI is using the technique of generating Domain Keys through hash chains described in the Domains Section. The RI MUST NOT include this extension in the ROAP-JoinDomainResponse unless it was received set to “True” in the ROAP-JoinDomainRequest. If the Device receives the Hash Chains Supported extension set to “True”, then it needs only store the latest Domain Key for a given domain, see below.

Signature is a signature on this message (besides the Signature element itself). The signature method is as follows:

· The message except the Signature element is canonicalized using the exclusive canonicalization method defined in [xc14n].

· The result of the canonicalization, d, is considered as input to the signature operation

-
The signature is calculated on d in accordance with the rules of the negotiated signature algorithm.

The Device MUST calculate the signature in this way and compare with the Signature received in the ROAP-JoinDomainResponse message. If equal, the Join Domain protocol was successful and the Device SHOULD store the Domain Context for this domain. If not equal, the Join Domain protocol failed and the Device MUST NOT store a Domain Context for this domain.

The Domain Context SHALL contain the Domain ID (which includes the Domain Generation), the Domain Context Expiry Time, and if applicable, an indication that the RI supports hash chained Domain Keys. If the Device and RI supports hash chains, the Domain Context SHALL contain the Domain Key corresponding to the highest known generation, otherwise the Domain Context SHALL contain all Domain Keys of all Domain Generations. The Domain Context SHALL also contain the RI Public Key for the case when the Domain Context Expiry Time extends beyond the RI Context Expiry Time.

If the Domain Context has expired, the Device MUST NOT install any Domain ROs for this domain. The device MAY have several Domain Contexts with an RI.

6.3.4.2.2 Message syntax

The <joinDomainResponse> element specifies the ROAP-JoinDomainResponse primitive. It has complex type JoinDomainResponse, which extends the basic Response type.

<element name="joinDomainResponse" type="roap:JoinDomainResponse"/>

<complexType name="JoinDomainResponse">

 <annotation>

 <documentation xml:lang="en">

 Message sent from RI to Device in response to a

 JoinDomainRequest.

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Response">

 <sequence minOccurs="0">

 <element name="deviceID" type="roap:Identifier"/>

 <element name="riID" type="roap:Identifier"/>

 <element name="nonce" type="roap:Nonce"/>

 <element name="domainInfo" type="roap:DomainInfo"/>

 <element name="certificateChain" type="roap:CertificateChain"

 minOccurs="0"/>

 <element name="ocspResponse" type="base64Binary" minOccurs="0"

 maxOccurs="unbounded"/>

 <element name="extensions" type="roap:Extensions"

 minOccurs="0"/>

 <element name="signature" type="base64Binary"/>

 </sequence>

 <attribute name="notMember" type="boolean"/>

 </extension>

 </complexContent>

</complexType>

The following schema fragment defines the DomainInfo type:

<complexType name="DomainInfo">

 <sequence>

 <element name="notAfter" type="dateTime"/>

 <element name="domainKey" type="roap:ProtectedDomainKey"

 maxOccurs="unbounded"/>

 </sequence>

</complexType>

The <notAfter> element expresses, in UTC, the expiry time of the Domain Context. The special value 9999-12-31T00:00:00Z indicates infinite lifetime of the Domain Context.

The <domainKey> element contains the wrapped domain key and a key-confirming MAC key:

<complexType name="ProtectedDomainKey">

 <sequence maxOccurs="unbounded">

 <element name="encKey" type="xenc:EncryptedKeyType"/>

 <element name="riID" type="roap:Identifier"/>

 <element name="mac" type="base64Binary"/>

 </sequence>

</complexType>

The <encKey> element contains a Domain Key, KD, and a MAC key, KMAC, wrapped as specified in (Key Management Section). The xenc:EncryptedKeyType has an attribute of type ID. The value of the ID attribute MUST be the Domain ID with the relevant Domain Generation for this Domain Key. If Hash Chains are supported by both Device and RI, only the Domain Key corresponding to the most recent Domain Generation SHOULD be included, otherwise all Domain Keys for all Domain Generations MUST be included.

The <riID> element is necessary for key confirmation purposes. It shall have the same value as the <riID> element of the ROAP-JoinDomainResponse message itself.

The <mac> element provides key-confirmation through a MAC on the canonical [xc14n] version of the <domainKey> element (excluding the <mac> element itself) using the MAC key KMAC wrapped in the <encKey> element.

6.3.4.3 Leave Domain Request
The ROAP-LeaveDomainRequest message is sent from the Device to the RI. This message is the first message in the 2-pass protocol for removing a device from a domain.

6.3.4.3.1 Message description

	ROAP-LeaveDomainRequest

	Parameter
	Mandatory/Optional

	DeviceID
	M

	RI ID
	M

	Device Nonce
	M

	Request Time
	M

	Domain Identifier
	M

	Certificate Chain
	O

	Extensions
	O

	Signature
	M

Device ID identifies the requesting Device.

RI ID identifies the authorizing RI.

Device Nonce is a nonce to ensure RI liveness.
Request Time is the current time, as seen by the Device.

Domain Identifier identifies the domain.

Certificate Chain: This parameter is sent unless Certificate Caching is indicated in the RI Context with this RI. When present, the parameter value shall be as described for the Certificate Chain parameter in the ROAP-RegistrationRequest message.

Extensions: This version of ROAP does not define any extensions for the ROAP-LeaveDomainRequest message.
Signature is a signature on this message (besides the Signature element itself). The signature method is as follows:

· The message except the Signature element is canonicalized using the exclusive canonicalization method defined in [xc14n].

· The result of the canonicalization, d, is considered as input to the signature operation.

· The signature is calculated on d in accordance with the rules of the negotiated signature algorithm.

The Device MUST ensure that the Domain Context of the corresponding domain is deleted before sending the JoinDomainRequest to the RI.

If the Device is not a member of the particular domain and thus does not have the Domain Context which it is asked to delete, the Device MUST indicate this by setting the NotMember attribute to “True” and include it in the Leave Domain request.

6.3.4.3.2 Message syntax

The <leaveDomainRequest> element specifies the ROAP-JoinDomainRequest primitive. It has complex type roap:DomainRequest, which extends the basic roap:Request type. The response to this request is specified by the <leaveDomainResponse> element, and together they implement the leave domain protocol.

<element name="leaveDomainRequest" type="roap:DomainRequest">

The Leave Domain Request thus has the same complex type as the Join Domain Request.
6.3.4.4 Leave Domain Response
The ROAP-LeaveDomainResponse message is sent by an RI to a device in response to a ROAP-LeaveDomainRequest message. This message is the second message in the 2-pass protocol for removing a device from a domain.

6.3.4.4.1 Message description

	ROAP-LeaveDomainResponse

	Parameter
	Mandatory/Optional

	
	Status = "Success"
	Status ≠ "Success"

	Status
	M
	M

	Device Nonce
	M
	-

	Domain Identifier
	M
	-

	Extensions
	O
	-

Status indicates if the request was successfully handled or not. In the latter case an error code defined in section 6.2.5 is sent.

Device Nonce is the nonce sent by the device. It is used by the Device to identify the corresponding LeaveDomainRequest in the case of simultaneous outstanding LeaveDomainResponses.
Domain Identifier identifies the domain from which the RI removed the Device. The Domain Generation part of the Domain Identifier is ignored.

Extensions: No extensions are defined for the ROAP-LeaveDomainResponse message.

The RI sends the LeaveDomainResponse after having deleted the association of this device and the domain. If a device doesn’t receive a response to the LeaveDomainRequest, the Device SHOULD retry two times. If there still is no response, the Device SHOULD notify the user.

6.3.4.4.2 Message Syntax

The <leaveDomainResponse> element specifies the ROAP-LeaveDomainResponse primitive. It has complex type LeaveDomainResponse, which extends the basic Response type.

<element name="leaveDomainResponse" type="roap:LeaveDomainResponse"/>

<complexType name="LeaveDomainResponse">

 <annotation>

 <documentation xml:lang="en">

 Message sent from RI to Device in response to a

 leaveDomainRequest

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Response">

 <sequence minOccurs="0">

 <element name="nonce" type="roap:Nonce"/>

 <element name="domainIdentifier" maxOccurs="unbounded"

 type="roap:DomainIdentifier"/>

 <element name="extensions" type="roap:Extensions" minOccurs="0"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

6.3.5 Domain RO processing rules

[Ed’s note: This chapter defines device behaviour based on which the RI/CI can set up their services accordingly so includes both RO acquisition from RI and sharing btw devices. Not much specific SCR requirements for CI/RI as there is no Domain-ROAP protocol.]
6.3.5.1 Overview

As a general principle, the processing rules for inbound Domain ROs are agnostic to the origin of the Domain RO i.e. it does not matter whether the Domain RO was delivered OTA from a RI or copied from another Device using removable media. There is no binding to a specific transport mechanism or protocol.

Domain ROs MAY be delivered to the Device either inside a DCF file, as a separate standalone object with a specific MIME type of its own, or as part of a MIME multipart/related message [RFC2387]. As part of the installation of an RO, the Device must make a number of checks for all Domain ROs that are to be used by the Device, including integrity and authenticity checks and replay attack related checks as described below.

6.3.5.2 Inbound Domain RO

The Device MUST support receiving a Domain RO as a separate object.

The Device MUST support receiving a Domain RO inside a DCF.

Before installing and using a Domain RO to render the media objects inside the associated DCF the Device MUST process the Domain RO as defined in chapter 6.3.5.2.1.

6.3.5.2.1 Installing a Domain RO
The Device MUST belong to the domain identified by the Domain Identifier inside the Domain RO. If that is not the case the Device MAY attempt to join the domain using the mechanism defined in chapter 7.2. The Device MUST NOT attempt to join the domain without user’s consent [ed’s note: may be an explicit question in local UI or a device configuration parameter with white-list].

The Device MUST successfully verify the signature of the Domain RO using the RI’s Public Key.

If the <guid> and optional <timeStamp> element is present in the ProtectedRO, then the Device MUST perform the replay protection related checks defined in the corresponding chapter.

If the Domain Context has expired (indicated by the Domain Context Expiry Time) the Device MUST NOT install ROs for this domain and the Device SHOULD delete this Domain Context.

6.3.5.2.2 Postprocessing after installing the Domain RO

[Ed’s note: This is the all relevant Domain RO inside the DCF case. This was an open issue]
These processing rules apply for Domain ROs that were not received inside a DCF i.e. the Domain RO was received separately from the DCF.

The Device MAY skip further post-processing if it concludes, using an algorithm not defined in this specification, that sending the installed Domain RO to other devices does not add value for the end user. One such case could be that the Domain Context Expiry Time has expired.

The Device MUST attempt to find the DCF associated with the installed Domain RO. If that fails the Device MUST discontinue post-processing for the time being but SHOULD continue the post-processing if it finds the associated DCF later on e.g. when rendering the DCF or sending it out from the Device.

If the Device finds multiple DCF instances associated to the installed Domain RO it SHOULD apply the processing rules defined below for each one of them.

6.3.5.3 Outbound DCF

For outbound DCFs the Device SHOULD continue a possibly discontinued postprocessing as defined in chapter 6.3.5.2.2 before sending the DCF from the Device.

If the DCF already contains Domain RO(s), the Device MUST remove the Domain ROs corresponding to domains which the Device is not member of.

The Device SHOULD insert a copy of the installed Domain RO into the DCF [DCF reference].

However, the Device MAY choose not to insert a Domain RO if it concludes, using an algorithm not defined in this specification, that replacing does not add value for the end user (for example, if the installed Domain RO is more restrictive, the Domain RO has already been consumed, etc).

6.4 Key Management

6.4.1 Cryptographic components

6.4.1.1 RSAES-KEM-KWS

RSA-KEM-KWS is an asymmetric encryption scheme defined in [X9.44] and [IETF-KEM] and based on the "generic hybrid cipher" in [ISO/IEC 18033]. In this scheme, the sender uses the recipient's public key to securely transfer symmetric-key material to the recipient. Specifically, given the recipient's public RSA key P, consisting of a modulus m and a public exponent e, the sender generates a value Z as a statistically uniform random integer in the interval [0,…,m-1]. The value Z is then converted to a key-encryption key KEK as follows:

KEK = KDF(Z, NULL, kekLen)

where KDF is defined below, NULL is the empty string, and kekLen shall be set to the desired length of KEK (in octets).

Given KEK, a key-wrapping scheme WRAP and the symmetric key material K to be transported, the sender wraps K to get ciphertext C2:

C2 = WRAP(KEK, K)

After this, the recipient encrypts Z using the recipient's public RSA key P to yield C1:

C1 = RSA.ENCRYPT(P,Z) = Ze mod m
The scheme output is C = C1 | C2 which is transmitted to the recipient. The decryption operation follows straightforwardly: the recipient recovers Z from C1 using the recipient’s private key, converts Z to KEK, then unwraps C2 to recover K.

6.4.1.2 KDF

KDF is equivalent to the key derivation function KDF2 defined in [X9.44] (and KDF in [X9.42], [X9.63]). It is defined as a simple key derivation function based on a hash function. For the purposes of this specification, the hash function shall be SHA-1.

KDF takes three parameters: the shared secret value Z: an octet string of (essentially) arbitrary length, otherInfo: other information for key derivation, an octet string of (essentially) arbitrary length (may be the empty string), and kLen: intended length in octets of the keying material. kLen shall be an integer, at most (232 – 1)hLen where hLen is the length of the hash function output. The output from KDF is the key material K, an octet string of length kLen. The operation of KDF is as follows:

1) Let T be the empty string.

2) For counter from 1 to (kLen / hLen (, do the following:

Let D = 4-byte, unsigned big-endian representation of counter

Let T = T || Hash (Z || D || otherInfo).

3) Output the first kLen octets of T as the derived key K.

6.4.1.3 AES-WRAP

AES-WRAP is the symmetric-key wrapping scheme based on AES defined in [AES-WRAP]. It takes as input a key-encryption key KEK and key material K to be wrapped. The scheme outputs the result C of the wrapping operation:

C = AES-WRAP(KEK, K)

6.4.2 Key transport mechanisms

6.4.2.1 Distributing KREK and KMAC under a device public key

This section applies when protecting a Rights Object for a device.

KREK and KMAC are each 128-bit long AES keys generated randomly by the sender. KREK ("rights object encryption key") is the wrapping key for the content-encryption key KCEK in rights objects. KMAC is used for key confirmation of the message carrying KREK.

The asymmetric encryption scheme RSAES-KEM-KWS shall be used with the AES-WRAP symmetric-key wrapping scheme to securely transmit KREK and KMAC to a recipient device using the device's RSA public key. An independent random value Z shall be chosen for each encryption operation. For the AES-WRAP scheme, KREK and KMAC are concatenated to form K, i.e.:

C1 = RSA.ENCRYPT(PubKeyDevice, Z)

KEK = KDF(Z, NULL, kekLen)

C2 = AES-WRAP(KEK, KREK | KMAC)

C = C1 | C2
Where kekLen shall be set to 16 (128 bits). In this way, AES-WRAP is used to wrap 256 bits of key data (KREK | KMAC) with a 128-bit key-encryption key (KEK).

After receiving C, the DRM Device splits it into C1 and C2 and decrypts C1 using its private key, yielding Z:

C1 | C2 = C
Z = RSA.DECRYPT(PrivKeyDevice, C1)
Using Z, the device can derive KEK, and from KEK unwrap C2 to yield KREK and KMAC.:

KREK | KMAC = AES-UNWRAP(KEK, C2)
The following URI shall be used to identify this key transport scheme in <xenc:EncryptionMethod> elements:

http://www.rsasecurity.com/rsalabs/xml/pkcs-1#rsaes-kem-kdf2-kw-aes128
6.4.2.2 Distributing KD and KMAC under a device public key

This section applies when provisioning a device with a domain key, KD.
KD is the symmetric key-wrapping key used when protecting KREK and KMAC in a rights object issued to a domain D. KD is a 128-bit long AES keys generated randomly by the sender and shall be unique for each domain D. KMAC is used for key confirmation of the message carrying KD.

In this case, exactly the same procedure as in the previous section shall be used, the only difference being the replacement of KREK with KD.

6.4.2.3 Distributing KREK and KMAC under a domain key KD

This section applies when protecting a Rights Object for a domain.

The key-wrapping scheme AES-WRAP shall be used. KEK in AES-WRAP shall be set to KD and K to the concatenation of KREK and KMAC, i.e.:

C = AES-WRAP(KD, KREK | KMAC)

After receiving C, the DRM Device decrypts C using KD:
KREK | KMAC = AES-UNWRAP(KD, C)

The following URI shall be used to identify this key transport scheme in <xenc:EncryptionMethod> elements:

http://www.w3.org/2001/04/xmlenc#kw-aes128
6.4.2.4 Distributing KCEK under a rights object encryption key KREK
A content-encryption key, KCEK, will be a randomly generated 128-bit AES key. It will be wrapped using a rights object encryption key, KREK by use of AES-WRAP. KREK keys derived as above shall be used as the key-wrapping keys:

C = AES-WRAP(KREK, KCEK)

After receiving C, the DRM Device decrypts C using KREK:
KCEK = AES-UNWRAP(KREK, C)

The following URI shall be used to identify this key transport scheme in <xenc:EncryptionMethod> elements:

http://www.w3.org/2001/04/xmlenc#kw-aes128
6.4.3 Use of hash chains for Domain Key generation

To simplify Domain Key management when several generations of a domain are expected, an RI may elect to make use of hash chains, and derive later Domain Keys from earlier ones. The procedure to do this is as follows: When creating the domain, the RI generates a master domain key, KM. The RI then hashes (using SHA-1) KM at least as many times n as the RI believes there will be generations of the domain. The result, KD1 = hashn(KM) = sha1(sha1(…(sha1(KM))) is then distributed as described in section 6.3.4.2 as the first key for domain D. When a device in a domain has been revoked, or the RI otherwise decides to create a new domain generation (shift domain key), the RI computes and distributes KD2 = hashn-1(KM). Devices supporting this mechanism therefore only need to store KDi, for the latest received domain generation i, since for any earlier generation j (j < i), KDj = hashi-j(KDi). RIs supporting this mechanism only need to store the current generation number i, the maximum number of generations n, and the domain master key KM.

Support for this mechanism is optional, both for RIs and Devices.

6.5 Certificate status checking

6.5.1 Certificate status checking by RI

For each request signed by the Device that requires the RI to perform substantial processing, the RI MUST check the signature and the revocation status of the Device certificate.

6.5.2 Certificate status checking by DRM Agents

For each message signed by the RI, the Device MUST check the signature and if possible

MUST check the certificate status of Rights Issuer certificates. The means to do this are specified in the ROAP description above.

In particular whenever an OCSP Response is received by the Device it MUST be verified that the RI certificate is not revoked. DRM agents MUST support all client requirements in [OMA-OCSP-MP] with the following exceptions:

· DRM agents need not be able to generate OCSPRequests

· Clients need only to handle OCSPResponses with one SingleResponse value

· Clients need not support the authorityInfoAccess certificate extension (as they will not contact OCSP responders directly)

· DRM agents need not support OCSP over HTTP/1.1 (as they will not contact OCSP responders directly)

Clients MUST be able to match a nonce sent for OCSP purposes in the ROAP protocol with a nonce in the received OCSPResponse.

6.6 Transport Mappings

The following sections describe how ROAP PDUs are delivered using typical delivery protocols, the most common being HTTP,

6.6.1 HTTP/WSP Transport Mapping

6.6.1.1 Initiating the ROAP

The ROAP is initiated when the ROAP Trigger XML document is received by the Device. When the ROAP Trigger is received, the Device MUST initiate an HTTP/WSP POST with the appropriate ROAP PDU in the body of the message. The ROAP PDU the Device sends is determined by the protocol element in the ROAP Trigger.
· If the protocol element is ROAcquisition, the ROAP PDU MUST only contain a single valid RO Request PDU.

· If the protocol element is DomainJoin, the ROAP PDU MUST only contain a single valid Domain Join PDU.

· If the protocol element is DomainLeave, the ROAP PDU MUST only contain a single valid Domain Leave PDU.

Editor’s note: The use of “domain names” in the following section is confusing. We need to clarify the text by using terminology that is already standardized in RFC ????

The extraction of domain-name-part of the RI URL is yet to be specified.

Another open issue is pointed out in input submission 272 – regarding silent acquisition following ROAP trigger ?
If the DRM Agent receives a DCF with a Silent header with a specified silent-url or a Preview header with method “preview-rights” and a specified preview url, the DRM Agent MUST behave as follows:

If the DRM Agent does not already have an RI Context with the RI that issued the DCF, as indicated by the riID, the DRM Agent MUST not attempt to silently acquire the RO for the DCF but MUST ask the user if they wish to acquire an RO for the DCF. If the user indicates Yes, the DRM Agent MUST send a Device Hello to the indicated URL followed by an RO-Request to the indicated URL. If the user indicates No, the DRM Agent MUST not attempt to acquire an RO for the DCF. The DCF does not have to be deleted at this point
.

If the DRM Agent does already have an SA with the RI that issued the DCF, as indicated by the riID, the DRM Agent MUST compare the domain name of the specified url with the list of authorised domain names already stored by the DRM Agent for that RI. The domain name part MUST be extracted from the specified url and be compared with the existing authorised domain names as specified in section n.n.n.

If the domain name in the specified url is already in the the list of authorised domain names already stored by the DRM Agent for that RI, the DRM Agent MUST silently attempt to acquire the RO for the DCF by sending RO-Request to the specified url. If the domain name in the specified url is already in the list of authorised domain names already stored by the DRM Agent for that RI, the DRM Agent MUST not attempt to silently acquire the RO for the DCF but MUST ask the user if they wish to acquire an RO for the DCF. If the user indicates Yes, the DRM Agent MUST send an RO-Request to the indicated URL. If the user indicates No, the DRM Agent MUST not attempt to acquire an RO for the DCF. The DCF does not have to be deleted at this point3.

On any occasion where the DRM Agent successfully retrieves and installs a RO acquired as a result of a Silent header or Preview header (with method preview-rights) in a DCF, the DRM Agent MUST add the domain name in the URL in the Silent or Preview header to the list of authorised domain names for that RI. Domain names MUST be compared and extracted as specified in section n.n.n.
6.6.1.2 HTTP Content Negotiation

When executing the ROAP protocol over HTTP, the DRM Agent SHOULD use the standard HTTP content negotiation mechanisms as specified in [HTTP], such as the Content-Encoding header and the Content-Type charset parameter, to encode/decode the stream to the preferred character set for the actual MIME media type representation of the ROAP PDUs.

RFC 2045 [RFC2045] defines a Content-Transfer-Encoding, which specifies how a specific body part is encoded for transfer by some transfer protocols. The DRM Agent MUST support the identity transfer encoding “binary”. Other non-identity Content-Transfer-Encodings like “base64” MAY also be supported.

6.6.1.3 HTTP Features

The rights issuer MAY use standard HTTP features such as HTTP redirections, etc.

The DRM Agent MUST support all mandatory HTTP features according to [HTTP].

6.6.1.4 HTTP Authentication

Authentication of the user is often a useful feature for rights issuers. User authentication can be performed at different levels of the protocol stack or at application level, but the DRM Agent MUST at least support the HTTP basic authentication mechanism as specified in [HTTP] and [RFC2617].

A DRM Agent MUST support server/proxy authentication as specified in [HTTP] and [RFC2617].

6.6.1.5 RI Hello

If HTTP or WSP is used as transport, an RI Hello message MUST be sent as an HTTP/WSP response with the ROAP PDU as the body of the request. The ROAP PDU MUSTcomprise only a single valid RI Hello message.

6.6.1.6 RO Response

If HTTP or WSP is used as transport, an RO Response message MUST be sent as an HTTP/WSP response with the ROAP PDU either as the body of the request or as an entity in a multipart/related response [RFC2387]. The ROAP PDU MUST comprises only a single valid RO Response message.

6.6.1.7 Example: Separate Delivery of DCF and Rights Object

This first example is a basic use case assuming only minimal integration between RI and CI (exchange of CEK and RO-ID prior to content and license delivery).

[image: image12.wmf]

Generate license

RI

Browse to content website; select content to be downloaded

CI

Content DCF

ROAP Trigger

RO Request

RO Response

1. A user browses through a content portal, selects content and so on.

2. A license is generated for the purchase transaction using some backend interaction between RI and CI.

3. The CI returns an HTTP Response containing a multipart/mixed. One entity is the content DCF, the other entity is the ROAP Trigger.

HTTP 1.1 200 OK

 Server: CoolServer/1.3.12

 Content-Type: multipart/mixed; boundary=”XX---XX”

--XX---XX

 Content-Length: 1232

 Content-Type: application/vnd.oma.drm.content

... [DCF] ...

--XX---XX

 Content-Length: 986

 Content-Type: application/vnd.oma.drm.roap-trigger+xml

... [ROAP Trigger XML document] ...

--XX---XX--

4. The ROAP Trigger is used by the DRM Agent on the device to initiate a ROAP session to download a Rights Object. The DRM agent issues an HTTP POST to the URL specified by the ROAP Trigger. The POST includes a ROAP RO Request PDU in the HTTP request body.

POST http://www.acme.com/ro.cgi?roID=qw683hgew7d

 Host: www.acme.com

 User-Agent: CoolPhone/1.4

 Accept: application/vnd.oma.drm.roap+xml

 Accept-Charset: utf-8

 Content-Length: 125

 Content-Type: application/vnd.oma.drm.roap+xml

... [ROAP PDU] ...

An established security association is assumed in the example. If this were not the case, then the RO Request would be preceded by a ROAP Registration transaction.

5. The rights issuer returns an HTTP response containing a ROAP RO Response PDU in the HTTP response body.

HTTP 1.1 200 OK

 Server: CoolServer/1.3.12

 Content-Length: 986

 Content-Type: application/vnd.oma.drm.roap+xml

... [ROAP PDU] ...

6.6.1.8 Example: Combined Delivery of DCF and Rights Object

This second example is a variation on the previous example with a closer relationship with RI and CI.

[image: image13.wmf]

Generate license

RI

Browse to content website; select content to be downloaded

CI

Content DCF

ROAP Trigger

RO Request

RO Response

Get DCF

1. A user browses through a content portal, selects content and so on.

2. A license is generated for the purchase transaction using some backend interaction between RI and CI.

3. The CI returns an HTTP Response containing a ROAP Trigger.

HTTP 1.1 200 OK

 Server: CoolServer/1.3.12

 Content-Length: 986

 Content-Type: application/vnd.oma.drm.roap-trigger+xml

... [ROAP Trigger] ...

4. The ROAP Trigger is used by the DRM Agent on the device to initiate a ROAP session to download a rights object. The ROAP Trigger. The POST includes a ROAP RO Request PDU in the HTTP request body.

POST http://www.acme.com/ro.cgi?roID=qw683hgew7d

 Host: www.acme.com

 User-Agent: CoolPhone/1.4

 Accept: application/vnd.oma.drm.roap+xml

 Accept-Charset: utf-8

 Content-Length: 125

 Content-Type: application/vnd.oma.drm.roap+xml

... [ROAP PDU] ...

An established security association is assumed in the example. If this were not the case, then the RO Request would be preceded by a ROAP Registration transaction.

5. The rights issuer interacts with the CI to retrieve the DCF, and the returns a multipart HTTP response containing as one entity a ROAP RO Response PDU, and as another entity the content object (DCF).

HTTP 1.1 200 OK

 Server: CoolServer/1.3.12

 Content-Type: multipart/related; boundary=”XX---XX”

--XX---XX

 Content-Length: 986

 Content-Type: application/vnd.oma.drm.roap+xml

... [ROAP PDU] ...

--XX---XX

 Content-Length: 1232

 Content-Type: application/vnd.oma.drm.content

... [DCF] ...

--XX---XX—
6.6.1.9 Example: Silent RO Acquisition Triggered by DCF Headers

[image: image14.wmf]

RI

CI

Content DCF

 “Silent URL”/”Preview URL”

RO Request Message

RO Response

In this case a DCF is superdistributed to a Device, and the DRM Agent uses DCF headers to initiate a ROAP transaction and download a rights object.

1. A user browses receives a DCF from another Device, e.g. through MMS, peer-to-peer, removable media, or some other transfer mechanism.

2. If the DCF contains either a Silent header or a Preview header, then the DRM Agent attempts to request a Rights Object automatically. If the DRM Agent has an existing security association for the rights issuer, and has obtained user consent to request rights objects from the rights issuer, then the DRM Agent may proceed silently without further user interaction.

The DRM Agent sends an HTTP Post to the URL specified by the Silent or Preview headers. The POST includes a ROAP RO Request PDU in the HTTP request body.

POST http://www.acme.com/ro.cgi?roID=qw683hgew7d

 Host: www.acme.com

 User-Agent: CoolPhone/1.4

 Accept: application/vnd.oma.drm.roap+xml

 Accept-Charset: utf-8

 Content-Length: 125

 Content-Type: application/vnd.oma.drm.roap+xml

... [ROAP PDU] ...

3. The Rights Issuer returns an HTTP response containing a ROAP RO Response PDU in the HTTP response body.

HTTP 1.1 200 OK

 Server: CoolServer/1.3.12

 Content-Length: 986

 Content-Type: application/vnd.oma.drm.roap+xml

... [ROAP PDU] ...

6.6.2 OMA Download OTA

A Rights Issuer MAY use OMA Download OTA [DLOTA] when delivering Content and Rights Objects in order to take advantage of managed download features such as content negotiation and delivery notification. For example, a Rights Issuer may use the OMA Download OTA delivery notification as a billing trigger.

Depending on deployment and business scenario, OMA Download OTA can be used in different ways in the context of delivering protected content and rights objects. This section gives a few examples, but is not exhaustive.

6.6.2.1 Download Agent and DRM Agent Interaction

The Download Agent must collaborate with the DRM Agent when OMA Download OTA is used to deliver content and/or Rights Objects. In general, the DRM Agent will participate in the “Installation” phase of the Download OTA protocol.

The Download OTA protocol utilizes a Download Descriptor (DD) to provide information to the user and the Device prior to initiating the content object download. The following sections describe how the Download Agent and DRM Agent should behave when the Download Descriptor is used for DRM purposes.

6.6.2.1.1 Downloading DRM Content

When using Download OTA to download a DRM protected content object (that is, an encrypted content object packaged in the DRM content format), the Download Descriptor:

· MUST include a type attribute with the value “application/vnd.oma.drm.content”.

· MUST include a type attribute with the content type of the protected content object.

· MUST include a size attribute indicating the size of the entire DRM Content Format object (which includes the encrypted content object)

· MUST include an objectURI attribute pointing to the protected content object.

· MAY include other optional attributes.

The Download Agent will process the Download Descriptor and perform the content object download as defined in [DLOTA].

If the Download Descriptor includes the type “application/vnd.oma.drm.content” and the nextURL attribute is specified, the Download Agent MUST navigate to the specified URL immediately after sending the installation notification.

6.6.2.1.2 Downloading DRM Rights Objects

If the Device supports Download OTA co-delivery, the Download Descriptor SHOULD be co-delivered with the ROAP Trigger. For co-delivery, as defined in the OMA Download OTA specification, the multipart MUST be multipart/related, the Download Descriptor MUST be the first entity in the multipart, and the ROAP Trigger MUST be the second part of the multipart.

If the Device does not support Download OTA co-delivery, the objectURI in the Download Descriptor will provide the URL for retrieving the ROAP Trigger. The Download Agent, upon receiving the Download Descriptor, will retrieve the ROAP Trigger and deliver it to the DRM Agent for installation as defined in the Download OTA specification.

When using OMA Download OTA for confirmed delivery of the Rights Object, the Download Descriptor:

· MUST include a type attribute with the value “application/vnd.oma.drm.roap+xml”.

· MUST include a type attribute with the value “application/vnd.oma.drm.rights+xml”.

· MUST include an objectURI attribute containing the Content-ID of the ROAP Trigger in the multipart if the ROAP Trigger is co-delivered with the Download Descriptor. Otherwise, this attribute MUST contain the URL with which the device may retrieve the ROAP Trigger.

· MUST include a size attribute indicating the size of the Rights Object.

· MAY include other optional attributes.

When the Download Agent receives the ROAP Trigger (either via co-delivery or separate delivery), the Download Agent MUST send the ROAP Trigger to the DRM Agent after processing the Download Descriptor as defined in [DLOTA]. The Download Agent MUST NOT display the user confirmation prior to sending the ROAP Trigger to the DRM Agent.

Upon receiving the ROAP Trigger, the DRM Agent MUST initiate the ROAP as defined in section 6.1.6. The DRM Agent MUST notify the Download Agent of installation success or failure (including an error code as appropriate).

As defined in OMA Download OTA, the Download Agent MUST make a best effort attempt to send an installation status report to the Rights Issuer provided the installNotifyURI is present in the DD.

6.6.2.1.3 Downloading DRM Content and Rights Object Together

As when using OMA Download OTA to download a Rights Object, the Download Descriptor MUST be co-delivered with the ROAP Trigger to download DRM Content and Rights Object together. If OMA Download OTA is used to download the Rights Object and DRM Content in a single multipart message, the Download Descriptor:

· MUST include a type attribute with the value “application/vnd.oma.drm.roap+xml”.

· MUST include a type attribute with the value “application/vnd.oma.drm.rights+xml”.

· MUST include a type attribute with the value “application/vnd.oma.drm.content”.

· MUST include an objectURI attribute containing the Content-ID of the ROAP Trigger in the multipart.

· MUST include a size attribute indicating the size of the Rights Object plus the size of the DRM Content.

· MAY include other optional attributes.

When the Download Agent receives a Download Descriptor and the ROAP Trigger, the Download Agent MUST send the ROAP Trigger to the DRM Agent after processing the Download Descriptor as defined in [DLOTA]. Upon receiving the ROAP Trigger, the DRM Agent MUST initiate the ROAP as defined in section 6.1.6.

The Rights Issuer MUST provide the Rights Object (or the RO Response PDU) and DRM Content in a multipart/related media type [RFC2387]. The Rights Object (or RO Response PDU) MUST be the first entry in the multipart and the DRM Content MUST be the second entry in the multipart. The DRM Agent MUST extract the Rights Object (or the RO Response PDU) and DRM Content from the multipart and install both entities. The DRM Agent MUST notify the Download Agent of installation success or failure. As defined in OMA Download OTA, the Download Agent MUST make a best effort attempt to send this installation status to the Rights Issuer provided the installNotifyURI is present in the DD.

6.6.2.2 Example: Separate Delivery of DRM Content and Rights Object

A Service Provider may use to use OMA Download OTA to deliver both the DRM Content and the Rights Object in separate transactions. The following figure shows the interaction between the logical system components residing in the Device and logical server components hosted by the Service Provider during the separate delivery of DRM Content and Rights Objects.

	[image: image21.wmf]Browser

DL-Agent

DRM-Agent

HTTP Stack

Handler &

Dispatcher

Presentation

Server

selection of content item and offer , get URL

HTTP Get content URL

HTTP Response (DD with ROAP Trigger)

DD with ROAP Trigger

RO Request

RO Response (RO)

Ok

post intall-notification

HTTP post install-notification URI

HTTP Response

get next URL

HTTP get Next URL

HTTP Response (WEB/WAP page)

WEB/WAP page

Rights

Issuer

Content

Issuer

ROAP Trigger (e.g. roap://rightIssuer.com/roap?CO=ae123fg456?RO=ty456uo89)

RO installed

cert

cert

HTTP Response (DD)

DD

get ObjetURI

HTTP Get object URI

HTTP Response (CO)

CO

CO installed

post intall-notification

HTTP post install-notification URI

HTTP Response

get next URL

HTTP get Next URL (pointing to DD)

Figure XX Using Download OTA to deliver DRM Content and Rights Object

1. A user browses through a content portal, selects content and so on. When it is time to deliver content, the server returns an HTTP Response with a Download Descriptor (DD). The DD might, for example, point to a DCF file containing a JPEG image.

HTTP 1.1 200 OK

 Server: CoolServer/1.3.12

 Content-Length: 1232

 Content-Type: application/vnd.oma.dd+xml; charset=utf-8

<media xmlns="http://www.openmobilealliance.org/xmlns/dd">

 <type>application/vnd.oma.drm.content</type>

 <type>image/jpeg</type>

 <objectURI>http:/download.example.com/image.dcf</objectURI>

 <size>100</size>

 <installNotifyURI>

 http://download.example.com/notify?tid=2h3jh3g4

 </installNotifyURI>

 <nextURL>

 http://ri.example.com/ro?tid=2h3jh3g4

 </nextURL>

</media>

2. The Download Agent requests the Content using the objectURI.

GET /image.dcf HTTP/1.1

Host: download.example.com

Accept: image/gif, image/jpg, application/vnd.oma.drm.content

3. The DCF is returned to the Download Agent.

HTTP/1.1 200 OK

Server: CoolServer/1.3.12

Content-Length: 1234

Content-Type: application/vnd.oma.drm.content

… DCF containing JPEG picture…

4. The Download Agent installs the Content and posts an installation notification.

POST /notify?tid=2h3jh3g4 HTTP/1.1

 Host: download.example.com

 Content-Length: 13

900 Success
5. In this example the DD for the DCF specifies a nextURL. This means that when the Download Agent is done downloading and installing the DCF, it will automatically issue an HTTP GET to the URL specified by the nextURL DD parameter. This can be used to seamlessly redirect the Device from the CI to the RI.

GET /ro?tid=2h3jh3g4 HTTP/1.1

Host: ri.example.com

6. The RI returns a DD and the ROAP Trigger.

HTTP 1.1 200 OK

 Server: CoolServer/1.3.12

 Content-Type: multipart/related; boundary=”XX---XX”

 --XX---XX

 Content-Length: 1232

 Content-Type: application/vnd.oma.dd+xml; charset=utf-8

<media xmlns="http://www.openmobilealliance.org/xmlns/dd">

 <type>application/vnd.oma.drm.roap+xml</type>

 <type>application/vnd.oma.drm.rights+xml</type>

 <objectURI>cid:w087w78087sdf80@ri.example.com</objectURI>

 <size>1232</size>

 <installNotifyURI>

 http://ri.example.com/notify?tid=2h3jh3g4

 </installNotifyURI>

 <nextURL>

 http://provider.example.com/trans_complete.html

 </nextURL>

</media>

--XX---XX

Content-Length: 986

Content-ID: <w087w78087sdf80@ri.example.com>

Content-Type: application/vnd.oma.drm.roap-trigger+xml

<roapTrigger xmlns="http://www.openmobilealliance.org/xmlns/roap-trigger">

<riID>ri.example.com</riID>

<roURL>239087dsf78@ri.example.com</roURL>

<roapURL>http://ri.example.com/ro.cgi?tid=qw683hgew7d</roapURL>

<protocol>Acquisition</protocol>

<signature>...signature_data...</signature>

</roapTrigger>

--XX---XX
7. The ROAP Trigger is used by the DRM Agent on the Device to initiate a ROAP session to download a Rights Object. The DRM agent issues an HTTP POST to the ROAP Trigger URL. The POST includes a ROAP RO Request PDU in the HTTP request body.

POST /ro.cgi?tid=qw683hgew7d HTTP/1.1

 Host: ri.example.com

 User-Agent: CoolPhone/1.4

 Accept: application/vnd.oma.drm.roap+xml, application/vnd.oma.drm.rights+xml

 Content-Length: 125

 Content-Type: application/vnd.oma.drm.roap+xml

... [ROAP PDU] ...

8. The RI returns the ROAP RO Response PDU.

HTTP 1.1 200 OK

 Server: CoolServer/1.3.12

 Content-Length: 986

 Content-Type: application/vnd.oma.drm.roap+xml

... [ROAP PDU] ...

9. The DRM Agent processes the ROAP PDU and sends the installation status (success or failure) to the Download Agent. The Download Agent sends the installation status to the RI using the installNotifyURI.

POST /notify?tid=2h3jh3g4 HTTP/1.1

 Host: ri.example.com

 Content-Length: 13

900 Success
10. The Download Agent immediately navigates to the nextURL.

GET /trans_complete.html HTTP/1.1

Host: provider.example.com

6.6.2.3 Example: Combined Delivery of Content DCF and Rights Object

This example is an extension to the previous example, assuming a closer relationship between the RI and CI allowing the content DCF and the RO to be delivered together in a single OMA Download OTA transaction.

	[image: image22.jpg]«“+OMa

Open Mobile Alliance

Figure 1 Combined Delivery of DRM Content and Rights Object

1. A user browses through a content portal, selects content and so on. When it is time to deliver content, the server returns a DD and the ROAP Trigger to initiate delivery of the combined Rights Object and DRM Content.

HTTP 1.1 200 OK

 Server: CoolServer/1.3.12

Content-Type: multipart/related; boundary=”XX---XX”

 --XX---XX

 Content-Length: 1232

 Content-Type: application/vnd.oma.dd+xml; charset=utf-8

<media xmlns="http://www.openmobilealliance.org/xmlns/dd">

 <type>application/vnd.oma.drm.roap+xml</type>

<type>application/vnd.oma.drm.rights+xml</type>
<type>application/vnd.oma.drm.content</type>
 <objectURI>cid:sd8963234l@ri.example.com</objectURI>

 <size>2118</size>

 <installNotifyURI>

 http://ri.example.com/notify?tid=2h3jh3g4

 </installNotifyURI>

 <nextURL>

 http://provider.example.com/trans_complete.html

 </nextURL>

</media>

--XX---XX

Content-Length: 986

Content-ID: <sd8963234l@ri.example.com>

Content-Type: application/vnd.oma.drm.roap-trigger+xml

<roapTrigger xmlns="http://www.openmobilealliance.org/xmlns/roap-trigger">

<riID>ri.example.com</riID>

<roURL>2498sdfcvxs@ri.example.com</roURL>

<roapURL>http://ri.example.com/ro.cgi?tid=g97sd976s90</roapURL>

<protocol>Acquisition</protocol>

<signature>...signature_data...</signature>

</roapTrigger>

--XX---XX

2. The ROAP Trigger is used by the DRM Agent on the Device to initiate a ROAP session to download the combined Rights Object and DRM Content..The DRM agent issues an HTTP POST to the URL specified by the ROAP Trigger. The POST includes a ROAP RO Request PDU in the HTTP request body.

POST /ro.cgi?tid=g97sd976s90 HTTP/1.1

 Host: ri.example.com

 User-Agent: CoolPhone/1.4

 Accept: application/vnd.oma.drm.roap+xml, application/vnd.oma.drm.rights+xml, application/vnd.oma.drm.content

 Content-Length: 125

 Content-Type: application/vnd.oma.drm.roap+xml

... [ROAP PDU] ...

3. The RI returns a multipart containing a ROAP RO Response PDU and the DRM Content.

HTTP 1.1 200 OK

 Server: CoolServer/1.3.12

 Content-Type: multipart/related; boundary=”XX---XX”

--XX---XX

 Content-Length: 986

 Content-Type: application/vnd.oma.drm.roap+xml

... [ROAP PDU] ...

--XX---XX

 Content-Length: 1232

 Content-Type: application/vnd.oma.drm.content

... [DCF] ...

--XX---XX--

4. The DRM Agent installs the Rights Object and DRM Content. The DRM Agent notifies the Download Agent of installation success. The Download Agent posts the installation notification.

POST /notify?tid=2h3jh3g4 HTTP/1.1

 Host: ri.example.com

 Content-Length: 13

900 Success
6.6.3 WAP Push

6.6.3.1 Push Application ID

The well-known value for the Push Application ID of the DRM User Agent Push remains unchanged from OMA DRM 1.0:

 - URN: x-wap-application:drm.ua

 - Number: 0x08

Rights Issuers and Content Issuers MUST use this Push Application ID when using WAP Push to deliver DRM Content or Rights Objects to the DRM Agent.

6.6.3.2 Content Push

A ROAP RO Response PDU MAY be delivered using WAP Push [PUSHOTA].

The DRM Agent MUST be able to receive a ROAP PDU that is pushed to the DRM user agent using the Push Application ID defined above.

6.6.3.3 Service Indication/Service Loading

A ROAP RO Response PDU MAY be delivered using WAP Push Service Loading [PUSHSL] or WAP Push Service Indication [PUSHSI].

The DRM Agent MUST be able to receive a ROAP PDU that is pushed to the DRM Agent using the Push Application ID defined above.

6.6.4 MMS

Add MMS Examples
7. Domains

7.1 Overview

The OMA DRM domain concept is network centric, i.e. the RI defines the domains, manages the Domain Keys, controls which devices are included and excluded from the domain and updates the domain after revocation.

A domain is a set of devices that are able to share the same DCF and RO. An RI can facilitate a user to define a domain of his personal devices and share content and Rights Objects among these devices.

The sharing of Domain ROs in a domain is made possible by devices in a domain sharing a secret Domain Key, generated by the RI during the definition of a domain.

A domain is associated with one or several Domain Keys. (Multiple Domain Keys being a result of previous revocations of this domain, at most one of these keys is not revoked.). To each Domain Key corresponds a unique Domain Identifier consisting of a unique part and a counter indicating the Domain Generation, the latter measuring the number of revocations of this domain. The Domain Identifier excluding the Domain Generation is unique for each domain.

OMA devices may join multiple domains with a single RI or with multiple RIs.

7.2 Device joins domain

To join a domain a device must have established, or will establish as part of a successful Join Domain protocol, an RI Context with the RI.

A device joining a domain is the process of an RI authorizing a particular device to be able to use all ROs for this domain. When a device joins a domain it receives the necessary domain information to be able to install Domain ROs.

A Device executes the Join Domain protocol (see ROAP protocol suite) to join a domain. The result of a successful Join Domain in the Device is the establishment in of a Domain Context for one or more domains. The Domain Context includes of Domain Key(s), Domain Identifier(s) and an Expiry Time.

A Domain Identifier is a string is where two last characters are numbers and shall be interpreted as a number between 00 and 99, which form the Domain Generation.

A Device MAY join multiple domains with the same RI or with different RIs.

The Join Domain protocol is triggered by the ROAP trigger after a browsing session.

If a Device joins a revoked domain (i.e. a domain where one or more Domain Keys have been revoked), the RI SHOULD give the Device access to all previous Domain Keys of this domain, to allow use of all ROs for this domain.

If a Device receives an RO for a domain that the Device is not joined to, or which the Device is joined to but protected with a Domain Key, which the Device does not have access to (indicated by the Domain Generation) the Device MUST notify the user and SHOULD after user confirmation initiate a browsing session to the Domain URL (see REL spec) in the Domain RO.

7.3 Domain RO Acquisition

To be able to use a Domain RO, a Device must have joined the corresponding domain.

Domain ROs can be acquired by the same mechanism as Device ROs, using the 2-pass RO Request/Reponse protocol or the 1-pass RO Response protocol. The Device specifies the Domain Identifier in the RO Request. Domain ROs, in contrast to Device ROs, can also be acquired without being wrapped in a ROAP PDU, e.g.delivered to devices as a result of a browsing session.

7.4 Device leaves a domain

A device leaving a domain is the process of an RI trusting that a particular device in a particular domain has deleted information about the domain such that it is no longer able to use any ROs for this domain. When leaving a domain a Device MAY, but is not required to remove the corresponding Domain ROs and associated Content. The Device SHOULD obtain user confirmation before deleting Domain ROs and associated Content.

A Device MUST execute the Leave Domain protocol (see ROAP protocol suite) to leave a domain.

Prior to sending Leave Domain Request, the Device MUST ensure the corresponding Domain Context is deleted.

7.5 Domain revocation

The basic objective of revocation is to exclude devices from being able to use new ROs. Already issued content and ROs are considered beyond control from the point of view of the DRM system.

Domain revocation (or, more precisely, Domain Key revocation) is the process of an RI indicating that a previously non-revoked Domain Key is not trusted for future protection of Domain ROs. This may be e.g. due to a Domain Key being compromised or a device in the domain being revoked. Domain revocation as well as device revocation will probably be rare events, but may be necessary as a last resort to stop clear text content from leaking out of the system.

Domain revocation does not result in any Domain Context being deleted in any device. After domain revocation, Domain ROs issued before the revocation are still possible to use and share, this applies both to revoked devices previously in the domain and new devices included in the domain after revocation.

The Domain Generation is a counter of the number of times a particular domain has been revoked (or, more precisely, the number of times Domain Keys has been revoked in a particular domain). Domain Generations MUST be supported by Device and RI. Domain Generations provide means to distinguish the same domain before and after a revocation.

To avoid storage of multiple keys per domain in the Device and in the RI (for the purpose of using old and new Domain ROs after domain revocation) it is possible to have a relation between the Domain Keys using Hash Chains (see section 6.4.3), an example is given below. The Device MAY support Hash Chains and the RI MAY support Hash Chains.

After a domain has been revoked, the RI MUST change Domain Key and increase the Domain Generation by one. If the Domain Generation reaches 99 the domain becomes obsolete. RI MUST NOT issue ROs for this obsolete domain and MUST NOT allow new Devices to join the obsolete domain.

Example1. Without hash chains
When generating a new domain, the RI generates

· a unique Domain Identifier DI, the Domain Generation is set to 00.

· a random secret Domain Key DK0
At domain revocation the Domain Generation is increased by 1, which is reflected by the Domain Identifier, and a new Domain Key DK1 is generated. The old Domain Key(s) must be stored in RI and Device to allow use of ROs issued before revocation. When devices join a domain, all Domain Keys of this domain are sent in the Protected Domain Info of ROAP-JoinDomainResponse (see ROAP Suite).

Example 2. With Hash Chains (optional)

When generating a new domain, the RI

· generates a unique Domain Identifier DI, the Domain Generation is set to 00.

· generates a secret random number R

· defines a sequence of Domain Keys using R and applying the efficient hash function SHA1 iteratively

· DK99 = R

corresponding to DI with Domain Generation 99

· DK98 = SHA1(DK99)
corresponding to DI with Domain Generation 98

· etc. until

· DK0 = SHA1(DK1)
corresponding to DI with Domain Generation 0

Since old Domain Keys (with low generation value) are possible to efficiently derive from new Domain Keys (with higher generation value), it is only necessary to store the newest Domain Key in the Device (and corresponding Domain Identifier so the Domain Generation is known). For the RI it is sufficient to store DK99 (=R).

8. Protection of Content and Rights

8.1 Protection of Content Objects

The Content Objects are protected by symmetric key encryption. The details of the content format are specified in [DRMCF-v2] document. Protecting content confidentiality is a key part of the DRM system. Only the intended devices must be able to decrypt the content. To accomplish this content protection, the Rights Issuer MUST encapsulate the Content Encryption Key (CEK) in a Rights Object. This Rights Object, in turn, is protected as described in Section 6.3 to ensure that only the intended Device may access the CEK and therefore the Protected Content.
For integrity protection of the DCF, a cryptographic hash value of the DCF is generated by the Rights Issuer and inserted into the Rights Object. This hash value MUST be generated over the entire DCF, including all the elements and the headers. DRM Agents in client devices MUST verify that the hash value in the Rights Object is identical to the hash value calculated by the DRM Agent over the DCF. If the hash values are not identical, the DRM Agent MUST prohibit the DCF from being decrypted and used.
8.2 Composite Content Objects and Associated Rights Objects

NOTE: review the input from Adrian(3) regarding subscription URI .
A rights object can contain one or more permissions and constraints (i.e. multiple rights). Each set of permissions and constraints is identified by a unique identifier, and uniquely associated with a media object by the identifier. One rights object may contain rights that are associated with media objects contained in separate content objects (DCFs). Some example use cases include

· Multiple contents delivered at different times (e.g. subscription-based MMS where several MMS messages are sent to a user)

· Multiple contents delivered at the same time but are not encapsulated in a single package (e.g. streaming media (audio stream and video stream)).

· Multiple contents delivered at the same time and are in a single package that is not a DCF (e.g. an MMS message containing several pictures, each encapsulated in its own DCF)

The rights objects can also specify permissions and constraints for each of the individual components within a composite object. In this case, the individual components can be referenced separately by the rights object associated with the composite object.

8.2.1 Multiple Rights for Composite Objects

NOTE: add input from Markus to update this section.
8.2.1.1 Association of Permissions with Media ObjectsComposite Content Objects and Associated Rights Objects

A rRights oObject can contain one or more Ppermissions and cConstraints (i.e. multiple rights). Each set of pPermissions and cConstraints is identified by a unique identifier, and uniquely associated with a mMedia oObject by the identifier. One rRights oObject may contain Permissions rights that are associated with mMedia oObjects contained in separate DRM Containerscontent objects (DCFs). Some example use cases include

NOTE [Markus Trauberg]: This relates to the subscription RO as proposed by Nokia and needs further description/definition

· Multiple DCFs contents delivered at different times (e.g. subscription-based MMS where several MMS messages are sent to a user)

· Multiple DCFscontents delivered at the same time but are not encapsulated in a single package (e.g. streaming media (audio stream and video stream)).

· Multiple DCFscontents delivered at the same time and are in a single package that is not a DCF (e.g. an MMS message containing several pictures, each encapsulated in its own DCF)

The rRights oObjects can also specify permissions and constraints for each of the individual Media Objectscomponents within a composite Multipart DCFobject. In this case, the individual Media Objectscomponents can be referenced separately by the rRights oObject associated with the composite Multipart DCFobject.

8.2.1.2 Multiple Rights for Multipart DCFsComposite Objects
A composite Multipart DCFobject containscontains one or more multiple separate Media oObjects, e.g., a theme consisting of a ringing tone and a logo. When Permissions rights are associated with a composite Multipart DCFobject, there are two types of relation between the Permissionsrights and the Media Objects inside the Multipart DCFcomposite object. One is that the same Permissions and Constraints are associated with all individual Media Objectscomponents in the composite Multipart DCFobject are granted the same permissions and constraints. For example, when a composite Multipart DCFobject containsconsists of three images as separate Media Objects, a cContent pProvider can grant a user a single pPermission to display all three images in the composite Multipart DCFobject. Another case is where each individual Permissions are associated with individual Media Objects inside a Multipart DCFcomponent is granted permissions and constraints individually. For example, when a composite Multipart DCFobject consists containsof an audio file and two images, a cContent pProvider can grant a user the Permissionsrights to play the audio data, display the two images, and print the second image three times.

[image: image23.wmf]

audio

Image(1)

Image(2)

play

display

Print

3 times

Media

Objects

Mulitpart

DCF

<permission>

elements

<rights>

element

Reference by

Content

-

ID

When a multiple Media Objectscomposite object in a Multipart DCF are is associated with multiple individual Permissionsrights, the Content-ID of each individual Media Objectcomponent MUST have an individual Content-IDbe included in the assigned within the Composite MultipartDCF for reference by the rRights oObject. Also, common pPermissions and cConstraints can be associated with all Media Objectscomponents in a Multipart DCFcomposite object. In this case, the rRights oObject only needs to reference the Multipart DCFcomposite object itself (by its Content-ID) and there is no need to contain the Content-ID of individual componentsMedia Objects.

Rights can be issued for both the Multipart DCFcomposite object itself and for the individual Media Objects contained therincomponents in a single rRights oObject creating possible conflicts, e.g. a pPermission of play 3 times could be issued for the Multipart DCFcomposite object while the pPermission for an individual Media Objectcomponent object could be play unlimited times. In this case, pPermissions specified for the individual Media Objectcomponent MUST take precedence over pPermissions specified for the entire Multipart DCFcomposite object.

Another case is where a Media Object is a Composite Object, i.e. it contains other Media Objects by means of inclusion. Such a Composite Object can have assigned only a single Content-ID which can be referenced by a Rights Object. Permission and Constraints expressed referring to the Composite Object Must be applied to all individual Media Objects contained in the Composite Object (e.g. the images and audio files contained in a zip archive).
8.3 Protection of Rights Objects

In the OMA DRM Architecture, a given Content Object is associated with one or more Rights Objects. The Rights Object is made up of the required header information, security elements, and the rights information for the associated Content Object. The Rights Objects are acquired by the device as a result of a successful completion of the Rights Object Acquisition Protocol.

One of the most important elements to be protected within the OMA DRM system is the Rights Object. This specification addresses the following issues to provide a comprehensive set of measures to protect the Rights Objects. These measures help to ensure the use of the information contained within a Rights Object, by authorized devices.

1. Provide mechanisms to verify the authenticity of the rights

2. Provide mechanisms to verify the integrity of the rights

3. The association between the Rights Object and the Content Object should not be changeable and it needs to be integrity protected.

The Rights Object is made up of the “key” information necessary to decrypt the associated content. This “key” information is generated by the Rights Issuer for the purposes of encrypting the content and the rights.Portions
of the Rights Object are encrypted using a symmetric Rights Encryption Key that MUST be generated by the Rights Issuer.
The following parts of the Rights Object MUST be encrypted using the Rights Encryption Key:

· The Content Encryption Key

· User identity information, including name/password, IMSI (list specific elements here…)

· Other?

Integrity protection prevents un-authorized modification of the rights information within the Rights Object. The syntax and semantics of the Rights Object is specified in the [DRMREL-v2] document. The [DRMREL-v2] specification calls for the use of XML-DSIG to create a digital signature over the set of elements that need integrity protection. The Rights Issuer MUST digitally sign the Rights Expression (the XML document). Not only does this ensure that the permissions and constraints are not modified during transmission, but ensures the integrity of the DCF cryptographic hash value. The DRM Agent MUST verify the digital signature within the Rights Object, before the associated content is made available to the user..Use of the digital signature also provides the client the ability to verify the authenticity of the information. The signature is validated by the client DRM Agent (?) before the associated content is made available to the user. It is also required The Rights Issuer MUST to provide the certificate chain necessary to validate the signature either during the authentication Rights Object Acquisition Pprotocol or by use of “out-of-band” methods
.

If a Rights Object is associated with a composite Content Object, all the rights expressions for the component elements MUST be included within a single <ds:Signature> element. If a Rights Object is associated with a composite Content Object, it may contain a number of CEKs to enable the encryption/decryption of component elements with different keys.

The Rights Object MUST be assigned a unique identifier by the Rights Issuer.

[Will the DRMDCF-v2 specify the need for unique content ids for both the overall composite object and the individual component elements? What do we mean by unique?]

8.4 Replay Protection of Stateful Rights Objects
8.4.1 Introduction

Rights Objects containing permissions with constraint elements <count>, <interval> or <accumulated> requires state to be kept in the DRM agent to measure what part of this permission that has been used up. In contrast with stateless rights, there has to be a mechanism protecting against a user replaying the reception of such stateful ROs to the Device, which could cause unauthorised extension of the permission.

In certain variants of RO acquisition described in this specification such a replay protection mechanism is inherent in the protocol. E.g. the 2-pass RO Request/Response messages contain a device nonce, sent in the request and sent back and signed in the response. The DRM agent compares an incoming correctly signed RO Response with the nonce in a sent RO Request and unless there is a match, the RO is rejected and replay of the RO Response in that case is not possible. RI authentication provided by the 2-pass protocol is thus used to control replay.

However, due to the nature of 1-pass ROAP or sharing of ROs in a domain, there is no challenge/response mechanism to rely upon. Instead, replay protection can in this case leverage on time-based RI authentication, using an RI Time Stamp, but there are also limitations as is discussed below.

· There is only an approximate synchronization between RI and Device. To accommodate for this and the delivery time of the RO, a local replay cache is kept in the Device, a table storing a Globally Unique RO Identity (GUID) and the RI Time Stamp. The GUID must be unique for each instance of the RO so that e.g. a user that twice in a sequence buys the same stateful RO (say permissions to play a particular song 3 times) won’t be considered a replay attack.

· When stateful ROs with GUID and time stamps are received, they appear as entries in the replay cache and can thus be compared to previous received ROs and prevent replay. When the replay cache is full, entries with more fresh time stamp replace entries with older time stamps and ROs with time stamps older than the oldest time stamp in the cache are rejected. Given the enforcement of this mechanism, it provides a secure replay protection. Appropriate dimensioning of the replay cache minimizes the risk that a long delivery time of one stateful ROs in combination with mass distribution of other stateful ROs with fresher time stamp causes the delayed RO to be rejected. (In situations of mass distribution of stateful ROs, the RI could use of the 2-pass ROAP protocol since that has an inherent replay protection mechanism that does not interfere with the mechanism described here.)

Another limitation of the method described above is that sharing of Domain ROs with very old time stamp may be limited by the finiteness of the replay cache. A second mechanism is therefore included to take away these limitations. By allowing Domain ROs having a GUID and no time stamp and a separate replay cache for GUID only entries, a limited replay deterring mechanism is achieved.

· New RO’s with GUID only are compared to GUIDs in the GUID replay cache. If there is a match, the RO is rejected otherwise it is accepted and the replay cache is updated. If the GUID replay cache is full a previous entry is removed to give room for the new GUID.

This mechanism does not limit sharing of ROs but is possible to circumvent. It is possible to replay stateful ROs with GUID that has been deleted from the cache.

The reason for separate replay caches is that the secure mechanism presented above should not be affectede by the latter more limited replay method. Also, a separate replay cache for GUID only entries guarantees a certain degree of protection for the corresponding ROs.

8.4.2 Replay Mechanism

This method is intended to support the use case of stateful Device or Domain ROs that are delivered without a prior RO Request, i.e. the 1-pass ROAP and Domain ROs delivered outside ROAP. In the case of Domain ROs, the statefulness is per device in the domain. E.g. if a Domain RO with a count 3 constraint is successfully shared between devices, each device is allowed 3 uses.

The <RO Payload> element contains two elements for stateful RO replay protection management: the Globally Unique ID element <guid> and the RI Time Stamp element <timeStamp>.

The RI signals to the Device usage of the replay protection mechanism by including the <guid> element. The <timeStamp> element is optional and provides the RI two different methods for replay protection of stateful Device and Domain ROs. The choice of method is indicated by the presence or absence of the <timeStamp> element in the <RO Payload> element.

1. RI Time Stamp in the Protected RO.

This method is applicable to both Device ROs and Domain ROs and provides a secure replay protection mechanism. However, in the domain case subsequent sharing is restricted by the replay mechanism and cannot be guaranteed. Domain ROs that are shared with other devices long after received from the RI may be rejected by the receiving device.

2. Absence of RI Time Stamp in the Protected RO.

This is mainly intended for Domain ROs. The method provides a mechanism that does not restrict subsequent sharing, installation and usage of Domain ROs (except as specified by the permissions in the RO, Domain Context lifetime etc) but is less secure and does not guarantee that replay is impossible.

If protection from replay of a stateful RO is important, the RI should include the RI Time Stamp in the Protected RO. If indefinite sharing of stateful Domain ROs in a domain (as described above) is important and it is acceptable that with some effort from the user this stateful RO may be replayed, then the RI should not include the RI Time Stamp in the Protected RO.

8.4.3 Processing rules

This chapter defines the processing rules enabling protection against RO replay attacks for both Device ROs and Domain ROs. A device must have two (logical) replay caches, one with (GUID, RITS) entries and one with GUID entries corresponding to the reception of stateful ROs with or without RI Time Stamp, respectively. The device MUST protect the integrity of its replay caches. A device MUST have documented the sizes of the replay caches. It is recommended that each replay cache is able to store at least 100 entries.

8.4.3.1 Stateful ROs with RI Time Stamp (RITS)

When receiving a Protected RO with GUID element and with a RITS element, the device does the following processing:

· If the RITS is more than 24 hours in the future when compared to the Device DRM Time then the Device MUST reject the RO. The user MUST be informed of the event and of the present Device DRM Time, the user SHOULD be asked if the Device DRM Time is correct and if the time is not correct the Device SHOULD initiate Device DRM Time Synchronization by running the 4-pass Registration protocol.

· Otherwise, if the GUID is already in the (GUID, RITS) replay cache then the Device MUST reject the RO.

· Otherwise, if the (GUID, RITS) replay cache is not full, the Device MUST accept the RO and include the corresponding (GUID, RITS) in the replay cache.

· Otherwise – if the replay cache is full, and the RITS is before the earliest RI Time Stamp in the replay cache the Device MUST reject the RO.

· Otherwise – if the replay cache is full, and the RITS is after the earliest RI Time Stamp in the replay cache the Device MUST accept the RO and insert the corresponding (GUID, RITS) in the replay cache, by deleting an entry with the earliest RI Time Stamp in the cache.

8.4.3.2 Stateful ROs without RI Time Stamp (RITS)

When receiving a Protected RO with GUID element but without a RITS element, the Device does the following processing:

· If the GUID is in the GUID replay cache then the Device MUST reject the RO.

· Otherwise, if the GUID replay cache is not full, the Device MUST accept the RO and include the corresponding GUID in the replay cache.

· Otherwise – if the GUID replay cache is full, the Device MUST accept the RO and insert the corresponding GUID in the GUID replay cache, by deleting an existing entry in the cache. The Device MAY use FIFO in the GUID replay cache or MAY select a random entry for deletion.

8.4.4 Subscription Rights Object
A Rights Object may specify Rights for content acquired as part of a subscription. In this case, the Rights Expression will inherit Permissions for the digital asset from another Subscription Rights Object, using the <inherit> syntax as specified in [DRMREL-v2].

Client devices MUST verify that the content Rights Object and its related Subscription Rights Object were issued by the same Rights Issuer before the associated content is made available to the user.

9. Super Distribution

Protected Content can be distributed from one device to another freely over any physical removable media, wired or wireless network connection.

If a super-distributed DCF has headers indicating that it supports previews, then the receiving device MAY use the information provided to generate a preview for the user. This preview may be provided in the form of “instant preview”, where the DCF itself has a preview element that can be used without a Rights Object. In addition, the DCF headers may also indicate a preview method where the device would need to acquire a preview Rights Object before providing any preview capabilities. See the [DRMDCF-v2] for further details on the appropriate DCF headers.

A DCF, once downloaded from a content portal, is deemed to be immutable. Devices MUST NOT modify the DCF in any manner before super-distributing the content to other devices. The integrity check on the DCF will fail if the DCF has been modified. This applies to all DCFs whether it is a composite object with multiple elements or a simple object with only one element within it.

10. Export

Editor’s Note: Provisional Text to be reviewed and validated by the group.

After downloading OMA DRM protected content, the User may wish to render that content on another device that has a different DRM protection format. Export is an operation in which the DRM content and corresponding Right Object are transferred to a DRM system or content protection scheme other than the OMA DRM system. The Rights Issuer controls whether or not to allow the export.

The Rights Issuer must explicitly grant permission (with the <export> element in [DRMREL-v2]) before the content and Rights Object can be exported. The Rights Issuer also specifies to which DRM system or content protection scheme the DRM content is allowed to be exported. The Rights Issuer MAY permit export to more than one system.

The basic concept of export from OMA DRM to another DRM system or content protection scheme is specified in this document. OMA does not specify the exact rules for transcribing Rights Objects to the other protection mechanisms. It is the responsibility of appropriate bodies governing the use of those protection systems to define the necessary mechanisms for transcribing OMA DRM Rights Objects. Figure XXX below explains the principle.

[image: image15.emf]Secure Environment

OMA Compliant Device/Module

Trust Assured by OMA DRM CA

Other DRM Compliant Device/Module

Trust Assured by Other DRM CA

OMA DRM Agent

Rights

Content

Secrets

Other DRM Agent

Rights

Content

Secrets

Should be transcribed

securely & consistently

Should be transferred

securely

<<Figure XXX – Exporting from OMA DRM >>
Export Modes

The Rights Issuer can specify if the DRM content and Rights Object are available on the original device after the export (“copy”) or are permanently removed following the export (“move”).

In the case of “copy”, the DRM content and Rights Object remain on the original device and available for rendering following the export. The Rights Issuer MAY specify the number of times the “copy” export is permitted. The original Rights Object is exported without state information if it is a stateful Rights Object and MUST remain unchanged on the original device after the export.

In the case of “move”, the original Rights Object becomes permanently unusable on the original device, after exporting is conducted. The Rights Object MUST be exported with the current state information at the time of the export if it is a stateful Rights Object. That is, if a stateful right has been partially consumed, only the remaining portion is exported. The Content Object MAY remain on the original device.

In either mode, the <export> permission MUST NOT be transcribed into the other DRM system or content protection scheme. This restriction prevents further export once the content is protected by the other DRM system.

Secure Environment

During the transcription of rights and the transferring of content to the other DRM system, it is necessary to decrypt the Content Object and Rights Object so they can be protected according the security model of the other DRM system. It is imperative that the export operation be conducted within a secure environment.

The two DRM agents, the OMA DRM agent and the DRM agent of the external DRM system, may reside in a single device or on different devices. But these two agents and the data channel between them must be implemented in a secure manner.

Compatibility with other DRM systems

The targeted DRM system may not support all of the capabilities of OMA DRM. Some potential areas of incompatibility include:

· Content Types

· OMA REL usage permissions and constraints

· Multiple Rights Objects for a single content

· Rights for multiple content objects in a single Rights Object

This section defines some general rules to minimize incompatibilities when exporting to non-OMA DRM systems. The detailed rules for the transcription of OMA Rights Objects to those of another DRM system are specific to the target system and, therefore, are not part this document.

During discovery and download of content for future export, the best possible content and rights should be provided to the device according to device capability, the capability of the other DRM system, and user preferences. This information MAY be indicated to the Content Issuer using UAProf as specified in section 5.2.

When creating a Rights Object for Export (i.e. <export> permission is included), the Rights Issuer SHOULD construct the Rights Object so that all the permissions and constraints within it are supported by the other DRM system. All permissions and constraints in the original Rights Object MUST be transcribed provided they are supported in the target DRM system.

As described in section 7.2, a single Rights Object can contain rights for multiple content objects either within a multipart DCF or separate DCFs. The <export> permission is applied to the entire Rights Object so that when such a Rights Object is exported, each associated content object MUST also be exported.

A single content object may have more than one corresponding Rights Object. If the User wishes to export this content object, all Rights Objects with permission to export to the targeted DRM system MUST also be exported. If the target DRM system supports multiple rights for a single content object, multiple rights in the original Rights Object MUST be transcribed. If the target DRM system does not support multiple rights for a single content object, the multiple rights MAY be merged into one Rights Object and then transcribed.

Streaming to other devices

Another form of export allows the user to stream DRM content from the original device to a rendering device (i.e. headphones) for immediate playback. The content MUST be streamed over a copy protected medium where the transmission protocol between the devices ensures that the DRM content cannot be copied.

The general rules above in terms of transcribing the content and rights hold true in this case as well.

When <export> permissions are granted and the target system is a link protection scheme, it is understood that a transient copy is made to facilitate rendering on the target device. The appropriate signaling should be used to indicate to the target DRM/protection system, that the streamed content is used only for rendering purposes.

11. Remote Storage
NEED TO REVISE BASED ON THE DOMAIN FUNCTIONALITY. – Is there still a need for this chapter?
Discuss on telcon.
Because Devices have a limited amount of storage space in which to store Protected Content and Rights Objects, users may desire to move Protected Content and Rights Objects off the device, e.g. to removeable memory, a personal computer, or a network store to make room for new Protected Content and Rights Objects. At some later point in time, they may want to retrieve said Protected Content and Rights Objects from the remote storage back onto the Device store.

As explained in Section 6 of this specification, both the Protected Content and Rights Objects are protected and bound to a specific Device. For this reason, Protected Content and Rights Objects MAY be allowed to leave the device provided the following conditions are met:

· The Rights Object MUST not contain any stateful constraints. Stateful constraints include <interval>, <count>, and <accumulated> as defined in [DRMREL-v2].

· The Protected Content and the Rights Objects MUST be in a protected form, meaning they cannot be accessed by any other device than the original intended Device to which the rights were issued.

12. Proxy / Store & Forward

Protected Content can be purchased and downloaded to devices using other devices either as connection proxies, or store and forward devices. The Proxy and Store & Forward devices act as intermediaries to assist the target device to purchase and download content and Rights Objects. These mechanisms enable a portable, mobile device that does not have inherent network connectivity to acquire content and associated rights. In the Store & Forward mechanism, it enables the Rights Issuer to provide the content and rights to a Store & Forward device such as a PC for a later transfer to a consuming device. This ensures that the usage models take advantage of the established content browsing and purchase methods on the Internet.
12.1 Proxy

In a Proxy usage scenario, the connectivity capability of one device is utilized in a transparent manner by another device to acquire content and associated rights. This is essentially the “modem” usage scenario where, for example, a mobile phone and a portable music player are connected over Blue Tooth and the mobile phone’s connectivity to the network is utilized to reach Content Issuers and Rights Issuers for the purposes of acquiring content and rights. The target device is the one that participates in the content browse, purchase and rights acquisition in this scenario.

The Proxy Devices must conform to the specification as indicated in the SCR tables in Appendix ??.
Editor’s Note: Create a SCR table for Proxy devices

The target device or the consuming device MUST be OMA DRM Conformant.

More TBD, after Berlin Meeting

12.2 Store & Forward

The Store and Forward device can purchase content by providing the necessary credentials for charging purposes and in addition providing the identity of the target device so that the content can be tailored for the specific device, and the rights can be protected so that the target device is the only one that can make use of it.

The Store & Forward device needs to implement the necessary download mechanisms, and MUST conform to the specification as indicated in the SCR tables in Appendix ??.
Editor’s Note: Create a SCR table for Store & Forward devices

The target device or the consuming device MUST be OMA DRM Conformant.

More TBD, after Berlin Meeting

13. Binding Rights to User Identities

As specified with [DRMREL-v2], the <Individual> element specifies the individual to whom the content is bound. It does so by binding content to the user identity specified via its <context> child element. Within an <individual> element there are two formats for the value of the <uid> element of the child <context> element:

(ii) “IMSI:xxxxxxxxxx” where xxxxxxxxxx represents the IMSI that the content is bound to.

(iii) “WIM:xxxxxxxxxxxxxxxxxxxx where xxxxxxxxxxxxxxxxxxxx represents the PKC_Id that the content is bound to.

13.1 IMSI uid

When the <uid> element of a child <context> element of an <individual> element specifies an IMSI the DRM agent MUST observe the following behaviour.

When the associated content is selected for rendering the DRM agent MUST check that the IMSI on the currently installed SIM/USIM (as stored within EFIMSI elementary file, which is defined in [3GPP TS 11.11] and [3GPP TS 31.102]) matches the IMSI specified within the value of <uid> <uid> element.

Additionally the DRM agent MUST check that the SIM/USIM is not invalid. A SIM/USIM is deemed invalid if:

The device has received an AUTHENTICATION REJECT message (as defined in [3GPP TS 24.008]) in the case of the circuit switched domain authentication.

Or:

The device has received an AUTHENTICATION AND CIPHERING REJECT message (as defined in [3GPP TS 24.008]) in the case of the packet switched domain authentication.

The SIM/USIM MUST be considered invalid until the Device is switched off or the SIM/USIM is removed.

If a SIM/USIM is deemed to be not invalid and the IMSI of the currently installed SIM/USIM matches that specified in the <uid> element, as specified above, then the <permission> may be exercised.

13.2 WIM uid

13.2.1 DRM Agent behavior

When the <uid> element of a child <context> element of an <individual> element specifies a PKC_ID the DRM agent MUST observe the following behaviour.

1. Retrieve the user certificate from the WIM [WIM], identified by PKC_ID i.e. the value of PKC_ID matches with the value of CommonCertificateAttributes.certHash field from the user certificate CDF entry,

2. Compute a hash (e.g. thumbprint) over the user certificate. The hash is calculated over the DER encoding of the complete certificate and sha1-hashing algorithm MUST be used,
3. Check that this hash (e.g. thumbprint) matches with the value of PKC_ID,

Go to step 4 is the result of the check is successful. If unsuccessful, the permission MUST NOT be exercised.

4. Generate a 20 bytes challenge value,

5. Ensure that the rights to access signature key are granted,

6. Request the WIM to sign the challenge using the private key associated with the identified user certificate,

7. Verify the signature using the user certificate.

If the verification of the signature is successful then the <permission> MUST be exercised.

13.2.2 Support for WIM uid

The DRM agent MUST support User certificate for authentication as defined in Appendix D “Error! Reference source not found.”

The said user certificate MUST be stored locally in the WIM i.e., the logical record of the WIM CDF that corresponds to that certificate makes use of the path identifier reference choice. In addition it MUST provide the optional field CommonCertificateAttributes.certHash.

The use of the private key associated to the said user certificate MUST be protected by the PIN-G i.e., the logical record of the WIM PrKDF that corresponds to that key provides a commonObjectAttributes.authId field that identifies the PIN-G authentication object.

To optimise (i.e. save certificate hashing operation) the next procedures that make use of the said user certificate, it is RECOMENDED that once the DRM agent successfully passed the step 3 it stores the trusted couple (user certificate, user certificate hash (e.g. thumbprint)) in its local storage area. Thus, the DRM agent MAY resume the sequence, starting from step 4 and making use of the user certificate from its local storage area to perform step 7 i.e., selected by PKC_iD == user certificate hash (e.g. thumbprint).

Interactions between the DRM agent and the WIM are described in Appendix G “Error! Reference source not found.”

14. Security Considerations

[RP: Should this be removed? Did the group decide that we want to say something about this in the normative section of the spec? Or, is it something we provide in the Appendix? Or, should this not be a separate chapter?]
14.1 Protection of key storage

[RP: If we end up saying something about this in the specification, would it be along the lines below ?:
The protection measures provided for private keys are a critical factor in maintaining the DRM system security. Failure of client implementations and Rights Issuers to protect their private keys will seriously compromise the system security. Existence of un-authorized/cloned Rights Issuers and client devices will break the basic assumptions around the DRM security model prescribed in this specification.

[RP: If the compromise is detected, do we specify how it is overcome? Given the complexity of recovering after such a compromise, we should probably say something about this issue in the spec. Especially around technical and/or administrative measures that should be taken to protect the private keys.]
14.2 Protocol security features

[Editor Note: Need to add a table here to capture the type of protection afforded to each of the components of the ROAP messages]

[Editor Note: the following information should be updated after discussion in Berlin]
a> - Authentication of RI and D

b> - Protocol integrity protection

d> - Derivation/transport of REK

e> - RO integrity

f> - Authentication of origin of RO

g> - Proof of purchase of RO

h> - (Non-repudiation of order)

e and f is solved by having the RO signed.
14.2.1 4-pass

 4-pass achieves a,b, d,g,h

a> signature on R_D by RI in 34 sent in 4 and verified in 45.

b> …

c> …

14.2.2 2-pass

2-pass PK achieves a,b,d,g,h

14.2.3 1-pass

1-pass achieves a (of RI),b,d, (it all assumes synched clocks)
14.3 Secure Time Source

 [Given that we have decided on requiring Secure and Synchronized time, we need to generate text here to guide the device implementations.]
Appendix A. ROAP Schema

<?xml version="1.0" encoding="UTF-8"?>

<schema

 targetNamespace="urn:oma:bac:dldrm:roap-20031217"

 xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:roap="urn:oma:bac:dldrm:roap-20031217"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"

 elementFormDefault="unqualified"

 attributeFormDefault="unqualified">

<import namespace="http://www.w3.org/2000/09/xmldsig#"

 schemaLocation="http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/xmldsig-core-schema.xsd"/>

<import namespace="http://www.w3.org/2001/04/xmlenc#"

 schemaLocation="http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/xenc-schema.xsd"/>

<!-- Basic Types -->

<complexType name="Request" abstract="true"/>

<complexType name="Response" abstract="true">

 <attribute name="status" type="roap:Status" use="required"/>

</complexType>

<simpleType name="Status">

 <restriction base="string">

 <enumeration value="Success"/>

 <enumeration value="UnknownError"/>

 <enumeration value="Abort"/>

 <enumeration value="NotSupported"/>

 <enumeration value="AccessDenied"/>

 <enumeration value="NotFound"/>

 <enumeration value="MalformedRequest"/>

 <enumeration value="UnknownRequest"/>

 <enumeration value="UnknownCriticalExtension"/>

 <enumeration value="UnsupportedVersion"/>

 <enumeration value="UnsupportedAlgorithm"/>

 <enumeration value="NoCertificateChain"/>

 <enumeration value="SignatureError"/>

 <enumeration value="DeviceTimeError"/>

 <enumeration value="InvalidRegistration"/>

 <enumeration value="InvalidDomain"/>

 <enumeration value="DomainFull"/>

 </restriction>

</simpleType>

<complexType name="Extensions">

 <sequence maxOccurs="unbounded">

 <element name="extension" type="roap:Extension"/>

 </sequence>

</complexType>

<complexType name="Extension" abstract="true">

 <attribute name="critical" type="boolean"/>

</complexType>

<!-- ROAP extensions -->

<!-- No need for OCSPResponse to be sent -->

<!-- Mainly for use in the 2-pass RO Request protocol -->

<complexType name="NoOCSPResponse">

 <complexContent>

 <extension base="roap:Extension">

 <attribute name="NoOCSPResponse" type="boolean"/>

 </extension>

 </complexContent>

</complexType>

<!-- No need for receiving party's certificate chain to be sent -->

<!-- Mainly for use in the 2-pass RO Request protocol -->

<complexType name="PeerKeyIdentifier">

 <complexContent>

 <extension base="roap:Extension">

 <sequence>

 <element name="identifier" type="roap:KeyIdentifier"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

<!-- No need for inclusion of OCSP responder certificates -->

<!-- Mainly for use in the 2-pass RO Request protocol -->

<complexType name="OCSPKeyIdentifier">

 <complexContent>

 <extension base="roap:Extension">

 <sequence>

 <element name="identifier" type="roap:KeyIdentifier"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

<!-- Loyalty program information -->

<!-- Mainly for use in two-pass RO Request protocol-->

<complexType name="TransactionIdentifier">

 <complexContent>

 <extension base="roap:Extension">

 <sequence>

 <element name="id" type="string"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

<!-- Certificate chain caching capabilities extension -->

<!-- (Device signals support of the extension, RI signals if it will -->

<!-- store the device's certificates) -->

<complexType name="CertificateCaching">

 <complexContent>

 <extension base="roap:Extension">

 <attribute name="certCachingCapabilities" type="boolean"/>

 </extension>

 </complexContent>

</complexType>

<!-- Basic types to identify entities -->

<complexType name="Identifier">

 <choice>

 <element name="keyIdentifier" type="roap:KeyIdentifier"/>

 <any namespace="##other" processContents="strict"/>

 </choice>

</complexType>

<complexType name="KeyIdentifiers">

 <sequence maxOccurs="unbounded">

 <element name="keyIdentifier" type="roap:KeyIdentifier"/>

 </sequence>

</complexType>

<complexType name="KeyIdentifier" abstract="true"/>

<!-- SHA-1 hash of complete DER-encoded subjectPublicKeyInfo from -->

<!-- key holder's certificate -->

<complexType name="X509SPKIHash">

 <complexContent>

 <extension base="roap:KeyIdentifier">

 <sequence>

 <element name="hash" type="base64Binary"/>

 </sequence>

 <attribute name="hashAlgorithm" type="anyURI"/>

 </extension>

 </complexContent>

</complexType>

<!-- The corresponding ds:KeyInfo type -->

<element name="X509SPKIHash" type="base64Binary"/>

<!-- Domain Identifier -->

<!-- Last two characters (decimal digits) shall be interpreted as -->

<!-- domain generation -->

<simpleType name="DomainIdentifier">

 <restriction base="string">

 <pattern value=".{1,18}\d{2}"/>

 </restriction>

</simpleType>

<!-- Rights Object Definitions -->

<!-- Globally unique identifiers -->

<simpleType name="GUID">

 <restriction base="string">

 <minLength value="12"/>

 <maxLength value="35"/>

 </restriction>

</simpleType>

<!-- Just temporary - defined in REL -->

<complexType name="RELElement">

 <sequence>

 <element name="relData" type="string"/>

 </sequence>

 <attribute name="id" type="ID"/>

</complexType>

<complexType name="ROPayload">

 <sequence>

 <element name="version" type="roap:Version"/>

 <element name="riID" type="roap:Identifier"/>

 <element name="rel" type="roap:RELElement"/><!-- Temorary -->

 <element name="signature" type="ds:SignatureType" minOccurs="0"/>

 <element name="guid" type="roap:GUID" minOccurs="0"/>

 <element name="timeStamp" type="dateTime" minOccurs="0"/>

 <element name="encKey" type="xenc:EncryptedKeyType"/>

 </sequence>

 <attribute name="domainRO" type="boolean"/>

 <attribute name="id" type="ID"/>

</complexType>

<!-- May be sent standalone (domain ROs) -->

<element name="protectedRO" type="roap:ProtectedRO"/>

<complexType name="ProtectedRO">

 <sequence>

 <element name="ro" type="roap:ROPayload"/>

 <element name="mac" type="ds:SignatureType"/>

 </sequence>

</complexType>

<!-- Registration protocol -->

<!-- ROAP-DeviceHello -->

<element name="deviceHello" type="roap:DeviceHello"/>

<complexType name="DeviceHello">

 <annotation>

 <documentation xml:lang="en">

 Message sent from Device to RI to establish a security

 association.

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Request">

 <sequence>

 <element name="version" type="roap:Version"/>

 <element name="deviceID" type="roap:Identifier"

 maxOccurs="unbounded"/>

 <element name="supportedAlgorithm" type="anyURI"

 minOccurs="0" maxOccurs="unbounded"/>

 <element name="extensions" type="roap:Extensions"

 minOccurs="0"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

<complexType name="Version">

 <sequence>

 <element name="major" type="nonNegativeInteger"/>

 <element name="minor" type="nonNegativeInteger"/>

 </sequence>

</complexType>

<!-- ROAP-RIHello -->

<element name="riHello" type="roap:RIHello"/>

<complexType name="RIHello">

 <annotation>

 <documentation xml:lang="en">

 Message sent from RI to Device in response to a DeviceHello.

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Response">

 <sequence minOccurs="0">

 <element name="selectedVersion" type="roap:Version"/>

 <element name="riID" type="roap:Identifier"/>

 <element name="selectedAlgorithms" type="anyURI" minOccurs="0"

 maxOccurs="unbounded"/>

 <element name="riNonce" type="roap:Nonce"/>

 <element name="trustedAuthorities" type="roap:KeyIdentifiers"

 minOccurs="0"/>

 <element name="serverInfo" type="base64Binary" minOccurs="0"/>

 <element name="extensions" type="roap:Extensions" minOccurs="0"/>

 </sequence>

 <attribute name="sessionId" type="hexBinary" use="required"/>

 </extension>

 </complexContent>

</complexType>

<simpleType name="Nonce">

 <restriction base="base64Binary">

 <minLength value="12"/>

 </restriction>

</simpleType>

<!-- ROAP-RegistrationRequest -->

<element name="registrationRequest" type="roap:RegistrationRequest"/>

<complexType name="RegistrationRequest">

 <annotation>

 <documentation xml:lang="en">

 Message sent from Device to RI to request registration.

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Request">

 <sequence>

 <element name="nonce" type="roap:Nonce"/>

 <element name="time" type="dateTime"/>

 <element name="certificateChain" type="roap:CertificateChain"

 minOccurs="0"/>

 <element name="trustedAuthorities" type="roap:KeyIdentifiers"

 minOccurs="0"/>

 <element name="serverInfo" type="base64Binary" minOccurs="0"/>

 <element name="extensions" type="roap:Extensions" minOccurs="0"/>

 <element name="signature" type="base64Binary"/>

 </sequence>

 <attribute name="sessionId" type="hexBinary" use="required"/>

 </extension>

 </complexContent>

</complexType>

<complexType name="CertificateChain">

 <sequence maxOccurs="unbounded">

 <element name="certificate" type="base64Binary"/>

 </sequence>

</complexType>

<!-- ROAP-RegistrationResponse -->

<element name="registrationResponse" type="roap:RegistrationResponse"/>

<complexType name="RegistrationResponse">

 <annotation>

 <documentation xml:lang="en">

 Message sent from RI to Device in response to a

 registrationRequest message.

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Response">

 <sequence minOccurs="0">

 <element name="certificateChain" type="roap:CertificateChain"

 minOccurs="0"/>

 <element name="ocspResponse" type="base64Binary" minOccurs="0"

 maxOccurs="unbounded"/>

 <element name="extensions" type="roap:Extensions" minOccurs="0"/>

 <element name="signature" type="base64Binary"/>

 </sequence>

 <attribute name="sessionId" type="hexBinary" use="required"/>

 </extension>

 </complexContent>

</complexType>

<!-- RO acquisition protocol -->

<!-- ROAP-RORequest -->

<element name="roRequest" type="roap:RORequest"/>

<complexType name="RORequest">

 <annotation>

 <documentation xml:lang="en">

 Message sent from Device to RI to request an RO.

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Request">

 <sequence>

 <element name="deviceID" type="roap:Identifier"/>

 <element name="domainID" type="roap:DomainIdentifier"

 minOccurs="0" maxOccurs="unbounded"/>

 <element name="riID" type="roap:Identifier"/>

 <element name="nonce" type="roap:Nonce"/>

 <element name="time" type="dateTime"/>

 <element name="roInfo">

 <complexType>

 <sequence maxOccurs="unbounded">

 <element name ="roURL" type="anyURI"/>

 <element name="dcfHash" type="base64Binary" minOccurs="0"/>

 </sequence>

 </complexType>

 </element>

 <element name="certificateChain" type="roap:CertificateChain"

 minOccurs="0"/>

 <element name="extensions" type="roap:Extensions" minOccurs="0"/>

 <element name="signature" type="base64Binary"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

<!-- ROAP-ROResponse -->

<element name="roResponse" type="roap:ROResponse"/>

<complexType name="ROResponse">

 <annotation>

 <documentation xml:lang="en">

 Message sent from RI to Device in response to an RORequest.

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Response">

 <sequence minOccurs="0">

 <element name="deviceID" type="roap:Identifier"/>

 <element name="riID" type="roap:Identifier"/>

 <element name="nonce" type="roap:Nonce"/>

 <element name="protectedRO" type="roap:ProtectedRO"/>

 <element name="certificateChain" type="roap:CertificateChain"

 minOccurs="0"/>

 <element name="ocspResponse" type="base64Binary" minOccurs="0"

 maxOccurs="unbounded"/>

 <element name="extensions" type="roap:Extensions"

 minOccurs="0"/>

 <element name="signature" type="base64Binary"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

<!-- Domain registration protocol -->

<!-- ROAP-JoinDomainRequest -->

<element name="joinDomainRequest" type="roap:DomainRequest"/>

<complexType name="DomainRequest">

 <annotation>

 <documentation xml:lang="en">

 General PDU for sending domain-related requests from a Device to

 an RI.

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Request">

 <sequence>

 <element name="deviceID" type="roap:Identifier"/>

 <element name="riID" type="roap:Identifier"/>

 <element name="nonce" type="roap:Nonce"/>

 <element name="time" type="dateTime"/>

 <element name="domainIdentifier" type="roap:DomainIdentifier"

 maxOccurs="unbounded"/>

 <element name="certificateChain" type="roap:CertificateChain"

 minOccurs="0"/>

 <element name="extensions" type="roap:Extensions"

 minOccurs="0"/>

 <element name="signature" type="base64Binary"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

<!-- ROAP-JoinDomainResponse -->

<element name="joinDomainResponse" type="roap:JoinDomainResponse"/>

<complexType name="JoinDomainResponse">

 <annotation>

 <documentation xml:lang="en">

 Message sent from RI to Device in response to a

 JoinDomainRequest.

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Response">

 <sequence minOccurs="0">

 <element name="deviceID" type="roap:Identifier"/>

 <element name="riID" type="roap:Identifier"/>

 <element name="nonce" type="roap:Nonce"/>

 <element name="domainInfo" type="roap:DomainInfo"/>

 <element name="certificateChain" type="roap:CertificateChain"

 minOccurs="0"/>

 <element name="ocspResponse" type="base64Binary" minOccurs="0"

 maxOccurs="unbounded"/>

 <element name="extensions" type="roap:Extensions"

 minOccurs="0"/>

 <element name="signature" type="base64Binary"/>

 </sequence>

 <attribute name="notMember" type="boolean"/>

 </extension>

 </complexContent>

</complexType>

<complexType name="ProtectedDomainKey">

 <sequence maxOccurs="unbounded">

 <element name="encKey" type="xenc:EncryptedKeyType"/>

 <element name="riID" type="roap:Identifier"/>

 <element name="mac" type="base64Binary"/>

 </sequence>

</complexType>

<complexType name="DomainInfo">

 <sequence>

 <element name="notAfter" type="dateTime"/>

 <element name="domainKey" type="roap:ProtectedDomainKey"

 maxOccurs="unbounded"/>

 </sequence>

</complexType>

<!-- ROAP-LeaveDomainRequest -->

<element name="leaveDomainRequest" type="roap:DomainRequest"/>

<!-- ROAP-LeaveDomainResponse -->

<element name="leaveDomainResponse" type="roap:LeaveDomainResponse"/>

<complexType name="LeaveDomainResponse">

 <annotation>

 <documentation xml:lang="en">

 Message sent from RI to Device in response to a

 leaveDomainRequest

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Response">

 <sequence minOccurs="0">

 <element name="nonce" type="roap:Nonce"/>

 <element name="domainIdentifier" maxOccurs="unbounded"

 type="roap:DomainIdentifier"/>

 <element name="extensions" type="roap:Extensions" minOccurs="0"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

</schema>

Appendix B. ROAP protocol exchange examples

All examples are syntactically correct. Signature, MAC, cipher and digest values are fictitious however.

B.1 Registration Protocol

B.1.1 Device hello

<?xml version="1.0" encoding="UTF-8"?>

<roap:deviceHello

 xmlns:roap="urn:oma:bac:dldrm:roap-20031217"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:oma:bac:dldrm:roap-20031217 ../roap.xsd">

 <version>

 <major>2</major>

 <minor>0</minor>

 </version>

 <deviceID>

 <keyIdentifier xsi:type="roap:X509SPKIHash">

 <hash>vXENc+Um/9/NvmYKiHDLaErK0gk=</hash>

 </keyIdentifier>

 </deviceID>

 <extensions>

 <extension xsi:type="roap:CertificateCaching"

 certCachingCapabilities="true"/>

 </extensions>

</roap:deviceHello>

B.1.2 RI Hello

<?xml version="1.0" encoding="UTF-8"?>

<roap:riHello

 xmlns:roap="urn:oma:bac:dldrm:roap-20031217"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:oma:bac:dldrm:roap-20031217 ../roap.xsd"

 status="Success" sessionId="433211">

 <selectedVersion>

 <major>2</major>

 <minor>0</minor>

 </selectedVersion>

 <riID>

 <keyIdentifier xsi:type="roap:X509SPKIHash">

 <hash>aXENc+Um/9/NvmYKiHDLaErK0fk=</hash>

 </keyIdentifier>

 </riID>

 <riNonce>dsaiuiure9sdwerf</riNonce>

 <trustedAuthorities>

 <keyIdentifier xsi:type="roap:X509SPKIHash">

 <hash>aXENc+Um/9/NvmYKiHDLaErK0fk=</hash>

 </keyIdentifier>

 <keyIdentifier xsi:type="roap:X509SPKIHash">

 <hash>3lkpoi9fceoiuoift45epokifc0poiss</hash>

 </keyIdentifier>

 </trustedAuthorities>

 <extensions>

 <extension xsi:type="roap:CertificateCaching"

 certCachingCapabilities="true"/>

 </extensions>

</roap:riHello>

B.1.3 Registration Request

<?xml version="1.0" encoding="UTF-8"?>

<roap:registrationRequest

 xmlns:roap="urn:oma:bac:dldrm:roap-20031217"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:oma:bac:dldrm:roap-20031217 ../roap.xsd"

 sessionId="433211">

 <nonce>32efd34de39sdwef</nonce>

 <time>2003-12-18T16:20:00Z</time>

 <certificateChain>

 <certificate>miib123121234567</certificate>

 <certificate>miib234124312431</certificate>

 </certificateChain>

 <trustedAuthorities>

 <keyIdentifier xsi:type="roap:X509SPKIHash">

 <hash>432098mhj987fdlkj98lkj098lkjr409</hash>

 </keyIdentifier>

 <keyIdentifier xsi:type="roap:X509SPKIHash">

 <hash>432098ewew5jy6532fewfew4f43f3409</hash>

 </keyIdentifier>

 </trustedAuthorities>

<signature>321ue3ue3ue10ue2109ue1ueoidwoijdwe309u09ueqijdwqijdwq09uwqwqi009</signature>

</roap:registrationRequest>

B.1.4 Registration Response

<?xml version="1.0" encoding="UTF-8"?>

<roap:registrationResponse

 xmlns:roap="urn:oma:bac:dldrm:roap-20031217"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:oma:bac:dldrm:roap-20031217 ../roap.xsd"

 status="Success" sessionId="433211">

 <certificateChain>

 <certificate>miib123121234567</certificate>

 <certificate>miib234124312431</certificate>

 </certificateChain>

 <ocspResponse>fdow9rw0feijfdsojr3w09u3wijfdslkj4sd</ocspResponse>

 <signature>321ue3ue3ue10ue2109ue1ueoidwoijdwe309u09ueqijdwqijdwq09uwqwqi009</signature>

</roap:registrationResponse>

B.1.5 Rights Object Acquisition

B.1.5.1 RO Request

The request is for a device RO.

<?xml version="1.0" encoding="UTF-8"?>

<roap:roRequest

 xmlns:roap="urn:oma:bac:dldrm:roap-20031217"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:oma:bac:dldrm:roap-20031217 ../roap.xsd">

 <deviceID>

 <keyIdentifier xsi:type="roap:X509SPKIHash">

 <hash>vXENc+Um/9/NvmYKiHDLaErK0gk=</hash>

 </keyIdentifier>

 </deviceID>

 <riID>

 <keyIdentifier xsi:type="roap:X509SPKIHash">

 <hash>aXENc+Um/9/NvmYKiHDLaErK0fk=</hash>

 </keyIdentifier>

 </riID>

 <nonce>32efd34de39sdwef</nonce>

 <time>2003-12-17T16:20:00Z</time>

 <roInfo>

 <roURL>http://www.drm-r-us.com/ros?roid=1</roURL>

 </roInfo>

 <certificateChain>

 <certificate>miib123121234567</certificate>

 <certificate>miib234124312431</certificate>

 </certificateChain>

 <signature>321ue3ue3ue10ue2109ue1ueoidwoijdwe309u09ueqijdwqijdwq09uwqwqi009</signature>

</roap:roRequest>

B.1.5.2 RO Response

The response is a device RO.

<?xml version="1.0" encoding="UTF-8"?>

<roap:roResponse

 xmlns:roap="urn:oma:bac:dldrm:roap-20031217"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:oma:bac:dldrm:roap-20031217 ../roap.xsd

 http://www.w3.org/2000/09/xmldsig#

 http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/xmldsig-core-schema.xsd

 http://http://www.w3.org/2001/04/xmlenc#

 http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/xenc-schema.xsd"

 status="Success">

 <deviceID>

 <keyIdentifier xsi:type="roap:X509SPKIHash">

 <hash>vXENc+Um/9/NvmYKiHDLaErK0gk=</hash>

 </keyIdentifier>

 </deviceID>

 <riID>

 <keyIdentifier xsi:type="roap:X509SPKIHash">

 <hash>aXENc+Um/9/NvmYKiHDLaErK0fk=</hash>

 </keyIdentifier>

 </riID>

 <nonce>32efd34de39sdwef</nonce>

 <protectedRO>

 <ro id="RP1">

 <version>

 <major>1</major>

 <minor>0</minor>

 </version>

 <riID>

 <keyIdentifier xsi:type="roap:X509SPKIHash">

 <hash>aXENc+Um/9/NvmYKiHDLaErK0fk=</hash>

 </keyIdentifier>

 </riID>

 <rel id="REL1">

 <relData>This is where the REL goes...</relData>

 </rel>

 <encKey Id="K_REK_and_K_MAC">

 <xenc:EncryptionMethod

 Algorithm="http://www.rsasecurity.com/rsalabs/xml/pkcs-1#rsaes-kem-kdf2-kw-aes128"/>

 <ds:KeyInfo>

 <roap:X509SPKIHash>vXENc+Um/9/NvmYKiHDLaErK0gk=</roap:X509SPKIHash>

 </ds:KeyInfo>

 <xenc:CipherData>

 <xenc:CipherValue>231jks231dkdwkj3jk321kj321j321kj423j342h213j321jh321jh2134jhk3211fdslfdsopfespjoefwopjsfdpojvct4w925342a</xenc:CipherValue>

 </xenc:CipherData>

 </encKey>

 </ro>

 <mac>

 <ds:SignedInfo>

 <ds:CanonicalizationMethod

 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>

 <ds:SignatureMethod

 Algorithm="http://www.w3.org/2000/09/xmldsig#hmac-sha1"/>

 <ds:Reference URI="#RP1">

 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 <ds:DigestValue>j6lwx3rvEPO0vKtMup4NbeVu8nk=</ds:DigestValue>

 </ds:Reference>

 </ds:SignedInfo>

 <ds:SignatureValue>j6lwx3rvEPO0vKtMup4NbeVu8nk=</ds:SignatureValue>

 <ds:KeyInfo>

 <ds:RetrievalMethod URI="#K_REK_and_K_MAC"/>

 </ds:KeyInfo>

 </mac>

 </protectedRO>

 <ocspResponse>miibewqoidpoidsa</ocspResponse>

 <extensions>

 <extension xsi:type="roap:TransactionIdentifier">

 <id>32109321093209-2121</id>

 </extension>

 </extensions>

 <signature>d93e5fue3susdskjhkjedkjrewh53209efoihfdse10ue2109ue1</signature>

</roap:roResponse>

B.1.6 Domain RO

The domain RO may be sent separately, as here, or within a ROAP-ROResponse.

<?xml version="1.0" encoding="UTF-8"?>

<roap:protectedRO

 xmlns:roap="urn:oma:bac:dldrm:roap-20031217"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:oma:bac:dldrm:roap-20031217 ../roap.xsd

 http://www.w3.org/2000/09/xmldsig#

 http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/xmldsig-core-schema.xsd

 http://http://www.w3.org/2001/04/xmlenc#

 http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/xenc-schema.xsd">

 <ro id="RP1" domainRO="true">

 <version>

 <major>1</major>

 <minor>0</minor>

 </version>

 <riID>

 <keyIdentifier xsi:type="roap:X509SPKIHash">

 <hash>aXENc+Um/9/NvmYKiHDLaErK0fk=</hash>

 </keyIdentifier>

 </riID>

 <rel id="REL1">

 <relData>This is where the REL goes...</relData>

 </rel>

 <signature>

 <ds:SignedInfo>

 <ds:CanonicalizationMethod

 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>

 <ds:SignatureMethod

 Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-pss-default"/>

 <ds:Reference URI="#REL1">

 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 <ds:DigestValue>j6lwx3rvEPO0vKtMup4NbeVu8nk=</ds:DigestValue>

 </ds:Reference>

 </ds:SignedInfo>

 <ds:SignatureValue>j6lwx3rvEPO0vKtMup4NbeVu8nk=</ds:SignatureValue>

 <ds:KeyInfo>

 <roap:X509SPKIHash>aXENc+Um/9/NvmYKiHDLaErK0fk=</roap:X509SPKIHash>

 </ds:KeyInfo>

 </signature>

 <encKey Id="K_REK_and_K_MAC">

 <xenc:EncryptionMethod

 Algorithm="http://www.w3.org/2001/04/xmlenc#kw-aes128"/>

 <ds:KeyInfo>

 <roap:DomainIdentifier>Domain-XYZ-01</roap:DomainIdentifier>

 </ds:KeyInfo>

 <xenc:CipherData>

 <xenc:CipherValue>32fdsorew9ufdsoi09ufdskrew9urew0uderty5346wq</xenc:CipherValue>

 </xenc:CipherData>

 </encKey>

 </ro>

 <mac>

 <ds:SignedInfo>
 <ds:CanonicalizationMethod

 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>

 <ds:SignatureMethod

 Algorithm="http://www.w3.org/2000/09/xmldsig#hmac-sha1"/>

 <ds:Reference URI="#RP1">

 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 <ds:DigestValue>j6lwx3rvEPO0vKtMup4NbeVu8nk=</ds:DigestValue>

 </ds:Reference>

 </ds:SignedInfo>

 <ds:SignatureValue>j6lwx3rvEPO0vKtMup4NbeVu8nk=</ds:SignatureValue>

 <ds:KeyInfo>

 <ds:RetrievalMethod URI="#K_REK_and_K_MAC"/>

 </ds:KeyInfo>

 </mac>

</roap:protectedRO>

B.1.7 Domain Join Protocol

B.1.7.1 Join Domain Request

<?xml version="1.0" encoding="UTF-8"?>

<roap:joinDomainRequest

 xmlns:roap="urn:oma:bac:dldrm:roap-20031217"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:oma:bac:dldrm:roap-20031217 ../roap.xsd">

 <deviceID>

 <keyIdentifier xsi:type="roap:X509SPKIHash">

 <hash>vXENc+Um/9/NvmYKiHDLaErK0gk=</hash>

 </keyIdentifier>

 </deviceID>

 <riID>

 <keyIdentifier xsi:type="roap:X509SPKIHash">

 <hash>aXENc+Um/9/NvmYKiHDLaErK0fk=</hash>

 </keyIdentifier>

 </riID>

 <nonce>32efd34de39sdwef</nonce>

 <time>2003-12-18T16:20:00Z</time>

 <domainIdentifier>Domain-XYZ-01</domainIdentifier>

 <certificateChain>

 <certificate>miib123121234567</certificate>

 <certificate>miib234124312431</certificate>

 </certificateChain>

 <signature>321ue3ue3ue10ue2109ue1ueoidwoijdwe309u09ueqijdwqijdwq09uwqwqi009</signature>

</roap:joinDomainRequest>

B.1.7.2 Join Domain Response

<?xml version="1.0" encoding="UTF-8"?>

<roap:joinDomainResponse

 xmlns:roap="urn:oma:bac:dldrm:roap-20031217"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:oma:bac:dldrm:roap-20031217 ../roap.xsd

 http://www.w3.org/2000/09/xmldsig#

 http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/xmldsig-core-schema.xsd

 http://http://www.w3.org/2001/04/xmlenc#

 http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/xenc-schema.xsd"

 status="Success">

 <deviceID>

 <keyIdentifier xsi:type="roap:X509SPKIHash">

 <hash>vXENc+Um/9/NvmYKiHDLaErK0gk=</hash>

 </keyIdentifier>

 </deviceID>

 <riID>

 <keyIdentifier xsi:type="roap:X509SPKIHash">

 <hash>aXENc+Um/9/NvmYKiHDLaErK0fk=</hash>

 </keyIdentifier>

 </riID>

 <nonce>32efd34de39sdwef</nonce>

 <domainInfo>

 <notAfter>2004-12-22T03:02:00Z</notAfter>

 <domainKey>

 <encKey Id="Domain-XYZ-01">

 <xenc:EncryptionMethod

 Algorithm="http://www.rsasecurity.com/rsalabs/xml/pkcs-1#rsaes-kem-kdf2-kw-aes128"/>

 <ds:KeyInfo>

 <roap:X509SPKIHash>vXENc+Um/9/NvmYKiHDLaErK0gk=</roap:X509SPKIHash>

 </ds:KeyInfo>

 <xenc:CipherData>

 <xenc:CipherValue>231jks231dkdwkj3jk321kj321j321kj423j342h213j321jh321jh2134jhk3211fdslfdsopfespjoefwopjsfdpojvct4w925342a</xenc:CipherValue>

 </xenc:CipherData>

 </encKey>

 <riID>

 <keyIdentifier xsi:type="roap:X509SPKIHash">

 <hash>aXENc+Um/9/NvmYKiHDLaErK0fk=</hash>

 </keyIdentifier>

 </riID>

 <mac>ewqrewoewfewohffohr3209832r3</mac>

 </domainKey>

 </domainInfo>

 <certificateChain>

 <certificate>MIIB223121234567</certificate>

 <certificate>MIIB834124312431</certificate>

 </certificateChain>

 <ocspResponse>miibewqoidpoidsa</ocspResponse>

 <signature>d93e5fue3ue10ue2109ue1ueoidwoijdwe309u09ueqijdwqijdwq09uwqwqi009</signature>

</roap:joinDomainResponse>

B.1.8 Leave Domain Protocol

B.1.8.1 Leave Domain Request

<?xml version="1.0" encoding="UTF-8"?>

<roap:leaveDomainRequest

 xmlns:roap="urn:oma:bac:dldrm:roap-20031217"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:oma:bac:dldrm:roap-20031217 ../roap.xsd">

 <deviceID>

 <keyIdentifier xsi:type="roap:X509SPKIHash">

 <hash>vXENc+Um/9/NvmYKiHDLaErK0gk=</hash>

 </keyIdentifier>

 </deviceID>

 <riID>

 <keyIdentifier xsi:type="roap:X509SPKIHash">

 <hash>aXENc+Um/9/NvmYKiHDLaErK0fk=</hash>

 </keyIdentifier>

 </riID>

 <nonce>32efd34de39sdwef</nonce>

 <time>2003-12-18T16:20:00Z</time>

 <domainIdentifier>Domain-XYZ-01</domainIdentifier>

 <certificateChain>

 <certificate>miib123121234567</certificate>

 <certificate>miib234124312431</certificate>

 </certificateChain>

<signature>321ue3ue3ue10ue2109ue1ueoidwoijdwe309u09ueqijdwqijdwq09uwqwqi009</signature>

</roap:leaveDomainRequest>

B.1.8.2 Leave Domain Response

<?xml version="1.0" encoding="UTF-8"?>

<roap:leaveDomainResponse

 xmlns:roap="urn:oma:bac:dldrm:roap-20031217"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:oma:bac:dldrm:roap-20031217 ../roap.xsd"

 status="Success">

 <nonce>32efd34de39sdwef</nonce>

 <domainIdentifier>Domain-XYZ-01</domainIdentifier>

</roap:leaveDomainResponse>

Appendix C. Backward Compatibility with Release 1.0 (Normative)

Devices that support OMA DRM v2 MUST support the mandatory features of OMA DRM V1 [DRM]. To ensure consistent, interoperable behaviour, OMA DRM v2 Devices MUST behave in the following manner when receiving OMA DRM v1 Content.

	DRM v2 Client receives the following DRM v1 content type
	DRM v1 method not supported
	DRM v1 method is supported

	Forward Lock content
	n/a (DRM v1 Forward Lock is mandatory)
	Handle content as defined in [DRM]

	Combined Delivery content
	Handle content as defined in [DRM]
	Handle content as defined in [DRM]

	Separate Delivery Content
	MAY notify the user

Ed Note: Consider whether device can request v2 RO in this case.
	Handle content as defined in [DRM]; Upon contacting the CI/RI the device MUST advertise DRM version and supported media types as defined in section 9.1.

Appendix D. Exporting to other DRMs (Informative)

D.1 High-level Example : Exporting to Removable Media

[image: image16.wmf]

Raw

Content

DRM Agent

Dpriv

Dpub

Dcert

Storing

Protected

Content

Rights

Object

Usage

Rules

Protected

Content

Removable

Media

Encrypting RO

Encrypting

content

Usage

Rules

O

ther DRM

Agent

(Non

-

OMA DRM)

Transcri

bing

 RO

Checking export

permission

Decrypting RO

Decrypting

content

Usage

Rules

Rights

Object

Usage

Rules

Usage

Rules

O

ther DRM

Secret

Figure 2. Export
An example of export DRM protected content and rights object to other DRM (non-OMA DRM) system, which has some authorized protection mechanism, is shown above.
1. After Protected Content and protected Rights Object are delivered to a trusted OMA DRM agent, the Protected Content is consumed by the OMA DRM agent according to permissions and constraints described in the protected Rights Object. When consuming the content, OMA DRM agent decrypts the protected RO with DRM agent private key and decrypts the protected content with CEK that is derived from decrypted rights object.

2. When exporting, OMA DRM agent checks permissions described in the rights object whether rights issuer allows the content to be exported to targeted DRM system, whether its content type is appropriate and whether its usage rules are compatible with targeted DRM system.

When user wants to download exportable content and rights issuer notices it in the course of content discovery interaction, it would be expected that both of the Protected Content and RO are suitable for the targeted DRM capability.

3. The raw content and usage rules are transferred from OMA DRM agent to the other DRM agent.

4. The other DRM agent transcribes the compatible usage rules to the other DRM usage rules according to the general rule and the specific rule defined by the other DRM system and Rights Issuer to maintain consistency of the Rights Object.

Sample transcription rules are:
 Any other permissions MUST NOT be granted.
 Any existing constraints MUST NOT be ignored.
 Default permissions and constraints MAY be supplied.

Even stateful Rights Object could be transcribed and exported to other DRM system if those rules allow it.

5. The other DRM agent creates new CEK inside, and encrypts the content with the new CEK and encrypts transcribed usage rules including the CEK with other DRM system’s secret key.

6. The other DRM agent and the removable media authenticate with each other to make sure that they are trusted, and stores the encrypted content and the usage rules onto a removable media according to the other DRM specific format.

7. Then user can pull out the removable media from the device, insert it to other DRM compliant device such as portable music player, to enjoy playing the content.

The two DRM agents, OMA DRM agent and the other DRM agent, may reside in a single device or different devices, but these two agents and data channel between the two have to be implemented in a secure manner according to some compliance rules or robustness rules which may be defined related to a specific service, by Rights Issuers, Service Providers, and Device Manufacturers who participate in the service.

Appendix E. Application to Services (Normative)

E.1 Application to streaming services

The main scope of OMA DRM is protection of downloadable objects, which can by their nature be embedded into DCFs and be delivered under DRM control. This is not immediately possible with streaming media, since streaming media are transported using protocols and mechanisms that do not allow embedding into download DCFs, and also since streams are not per se limited in time and size. Thus, the protected transport of streams and some associated signaling has to be defined separately for streaming media. On the other hand, OMA DRM ROs can be used for streaming services for the definition and transport of rights/permissions, and of content decryption keys.

Thus, the basic concept for the application of OMA DRM to streaming services is that OMA DRM ROs, and the ROAP, are used in the same way as for downloadable objects/DCFs. This is specified in this standard. The exact way of protecting streams, storing streams at a streaming server, and transporting streams to a device (including associated signaling) are not specified in this specification. It is the responsibility of streaming standardization bodies to define appropriate mechanisms that work seamlessly together with the concept laid out in the DRM specification, especially with the RO concept and format. Fig. XXX explains the principle.

[image: image17.emf]rights

issuer

rights

issuer

streaming

content

server

streaming

content

server

protected streams

(transport format and

protection mechanisms

specified by streaming

standardization body;

compatible with OMA

RO specification)

rights object (RO)

(RO format defined

in OMA DRM specification)

rights

issuer

rights

issuer

streaming

content

server

streaming

content

server

protected streams

(transport format and

protection mechanisms

specified by streaming

standardization body;

compatible with OMA

RO specification)

rights object (RO)

(RO format defined

in OMA DRM specification)

Fig. XXX: Generic principle of application of OMA DRM to streaming services

E.1.1. Application to the 3GPP Packet-Switched Streaming Service

Editorial note: this section needs to be updated in accordance with the development of the PSS specs for Rel6.
For the special case of the 3GPP Packet-Switched Streaming Service (PSS) Release 6, i.e., the 3GPP streaming standard [reference to PSS specs], OMA and 3GPP have been working together to define DRM protection of PSS media. The basic principle is the one shown in Fig. XXX, but there are some extensions that consider special features and properties of the PSS standard, namely

· PSS sessions can consist of a mixture of discrete (e.g., JPEG images) and continuous (e.g., H.263 video) media

· There are 3 different methods to initiate a PSS session using different streaming tokens: either a SMIL presentation description, or an SDP session description, or an RTSP URL. A streaming token can get to a device as a download from a server, or by super-distribution from other devices, or by other means like user input of an RTSP URL via the keyboard.

· Time-continuous protected media like audio and video tracks that are stored on a PSS server in the 3GP file format defined by 3GPP can either be downloaded by (progressive) download of the whole 3GP file, or streamed by extraction of protected media tracks from the 3GP file format and transport using real-time transport protocols. OMA has adopted the 3GP file format for protected packetized content as a special DCF, the Packetized DCF (PDCF) [reference to DCF spec]. It should thus be understood that a 3GP file holding encrypted tracks as defined in [3GPP PSS spec] is automatically a valid OMA DRM PDCF [DCF spec].

Fig. XXY gives an overview of the involved entities and data flows for DRM protection of 3GPP PSS sessions and media.

[image: image18.emf]rights

issuer

rights

issuer

3GPP PSS

streaming

content

server

3GPP PSS

streaming

content

server

(2) one or

several RO(s)

[OMA DRM]

download

content

server

download

content

server

content portal/

storefront

content portal/

storefront

backend connection (out of scope for this specification)

(1a) streaming

token

[3GPP PSS]

(3) discrete media

objects embedded

in DCFs

[OMA DRM]

(4a) download of PDCF

[3GPP PSS][OMA DRM]

or

(4b) real-time streaming

of protected

media streams

[3GPP PSS]

(1b) streaming

token

[3GPP PSS]

or

super-distribution

from other device

rights

issuer

rights

issuer

3GPP PSS

streaming

content

server

3GPP PSS

streaming

content

server

(2) one or

several RO(s)

[OMA DRM]

download

content

server

download

content

server

content portal/

storefront

content portal/

storefront

backend connection (out of scope for this specification)

(1a) streaming

token

[3GPP PSS]

(3) discrete media

objects embedded

in DCFs

[OMA DRM]

(4a) download of PDCF

[3GPP PSS][OMA DRM]

or

(4b) real-time streaming

of protected

media streams

[3GPP PSS]

(1b) streaming

token

[3GPP PSS]

or

super-distribution

from other device

Fig. XXY: Application of OMA DRM to the 3GPP Packet-Switched Streaming Service (Release 6). References in brackets indicate where the respective data format or protocol is specified

For a protected PSS presentation, the content provider can confidentiality protect and integrity protect discrete media (images etc.) by embedding them into OMA DCFs. Further, he can confidentiality protect and integrity protect continuous media using the mechanisms defined by 3GPP [reference here, with section number], and storing them in a file in the 3GP file format [reference here], i.e., in a PDCF. The DCFs are stored on a content download server, the protected 3GP files = PDCFs on a 3GPP PSS server. Note that the PDCF can later be used for download or streaming of the included tracks/streams ((4a) or (4b) in Fig. XXY).

All information needed to generate ROs for the DCFs and PDCFs must be conveyed to the rights issuer; how this is done is outside the scope of this specification. This information includes the used content encryption keys for the discrete and continuous media, and usage rights/permissions.

The required steps to initiate, set up, receive, and render a protected 3GPP PSS session are then the following:

(A) A streaming session is initiated via a streaming token, i.e. a SMIL presentation, SDP file, or RTSP URL [3GPP PSS]. The streaming token can arrive to the device by download from a server/content portal/content storefront (see (1a) in Fig. XXY), or by super-distribution (see (1b) in Fig. XXY), by messaging (MMS), or by other means (e.g. an RTSP URL can be manually entered by the user). The streaming token can optionally be embedded into a DCF.

(B) If the streaming token has been acquired directly from a server or portal, the server can initiate the delivery of one or several ROs to the device that contain the keys and rights for the media referenced by the token (see (2) in Fig. XXY). In all other cases, the ROs for protected streams are requested during session setup to the streaming server, and the ROs for protected discrete objects after download of the respective DCFs, see (D)

(C) When the user decides to start the PSS streaming session, she or he executes/launches the streaming token which is delivered to the streaming player. The streaming player evaluates the streaming token.

(D) Depending on the type of streaming token, the following applies:

a. SMIL presentation: Referenced discrete objects are downloaded from the respective download servers (see (3) and (4a) in Fig. XXY). If ROs are not on the device yet they can be acquired at this point, using the RI URL in the DCFs . Referenced streams are set up and started using PSS streaming protocols [3GPP PSS] (see (4b) in Fig. XXY). If ROs are not on the device yet they can be acquired at this point, using the RI URL. Note: SMIL allows to download objects / start streams during a presentation. In this case it may be an implementation optimization to fetch all ROs before starting the presentation.

b. RTSP URL: Referenced streams are set up and started using PSS streaming protocols [3GPP PSS] (see (4b) in Fig. XXY). If ROs are not on the device yet they can be acquired at this point, using the RI URL.

c. SDP: Referenced streams are set up and started using PSS streaming protocols [3GPP PSS] (see (4b) in Fig. XXY). If ROs are not on the device yet they can be acquired at this point, using the RI URL.

(E) Discrete objects (DCFs), downloaded PSS content (PDCFs), and PSS streams are decrypted and rendered subject to the terms and permissions of the respective ROs.

(F) The streaming token can be super-distributed to another device. To be able to receive and render the referenced PSS media content, the receiving device must acquire the respective RO(s).

E.1.2 DCF Packaging of Streaming Session Descriptors (Informative)

The section describes an optional variation of the basic architecture and method for protection of streams using OMA DRM. In this variation, the streaming token / streaming session description is itself packaged into a DCF. This is illustrated in Figure XXZ.

[image: image19.emf]rights

issuer

rights

issuer

3GPP PSS

streaming

content

server

3GPP PSS

streaming

content

server

(2) one or

several RO(s)

[OMA DRM]

download

content

server

download

content

server

content portal/

storefront

content portal/

storefront

backend connection (out of scope for this specification)

(1a) streaming token

embedded in DCF

[3GPP PSS][OMA DRM]

(3) discrete media

objects embedded

in DCFs

[OMA DRM]

(4a) download of PDCF

[3GPP PSS][OMA DRM]

or

(4b) real-time streaming

of protected

media streams

[3GPP PSS]

(1b) streaming token

embedded in DCF

[3GPP PSS][OMA DRM]

or

super-distribution

from other device

rights

issuer

rights

issuer

3GPP PSS

streaming

content

server

3GPP PSS

streaming

content

server

(2) one or

several RO(s)

[OMA DRM]

download

content

server

download

content

server

content portal/

storefront

content portal/

storefront

backend connection (out of scope for this specification)

(1a) streaming token

embedded in DCF

[3GPP PSS][OMA DRM]

(3) discrete media

objects embedded

in DCFs

[OMA DRM]

(4a) download of PDCF

[3GPP PSS][OMA DRM]

or

(4b) real-time streaming

of protected

media streams

[3GPP PSS]

(1b) streaming token

embedded in DCF

[3GPP PSS][OMA DRM]

or

super-distribution

from other device

Fig. XXZ: Application of OMA DRM to the 3GPP Packet-Switched Streaming Service (Release 6) with streaming token packaged into DCF. Underlined text denotes differences to Fig. XXY.

With this method, the typical steps to initiate, set up, receive, and render a protected 3GPP PSS session are similar as described in section C.1.1., with a few differences. The differences are outlined below.

(A) Unchanged, see section C.1.1.

(B) If the streaming token has been acquired directly from a server or portal, the server can initiate the delivery of one or several ROs to the device that contain the keys and rights for the media referenced by the token (see (2) in Fig. XXZ). Otherwise, the device can use the RI URL in the streaming token DCF to request rights objects. If the RO or ROs delivered in response to this request contain the keys and rights for all media elements and streams being part of the PSS session associated with the token, no further RO requests are necessary.

(C) Unchanged, see section C.1.1.

(D) Depending on the type of streaming token, the following applies:

a. SMIL presentation: Referenced discrete objects are downloaded from the respective download servers (see (3) and (4a) in Fig. XXZ). Referenced streams are set up and started using PSS streaming protocols [3GPP PSS] (see (4b) in Fig. XXZ).

b. RTSP URL: Referenced streams are set up and started using PSS streaming protocols [3GPP PSS] (see (4b) in Fig. XXZ). Please note that an RTSP URL per se cannot be packaged into a DCF, because there is no MIME type for RTSP URLs. However, a workaround is to package the RTSP URL into a helper file (e.g. a minimal SMIL file), and package the helper file into a DCF.

c. SDP: Referenced streams are set up and started using PSS streaming protocols [3GPP PSS] (see (4b) in Fig. XXZ).

(E) Unchanged, see section C.1.1.

(F) Unchanged, see section C.1.1.

A difference using the optional method is the point in time when ROs are requested/acquired: it is always (including the super-distribution case) possible to request rights when the DCF containing the streaming token is available on the device, and before streaming of content is initiated. If the RO (or ROs) delivered in response contain rights and keys for all media objects and streams used in the respective PSS presentation, no further RO requests are necessary.

Also, the RI can associate permissions or constraints with the streaming token, in addition to constraints on the referenced media objects or streams. For example, for datetime based restrictions on streams, the same restriction could be imposed on the token. If the user tries to use the streaming token after expiry, this is then recognized when the token is executed, and before any communication with the streaming server is set up.

All DCF-associated functionality is applicable to a streaming token packaged into a DCF (e.g., integrity protection of DCF, preview rights URL, etc.).

The described optional method of packaging streaming tokens into DCFs has no implications on the security or protection of the referenced media objects and streams.

Appendix F. Certificate Profiles and Requirements (Normative)

F.1 DRM agent certificates

The profile for DRM agent certificates follows the profile for "User Certificates for Authentication" in [WAPCertProf] with the following modifications:

	Version
	3

	Signature
	RSA with SHA-1

	Serial Number
	Should be less than, or equal to, 20 bytes in length

	Issuer Name
	Must be present and must use a subset of the following naming attributes from [WAPCertProf] – countryName, organizationName, organizationalUnitName, commonName, and stateOrProvinceName.

	Subject Name
	Must be present and must use a subset of the following naming attributes from [WAPCertProf] – countryName, organizationName, organizationalUnitName, commonName, and serialNumber.

The structure and contents of a Device subject name shall be as follows:

countryName=<Country of manufacturer>

organizationName=<Manufacturer company name>

[organizationalUnitName=<Manufacturing location>]

commonName=<Model name>

serialNumber=<Unique identifier for device, given manufacturer's name and model name. Does not have to be the same as the IMEI>

The countryName, organizationName, commonName, and serialNumber naming attributes must be present. The organizationalUnit name may be present. Other attributes are not allowed and must not be included. For all naming attributes of type DirectoryString, the PrintableString or the UTF8String choice must be used.

Note that the maximum length (in octets) for values of these attributes is as follows: countryName – 4 (country code in accordance with ISO/IEC 3166), organizationName, organizationalUnitName, commonName, and serialNumber – 64.
Example:

C="US";O="DRM Devices 'R Us"; CN="DRM Device Mark V"; SN="1234567890"

	Extensions
	The extKeyUsage extension shall be present, and contain (at least) the oma-kp-drmAgent key purpose object identifier:

oma-kp-drmAgent OBJECT IDENTIFIER ::= {oma-kp 2}

CAs are recommended to set this extension to critical.

· If CAs include the keyUsage extension (recommended), then both the digitalSignature bit and the keyEncipherment bit must be set, if the corresponding private key is to be used both for authentication and decryption. Otherwise only the applicable bit shall be set. When present, this extension shall be set to critical.

CAs may include the certificatePolicy extension, indicating the policy the certificate has been issued under, and possibly containing a URI identifying a source of more information about the policy.

CAs are recommended to not include any other extensions, but may, for compliance with [RFC3280], include the authorityKeyIdentifier extension. CAs may also include the authorityInfoAccess extension from [RFC3280] for OCSP responder navigation purposes.

CAs must not include any other critical extensions.

RI implementations MUST meet all requirements on entities processing user certificates defined in [WAPCertProf]. In addition, RIs:

· MUST be able to process DRM agent certificates with serial numbers 20 bytes long; and

· MUST recognize and require the presence of the oma-kp-drmAgent object identifier defined above in the extKeyUsage extension in DRM agent certificates.

F.2: Rights Issuer certificates

The profile for RI certificates follows the profile for "X.509-compliant server certificate" in [WAPCertProf] with the following modifications:

	Signature
	Must be RSA with SHA-1

	Serial Number
	Should be less than, or equal to, 20 bytes in length

	Issuer Name
	As specified above for DRM Agent Certificates

	Subject Name
	Must be present and must use a subset of the following naming attributes from [WAPCertProf] – countryName, stateOrProvinceName, localityName, organizationName, organizationalUnitName, and commonName.

The structure and contents of a Rights Issuer subject name shall be as follows:

countryName=<Country of operation>

[stateOrProvinceName=<State/Province>]

[localityName=<City>]

organizationName=<RI company name>

[organizationalUnitName=<RI subsidiary/location>]

commonName=<RI company name> "OMA Rights Issuer" [<serNo>]

(For the commonName attribute, the <serNo> string is specified when a given organization has several RIs.)

The countryName, organizationName, and commonName naming attributes must be present. The stateOrProvinceName, localityName, and/or organizationalUnitName naming attributes may be present. Other attributes are not allowed and must not be included. For all naming attributes of type DirectoryString, the PrintableString or the UTF8String choice must be used.

Note that the maximum length (in octets) for values of these attributes is as follows: countryName – 4, stateOrProvinceName and localityName – 128, organizationName, organizationalUnitName, and commonName – 64.
Example:

C="US";O="ROs for everyone"; CN="ROs for everyone OMA Rights Issuer"

	Extensions
	The extKeyUsage extension shall be present, and contain (at least) the oma-kp-rightsIssuer key purpose object identifier:

oma-kp-rightsIssuer OBJECT IDENTIFIER ::= {oma-kp 1}

CAs are recommended to set this extension to critical.

If the keyUsage extension is present (recommended), then the digitalSignature bit shall be set. When present, this extension shall be set to critical.
CAs may include the certificatePolicy extension, indicating the policy the certificate has been issued under, and possibly containing a URI identifying a source of more information about the policy.

CAs are recommended to not include any other extensions, but may, for compliance with RFC3280, include the authorityKeyIdentifier extension. CAs may also include the authorityInfoAccess extension from [RFC3280] for OCSP responder navigation purposes.
CAs must not include any other critical extensions.

DRM Agents processing Rights Issuer certificates MUST meet the requirements on clients processing "X.509-compliant server certificates" defined in [WAPCertProf]. In addition, DRM agents:

· MUST be able to process RI certificates up to 1500 bytes long;

· MUST be able to process RI certificates with serial numbers 20 bytes long; and

· MUST recognize and require the presence of the oma-kp-rightsIssuer object identifier defined above in the extKeyUsage extension in RI certificates.

F.3 CA certificates

The profile for OMA DRM CA certificates follows the profile for "Authority Certificates" in [WAPCertProf] with the following modifications:

	Signature
	Must be RSA with SHA-1

	Serial Number
	Should be less than, or equal to, 20 bytes in length

RIs and DRM agents MUST meet the requirements on relying parties defined in [WAPCertProf]. Note that this implies, among other things, a requirement on RIs and DRM agents to also recognize the basicConstraints and the subjectKeyIdentifier extensions. In addition, DRM agents:

· MUST be able to process authority certificates up to 1500 bytes long; and

· MUST be able to process authority certificates with serial numbers 20 bytes long.
F.4 OCSP responder certificates

The profile for OCSP responder certificates in [OCSP-MP] applies. RIs and DRM agents MUST meet the requirements on "Authority Certificate" relying parties defined in [WAPCertProf]. In addition, RIs and DRM agents:

· MUST be able to process OCSP responder certificates up to 1500 bytes long;
· MUST be able to process OCSP responder certificates with serial numbers 20 bytes long; and

· MUST recognize the extKeyUsage extension and its id-kp-OCSPSigning object identifier (i.e. support OCSP responder delegation).

F.5 User Certificates for Authentication

The profile specified in [WAPCertProf] MUST be used. Note that this implies a requirement on DRM agents to also recognize the keyUsage, extKeyUsage, certificatePolicies, subjectAltName, and basicConstraints extensions.

Appendix G. Interactions between the DRM agent and the WIM
(Informative)

G.1 WIM operations in exercising “permission” to bind Rights Objects to the user identity

This chapter describes messages sent between the DRM agent and the WIM that come up to exercise permission to bind RO to the user identity procedure. The message flow between the DRM agent and the WIM is described at a functional level, using service primitives.

The preliminary exchanges based on device control and verification related primitives c.f., [WIM] are intentionally omitted from this flowchart but MAY be required.

The DRM agent must set the WIM_GENERIC_RSA Security Environment to perform the signature operations.

[image: image24.wmf]Browser

DL-Agent

DRM-Agent

HTTP Stack

Handler &

Dispatcher

Presentation

Server

selection of content item and offer , get URL

HTTP Get content URL

HTTP Response (DD with ROAP Trigger)

DD with ROAP Trigger

RO Request

RO Response (RO)

Ok

post intall-notification

HTTP post install-notification URI

HTTP Response

get next URL

HTTP get Next URL

HTTP Response (WEB/WAP page)

WEB/WAP page

Rights

Issuer

Content

Issuer

ROAP Trigger (e.g. roap://rightIssuer.com/roap?CO=ae123fg456?RO=ty456uo89)

RO installed

cert

cert

HTTP Response (DD)

DD

get ObjetURI

HTTP Get object URI

HTTP Response (CO)

CO

CO installed

post intall-notification

HTTP post install-notification URI

HTTP Response

get next URL

HTTP get Next URL (pointing to DD)

[image: image25.wmf]Browser

DL-Agent

DRM-Agent

HTTP Stack

Handler &

Dispatcher

Presentation

Server

selection of content item and rights , get URL

HTTP Get content URL

HTTP Response (DD)

DD

RO Request

RO Response (CO + RO)

Ok

post intall-notification

HTTP post install-notification URI

HTTP Response

get next URL

HTTP GET Next URL

HTTP Response (WEB/WAP page)

WEB/WAP page

Rights

Issuer

Content

Issuer

Get CO

CO

notify

ROAP Trigger (e.g. roap://rightIssuer.com/roap?CO=ae123fg456?RO=ty456uo89)

CO and RO

installed

cert

cert

Read configuration

Before starting the procedure, the DRM agent needs to know which algorithms the WIM supports and information on keys and certificates stored in the WIM.

To read the configuration the DRM agent uses data access primitives: WIM-OpenFile, WIM-ReadBinary etc.

Read user certificate

The DRM agent may read the user certificate stored in the WIM and identified by PKCS_iD.

To read the user certificate the DRM agent uses data access primitives: WIM-OpenFile, WIM-ReadBinary etc.

Sign random

The WIM has to sign the challenge number sent by the DRM agent and return the signature. The DRM agent may successfully verify the signature prior to exercise the permission.

To get the signature the DRM agent uses the WIM-ComputeDigitalSignature primitive. The primitive returns the signature.

G.2 PIN management

Said user private key is protected by a PIN-G (Global PIN), thus the procedure may require PIN-G verification i.e., the DRM UA may have to send the WIM-Perform-Verification primitive one time per WIM session. Once PIN-G right is granted, the procedure does not require PIN-G verification anymore for the current WIM session.

1. Note: in case the WIM application is present on a UICC smart card platform [UICC] together with a USIM [3GPP TS 31.102] application, the WIM PIN-G can be mapped on the USIM PIN.

Appendix H. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [CREQ].

	Item
	Function
	Reference
	Status
	Requirement

	DRM-
	
	
	M
	

	DRM-
	
	
	O
	

Editor’s Note: Introduce other SCR tables for Proxy and Store & Forward devices here.

Appendix I. Change History
(Informative)

	Type of Change
	Date
	Section
	Description

	Class 0
	
	
	The initial version of this document.

	
	
	
	

� EMBED Word.Picture.8 ���

Sign Random

Read User Certificate

Read Configuration

DRM UA

WIM

� EMBED Unknown ���

� A streaming token is a piece of data that the streaming player uses to determine the location of streaming media, possibly also to determine properties of the streaming session or streams, and to set up and start the delivery of streaming media. For the 3GPP Packet-Switched Streaming Service for example, this can either be a SMIL presentation, an SDP session description, or an RTSP URL.

� Example: If counter = 946, D will be 00 00 03 b2

� Comment. But the DCF ought to be marked in some way in case the DRM Agent comes across the DCF at some point in the future and attempts to act on the silent/preview flag again.

�PAGE \# "'Page: '#'�'" �Page: 4��� Text moved to Registration Response

�PAGE \# "'Page: '#'�'" �Page: 21���Optional, Goran?

�PAGE \# "'Page: '#'�'" �Page: 1��� I propose RI always sends latest key corresponding to this domain. If hash chains is not supported then all previous keys also.

�I don’t see this defined normatively anywhere. Do we need a section in the DRM spec covering preview/silent retrieval or should we simply include this in the DCF?

�Is this a valid RI ID?

�Is this a valid RI ID?

�PAGE \# "'Page: '#'�'" �� I think don’t need this. There is no relation between the old domain and the new domain, it could just be seen as a definition of a new domain. The members of the domain are defined by which devices the user tries to join, so cannot be decided by the RI.

�Which portions are encrypted needs to be defined.

�MUST XML Encryption be used for this?

�Is this still valid?

�PAGE \# "'Page: '#'�'" ��Why did we add this? Was it for the WIM-option inREL?

	(2002, Open Mobile Alliance Ltd. All Rights Reserved. Terms and conditions of use are available from the Open Mobile Alliance(Web site (http://www.openmobilealliance.org/copyright.html).

	Open Mobile Alliance(Confidential
	(2002, Open Mobile Alliance Ltd.
All rights reserved

_1121972826.vsd
�

�

�

Store & Forward Device�

Content Issuer Portal�

Rights Issuer Portal�

Browse Content Offerings�

Provide Device Identity Info (D1); Select Content:X, Y & Z�

Download Content X, Y, & Z�

4�

Figure XX: Store & Forward�

Provide Device Identity Info (D1); Select Content:A & B�

Device:D1�

Transfer X, Y, & Z and associated Rights Objects to Device:D1�

Transfer A to Device:D1�

Transfer B to Device:D1�

Rights Acquisition Protocol for A�

Acquire RO for A�

Rights Acquisition Protocol for B�

Acquire RO for B�

reconciliation�

reconciliation�

1�

3�

2�

5�

6�

Browse and select Rights for content X, Y, & Z�

Download RO for X, Y, Z for Device D1�

charging�

Download Content A & B with 'silent' headers�

_1132425865.vsd
�

�

�

Device D1�

Content Issuer Portal�

Rights Issuer Portal�

Browse Content Offerings�

Select Content:X, Select Payment�

Download Content�

Start Rights Acquisition Protocol for Content:X�

Acquire Rights�

Figure XX: Export�

Charging�

Transcribe Content and RO�

4�

Export to Other DRM�

Transfer via Media�

Removable Media�

1�

2�

3�

Checking Permission�

non-OMA Device D2�

5�

_1135033413.vsd
�

�

Device�

Rights Issuer�

Device Hello�

RI Hello�

RegistrationRequest�

RegistrationResponse�

OCSP Responder�

OCSP Request�

OCSP Response�

1�

2�

3�

a�

b�

4�

Figure XX: The 4-pass Registration Protocol�

_1135034599.vsd
�

�

Device:D1�

Device:D2�

Rights Issuer Portal�

Figure XX: Domains�

Device:D3�

Device:D4�

Registration and Join Domain�

Registration and Join Domain�

Registration and Join Domain�

Acquire Content and Rights�

Transfer content and rights�

Transfer content and rights�

Transfer content and rights�

Registration�

Join Domain�

1�

2�

3�

4�

5�

_1135033177.vsd
�

�

Device�

Rights Issuer�

1�

2�

Figure XX: Leave Domain Protocol�

LeaveDomainRequest�

LeaveDomainResponse�

_1135033225.vsd
�

�

Device�

Rights Issuer�

1�

2�

Figure XX: Join Domain Protocol�

JoinDomainRequest�

JoinDomainResponse�

_1135032681.vsd
OMA Compliant Device/Module
Trust Assured by OMA DRM CA�

Other DRM Compliant Device/Module
Trust Assured by Other DRM CA�

Secure Environment�

OMA DRM Agent�

Rights�

Content�

Secrets�

Other DRM Agent�

Rights�

Content�

Secrets�

Should be transcribed securely & consistently�

Should be transferred securely�

_1130567591.vsd
�

�

Device�

Rights Issuer�

RO Request�

RO Response�

1�

2�

Figure XX: The 2-pass Rights Object Acquisition Protocol�

_1130567713.vsd
�

�

Device�

Rights Issuer�

RO Response�

1�

Figure XX: The 1-pass Rights Object Acquisition Protocol�

_1132126751.vsd

_1127323443.doc
[image: image1.png]b IR L LS &S Sl 4 BIETES

|27 Fie Edt view mmsen Fomat Teds SigeShow Window Hep JRETEY

IEEFIEEEEE T I - 1=
[[Fves e oman ‘@ <BZzus
] [Tzt i do 15 18 17

Example (6)

User purchases
more content
with rights object

2 13 14 1-5-1-6-1-7-1-8-1-9]

<context> <context>
<o-dd:uid>songl</o-dd:uid> <o-dd:uid>song2</o-dd:uid>

</context> </context>

<permission IDREF="mytunes-subscr-terms”/> <permission IDREF="mytunes-subscr-terms”/>

New content RO references same permission from subscription RO

e e T £t 8 Spccation OMA-DRMDL-2003-0109

JJDrszFo‘nmaShwesv NNOCE4| > £- A.E:ﬁ.@‘
I Side 9cf 13 T A Tenplate

gstet]|| @ 2 B O Y B ED || Zainbox- Miorosott outl .ummnpuwwm 3y Minutes 4 input] Subscription B..| e Winzip- oMa-DAMD..| [\ 2 al a1 &, V% Oy s

RO Response

Content DCF

RO Request

ROAP Trigger

Generate license

Browse to content website; select content to be downloaded

CI

RI

_1127323635.doc
[image: image1.png]b IR L LS &S Sl 4 BIETES

|27 Fie Edt view mmsen Fomat Teds SigeShow Window Hep JRETEY

IEEFIEEEEE T I - 1=
[[Fves e oman ‘@ <BZzus
] [Tzt i do 15 18 17

Example (6)

User purchases
more content
with rights object

2 13 14 1-5-1-6-1-7-1-8-1-9]

<context> <context>
<o-dd:uid>songl</o-dd:uid> <o-dd:uid>song2</o-dd:uid>

</context> </context>

<permission IDREF="mytunes-subscr-terms”/> <permission IDREF="mytunes-subscr-terms”/>

New content RO references same permission from subscription RO

e e T £t 8 Spccation OMA-DRMDL-2003-0109

JJDrszFo‘nmaShwesv NNOCE4| > £- A.E:ﬁ.@‘
I Side 9cf 13 T A Tenplate

gstet]|| @ 2 B O Y B ED || Zainbox- Miorosott outl .ummnpuwwm 3y Minutes 4 input] Subscription B..| e Winzip- oMa-DAMD..| [\ 2 al a1 &, V% Oy s

Get DCF

RO Response

Content DCF

RO Request

ROAP Trigger

Generate license

Browse to content website; select content to be downloaded

CI

RI

_1124034340.doc
[image: image1.wmf][image: image2.wmf][image: image3.wmf][image: image4.wmf]

Dpub

Dpriv

DRM Agent

� EMBED MS_ClipArt_Gallery.5 ���

� EMBED MS_ClipArt_Gallery.5 ���

Usage Rules

Rights Object

Usage Rules

Other DRM Agent

(Non-OMA DRM)

Dcert

Other DRM Secret

Transcribing RO

Checking export permission

Decrypting RO

Decrypting content

Storing

Protected Content

Usage Rules

Rights Object

Usage Rules

Protected Content

Removable Media

Usage Rules

Encrypting content

Raw Content

Encrypting RO

_1094904166

_1127291360.doc
[image: image1.png]b IR L LS &S Sl 4 BIETES

|27 Fie Edt view mmsen Fomat Teds SigeShow Window Hep JRETEY

IEEFIEEEEE T I - 1=
[[Fves e oman ‘@ <BZzus
] [Tzt i do 15 18 17

Example (6)

User purchases
more content
with rights object

2 13 14 1-5-1-6-1-7-1-8-1-9]

<context> <context>
<o-dd:uid>songl</o-dd:uid> <o-dd:uid>song2</o-dd:uid>

</context> </context>

<permission IDREF="mytunes-subscr-terms”/> <permission IDREF="mytunes-subscr-terms”/>

New content RO references same permission from subscription RO

e e T £t 8 Spccation OMA-DRMDL-2003-0109

JJDrszFo‘nmaShwesv NNOCE4| > £- A.E:ﬁ.@‘
I Side 9cf 13 T A Tenplate

gstet]|| @ 2 B O Y B ED || Zainbox- Miorosott outl .ummnpuwwm 3y Minutes 4 input] Subscription B..| e Winzip- oMa-DAMD..| [\ 2 al a1 &, V% Oy s

Content DCF

RO Response

 “Silent URL”/”Preview URL”�RO Request Message

CI

RI

_1123680351.doc
[image: image1.bmp]

audio

Image(1)

Image(2)

play

display

Print

3 times

Media

Objects

Mulitpart DCF

<permission>

elements

<rights>

element

Reference by

Content-ID

_1119858362.vsd
�

�

�

Device:D1�

Device:D2�

Rights Issuer Portal�

Transfer Protected Content:Z�

Transfer Protected Content:Y�

Start Rights Acquisition Protocol for Content:Z�

Start Rights Acquisition Protocol for Content:Y�

Acquire RO for Y�

Figure XX: Super Distribution�

Device:D3�

Acquire RO for Z�

Request Preview RO for Z�

Acquire Preview RO for Z�

Instant Preview Y�

Transfer Protected Content:X�

Start Rights Acquisition Protocol for Content:X�

Acquire RO for X�

charging�

charging�

charging�

charging�

1�

2�

3�

4�

5�

6�

_1120976772.vsd
�

�

�

Client�

Content Issuer Portal�

Rights Issuer Portal�

Streaming Service�

Browse Content�

Request Rights via Rights Acquisition Protocol�

Download Streaming Token�

Acquire Rights�

Initiate Streaming Session�

Stream Headers Delivered�

Figure XX: DRM Protected Streaming Service�

2�

1�

charging�

3�

Initiate Streaming Session�

1�

2�

Initiate & Start Streaming Session�

DRM Protected Streams Delivered�

4�

Subscription Push: Streaming Token�

Subscription Push: Rights Object�

reconciliation�

DRM Protected Streams Delivered�

_1119854889.vsd
�

�

�

Client�

Content Issuer Portal�

Rights Issuer Portal�

Browse Content Offerings�

Select Content:X, Select Payment�

Download Content�

Start Rights Acquisition Protocol for Content:X�

Acquire Rights�

Figure XX: Basic Download - Pull and Push Models�

Charging�

Subscription:Push Content:Y�

Subscription Push of Rights for Content:Y�

reconciliation�

Subscription:Push Content:Z�

Start Rights Acquisition Protocol for Content Y : silent�

Acquire Rights�

reconciliation�

1�

2�

3�

4�

