OMA-TS-SCE_LRM-V1_0-20080831-D
Page 6 V(72)

	[image: image1.jpg]«“+OMa

Open Mobile Alliance

	

	Local Rights Manager for Secure Content Exchange

	Draft Version 1.0 – 31 Aug 2008

	Open Mobile Alliance

	OMA-TS-SCE_LRM-V1_0-20080831-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

71.
Scope

2.
References
8
2.1
Normative References
8
2.2
Informative References
8
3.
Terminology and Conventions
9
3.1
Conventions
9
3.2
Definitions
9
3.3
Abbreviations
9
4.
Introduction
10
5.
Overview of LRM Functions
11
5.1
Creation of Imported-ROs
11
5.1.1
LRM key purposes and generation of Imported ROs
11
5.2
Management of ROs and Content
11
5.2.1
Import for Devices
11
5.2.1.1
LRM- and DEA- Management of Imported Rights Objects
11
5.2.1.2
Move Operations
11
5.2.2
Import into OMA DRM v2 Domains
11
5.2.3
Import into User Domains
11
6.
LRM and DEA Protocols
12
6.1
SCE-4-LRMP
12
6.1.1
LRM-RI Registration Protocol
12
6.1.1.1
Trigger for LRM-RI Registration Protocol
13
6.1.1.2
LRM-RI Hello Request
14
6.1.1.3
LRM-RI Hello Response
14
6.1.1.4
LRM-RI Registration Request
14
6.1.1.5
LRM-RI Registration Response
15
6.1.2
LRM-RI DevPubKeyAcquisition Protocol
16
6.2.2.1
Trigger for LRM-RI DevPubKeyAcquisition Protocol
17
6.2.2.2
LRM-RI DevPubKeyAcquisition Request
18
6.2.2.3 LRM-RI DevPubKeyAcquisition Response
18
6.1.3
LRM-RI Create RO Protocol
19
6.1.3.1
LRM-RI Create RO Request
20
6.1.3.2
LRM-RI Create RO Response
22
6.1.4
LRM-RI Create Domain RO Protocol
23
6.2.4.1
LRM-RI Create Domain RO Request
24
6.1.4.2
LRM-RI Create Domain RO Response
26
6.2
SCE-5-LRMP
27
6.2.1
Overview
27
6.2.2
Message Format
27
6.2.3
Message Schema
27
6.3
SCE-6-LRMP
27
6.3.1
Overview
27
6.3.1.1
Registration between a DRM Agent and an LRM
27
6.3.1.2
Registration between an OMA DRM v2.x Agent and an LRM
28
7.
Key Management
29
7.1
Cryptographic Components
29
7.2
Key Transport Mechanisms
29
7.2.1
Pairing-Key Management Protocols
29
7.2.1.1
Entity Registration Protocol
29
7.2.1.1.1
Device Registration Request Message Details
30
7.2.1.1.1.1. Generating Device Registration Request Message
30
7.2.1.1.1.2. Generating PubKeyClientAuthenticator
31
7.2.1.1.1.3. Processing Device Registration Request Message
31
7.2.1.1.1.4. Processing PubKeyClientAuthenticator
32
7.2.1.1.2
Device Registration Response Message Details
33
7.2.1.1.2.1. Generating Device Registration Response Message
33
7.2.1.1.2.2. Generating PubKeyDEAAuthenticator
33
7.2.1.1.2.3. Processing Device Registration Response Message
34
7.2.1.1.2.4. Processing PubKeyDEAAuthenticator
34
7.2.1.2
Service Keys and PDKs for Devices
35
7.2.1.2.1
Key Request Message Details
36
7.2.1.2.1.1. Generating Key Request Message
36
7.2.1.2.1.2. Generating PubKeyClientAuthenticator
37
7.2.1.2.1.3. Processing Key Request Message
37
7.2.1.2.1.4. Processing PubKeyClientAuthenticator
37
7.2.1.2.2
Key Response Message Details
38
7.2.1.2.2.1. Generating Key Response Message
39
7.2.1.2.2.2. Generating PubKeyDEAAuthenticator
39
7.2.1.2.2.3. Processing Key Response Message
40
7.2.1.2.2.4. Processing PubKeyDEAAuthenticator
41
7.2.1.2.2.5. Key Derivation
41
7.2.1.3
Import Protocol
42
7.2.1.3.1
Import Initiation Request Message Details
43
7.2.1.3.1.1. Generating Import Initiation Request Message
43
7.2.1.3.1.2. Processing Import Initiation Request Message
44
7.2.1.3.2
Ticket Request Message Details
44
7.2.1.3.2.1. Generating Ticket Request Message
44
7.2.1.3.2.2. Processing Ticket Request Message
45
7.2.1.3.2.3. Verifying a Ticket
46
7.2.1.3.3
Ticket Response Message Details
46
7.2.1.3.3.1. Generating Ticket Response Message
47
7.2.1.3.3.2. Generating a Ticket
47
7.2.1.3.3.3. Processing Ticket Response Message
48
7.2.1.3.3.4. Ticket Processing by Client
49
7.2.1.3.4
Imported-RO Request Message Details
49
7.2.1.3.4.1. Generating Imported-RO Request Message
49
7.2.1.3.4.2. Processing Imported-RO Request Message
50
7.2.1.3.5
Imported-RO Response Message Details
51
7.2.1.3.5.1. Generating Imported-RO Response Message
51
7.2.1.3.5.2. Processing Imported-RO Response Message
52
7.2.1.4
RightsAuth-Protocol
53
7.2.1.4.1
Authorization Request Message Details
54
7.2.1.4.1.1. Generating Authorization Request Message
54
7.2.1.4.1.2. Processing Authorization Request Message
55
7.2.1.4.2
Authorization Response Message Details
55
7.2.1.4.2.1. Generating Authorization Response Message
56
7.2.1.4.2.2. Processing Authorization Response Message
57
7.2.2
Transporting KMAC and one or more KREK under a RI Public Key
58
7.3
Certificate Handling
58
8.
Security Considerations (Informative)
60
8.1
Trust Model
60
8.2
Threat Analysis
60
8.3
Privacy
60
Appendix A.
Change History (Informative)
61
A.1
Approved Version History
61
A.2
Draft/Candidate Version <current version> History
61
Appendix B.
Static Conformance Requirements (Normative)
69
B.1
SCR for SCE Client
69
B.2
SCR for LRM Server
69
Appendix C.
Certificate Profiles (Normative)
70
C.1
LRM Certificates
70
C.2
CA Certificates
71
Appendix D.
Message Examples (Informative)
72
D.1
LRMRIRegistrationTrigger
72

Figures

16Figure 1 – Import and Subsequent Transfer Operations on ROs

40Figure 2 – The 4-pass LRM-RI Registration Protocol

43Figure 3 The 2-pass LRM-RI DevPubKey Acquisition Protocol

46Figure 4 – The 2-pass LRM-RI Create RO Protocol

50Figure 5 – The 2-pass LRM-RI Create Domain RO Protocol

56Figure 6 – Device Registration Protocol

62Figure 7 – Assignment of Service Keys and distributions of PDKs

69Figure 8 – Messages used in Import

81Figure 9 - Rights Authorization Protocol Messages

Tables

19Table 1: Message Types

19Table 2: Attribute Types

22Table 3: Supported Content Encryption Algorithms and Their Identifiers

23Table 4: Supported Content Formats and Their Identifiers

24Table 5: Supported Signature Algorithms and Their Identifiers

24Table 6: DA-Signed Data Type

26Table 7: Supported Key Agreement Algorithms and Their Identifiers

27Table 8: Supported Key Types and Their Identifiers

29Table 9: RO Authorization Status Code

30Table 10: RO Request Flags

30Table 11: RO Response Status Code

37Table 12: Type specific attributes in DASignedData

38Table 13: Error Codes

40Table 14: LRMRIRegistrationTrigger Message Elements

41Table 15: LRM-RIRegistrationRequest Message Parameters

42Table 16: LRM-RIRegistrationResponse Message Parameters

44Table 17 LRM-RI DevPubKeyAcquistionTrigger Message Elements

47Table 18: LRM-RICreateRORequest Message Parameters

49Table 19: LRM-RICreateROResponse Message Parameters

51Table 20: LRM-RICreateDomainRORequest Message Parameters

53Table 21: LRM-RICreateDomainROResponse Message Parameters

1. Scope

2. References

2.1 Normative References

	[CertProf]
	“Certificate and CRL Profiles”, OMA-Security-CertProf-v1_1, Open Mobile Alliance, URL:http://www.openmobilealliance.org

	[DRM-DRM-v2.0]
	“DRM Specification”, Open Mobile Alliance™, OMA-TS-DRM-DRM-V2_0-20060303-A, URL:http://www.openmobilealliance.org/

	[DRM-DRM-v2.1]
	“DRM Specification, Draft Version 2.1”,
OMA-TS-DRM-DRM-V2_1-20060523-D, Open Mobile AllianceTM,
URL:http://www.openmobilealliance.org/

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC2234]
	“Augmented BNF for Syntax Specifications: ABNF”. D. Crocker, Ed., P. Overell. November 1997, URL:http://www.ietf.org/rfc/rfc2234.txt

	[SCRRULES]
	“SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-SCR_Rules_and_Procedures, URL:http://www.openmobilealliance.org

	[SCE-A2A]
	“SCE Agent To Agent Transfer, Draft Version”, OMA-TS-SCE_A2A-Vx_y-D, Open Mobile AllianceTM,
URL:http://www.openmobilealliance.org/

	[SCE-GEN]
	“SCE Generic Mechanisms, Draft Version”, OMA-TS-SCE_GEN-Vx_y-D, Open Mobile AllianceTM,
URL:http://www.openmobilealliance.org/

	[HMAC]
	“HMAC: Keyed-Hashing for Message Authentication “, H. Krawczyk, M. Bellare, R. Canetti, February 1997, URL:http://www.ietf.org/rfc/rfc2104.txt

2.2 Informative References

	[OMADICT]
	“Dictionary for OMA Specifications”, Version x.y, Open Mobile Alliance™,
OMA-ORG-Dictionary-Vx_y, URL:http://www.openmobilealliance.org

	[SCE-AD]
	“Secure Content Exchange Architecture, Draft Version”,
OMA-AD-SCE-Vx_y-D, Open Mobile AllianceTM,
URL:http://www.openmobilealliance.org/

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

	Device
	A Device is the entity (hardware/software or combination thereof) within a user equipment that implements a DRM Agent. The Device is also conformant to the OMA DRM specifications. The Device may include a smart card module (e.g. a SIM) (DRM V2.0).

	DRM Agent
	The entity in the Device that manages Permissions for Media Objects on the Device (DRM V2.0).

	DRM Time
	A secure, non user-changeable time source. The DRM Time is measured in the UTC time scale (DRM V2.0).

	Local Rights Manager (LRM)
	

3.3 Abbreviations

	LRM
	Local Rights Manager

	OMA
	Open Mobile Alliance

	SCE
	Secure Content Exchange

	
	

4. Introduction

5. Overview of LRM Functions
Each LRM (as well as each DRM Agent) is required to support DRM Time.
5.1 Creation of Imported-ROs
5.1.1 LRM key purposes and generation of Imported ROs

The LRM MAY have a combination of three different key purposes: the oma-kp-localRightsManagerDomain key purpose, the oma-kp-localRightsManagerDevice key purpose and the oma-kp-rightsIssuer key purpose. However, the LRM MUST have at least the oma-kp-localRightsManagerDomain key purpose or the oma-kp-localRightsManagerDevice key purpose. This is important so that an SCE Device is able to distinguish an LRM with an oma-kp-rightsIssuer key purpose from an RI.
To generate a Device RO for an SCE Device, the LRM MUST have at least the oma-kp-localRightsManagerDevice key purpose.

To generate a User Domain RO, the LRM MUST have at least the oma-kp-localRightsManagerDomain key purpose.

An LRM MUST NOT Import OMA DRM v2.x Domain ROs to an SCE Device.

An LRM MAY have an oma-kp-rightsIssuer key purpose in order to allow the import of Device ROs, Domain ROs and User Domain ROs (only non-<userDomain>-constrained ROs) to OMA DRM v2.x Devices . An OMA DRM v2.x Device cannot distinguish an LRM with at least the oma-kp-rightsIssuer key purpose from an RI. The OMA DRM v2.x Device will therefore accept these ROs independently of the other key purposes of the LRM. However, SCE Devices MUST take all the key purposes into account.

If an LRM key purpose (oma-kp-localRightsManagerDevice or oma-kp-localRightsManagerDomain) is present, an SCE Device disregards an oma-kp-rightsIssuer key purpose if present.

5.2 Management of ROs and Content
<text>

5.2.1 Import for Devices

5.2.1.1 LRM- and DEA- Management of Imported Rights Objects
5.2.1.2 Move Operations

5.2.2 Import into OMA DRM v2 Domains

<text>
5.2.3 Import into User Domains

6. LRM and DEA Protocols
[Informative] A layered security model is used in order to support user privacy and facilitate controlled Rights transfers with minimal need for backend network connectivity. At one layer, a DEA corresponding to an LRM manages the association of DRM Agents with one another relative to transfers that involve LRM-created Rights Objects. At another layer, the DA manages policy-related issues, including, in the case of production of Device-specific DA-Signed Data, approving the incorporation of specifically identified DRM Agents into a User Domain managed by the identified DEA.

Within Device-specific DA-Signed Data, DRM Agents SHALL be specified in the standard manner via hashes of certified public keys. A DRM Agent MAY have Guest Device status with respect to multiple DEAs concurrently. Registration of a Device by a DEA can proceed without knowledge by that DEA of the DRM Agent’s current status with respect to other DEAs.

6.1 SCE-4-LRMP
This section defines the protocols by which an LRM communicates with an RI. The protocols include LRM-RI Registration Protocol, LRM-RI Create RO Protocol and so on.
6.1.1 LRM-RI Registration Protocol
The LRM-RI Registration Protocol is a complete security information exchange and handshake between the RI and the LRM and is generally only executed at first contact, but may also be executed when there is a need to update the exchanged security information, or when DRM Time in the LRM is deemed inaccurate by the Rights Issuer. This protocol includes negotiation of protocol parameters and protocol version, cryptographic algorithms, exchange of certificate preferences, optional exchange of certificates, mutual authentication of LRM and RI, integrity protection of protocol messages.

Successful completion of the Registration protocol results in the establishment of an RI Context in the LRM containing RI-specific security related information such as agreed protocol parameters, protocol version, and certificate preferences. An RI Context is necessary for execution of the other protocols in the SCE-4-LRMP suite. Figure 2 depicts the 4-pass LRM-RI Registration Protocol.

[image: image2.emf]LRM Rights Issuer OCSP Responder

OCSP Request

OCSP Response

L

RM

-R

IH

e

llo

Re

qu

es

t

LR

M

-R

IH

e

llo

Re

sp

on

se

LR

M

-R

IR

eg

ist

rat

io

nR

eq

ue

st

L

R

M

-R

IR

eg

ist

rat

ion

R

esp

on

se

Figure 2 – The 4-pass LRM-RI Registration Protocol
6.1.1.1 Trigger for LRM-RI Registration Protocol
A Rights Issuer MAY send trigger message to an LRM to invoke the LRM-RI registration protocol. The parameters in the trigger message are illustrated in Table 14.
Table 14: LRMRIRegistrationTrigger Message Elements
	element / attribute
	usage
	value

	type
	M
	Specified by specific protocol suite

	version
	M
	Specified by specific protocol suite

	proxy
	O
	Default, as specified in [SCE-GEN]

	resID
	M
	Default, as specified in [SCE-GEN]

	reqURL
	M
	Default, as specified in [SCE-GEN]

	nonce
	O
	Default, as specified in [SCE-GEN]

	LRMID
	O
	LRM’s ID

The type attribute of the message SHALL be “LRMRIRegistrationTrigger”
The version attribute of the message SHALL be “1.0”
The <resID> element MUST contain Rights Issuer’s identifier.

The <reqURL> element MUST contain the Rights Issuer’s URL address that serves LRM-RI registration protocol.

The <LRMID> element MUST contain the LRM’s Identifier.

<element name="LRMRIRegistrationTrigger" type="gen:DrmTrigger" />

<element name="LRMRIRegistrationTriggerInfo" type="LRMRIRegistrationTriggerInformation" substitutionGroup="gen:triggerInfo" />

<complexType name="LRMRIRegistrationTriggerInformation">

 <complexContent>

 <sequence>
<element name="LRMID" type="roap:Identifier" minOccurs=”0” />

 </sequence>

 </complexContent>
</complexType >
Appendix D.1 shows an example of an LRMRIRegistrationTrigger. If an LRM receives LRMRIRegistrationTrigger, it MUST check if the type attribute has “LRMRIRegistrationTrigger” and if the value of <LRMID> is equal to one of the LRM’s ID. If the checking fails, the LRM ignores the trigger. If the trigger message is verified, the LRM MUST invoke LRMRIRegistration protocol by sending LRMRIRegistrationRequest message to the Rights Issuer (to the address indicated by <reqURL> element).
Before initiating the LRMRIRegistration protocol the LRM MUST obtain user consent before contacting the RI; however, if the FQDN (Fully Qualified Domain Name) part of the <reqURL> element of the LRMRIRegistrationTrigger corresponds to an entry in the User Consent Whitelist the LRM MAY contact the RI without obtaining explicit user consent. A User Consent Whitelist contains the Fully Qualified Domain Name of authorised RIs and the corresponding Rights Issuer’s identifier. LRM SHOULD implement a User Consent Whitelist.
6.1.1.2 LRM-RI Hello Request
The LRM-RI Hello Request message is sent from the LRM to the Rights Issuer to initiate the 4-pass LRM-RI Registration protocol. This message expresses LRM information and preferences. The request message is an element of type gen:Request, in which the elements are the same as specified in section 6.2 in [SCE-GEN].
6.1.1.3 LRM-RI Hello Response

The LRM-RI Hello Response message is the second message of the 4-pass LRM-RI Registration protocol and is sent from the Rights Issuer to the LRM in response to an LRM-RI Hello Request message. The message expresses RI preferences and decisions based on the values supplied by the LRM. The response message is an element of type gen:Response, in which the elements are the same as specified in section 6.3 in [SCE-GEN].
6.1.1.4 LRM-RI Registration Request

An LRM sends the LRM-RI Registration Request message to an RI to request registration with the RI. The message is sent as the third message in the 4-pass LRM-RI Registration protocol. The request message is an element of type gen:Request,in which the elements are present:
Table 15: LRM-RIRegistrationRequest Message Parameters
	element / attribute
	usage
	value

	sessionID
	M
	Default, as specified in [SCE-GEN]

	reqID
	M
	Default, as specified in [SCE-GEN]

	resID
	M
	Default, as specified in [SCE-GEN]

	nonce
	M
	Default, as specified in [SCE-GEN]

	time
	M
	Default, as specified in [SCE-GEN]

	certificateChain
	O
	Default, as specified in [SCE-GEN]

	reqInfo
	M
	Specified below

	signature
	M
	Default, as specified in [SCE-GEN]

The “xsi:type” attribute of <reqInfo> element in LRM-RIRegistrationRequest message MUST be set as “lrm:LRMRIRegistrationReqInfo”. The type of “lrm:LRMRIRegistrationReqInfo” is defined as below.

<complexType name="LRMRIRegistrationRequest">
<complexContent>

 <extension base=”gen:RegReqInfo”>

<sequence>
 <element name=”supportedUpstreamDRMs” type=”SetOfDRMSystem”/>
 <element name=”needMoveService” minOccurs=”0”/>

</sequence>
 </extension>

 </complexContent>

</complexType>
<complexType name="SetOfDRMSystem">

<sequence>

<element name="supportedDRMSystem" type="string" maxOccurs="unbounded"/>

</sequence>

</complexType>
Besides the elements included in gen:RegReqInfo, the <reqInfo> element in LRM-RIRegistrationRequest message includes further <supportedUpstreamDRMs> element and one optional <needMoveService> element.
The <supportedUpstreamDRMs> identifies the upstream DRM system that supported by the LRM, i.e. the LRM can import RO from these DRM systems.

The <needMoveService> element, if present, is used by the LRM to indicate to the RI that the LRM needs the RI provides Move service for the ROs created by the LRM, so that the ROs created by the LRM can be Moved via the RI to other Devices.
6.1.1.5 LRM-RI Registration Response

The LRM-RI Registration Response message is sent from the Rights Issuer to the LRM in response to an LRM-RI Registration Request message. This message completes the Registration protocol, and if successful, enables the LRM to establish an RI Context for this RI. The response message is an element of type gen:Response,in which the elements are present:
Table 16: LRM-RIRegistrationResponse Message Parameters
	element / attribute
	usage
	value

	status
	M
	Default, as specified in [SCE-GEN]

	sessionID
	M
	Default, as specified in [SCE-GEN]

	errorMessage
	O
	Default, as specified in [SCE-GEN]

	errorRedirectURL
	O
	Default, as specified in [SCE-GEN]

	reqID
	M
	Default, as specified in [SCE-GEN]

	resID
	M
	Default, as specified in [SCE-GEN]

	certificateChain
	O
	Default, as specified in [SCE-GEN]

	ocspResponse
	O
	Default, as specified in [SCE-GEN]

	rspInfo
	M
	Specified below

	signature
	M
	Specified below

The “xsi:type” attribute of <rspInfo> element in LRM-RIRegistrationResponse message MUST be set as “lrm:LRMRIRegistrationRspInfo”. The type of “lrm: LRMRIRegistrationRspInfo” is defined as below:

<complexType name=" LRMRIRegistrationRspInfo ">
<complexContent>

 <extension base=”gen:ResReqInfo”>

<sequence>

 <element name=”selectedUpstreamDRMs” type=”SetOfDRMSystem” minOccurs=”0”/>
 <element name=”provideMoveService” minOccurs=”0”/>

</sequence>
 </extension>

 </complexContent>

</complexType>
Besides the elements included in gen:ResRegInfo, the <rspInfo> element in LRMRIRegistrationResponse message includes further <selectedUpstreamDRMs> element and an optional <provideMoveService> element.
The <selectedUpstreamDRMs> specifies the upstream DRM systems that will be supported by the RI.

The <provideMoveService> element is used by the RI to indicate to the LRM whether the RI will provide Move service for the ROs that the LRM creates:

· If the <provideMoveService> element is present in rspInfo element in LRM-RIRegistrationResponse, the LRM MAY indicate within all the Imported-Rights-Objects that the LRM creates that this particular Rights Issuer is eligible to Move the Rights.

· If the <provideMoveService> element is NOT present in rspInfo element in LRM-RIRegistrationResponse, the LRM SHALL NOT indicate within any Imported-Rights-Object that the LRM creates that this particular Rights Issuer is eligible to Move the Rights.
6.1.2 LRM-RI DevPubKeyAcquisition Protocol

The 2-pass LRM-RI DevPubKeyAcquistion Protocol is the protocol by which an LRM gets the public key of a DRM2.x Device from the RI. The RI can acquire the Public Key of that DRM2.x Device through a 4-pass ROAP Registration with that Device.
Successful completion of this protocol results in the establishment of a Device Context in the LRM containing Device-specific information including the public key of that DRM2.x Device The Device Context is necessary for execution of the LRM-RI Create RO protocol.
This protocol can be initiated by a ROAP Trigger{LRM-RI DevPubKeyAcquisition trigger}, see section 6.2.2.1.

This protocol MAY involve OCSP protocol between Rights Issuer and OCSP Responder for checking status of Rights Issuer’s certificate chain.

Figure 3 depicts the 2-pass LRM-RI DevPubKeyAcquistion Protocol.

[image: image3.emf]LRM Rights Issuer DRM2.x Device

4-pass Registration Protocol

LRM-RIDev

PubKey

AcquisitionRequest

OCSP Response

LRM

-

R

I

De

vPubKeyAcqu

i

s

ti

onRespons

e

OCSP Request

OCSP Responder

LRM

-

RI

DevPubKeyAcqu

i

s

ti

on

T

ri

gg

e

r

Figure 3 The 2-pass LRM-RI DevPubKey Acquisition Protocol
6.2.2.1 Trigger for LRM-RI DevPubKeyAcquisition Protocol
A Rights Issuer MAY send a trigger message to an LRM to invoke the LRM-RI DevPubKeyAcquisition protocol. The parameters in the trigger message are illustrated in the Table 17.
Table 17 LRM-RI DevPubKeyAcquistionTrigger Message Elements
	element / attribute
	usage
	value

	type
	M
	Specified by specific protocol suite

	version
	M
	Specified by specific protocol suite

	resID
	M
	Default, as specified in [SCE-GEN]

	reqURL
	M
	Default, as specified in [SCE-GEN]

	nonce
	O
	Default, as specified in [SCE-GEN]

	DevID
	M
	Default, as specified in [SCE-GEN]

The type attribute of the message SHALL be “LRM-RIDevPubKeyAcquistionTrigger”
The version attribute of the message SHALL be “1.0”.

The <resID> element MUST contain the Rights Issuer’s identifier.

The <reqURL> element MUST contain the Rights Issuer’s URL address that serves LRM-RI DevPubKeyAcquisition protocol.

The <DevID> element MUST contain the Identifier of the DRM 2.x Device.

When the LRM receives the ROAP LRM-RI DevPubKeyAcquistionTrigger, it initiates the ROAP
LRM-RI DevPubKeyAcquisition protocol exchange as soon as possible.

6.2.2.2 LRM-RI DevPubKeyAcquisition Request

An LRM sends the LRM-RI DevPubKeyAcquisition Request message to an RI to request the Public Key of a DRM2.x Device through the RI. The request message is an element of type gen:Request, in which the following elements are present:

Table x2: LRM-RI DevPubKeyAcquisition Request Message Parameters
	element / attribute
	usage
	value

	sessionID
	M
	Default, as specified in [SCE-GEN]

	reqID
	M
	Default, as specified in [SCE-GEN]

	resID
	M
	Default, as specified in [SCE-GEN]

	nonce
	M
	Default, as specified in [SCE-GEN]

	time
	M
	Default, as specified in [SCE-GEN]

	certificateChain
	O
	Default, as specified in [SCE-GEN]

	DevID
	M
	Default, as specified in [SCE-GEN]

	signature
	M
	Default, as specified in [SCE-GEN]

DevID is the identifier of the DRM2.x Device. If this protocol is initiated by an LRM-RI DevPubKeyAcquisition Trigger, the DevID in this message is identical to that DevID in the LRM-RI DevPubKeyAcquisition Trigger.

6.2.2.3 LRM-RI DevPubKeyAcquisition Response

The LRM-RI DevPubKeyAcquisition Response message is sent from the Rights Issuer to the LRM in response to an LRM-RI DevPubKeyAcquisition Request message. This message completes the LRM-RI DevPubKeyAcquisition protocol, and if successful, enables the LRM to establish a Device Context for that DRM2.x Device. The response message is an element of type gen:Response,in which the following elements are present:

Table x3: LRM-RI DevPubKeyAcquisition Response Message Parameters
	element / attribute
	usage
	value

	status
	M
	Result of the rdpDropDomainRequest processing.

	sessionID
	M
	Default, as specified in [SCE-GEN]

	errorMessage
	O
	Default, as specified in [SCE-GEN]

	errorRedirectURL
	O
	Default, as specified in [SCE-GEN]

	reqID
	M
	Default, as specified in [SCE-GEN]

	resID
	M
	Default, as specified in [SCE-GEN]

	DevPubKey
	M
	string

	CertificateChain
	O
	Default, as specified in [SCE-GEN]

	ocspResponse
	O
	Default, as specified in [SCE-GEN]

	signature
	M
	Specified below

If the RI has not ever stored the Public Key of that DRM2.x Device, RI MUST respond with NoDevPubKey error and should initiate a 4-pass registration protocol with that DRM2.x Device to acquire the Public Key of that DRM2.x Device. RI could initiate the LRM to execute the LRM-RI DevPubKeyAcquisition protocol again by sending the LRM an LRM-RI DevPubKeyAcquisition trigger.

The other error codes of Status are specified in [SCE-GEN].
The DevPubKey carries the Public Key of DRM2.x Device. If Status contains any error, the DevPubKey field MUST NOT be present in the LRM-RIDevPubKeyAcquistionResponse.
6.1.3 LRM-RI Create RO Protocol
The 2-pass LRM-RI Create RO Protocol is the protocol by which an LRM enlists the services of a Rights Issuer to Import Rights associated with some DRM Content imported by the LRM from upstream DRM system to a designated DRM2.x Device, so that backward compatibility regarding Import function is achieved, i.e. an LRM can import RO into a DRM2.x Device. This protocol assumes that the LRM and the DRM2.x Device each have a valid RI context for the associated Rights Issuer.
This protocol includes securely transferring of imported Rights and REK to the Rights Issuer whereas ensures that the REK is not exposed to the Rights Issuer. This protocol MAY involve OCSP protocol between Rights Issuer and OCSP Responder for checking status of Rights Issuer’s certificate chain. After successful 2-pass LRM-RI CreateRO Protocol execution, the Rights Issuer MUST conduct RO Acquisition Protocol including optional ROAP-ROAcquisition Trigger as per [DRMDRM2.0], with the designated DRM2.x Device to issue the imported RO. But the RO Acquisition Protocol itself is not part of this protocol.
Each LRM SHALL make sure that the number of recipient Devices is less than some threshold set by some upstream service providers. Such threshold MAY vary over different upstream service providers, and MAY vary depending on the type of Import-Ready Data. Only in the case that the cumulative recipient Device quantity is less than the threshold does the LRM perform the LRM-RI Create RO protocol to issue imported Rights to a recipient 2.x Device.

If the LRM has not acquired the public key of the DRM 2.x Device before initiating the 2-pass LRM-RI CreateRO Protocol, LRM SHALL initiate the 2-pass LRM-RI DevPubKeyAcquisition Protocol first.

[image: image4.emf]LRM Rights Issuer DRM2.x Device

RO Acquisition Protocol

L

R

M

-

R

IC

r

ea

t

eR

O

R

eq

u

e

s

t

O

C

S

P

Re

s

p

o

n

s

e

L

R

M

-R

IC

re

a

te

R

OR

e

s

po

n

s

e

O

C

S

P

 R

e

q

u

e

s

t

OCSP Responder

Figure 4 – The 2-pass LRM-RI Create RO Protocol

6.1.3.1 LRM-RI Create RO Request

An LRM sends the LRM-RI Create RO Request message to an RI to request creating one or more RO for a designated DRM2.x Device. The request message is an element of type gen:Request, in which the elements are present:
Table 18: LRM-RICreateRORequest Message Parameters
	element / attribute
	usage
	value

	reqID
	M
	Default, as specified in [SCE-GEN]

	resID
	M
	Default, as specified in [SCE-GEN]

	nonce
	M
	Default, as specified in [SCE-GEN]

	time
	M
	Default, as specified in [SCE-GEN]

	certificateChain
	O
	Default, as specified in [SCE-GEN]

	reqInfo
	M
	Specified below

	signature
	M
	Default, as specified in [SCE-GEN]

The “xsi:type” attribute of <reqInfo> element in LRMRICreateRORequest message MUST be set as “lrm:CreateROReqInfo”. The type of “lrm:CreateROReqInfo” is defined as below.

<element name=”lrmRICreateRORequest” type=”gen:Request” />

<complexType name="CreateROReqInfo">
<complexContent>

 <extension base=”gen:RequestInformation”>
 <!--multiple sequences are used when importing to multiple Devices-->

<sequence maxOccurs=”unbounded”>
 <element name="recipientDeviceId" type="gen:Identifier"/>
 <!--multiple rights are used when importing multiple RO to a single Device-->

<element name="rights" type="o-ex:rightsType" maxOccurs=”unbounded”/>
 <element name="enc_EncKmacREKs_Kmac" type="xenc:EncryptedKeyType"/>

</sequence>
 </extension>

 </complexContent>

</complexType>

The <reqInfo> element in LRM-RICreateRORequest message includes one or more sequences of one <recipientDeviceId> element, one or more <rights>elements, and one <enc_EncKmacREKs_Kmac> element. It conveys the information about the Rights that the LRM is attempting to import to the designated DRM2.x Device. Based on the information, the RI will issue a DRM2.x compatible Device RO to the designated DRM2.x Device via RO Acquisition protocol specified in [DRM2.x]. The included elements are specified as below:

· The <recipientDeviceId> element

The <recipientDeviceId> element is of type gen:Identifier specified in [SCE-GEN]. It specifies the hash of the public key of the designated DRM2.x Device to which the Rights will be imported.

· The <rights> element

The <rights> element is of type o-ex:rightsType specified in [DRM2.x-REL]. Within it, only the ContentID indicated by the value of [rights / agreement / asset / context / uid] element, the DCF Hash value indicated by the [rights / agreement / asset / digest / digestValue] element, the encryptedCEK indicated by the value of [rights / asset / KeyInfo / EncryptedKey / CipherData / CipherValue] element, the permissions and constraints indicated by the content of [rights / agreement / permission] elements MUST be provided by the LRM, while the [rights / context / uid] element that represents the ROID MUST NOT be provided by the LRM. But in order to meet the requirement of the schema of o-ex:rightsType type, the [rights / context / uid] element MUST be present but with an arbitrary value. The RI is expected to replace the arbitrary value with a concrete ROID.
 The <rights> element can occur multiple times. When there are multiple <rights> elements, each of which MUST have a different REK.

· The <enc_KeyEncKmacREKs_Kmac> element

The <enc_KeyEncKmacREKs_Kmac> element is of type xenc:EncryptedKeyType. All the elements inside the <enc_EncKmacREKs_Kmac> element MUST be provided by the LRM as below:
· The [enc_EncKmacREKs_Kmac / keyInfo / X509SPKIHash/hash] element carries the hash of the public key of the RI.

· The [enc_EncKmacREKs_Kmac / CipherData / CipherValue] carries C specified below:

From a security point of view, there MUST be a unique REKi for encryption of CEK which is encapsulated in each <rights> element. To prevent the REKi from being exposed to the RI, each REKi MUST be encrypted using the public key of the designated recipient DRM2.x Device as below, in the process of yielding EncKmacREKi:

KEKi = KDF(I2OSP(Zi, mLenDevice), NULL, kekLen)
Ci2 = AES-WRAP(KEKi, KMAC | REKi)
Ci1 = I2OSP(RSA.ENCRYPT(PubKeyDevice, Zi), mLenDevice)
EncKmacREKi = Ci1 | Ci2
Where the KDF() function, the I2OSP() function, the AES-WRAP() function, the RSA.ENCRYPT() function and the kekLen are the same as specified in [DRM2.x], and the mLenDevice is the length of the modulus of the recipient DRM2.x Device’s RSA public key in octets, and the Zi is a random integer generated by the LRM based on the modulus of the recipient DRM2.x Device’s RSA public key in the same way as specified in [DRM2.x]. The KMAC is intended to be used by the designated recipient DRM2.x Device to verify integrity protect over the <roPayload> in ROResponse message in subsequent ROAcquisition protocol.

The C is yielded as below:

KEK = KDF(I2OSP(Z, mLenRI), NULL, kekLen)
K = KMAC | EncKmacREK0 | EncKmacREK1 | …| EncKmacREKN, (Suppose there are N <rights> elements)

C2 = AES-WRAP(KEK, K)
C1 = I2OSP(RSA.ENCRYPT(PubKeyRI, Z), mLenRI)
C = C1 | C2
Where the KDF() function, the I2OSP() function, the AES-WRAP() function, the RSA.ENCRYPT() function and the kekLen are the same as specified above, and the mLenRI is the length of the modulus of the RI’s RSA public key in octets, and the Z is a random integer generated by the LRM based on the modulus of the RI’s RSA public key in the same way as specified in [DRM2.x]. The KMAC is the same as above and is intended to be used by the RI to provide integrity protect over the <roPayload> in ROResponse message in subsequent RO Acquisition protocol.

After receiving C, the RI splits it into C1 and C2 and decrypts C1 using its private key (consisting of a private exponent d and the modulus m), yielding Z:
C1 | C2 = C
c1 = OS2IP(C1, mLen)
Z = RSA.DECRYPT(PrivKeyRI, c1)
where the function OS2IP() is the same as specified in [DRM2.x].
Using Z, the RI can derive KEK, and from KEK unwrap C2 to yield K:

KEK = KDF(I2OSP(Z, mLen), NULL, kekLen)

K = AES-UNWRAP(KEK, C2)

KMAC | EncKmacREK0 | EncKmacREK1 | …| EncKmacREKN = K (Suppose there are N <rights> elements)

The RI can yield KMAC and EncKmacREK0…EncKmacREKn by splitting K.
The EncKmacREKi is used by the RI to form an <encKey> element in <roPayload> in subsequent RO Acquisition protocol:

· Set the value of the [encKey / keyInfo / X509SPKIHash/hash] element as the hash of the public key of the designated DRM2.x Device.

· Set the value of [encKey / CipherData / CipherValue] as EncKmacREKi.
· Set the value of other elements inside <encKey> element in the same way as specified in [DRM2.x].
· The values of all other elements inside the <enc_EncKmacREKs_Kmac> elements are set in the same way as specified in [DRM2.x].

Upon receiving the LRM-RICreateRORequest message, the RI MUST verify the signature of the LRM and determine whether fulfilling the cumulative number of recipient Devices serviced by the RI on behalf of the particular LRM would result in exceeding the upper bound set for the LRM. This upper bound is typically set by the RI directly or by a Trust Authority. If the upper bound would be exceeded, the RI SHALL reject the particular LRM-RICreateRORequest. In that event, later requests can still be accepted if they identify recipient Devices that are already on the list of recipient Devices for which the RI has provided ROs on behalf of the LRM. If verification of a request is successful and the RO can be provided to the identified recipient Device without exceeding the upper bound, then the RI MUST issue an RO to the designated DRM2.x Device by a subsequent ROAcquisition Protocol, based on the information about the Rights indicated by the <reqInfo>.

The RI SHALL NOT include the <signature> element over the <rights> element in the RO Payload for the recipient DRM Agent.
6.1.3.2 LRM-RI Create RO Response

An RI sends the LRM-RI Create RO Response message to an LRM to indicate the result of creating one or more RO for a designated DRM2.x Device. The response message is an element of type gen:Response, in which the elements are present:
 Table 19: LRM-RICreateROResponse Message Parameters
	element / attribute
	usage
	value

	status
	M
	Default, as specified in [SCE-GEN]

	errorMessage
	O
	Default, as specified in [SCE-GEN]

	errorRedirectURL
	O
	Default, as specified in [SCE-GEN]

	reqID
	M
	Default, as specified in [SCE-GEN]

	resID
	M
	Default, as specified in [SCE-GEN]

	nonce
	M
	Default, as specified in [SCE-GEN]

	certificateChain
	O
	Default, as specified in [SCE-GEN]

	ocspResponse
	O
	Default, as specified in [SCE-GEN]

	rspInfo
	M
	Specified below

	signature
	M
	Default, as specified in [SCE-GEN]

The “xsi:type” attribute of <rspInfo> element in LRMRICreateROResponse message MUST be set as “lrm:CreateRORspInfo”. The type of “lrm:CreateRORspInfo” is defined as below:
 <element name=”lrmRICreateROResponse” type=”gen:Response” />

<complexType name="CreateRORspInfo">
<complexContent>

 <extension base=”gen:ResponseInformation”>

<sequence maxOccurs=”unbounded”>

 <choice>

 <element name="success"/>
 <element name= "failureReason" type= "string"/>

</choice>

</sequence>
 </extension>

 </complexContent>

</complexType>
The <rspInfo> element in LRMRICreateROResponse message includes one or more sequences of choice between <success> element and <failureReason> element.
The <success> element indicates the <reqInfo> corresponding to the sequence was successfully processed and the corresponding RO can be issued to the designated DRM2.x Device.

The <failureReason> element indicates the reason why the <reqInfo> corresponding to the sequence was not successfully processed.
6.1.4 LRM-RI Create Domain RO Protocol
The 2-pass LRM-RI Create Domain RO Protocol is the protocol by which an LRM enlists the services of a Rights Issuer to Import Rights associated with some DRM Content imported by the LRM from upstream DRM system to a designated DRM2.x Domain, so that backward compatibility regarding Import function is achieved, i.e. an LRM can import RO into a DRM2.x Domain. This protocol assumes that the LRM has a valid RI context for the associated Rights Issuer.
This protocol includes mutual authentication of LRM and RI, secure transfer of imported Rights and REK to the RI, and integrity-protected request and delivery of created Domain ROs. This protocol MAY involve OCSP protocol between Rights Issuer and OCSP Responder for checking status of Rights Issuer’s certificate chain. After receiving a newly created Domain RO from the RI, the LRM distributes it together with the corresponding imported content to DRM Devices. But this is outside the scope of this specification.

Each LRM SHALL make sure that the number of recipient Domains is less than some threshold set by some upstream service providers. Such threshold MAY vary over different upstream service providers, and MAY vary depending on the type of Import-Ready Data. Only in the case that the cumulative recipient Domain quantity is less than the threshold does the LRM perform the LRM-RI Create Domain RO protocol to issue imported Rights to a 2.x Domain.

[image: image5.emf]LRM Rights Issuer DRM2.x Device

LR

M

-R

I

C

re

a

te

D

o

m

a

in

R

O

R

e

q

u

es

t

O

C

S

P

Re

s

p

o

n

s

e

L

R

M-

R

IC

re

a

t

eD

o

ma

i

nR

OR

es

p

o

ns

e

O

C

S

P

 R

e

q

u

e

s

t

OCSP Responder

Distribution of 2.x Domain RO and DCF

Figure 5 – The 2-pass LRM-RI Create Domain RO Protocol
6.2.4.1 LRM-RI Create Domain RO Request

An LRM sends the LRM-RI Create Domain RO Request message to an RI to request the creation of one or more domain RO for a designated DRM2.x Domain. The request message is an element of type gen:Request, in which the elements are present:
Table 20: LRM-RICreateDomainRORequest Message Parameters
	element / attribute
	Usage
	value

	reqID
	M
	Default, as specified in [SCE-GEN]

	resID
	M
	Default, as specified in [SCE-GEN]

	nonce
	M
	Default, as specified in [SCE-GEN]

	time
	M
	Default, as specified in [SCE-GEN]

	certificateChain
	O
	Default, as specified in [SCE-GEN]

	reqInfo
	M
	Specified below

	signature
	M
	Default, as specified in [SCE-GEN]

The “xsi:type” attribute of <reqInfo> element in LRMRICreateDomainRORequest message MUST be set as “lrm:LRMRICreateDomainROReqInfo”. The type of “lrm:LRMRICreateDomainROReqInfo” is defined as below.

<element name=”LRMRICreateDomainRORequest” type=”gen:Request” />

<complexType name="CreateDomainROReqInfo">
<complexContent>

 <extension base=”gen:RequestInformation”>
 <sequence>
 <element name=”sourceLRMID” type=”roap:Identifier”/>
 <element name="domainID" type="roap:DomainIdentifier"/>

<element name="rights" type="o-ex:rightsType" maxOccurs=”unbounded”/>
 <element name="enc_REKs_Kmac" type="xenc:EncryptedKeyType"/>

 <element name="mac" type="base64Binary" />

</sequence>
 </extension>

 </complexContent>

</complexType>

The <reqInfo> element in LRMRICreateDomainRORequest message includes one <sourceLRMID> element, one <domainId> element, one or more <rights> elements, one <enc_REKs_Kmac> element, and one <mac> element. It conveys information about the Rights that the LRM is attempting to import to the designated DRM2.x Domain. Based on the information, the RI will create DRM2.x compatible Domain RO(s). The included elements are specified as below:
· The <sourceLRMID> element
The <sourceLRMID> is of type roap:Identifier. It identifies the LRM which originated the request. It contains the same value as the <reqID> element.

· The <domainID> element
The <domainID> element is of type roap:DomainIdentifier specified in [DRM-DRM-2.1]. It identifies the Domain to which the Rights will be imported.

· The <rights> element

The <rights> element is of type o-ex:rightsType specified in [DRM-REL-2.1]. Within it, only the ContentID indicated by the value of [rights / agreement / asset / context / uid] element, the DCF Hash value indicated by the [rights / agreement / asset / digest / digestValue] element, the encryptedCEK indicated by the value of [rights / asset / KeyInfo / EncryptedKey / CipherData / CipherValue] element, the permissions and constraints indicated by the content of [rights / agreement / permission] elements MUST be provided by the LRM, while the [rights / context / uid] element that represents the ROID MUST NOT be provided by the LRM. But in order to meet the requirement of the schema of o-ex:rightsType type, the [rights / context / uid] element MUST be present but with an arbitrary value. The RI is expected to replace the arbitrary value with a concrete ROID.
 The <rights> element can occur multiple times. When there are multiple <rights> elements, each of which MUST have a different REK.

· The <enc_REKs_Kmac> element
The <enc_REKs_Kmac> element is of type xenc:EncryptedKeyType from [XML-Enc]. It consists of a wrapped concatenation of a MAC key, Kmac, and one or more RO Encryption Key, REKs (one for each <rights> element). The child of the <ds:KeyInfo> element inside the <enc_REKs_Kmac> element SHALL be the <roap:X509SPKIHash> element, identifying the RI’s Public Key through the (SHA-1) hash of the DER-encoded subjectPublicKeyInfo value in the RI’s Certificate. For further information on packaging the MAC key and RO Encryption Keys, see the key management discussion in section 7.
· The <mac> element

The <mac> element provides integrity protection through a MAC on the canonical version conforming to [DRM-DRM-2.1] of the elements of CreateDomainROReqInfo type (excluding the <mac> element) using KMAC which is wrapped in the <enc_Reks_Kmac> element. The MAC algorithm SHALL be the same algorithm that was negotiated as part of the registration with the RI i.e. the MAC algorithm stored in the RI Context.
Upon receiving the LRM-RICreateDomainRORequest message, the RI MUST verify the signature of the LRM and check the freshness of the request by comparing the <nonce> value in the current request against retained previously received nonce values. It also checks the value of the <time> element in the request according to [DRM-DRM-2.1]. If the LRM has an invalid DRM time, the RI must respond with LRMTimeError. The RI then verifies that the MAC value contained in the <mac> element matches the content of <CreateDomainROReqInfo>. It MUST also check the <sourceLRMID> element matches the signer of the request. Furthermore, the RI determines whether the cumulative number of Domains serviced by the RI on behalf of the particular LRM would result in exceeding the upper bound set for the LRM. This upper bound is typically set by the RI directly or by a Trust Authority. If the upper bound would be exceeded, the RI SHALL reject the particular LRM-RICreateDomainRORequest. In that event, later requests can still be accepted if they identify Domains that are already on the list of Domains for which the RI has provided ROs on behalf of the LRM. If verification of a request is successful and the RO(s) can be provided to the identified Domain without exceeding the upper bound, then the RI MUST create Domain RO(s) based on the information about the Rights indicated by the <reqInfo>.
6.1.4.1 LRM-RI Create Domain RO Response

An RI sends the LRM-RI Create Domain RO Response message to an LRM to indicate the result of creating one or more RO for a designated DRM2.x Domain. The response message is an element of type gen:Response, in which the elements are present:
 Table 21: LRM-RICreateDomainROResponse Message Parameters
	element / attribute
	usage
	value

	status
	M
	Default, as specified in [SCE-GEN]

	errorMessage
	O
	Default, as specified in [SCE-GEN]

	errorRedirectURL
	O
	Default, as specified in [SCE-GEN]

	reqID
	M
	Default, as specified in [SCE-GEN]

	resID
	M
	Default, as specified in [SCE-GEN]

	nonce
	M
	Default, as specified in [SCE-GEN]

	certificateChain
	O
	Default, as specified in [SCE-GEN]

	ocspResponse
	O
	Default, as specified in [SCE-GEN]

	rspInfo
	M
	Specified below

	signature
	M
	Default, as specified in [SCE-GEN]

The “xsi:type” attribute of <rspInfo> element in LRMRICreateDomainROResponse message MUST be set as “lrm:LRMRICreateDomainRORspInfo”. The type of “lrm:LRMRICreateDomainRORspInfo” is defined as below:
 <element name=”LRMRICreateDomainROResponse” type=”gen:Response” />

<complexType name="CreateDomainRORspInfo">
<complexContent>

 <extension base=”gen:ResponseInformation”>

<sequence maxOccurs=”unbounded”>

 <choice>

 <element name="domainRO" type="roap:ProtectedRO"/>
 <element name= "failureReason" type= "string"/>

</choice>

</sequence>
 </extension>

 </complexContent>

</complexType>
The <rspInfo> element in the LRMRICreateDomainROResponse message includes one or more sequences of choice between <domainRO> element and <failureReason> element.
The <domainRO> element carries the newly created RO for the designated DRM2.x Domain. The LRM MUST verify the <rights> element in the Domain RO matches the one it sent in the previous request message. If there is any inconsistency the LRM SHALL regard the import operation as a failure and discard the Domain RO.
The <failureReason> element indicates the reason why the <reqInfo> corresponding to the sequence was not successfully processed.
6.2 SCE-5-LRMP
For pairing-key management, the SCE-5-LRMP protocol is comprised of registration of the LRM with the DEA (as specified in Section 7.2.1.1) and the distribution of a Service Key to the LRM (as specified in Section 7.2.1.2).

For shared-key management, the SCE-5-LRMP protocol is comprised of the same protocol that is used over the SCE-3-RDP interface as specified in [SCE-DOM], except that here the protocol is between the LRM and DEA rather than between the RI and DEA. The three components of the SCE-3-RDP protocol are registration, domain usage, and User Domain backward-compatible usage. In the case of an LRM (rather than an RI) communicating with the DEA, User Domain backward-compatible usage only applies if the LRM has a certificate that includes a rightsIssuer key purpose.

6.2.1 Overview

<text>

6.2.2 Message Format

<text>

6.2.3 Message Schema

<text>

6.3 SCE-6-LRMP

<text>

6.3.1 Overview

6.3.1.1 Registration between a DRM Agent and an LRM

Before an LRM with the oma-kp-localRightsManagerDevice key purpose can generate a Device RO for a particular Device, the DRM Agent in that Device needs to register with the LRM.

Registration is done in the same way as the DRM Agent registers with the RI, i.e. over the 4-pass ROAP registration protocol (see [SCE-DRM]). The DRM Agent needs to perform the same procedures as when it registers with an RI, except that the DRM Agent MUST verify that the LRM has at least the oma-kp-localRightsManagerDevice key purpose.

In addition to checking for the presence of the oma-kp-drmAgent key purpose in the Device certificate, the LRM checks whether or not the oma-kp-sceDrmAgent key purpose is present. If an LRM does not have the oma-kp-rightsIssuer key purpose, it MUST reject registration if the oma-kp-sceDrmAgent key purpose is absent.
The DRM Agent distinguishes an LRM from an RI by its key purpose: if the entity has an oma-kp-localRightsManagerDevice key purpose, or an oma-kp-localRightsManagerDomain key purpose, the DRM agent knows that it is communicating with an LRM.

Registration results in a Device context on the LRM side, and an LRM Context on the DRM Agent side. The LRM Context is similar to the RI Context defined in [SCE-DRM]. From the LRM Context, the DRM Agent MUST be able to determine the LRM key purpose(s).

TBD allow use of CRL (rather than OCSP responses)
6.3.1.2 Registration between an OMA DRM v2.x Agent and an LRM
Before an LRM with the oma-kp-rightsIssuer key purpose can generate a Device RO, a Domain RO or a User Domain RO upon request of a particular OMA DRM v2.x Device, the DRM Agent in that Device needs to register with the LRM. The registration of an OMA DRM 2.x Device (i.e. DRM Agent without additional oma-kp-sceDrmAgent key purpose) with an LRM with at least the oma-kp-rightsIssuer key purpose is identical to the registration of OMA DRM v2.x Device with an RI from the Device’s perspective.
TBD: An LRM with the oma-kp-rightsIssuer key purpose MUST be able to interact with an OCSP-Responder.

7. Key Management
7.1 Cryptographic Components
<text>
7.2 Key Transport Mechanisms
7.2.1 Pairing-Key Management Protocols
One of the functions of a DEA is to keep track of all the provisioned Devices in a system and the cryptographic data associated with them. Additionally, the DEA authenticates client Devices and issues Tickets for those Devices to use as trusted tokens during communications with LRMs. The DEA assigns expiration time to Tickets, thus requiring Devices with Tickets to periodically renew them. By allowing Devices to cache these Tickets, the system eliminates the need for Devices to request replacements for Tickets that have not expired.
Imported Rights Objects can be imported from an LRM to a Device for which there is a Ticket that identifies both entities and can subsequently be transferred by the Import-recipient Device to another Device if permitted within the Imported Rights Object. Move [SCE-A2A] under pairing-key management utilizes a domain-wide Pairing Domain Key (PDK) that is generated by the DEA and distributed to Devices via the Key protocol.

If a Device registers with a DEA, then the Device SHALL register with the DEA by using a Device’s digital certificate. The DEA SHALL store the Device’s unique identity and public key. Once this is done and the Device has obtained a Service Key from the DEA (via the Key protocol), the Devices can obtain Tickets directly from the DEA.

In what follows, how an LRM registers with a DEA is defined in the same way as that of how a Device registers with a DEA. The protocols in Section 7.2.1.1 apply to both Devices and LRMs. Similarly, an LRM obtains a Service Key for a DEA in the same way that a Device obtains a Service Key for a DEA. The protocols in Section 7.2.1.2 apply to both Devices and LRMs. In practice, it is possible that a Device might ask for a Ticket corresponding to an LRM that has not yet registered with the DEA. In this case, the DEA returns an error message to a requesting device.
7.2.1.1 Entity Registration Protocol
This section discusses the Device Registration messages for a Device that interacts with a DEA. During the registration phase, the device exchanges its digital certificate with the DEA and that allows the device and the DEA to perform RSA-based key agreement in the next phase. The protocol messages are depicted in Figure 6. In general, a Device needs to register with a DEA only once, unless, for example, the Device needs to re-register because of an expired digital certificate. A Device MAY register more than once with a DEA, in which case a new registration replaces a previous registration. A Device MAY register with more than one DEA. To start the registration process, the Device SHALL send to the DEA a Device Registration Request message that includes the client signature and certificate. The Device Registration Request message is specified in Section 7.2.1.1.1.

[image: image6.wmf]Device

DEA

Device Registration Request

Device Registration Response

Device

DEA

Device Registration Request

Device Registration Response

Figure 6 – Device Registration Protocol
After receiving the Device Registration Request message, the DEA validates the request and verifies that the Device is authorized, so that, e.g., the certificate of the Device is not revoked. If the validation succeeds, then the DEA proceeds as follows.

The DEA MAY prompt a User to check if the User accepts the new Device with the given identifier to be registered in the DEA. This is used, for example, to prevent someone in a parking lot registering over a wireless or WiFi network and getting access to this User’s content without permission. A user can disable this feature and then any Device can register into the DEA seamlessly without any User interaction.
Next, the DEA SHALL store the Device public key extracted from the certificate of the Device. Then, the DEA SHALL send a Device Registration Response message that includes an acknowledgement from the DEA, the DEA certificate, and a DEA digital signature. The Device Registration Response message is specified in Section ‎7.2.1.1.2.
After a Device receives and validates Device Registration Response message, the Device SHALL save the DEA certificate until the DEA certificate expires or until the Device becomes aware that the certificate has been revoked. The Device can use the DEA certificate for validation of future DEA responses.
7.2.1.1.1 Device Registration Request Message Details

The Device Registration Request message has the syntax described in Section 6.1. The fields of the message are as follows:

· msgType – This field contains the value 12.
· Pvno – This field contains the value 1.0.

· stid – This field is set as discussed in Section 7.2.1.1.1.1.
· dtid – This field is set as discussed in Section 7.2.1.1.1.1.
· retryCount – This field is set as discussed in Section 7.2.1.1.1.1.
· Attributes – This data structure contains the NewPrincipalFlag attribute.
· nbrOfAttrs – This field contains the value 1.
· AttributeStructures – This data structure contains the PubKeyClientAuthenticator attribute data structure and the CertificateChain attribute data structure.
· nbrOfAttrStrs – This field contains the value 2.
· Signature – This attribute data structure specifies a digital signature of the message as discussed in Section 7.2.1.1.1.1.
7.2.1.1.1.1. Generating Device Registration Request Message

The Device MUST follow the following steps to generate a Device Registration Request message:

1. Generate a pseudo random number for the stid header field of the message.

2. Set the dtid header field of the message to 0.
3. Fill in the retryCount field. The value must be 0 for the initial message, 1 for the first retry, etc.

4. Fill in the value of the NewPrincipalFlag – depending on whether the intent is to create a new record in the DEA storage or to update an existing one.

5. Generate the PubKeyClientAuthenticator attribute data structure to authenticate this request as per Section 7.2.1.1.1.2.
6. Generate the CertificateChain attribute data structure.
7. Generate the Signature attribute data structure. The data structure consists of a SigType attribute and a SigValue attribute. The value in SigValue is calculated over the entire message except for the Signature attribute data structure. Use the Device private key to compute the signature.
After the Device sends out the Device Registration Request message, it MUST save the value of the stid header field in order to later validate the matching Device Registration Response message from the DEA. The Device MUST keep the stid until a configurable time out value. After the time out, the Device will no longer be able to process the corresponding Device Registration Response message and must retry and increment the retryCount value.

7.2.1.1.1.2. Generating PubKeyClientAuthenticator
The PubKeyClientAuthenticator attribute data structure is generated in order to authenticate one of several messages sent by a client to the DEA. The generation steps are:

1. Generate ClientName attribute and ClientDomainBaseID attribute. A client MAY set the length field value of ClientDomainBaseID to 0 and not specify a value for ClientDomainBaseID.

2. Fill in the ClientDRMtimeSeconds attribute.

3. Add the DEAPubKeyIdentifier attribute data structure.

4. If the Device previously saved a DEA certificate chain, check if any of the corresponding CRLs are expired. If so, add a RequestCRLs attribute to the PubKeyClientAuthenticator, listing the issuers of the expired CRLs. The DEA will be required to reply with the corresponding up-to-date CRLs.

7.2.1.1.1.3. Processing Device Registration Request Message

The DEA MUST perform the following steps to verify the Device Registration Request message:

1. Parse the message header. If the header parsing fails, drop the message and do not return an error.

2. Verify the protocol version number in the header. If this protocol version is not supported, send an error message with the DEA_ERR_BAD_PVNO error code.

3. Parse the rest of the message. If the message format is found to be illegal, drop the message and do not return an error.

4. Validate the client certificate chain and extract the client’s public key. Compute the ClientIdentifier from the certificate. TBD: Check the type of entity (i.e. Device or LRM or RI).
5. Process the PubKeyClientAuthenticator attribute data structure as specified in Section 7.2.1.1.1.4.

6. If the value in the NewPrincipalFlag attribute equals 0, and the value of the ClientName in the PubKeyClientAuthenticator attribute data structure already exists in the DEA storage, then the DEA MUST verify that the corresponding ClientIdentifier in the DEA storage has the same value as that extracted from the client certificate chain present in the Device Registration Request message. If the values are different, then the DEA returns an error message with error code DEA_ERR_HOSTID_CHANGE_PROHIBITED. This prevents a new client intentionally registering with an existing ClientName so as to take advantage of the ClientName’s authorizations.

Note that the only reasons a Device sends Device Registration Request message with the value in the NewPrincipalFlag attribute equal to 0 is if the Device updates its certificate, if the Device wishes to add a new value for the ClientName to the ClientIdentifier record in the DEA storage, or if the Device wants to add a new value for the ClientDomainBaseID to the ClientIdentifier record in the DEA storage.
The DEA checks that registering the Device would not exceed the maximum number of allowed Devices for this User Domain. If the number would be exceeded, the DEA returns an error message and stops processing.
7. If no errors are generated during the processing of this message, then the DEA does one of the following depending on the value of the NewPrincipalFlag attribute:

If the value is 0, then the DEA adds the value of ClientName to the corresponding ClientIdentifier value record (if the value of ClientName is new), adds the value of ClientDomainBaseID to the corresponding ClientIdentifier value record (if the value of ClientDomainBaseID is new), updates in the record the certificate identifying information needed to later check for revocation, and updates the values of EncTypeSet and SigTypeSet associated with the client record. If the ClientDomainBaseID has length 0 in the message, then the DEA SHOULD add a default ClientDomainBaseID value to the corresponding ClientIdentifier value record (if the record does not have this default value already).

If the value is 1, then the DEA creates a new record in the DEA storage. The record includes the value of ClientIdentifier, ClientName, ClientDomainBaseID, Device public key, certificate identifying information needed to later check for revocation, the values of EncTypeSet and SigTypeSet for the client, and the value of ClientDRMtimeSeconds. If the ClientDomainBaseID has length 0 in the message, then the DEA SHOULD set the value of ClientDomainBaseID to a default value.
8. The DEA generates the Device Registration Response message.
7.2.1.1.1.4. Processing PubKeyClientAuthenticator
The DEA MUST verify the PubKeyClientAuthenticator attribute data structure by using the following procedure:

1. Verify the value of the NewPrincipalFlag attribute as follows. If the value is 0, then the Device Registration Request message is an update message. So, the ClientIdentifier of the Device must already exist in the DEA storage. If the ClientIdentifier does not exist in the DEA storage, then the DEA sends an error message with the error code DEA_ERR_OTHER_PRINCIPAL_NOT_FOUND.

If the value of the NewPrincipalFlag attribute is 1, then the values of the ClientName and the ClientIdentifier attributes in the PubKeyClientAuthenticator attribute data structure must not yet exist in the DEA storage. If the value of the ClientIdentifier does exist in the DEA storage, then the DEA sends an error message with the error code DEA_ERR_DUP_HOSTID. If the value of ClientName does exist in the DEA storage, then the DEA sends an error message with the error code DEA_ERR_OTHER_PRINCIPAL_ALREADY_EXISTS. There is one scenario where the presence of the ClientName or ClientIdentifier values in the DEA storage does not result in an error, however:

a) The Device sends a Device Registration Request message to create a new record in the DEA

b) The DEA processes the request, creates the new record and sends back a reply message.

c) The Device times out before getting the reply message and resends the same Device Registration Request message. The request is to create a new record, but the DEA storage record was just created in Step b above. However, since this is a retry, it should not result in an error.

In order to address this scenario, the DEA MUST save the values of the ClientDRMtimeSeconds attribute contained in the PubKeyClientAuthenticator attribute data structure. If the RetryCount field in the Device Registration Request message header is greater than 0, and the DEA finds a record in its storage matching the ClientIdentifier value, ClientDomainBaseID value, and the Ctime value, then the DEA treats the request as an update and not as an error.

2. If the ClientIdentifier has been marked as being revoked in the DEA, then an error message with the error code DEA_ERR_CLIENT_REVOKED is returned.

3. Verify the Signature attribute data structure. If the attribute data structure contains a SigType attribute, then an error message with the error code ERR_INAPP_CKSUM is generated. If the value of the SigType in the Signature attribute data structure is not supported by the DEA, then the DEA generates a DEA_ERR_SIGTYPE_NOSUPP error message. If the signature value that the DEA computes for the Device Registration Request message does not match the value contained in the SigValue attribute contained in the Signature attribute data structure, then an error message with DEA_ERR_INVALID_SIG is returned.

4. Check the value contained in the ClientDRMtimeSeconds attribute. If the value is outside of an acceptable time window (typically +/- 5 minutes), then the DEA rejects the Device Registration Request message and returns the ERR_SKEW error message.

5. Otherwise, the DEA computes a SHA-1 hash of the full Device Registration Request message and checks if there is already a record for this particular message type (i.e. msgType value 12) with this hash value in a DEA Replay Cache. Each Replay Cache record contains a hash value indexed by a msgType and the ClientDRMtimeSeconds value. Only the entries corresponding to the acceptable time window, e.g. +/- 5 minutes, are kept in the Replay Cache. If the DEA finds a record in the Replay Cache with the same hash value, a replay attack is assumed and the ERR_REPEAT error message is returned. If no such entries are found, the processing continues as specified below.

6. The DEA updates the Replay Cache with a record corresponding to this Device Registration Request message. The record contains a SHA-1 message hash and the value of the ClientDRMtimeSeconds attribute.

7. Make sure that the value contained in the DEAPubKeyHash attribute in the PubKeyClientAuthenticator attribute data structure matches one of the DEA public keys. If the value does not match any of the public keys possessed by the DEA, then the Device Registration Request message MUST be rejected with the error code DEA_ERR_PUBKEY_NOT_FOUND logged into a local file, and the DEA MUST NOT send back an error message (since the Device will be unable to verify it).

7.2.1.1.2 Device Registration Response Message Details

The Device Registration Response message has the syntax described in Section 6.1. The fields of the message are as follows:

· msgType – This field contains the value 13.
· Pvno – This field contains the value 1.0.

· stid – This field is set as discussed in Section 7.2.1.1.2.1.
· dtid – This field is set as discussed in Section 7.2.1.1.2.1.
· retryCount – This field is set as discussed in Section 7.2.1.1.2.1.
· Attributes – This data structure contains no attributes.
· nbrOfAttrs – This field contains the value 0.
· AttributeStructures – This data structure contains the PubKeyDEAAuthenticator attribute data structure.
· nbrOfAttrStrs – This field contains the value 1.
· Signature – This attribute data structure specifies a digital signature of the message as discussed in Section 7.2.1.1.2.1.
7.2.1.1.2.1. Generating Device Registration Response Message

The DEA MUST follow the following steps to generate a Device Registration Response message:

1. Set the stid header field of the message to 0.

2. Set the dtid header field of the message to the same value of the stid header field from the preceding Device Registration Request message, so that the response message is tied to the request message.
3. The retryCount from the preceding Device Registration Request message is copied to the retryCount in this message.

4. Generate the PubKeyDEAAuthenticator attribute data structure to authenticate this request as per Section 7.2.1.1.2.2.
5. Generate the Signature attribute data structure. The data structure consists of a SigType attribute and a SigValue attribute. The value in SigValue is calculated over the entire message except for the Signature attribute data structure. Use the DEA private key to compute the signature.
7.2.1.1.2.2. Generating PubKeyDEAAuthenticator
The PubKeyDEAAuthenticator attribute data structure is generated in order to authenticate one of several messages sent by a DEA to a client. The generation steps are:

1. Find the DEA public key whose hash equals the value in the DEAPubKeyHash attribute present in the PubKeyClientAuthenticator attribute data structure in the preceding Device Registration Request message.

2. In the event that the DEA does not find that public key, the DEA SHOULD choose another public key and include the certificate of that public key in the PubKeyDEAAuthenticator.

3. If the client requested some updated CRLs (in the PubKeyClientAuthenticator), and the DEA is not including a new certificate in the Device Registration Response message, then the DEA SHOULD include the CRLList attribute data structure with a list of requested CRLs. If for whatever reason the DEA is unable to obtain some of the requested CRLs, it should leave them out of the CRLList but MUST NOT return an error. If the DEA was unable to obtain any of the requested CRLs, it MUST omit the CRLList attribute data structure. (It is up to the client policy to decide if it can accept a DEA signature when some of the CRLs are missing.)

4. If the client requested some updated CRLs (in the PubKeyClientAuthenticator), and the DEA included a new certificate in the Device Registration Response message, then the DEA SHOULD include the CRLList attribute data structure with a list of CRLs that correspond to each of the issuers in the DEA certificate chain. If for whatever reason the DEA is unable to obtain some of the CRLs, it should leave them out of the CRLList but MUST NOT return an error. If the DEA was unable to obtain any of the CRLs, it MUST omit the CRLList attribute data structure. (It is up to the client policy to decide if it can accept a DEA signature and a new DEA certificate when some of the CRLs are missing.)

7.2.1.1.2.3. Processing Device Registration Response Message

The client MUST follow the following procedure to process the Device Registration Response message. Note that the client does not send an error message back to the DEA. In some cases, the client will retry with another Device Registration Request message:

1. Parse the message header. If the header parsing fails, pretend that the Device Registration Response message were never received, i.e. continue waiting for a reply to the initial Device Registration Request message until a timeout occurs and then retry.
2. Verify the protocol version number in the header. If this protocol version is not supported, pretend the message were never received.

3. The client looks for an outstanding Device Registration Request message whose stid value matches the dtid header field in the Device Registration Response message. If there is no match, the client proceeds as if the Device Registration Response message were never received.

4. Verify that the retryCount in the preceding Device Registration Request message matches the retryCount in the Device Registration Response message. If it does not match, the client proceeds as if the reply message were never received.

5. Parse the rest of the Device Registration Response message. If the message format is found to be illegal, pretend the message were never received.
6. Verify the signature (by using the DEA public key). If the signature does not verify, this message is dropped and the client proceeds as if the message were never received.
7. Process PubKeyDEAAuthenticator as specified in Section 7.2.1.1.2.4.

7.2.1.1.2.4. Processing PubKeyDEAAuthenticator

The client MUST verify the PubKeyDEAAuthenticator attribute data structure by using the following procedure:

1. The client verifies the digital signature contained in the Signature attribute data structure by using the pre-provisioned DEA public key if the DEA did not include a DEA certificate in PubKeyDEAAuthenticator. If the DEA included a DEA certificate in PubKeyDEAAuthenticator, then the client verifies the signature by using the public key in the certificate. If the signature does not verify, then the Device Registration Response message is dropped and the client proceeds as if the message were never received.

2. In the case that a DEA certificate chain was included in PubKeyDEAAuthenticator but the client does not support this particular certificate type or does not support parsing of DEA certificates altogether, the client MUST abort processing of the message and log the error code DEA_ERR_CERTTYPE_NOSUPP.

3. If the DEA certificate was included in the Device Registration Response message, the client MUST save the new DEA public key for verifying all future reply messages that contain PubKeyDEAAuthenticator.
7.2.1.2 Service Keys and PDKs for Devices
The DEA SHALL assign a unique symmetric Service Key to each Device. The symmetric Service Keys provide faster authentication to the DEA in subsequent ticket requests than authentication with public/private keys. The assignment of the Service Keys is described below and is shown in Figure 7.

[image: image7.emf]Device DEA

Device Registration Response

Device Registration Request

Key Request

Key Response

Figure 7 – Assignment of Service Keys and distributions of PDKs
To obtain a Service Key, a Device SHALL send to the DEA a Key Request message that is authenticated by using the private key of the Device. The message SHALL contain the identity of the Device, the identity of the DEA, and a list of symmetric encryption algorithms that are supported by the Device. To check against replays, this message SHALL also contain a nonce. The Key Request message is specified in Section ‎7.2.1.2.1.
In response, the DEA SHALL randomly generate a symmetric Service Key, store it, and then send a copy of it in a Key Response message to the Device, as specified next. The Key Response message SHALL include the Service Key encrypted by using a shared key derived based on the key agreement algorithm, and a validity period. The entire Key Response message SHALL be signed by the DEA private key. The Key Response message is specified in Section 7.2.1.2.2.
Each Device that has a Service Key SHALL periodically update its Service Key based on an expiration time returned in the Key Response message. Each Service Key update is performed by repeating the Key Request/Response exchange. The default value for the Service Key lifetime is RECOMMENDED to be 30 days. When a Service Key is renewed, the value field in the inner SkeyVnum attribute (inside encrypted PrivateKeyInfo) associated with the Service Key is incremented by one.
In addition to the Service Key, a Pairing Domain Key (PDK) SHALL be delivered to a Device using the Key Response message. PDKs are domain-global keys generated by the DEA that are used between DRM Agents to perform a Move transaction [SCE-A2A] with respect to a <pairing>-constrained LRM-created RO. PDKs are not used by or made available to LRMs. If a Device has been revoked and the Device with which it communicates is aware of the revocation, the revoked Device will not be able to perform successfully as DRM Requestor or DRM Agent relative to a Move transaction, regardless of whether or not the Device has access to a current PDK. A DRM Agent need not be registered with the DEA in order to complete a Move transaction with a DRM Requestor. In order to consume the RO, the DRM Agent acquires from the DEA within a Key Response the PDK used by the DRM Requestor.

To avoid storage of multiple PDKs in the Device, the PDKs are derived using Hash Chains as specified in section 7.3 of [DRM-DRM-v2.1].

DRM Requestors SHALL use the latest PDK they have when performing a Move of an RO.
7.2.1.2.1 Key Request Message Details

The Key Request message has the syntax described in Section 6.1. The fields of the message are as follows:

· msgType – This field contains the value 3.
· Pvno – This field contains the value 1.0.

· stid – This field is set as discussed in Section 7.2.1.2.1.1.
· dtid – This field is set as discussed in Section 7.2.1.2.1.1.
· retryCount – This field is set as discussed in Section 7.2.1.2.1.1.
· Attributes – This data structure contains the following attributes: EncTypeSet and SigTypeSet.
· nbrOfAttrs – This field contains the value 2.
· AttributeStructures – This data structure contains the following attribute data structures: KeyAgreementInfo, PubKeyClientAuthenticator, and CertificateChain. The CertificateChain attribute data structure is optional.
· nbrOfAttrStrs – This field contains the value 3 if the CertificateChain attribute data structure is present; else the value is 2.
· Signature – This attribute data structure specifies a digital signature of the message as discussed in Section 7.2.1.2.1.1.
7.2.1.2.1.1. Generating Key Request Message

The Device MUST follow the following steps to generate a Key Request message:

1. Generate a pseudo random number for the stid header field of the message.

2. Set the dtid header field of the message to 0.
3. Fill in the retryCount field. The value must be 0 for the initial message, 1 for the first retry, etc.

4. Fill in list of encryption types supported by the client (EncTypeSet).

5. Fill in list of signature types supported by the client (SigTypeSet).
6. Generate key agreement parameters, i.e., generate a random nonce and encrypt it using the DEA’s public key. The encrypted nonce is added to the message in the KeyAgreementInfo attribute data structure, while the clear nonce is saved in order to derive the shared key for decrypting a portion of the subsequent Key Response message.
7. Generate the PubKeyClientAuthenticator attribute data structure to authenticate this request as per Section 7.2.1.1.1.2.
8. Generate the CertificateChain attribute data structure if the client is registered with the DEA and wants to update its certificate chain in the DEA.
9. Generate the Signature attribute data structure. The data structure consists of a SigType attribute and a SigValue attribute. The value in SigValue is calculated over the entire message except for the Signature attribute data structure. Use the Device private key to compute the signature.
After the Device sends out the Key Request message, it MUST save the value of the stid header field in order to later validate the matching Key Response message from the DEA. The Device MUST keep the stid until a configurable time out value. After the time out, the Device will no longer be able to process the corresponding Key Response message and must retry and increment the retryCount value.

7.2.1.2.1.2. Generating PubKeyClientAuthenticator
The PubKeyClientAuthenticator attribute data structure is generated in order to authenticate one of several messages sent by a client to the DEA. The generation steps are:

1. Generate ClientName attribute and ClientDomainBaseID attribute. A client MAY set the length field value of ClientDomainBaseID to 0 and not specify a value for ClientDomainBaseID.

2. Fill in the ClientDRMtimeSeconds attribute.

3. Add the DEAPubKeyIdentifier attribute data structure.

4. If the Device previously saved a DEA certificate chain, check if any of the corresponding CRLs are expired. If so, add a RequestCRLs attribute to the PubKeyClientAuthenticator, listing the issuers of the expired CRLs. The DEA will be required to reply with the corresponding up-to-date CRLs.

7.2.1.2.1.3. Processing Key Request Message

The DEA MUST perform the following steps to verify the Key Request message:

1. Parse the message header. If the header parsing fails, drop the message and do not return an error.

2. Verify the protocol version number in the header. If this protocol version is not supported, send an error message with the DEA_ERR_BAD_PVNO error code.

3. Parse the rest of the message. If the message format is found to be illegal, drop the message and do not return an error.

4. If the CertificateChain attribute data structure is present in the message, then validate the client certificate chain, extract the client’s public key, and compute the ClientIdentifier from the certificate.
5. Based on whether the client is a Device or LRM, the DEA looks up the corresponding DA-Signed Data to verify that it is authorized by the DA to register the client. That is, if the client is a Device, the DEA looks up the DEA-Device type DA-Signed Data. The DEA is authorized to register the Device if the DA-Signed Data is Device-null, or if the ClientIdentifier is included in the ClientList of the DA-Signed Data if it is Device-specific. Alternatively, if the client is an LRM, the DEA looks up the DEA-LRM type DA-Signed Data. The DEA is authorized to register the LRM if the LRM is in the ServerList of the DA-Signed Data. If the DEA is not authorized, it returns an error message with the error code DEA_ERR_DEA_NOT_AUTHORIZED.
6. Process the PubKeyClientAuthenticator attribute data structure as specified in Section 7.2.1.2.1.4.

7. If the key agreement parameters in KeyAgreementInfo specified by the client is of insufficient strength (due to the key size or algorithm used) as determined by DEA policy, then the DEA returns an error message with the error code DEA_ERR_KEYAGR_KEY_TOO_WEAK.

8. If the DEA cannot accommodate the requested encryption type, then the DEA returns an error message with the error code DEA_ERR_ETYPE_NOSUPP.

9. If the DEA cannot accommodate the requested signature type, then the DEA returns an error message with the error code DEA_ERR_SIGTYPE_NOSUPP.

10. The DEA generates the Key Response message.
7.2.1.2.1.4. Processing PubKeyClientAuthenticator
The DEA MUST verify the PubKeyClientAuthenticator attribute data structure by using the following procedure:

1. Search the DEA storage for a record that matches the value of the ClientName attribute present in PubKeyClientAuthenticator. If a record exists, and the CertificateChain attribute is present in the Key Request message, then verify that the ClientIdentifier value present in the record matches the ClientIdentifier value extracted from the CertificateChain. If the values do not match, then the DEA sends an error message with the error code DEA_ERR_HOSTID_CHANGE_PROHIBITED. This prevents a new client intentionally registering with an existing ClientName so as to take advantage of the ClientName’s authorizations.

Else, if a record does not exist in the DEA storage, and the CertificateChain attribute is not present in the Key Request message, then the DEA sends an error message with the error code DEA_ERR_OTHER_PRINCIPAL_NOT_FOUND.

2. If the ClientIdentifier has been marked as being revoked in the DEA, then an error message with the error code DEA_ERR_CLIENT_REVOKED is returned.

3. Verify the Signature attribute data structure. If the attribute data structure contains a SigType attribute, then an error message with the error code ERR_INAPP_CKSUM is generated. If the value of the SigType in the Signature attribute data structure is not supported by the DEA, then the DEA generates a DEA_ERR_SIGTYPE_NOSUPP error message. If the signature value that the DEA computes for the Key Request message does not match the value contained in the SigValue attribute contained in the Signature attribute data structure, then an error message with DEA_ERR_INVALID_SIG is returned.

4. Check the value contained in the ClientDRMtimeSeconds attribute. If the value is outside of an acceptable time window (typically +/- 5 minutes), then the DEA rejects the Key Request message and returns the ERR_SKEW error message.

5. Otherwise, the DEA computes a SHA-1 hash of the full Key Request message and checks if there is already a record for this particular message type (i.e. msgType value 3) with this hash value in a DEA Replay Cache. Each Replay Cache record contains a hash value indexed by a msgType and the ClientDRMtimeSeconds value. Only the entries corresponding to the acceptable time window, e.g. +/- 5 minutes, are kept in the Replay Cache. If the DEA finds a record in the Replay Cache with the same hash value, a replay attack is assumed and the ERR_REPEAT error message is returned. If no such entries are found, the processing continues as specified below.

6. The DEA updates the Replay Cache with a record corresponding to this Key Request message. The record contains a SHA-1 message hash and the value of the ClientDRMtimeSeconds attribute.

7. Make sure that the value contained in the DEAPubKeyHash attribute in the PubKeyClientAuthenticator attribute data structure matches one of the DEA public keys. If the value does not match any of the public keys possessed by the DEA, then the Key Request message MUST be rejected with the error code DEA_ERR_PUBKEY_NOT_FOUND logged into a local file, and the DEA MUST NOT send back an error message (since the Device will be unable to verify it).

7.2.1.2.2 Key Response Message Details

The Key Response message has the syntax described in Section 6.1. The fields of the message are as follows:

· msgType – This field contains the value 4.
· Pvno – This field contains the value 1.0.

· stid – This field is set as discussed in Section 7.2.1.2.2.1.
· dtid – This field is set as discussed in Section 7.2.1.2.2.1.
· retryCount – This field is set as discussed in Section 7.2.1.2.2.1.
· Attributes – This data structure contains no attributes.
· nbrOfAttrs – This field contains the value 0.
· AttributeStructures – This data structure contains the following attribute data structures: one or two sets of EncryptedData, EndTime, CsumType, EncType, DASignedData, KeyAgreementInfo, and PubKeyDEAAuthenticator.
· nbrOfAttrStrs – This field contains the value 7 or 8, depending on whether a PDK is included.
· Signature – This attribute data structure specifies a digital signature of the message as discussed in Section 7.2.1.2.2.1.
7.2.1.2.2.1. Generating Key Response Message

The DEA MUST follow the following steps to generate a Key Response message:

1. Set the stid header field of the message to 0.

2. Set the dtid header field of the message to the same value of the stid header field from the preceding Key Request message, so that the response message is tied to the request message.
3. The retryCount from the preceding Key Request message is copied to the retryCount in this message.

4. The DEA randomly generates a Service Key.
5. The DEA chooses an encryption algorithm based on the intersection of the list of algorithms specified in the EncTypeSet attribute in the preceding Key Request message with the list of encryption algorithms supported by the DEA. If this intersection contains more than one encryption algorithm, the DEA MUST select the strongest one. The encryption algorithm is used to encrypt the data in EncryptedData.

6. Generate key agreement parameters, i.e., generate a random nonce and encrypt it using the Device public key. The encrypted nonce is added to the message as KeyAgreementInfo, while the clear nonce is used (together with the Device’s nonce from the Key Request message) in the key agreement algorithm to generate a symmetric shared key.
7. The DEA populates the EncryptedData attribute data structure. The EncType contains the identifier of the encryption algorithm that the DEA chose. The CipherText contains the Service Key type in a KeyType attribute and the Service Key in a KeyValue attribute. The CipherText also contains the Service Key version number (SkeyVnum) attribute for the Service Key. If this is the first Service Key created for the client, then the version number is 1. If this is not the first Service Key created for the client, then a Service Key number already is associated with the record for the client in the DEA storage. So, the Service Key number is incremented by one. The value of the CipherText attribute is encrypted by using the symmetric shared key generated from the Key Agreement.
8. If the client is a DRM Agent (i.e. not an LRM), the DEA populates a second EncryptedData attribute data structure with the current generation of the PDK. The EncType contains the identifier of the encryption algorithm that the DEA chose. The CipherText contains the PDK type in a KeyType attribute and the current generation of the PDK in a KeyValue attribute.
9. The DEA adds the Service Key and the Service Key version number to the record for the client in the DEA storage. The DEA MUST keep all versions of Service Keys for all clients in the DEA storage, such that when a DRM Agent submits an Authorization Request for an RO, the DEA will always be able to verify the keyed checksum generated by the DRM Requestor where the RO is Moved from.
10. Fill in the EndTime attribute value. This is the expiration time for this Service Key and MAY be set according to a policy communicated to the DEA. The format of this policy and the method to communicate the policy to the DEA are ouside the scope of these specifications.

11. Fill in the EncType and the CsumType attribute values. The EncType indicates the DEA chose in step 5 above. The CsumType is similarly chosen by the DEA.

12. Populate the DASignedData attribute with the appropriate type of DA-Signed Data. If the client is a Device, the DEA returns the DEA-Device type DASignedData; whereas if the client is an LRM, the DEA returns the DEA-LRM type DASignedData.

13. Generate the PubKeyDEAAuthenticator attribute data structure to authenticate this request as per Section 7.2.1.2.2.2.
14. Generate the Signature attribute data structure. The data structure consists of a SigType attribute and a SigValue attribute. The value in SigValue is calculated over the entire message except for the Signature attribute data structure. Use the DEA private key to compute the signature.

7.2.1.2.2.2. Generating PubKeyDEAAuthenticator
The PubKeyDEAAuthenticator attribute data structure is generated in order to authenticate one of several messages sent by a DEA to a client. The generation steps are:

1. Find the DEA public key whose hash equals the value in the DEAPubKeyHash attribute present in the PubKeyClientAuthenticator attribute data structure in the preceding Key Request message.

2. In the event that the DEA does not find that public key, the DEA SHOULD choose another public key and include the certificate of that public key in the PubKeyDEAAuthenticator.

3. If the client requested some updated CRLs (in the PubKeyClientAuthenticator), and the DEA is not including a new certificate in the Key Response message, then the DEA SHOULD include the CRLList attribute data structure with a list of requested CRLs. If for whatever reason the DEA is unable to obtain some of the requested CRLs, it should leave them out of the CRLList but MUST NOT return an error. If the DEA was unable to obtain any of the requested CRLs, it MUST omit the CRLList attribute data structure. (It is up to the client policy to decide if it can accept a DEA signature when some of the CRLs are missing.)

4. If the client requested some updated CRLs (in the PubKeyClientAuthenticator), and the DEA included a new certificate in the Key Response message, then the DEA SHOULD include the CRLList attribute data structure with a list of CRLs that correspond to each of the issuers in the DEA certificate chain. If for whatever reason the DEA is unable to obtain some of the CRLs, it should leave them out of the CRLList but MUST NOT return an error. If the DEA was unable to obtain any of the CRLs, it MUST omit the CRLList attribute data structure. (It is up to the client policy to decide if it can accept a DEA signature and a new DEA certificate when some of the CRLs are missing.)

7.2.1.2.2.3. Processing Key Response Message

The client MUST follow the following procedure to process the Key Response message. Note that the client does not send an error message back to the DEA. In some cases, the client will retry with another Key Request message:

1. Parse the message header. If the header parsing fails, pretend that the Key Response message were never received, i.e. continue waiting for a reply to the initial Key Request message until a timeout occurs and then retry.
2. Verify the protocol version number in the header. If this protocol version is not supported, pretend the message were never received.

3. The client looks for an outstanding Key Request message whose stid value matches the dtid header field in the Key Response message. If there is no match, the client proceeds as if the Key Response message were never received.

4. Verify that the retryCount in the preceding Key Request message matches the retryCount in the Key Response message. If it does not match, the client proceeds as if the reply message were never received.

5. Parse the rest of the Key Response message. If the message format is found to be illegal, pretend the message were never received.
6. Verify the signature (by using the DEA public key). If the signature does not verify, this message is dropped and the client proceeds as if the message were never received.
7. Verify that the value of the DASignedData attribute shows that the DEA is authorized by the DA to register the client. For example, for a Device, if the DA-Signed Data is Device-specific, then the value of the DASignedData attribute must include the value of the ClientIdentifier. If the verification fails, then the client MUST abort processing of the message and log the error code DEA_ERR_DEA_NOT_TRUSTED.
To Be Done: REMOVE all instances of logging.
8. Compute a symmetric shared key by using the content of KeyAgreementInfo (by decrypting the DEA’s encrypted nonce using the Device private key) and the nonce that the client stored when the client sent the preceding Key Request message.

9. The client decrypts the value of the Ciphertext attribute in EncryptedData in the reply message by using the symmetric shared key. If the value cannot be decrypted because the client does not support the encryption type of the EncryptedData, a fatal error MUST be reported to the user, and the client MUST NOT retry. If the resulting clear text contains formatting errors or contains a Service Key with a type that is not supported by this client, then a fatal error MUST be reported to the user, and the client MUST NOT retry.
10. If the client is a DRM Agent (i.e. not an LRM), it decrypts the value of the Ciphertext attribute in the second EncryptedData in the reply message by using the symmetric shared key. If the value cannot be decrypted because the client does not support the encryption type of the EncryptedData, a fatal error MUST be reported to the user, and the client MUST NOT retry. If the resulting clear text contains formatting errors or contains a PDK with a type that is not supported by this client, then a fatal error MUST be reported to the user, and the client MUST NOT retry.
11. Process PubKeyDEAAuthenticator as specified in Section 7.2.1.2.2.4.
12. If no errors in the Key Response message were detected, the client MUST save the Service Key (and a PDK in the case of a DRM Agent) in a new entry in its key ring until the Service Key (and the PDK) expires (as indicated by the EndTime attribute in the response). The client also saves the CsumType and EncType chosen by the DEA.

7.2.1.2.2.4. Processing PubKeyDEAAuthenticator

The client MUST verify the PubKeyDEAAuthenticator attribute data structure by using the following procedure:
1. The client verifies the digital signature contained in the Signature attribute data structure by using the pre-provisioned DEA public key if the DEA did not include a DEA certificate in PubKeyDEAAuthenticator. If the DEA included a DEA certificate in PubKeyDEAAuthenticator, then the client verifies the signature by using the public key in the certificate. If the signature does not verify, then the Key Response message is dropped and the client proceeds as if the message were never received.

2. In the case that a DEA certificate chain was included in PubKeyDEAAuthenticator but the client does not support this particular certificate type or does not support parsing of DEA certificates altogether, the client MUST abort processing of the message and log the error code DEA_ERR_CERTTYPE_NOSUPP.

3. If the DEA certificate was included in the Key Response message, the client MUST save the new DEA public key for verifying all future reply messages that contain PubKeyDEAAuthenticator.
7.2.1.2.2.5. Key Derivation

The Service Key assigned by the DEA and the Session Key embedded in a Ticket are not used directly for encryption or authentication. Instead, a Key Derivation Function (KDF) is used to derive an encryption key and authentication key as described below. The KDF used is the KDF specified in Section 7.1.2 of [OMADRMv2]. This KDF has three input parameters: Z, otherInfo, and kLen and outputs a key of length equals to kLen bytes. The derivation of the encryption key, authentication key, and other cryptographic parameters required are specified as follows:

Encryption Key = KDF(Session Key or Service Key, “encrkey”, kLen)

Authentication Key = KDF(Session Key or Service Key, “authkey”, kLen)

If an Initialization Vector (IV) is required for the encryption algorithm, the IV is derived as follows:

IV = KDF(Session Key or Service Key, “iv”, Length of IV)

If a counter is required for the encryption algorithm, the Counter is derived as follows:

Counter = KDF(Session Key or Service Key, “counter”, Length of Counter)

where otherInfo is an ascii string as specified in each case above.

In the following, the Encryption Key and Authentication Key derived from the Service Key are referred to as the “Service Encryption Key” and “Service Authentication Key”, respectively. Similarly, the Encryption Key and Authentication Key derived from the Session key are referred to as the “Session Encryption Key” and “Session Authentication Key”, respectively.
7.2.1.3 Import Protocol
Any DRM Agent can Import from any LRM, and an LRM also can import directly to any DRM Agent under the paring mechanism. A DRM Agent that gets an Imported-RO from an LRM MUST be registered with the DEA associated with the LRM. This registration is proved by a Ticket that the DRM Agent uses to obtain an Imported-Rights-Object for the desired Imported-Content.
Figure 8 depicts the messages used in Import. When a DRM Agent wants an Import from an LRM, and the DRM Agent does not have a valid Ticket for the LRM, then the DRM Agent SHALL obtain a Ticket for the LRM before the DRM Agent sends an Imported-RO Request message to the LRM. If the DEA-Device type DA-Signed Data has expired, the DRM Agent SHALL not send a Ticket Request to the DEA. Instead, the DRM Agent SHALL first use the Service Key Protocol to obtain a new set of DEA-Device type DA-Signed Data from the DEA. The Imported-RO Request message SHALL include a Ticket, and the Ticket SHALL be integrity protected by a keyed checksum that uses the Service Authentication Key derived from the Service Key obtained previously by the LRM from the DEA. There are situations where a DRM Agent with a valid Ticket requests a new Ticket. For example, the DRM Agent may want to renew the expiry date of the Ticket before it actually expires. If the DRM Agent wants an Import from an LRM, and the DRM Agent already has a valid Ticket for the LRM, then the DRM Agent MAY obtain a new Ticket for the LRM, in which case the DRM Agent SHALL discard the old Ticket. A DRM Agent SHALL use a Ticket Request message to request from a DEA associated with an LRM a Ticket for the LRM. The Ticket Request message is specified in Section 7.2.1.3.2.
When an LRM has not setup a connection with a DRM Agent and wants to initiate the Import transaction, the LRM sends Import Initiation message to DRM Agent. The Import Initiation message SHALL contain the IDs of ROs to be imported and the corresponding Content-IDs, the identities of the DEA, LRM and DRM Agent. The subsequent steps of Import are equivalent to those described in the above paragraph.

[image: image8.emf]DEA DRM Agent LRM

Import Init Request

Ticket Request

Ticket Response

Imported-RO Request

Imported-RO Response

Figure 8 – Messages used in Import
The Ticket Request message SHALL contain the identity of the LRM and the DRM Agent. To check against replays, this message SHALL also contain a nonce. The DRM Agent SHALL authenticate the message by using a keyed checksum that uses its Service Authentication Key.
Once the DEA validates the Ticket Request message from the DRM Agent, the DEA randomly generates a symmetric Session Key, and then sends a copy of the Session Key in a Ticket Response message to the DRM Agent. The Ticket Response message includes a Ticket that has both a clear and an encrypted part. The clear part of the Ticket includes the identity of the LRM and a Ticket validity period. The encrypted part of the Ticket contains the identity of the DRM Agent and information pertaining to the symmetric Session Key. The encrypted part of the Ticket is encrypted by using the Service Encryption Key of the LRM. The Ticket is integrity protected by a keyed checksum that uses the Service Authentication Key of the LRM. Note that the Ticket is integrity protected to prevent the DRM Agent from tampering with the content of the Ticket.
The DEA includes in the Ticket Response message a copy of the Session Key encrypted with the Service Key of the Device that contains the DRM Agent. The DEA then authenticates the message by using a keyed checksum that uses also the Device’s Service Authentication Key.
Once the DRM Agent validates the Ticket Response message from the DEA, the DRM Agent sends an Imported-RO Request message to the LRM. The Imported-RO Request message includes the Ticket and a list of RO-IDs that corresponds to the ROs the DRM Agent is requesting. The Imported-RO Request message is integrity protected by a keyed checksum that uses the Session Authentication Key derived from the Session Key obtained from the DEA. The Imported-RO Request message is specified in Section 7.2.1.3.4.
Once the LRM validates the Imported-RO Request message from the DRM Agent, the LRM generates an Imported-RO Response message that includes responses to individual ROs requested by the DRM Agent. The Imported-RO Response message is integrity protected by a keyed checksum that uses the Session Authentication Key derived from the Session Key in the Ticket. The Imported-RO Response message is specified in Section 7.2.1.3.5.

7.2.1.3.1 Import Initiation Request Message Details

The Import Initiation Request message has the syntax described in Section 6.1. The fields of the message are as follows:

· msgType – This field contains the value TBD.
· Pvno – This field contains the value 1.0.

· stid – This field is set as discussed in Section 7.2.1.3.1.1.
· dtid – This field is set as discussed in Section 7.2.1.3.1.1.
· retryCount – This field is set as discussed in Section 7.2.1.3.1.1.
· Attributes – This data structure contains the following attributes: ClientIdentifier and ServerIdentifier.
· nbrOfAttrs – This field contains the value 2.
· AttributeStructures – This data structure contains the following attribute data structures: DEAPubKeyIdentifier and ImportInitList.
· nbrOfAttrStrs – This field contains the value 2.
· Signature – The Import Initiation Request message SHALL NOT contain a Signature attribute.
7.2.1.3.1.1. Generating Import Initiation Request Message

The Device MUST follow the following steps to generate an Import Initiation Request message:

1. Set the stid and dtid header fields of the message to 0.
2. Set the RetryCount to 0. There is no response associated with the Import Initiation Request message and the LRM SHALL NOT resend the Import Initiation Request message.

3. Fill in the ServerIdentifier with the LRM’s Identifier.

4. Fill in the ClientIdentifer with the DRM Agent’s Identifier.
5. Fill in the DEAPubKeyIdentifer attribute data structure for the DEA to which the LRM is associated with.

6. For each Import-Ready Data the LRM wants to notify the DRM Agent, the LRM creates an ImportInit attribute data structure and adds it to the ImportInitList attribute data structure of the message. The ImportInit attribute data structure contains the Content_ID and RO_ID associated with the RO. Note that at this point, the actual Imported-RO has not been created by the LRM yet. The Imported-RO will be created by the LRM when it is actually requested by the DRM Agent with an Imported-RO Request message.

7.2.1.3.1.2. Processing Import Initiation Request Message

The DRM Agent MUST perform the following steps to process the Import Initiation Request message:

1. Parse the message header.
2. Verify the protocol version number in the header is supported.
3. Parse the rest of the message to make sure the message format is legal.

4. Verify that the ClientIdentifier contains the DRM Agent’s Identifier.

5. Based on the LRM Identifier, the DRM Agent determines whether it already possesses a valid Ticket (in order to determine whether it needs to request a Ticket from the DEA). The DRM Agent determines whether it already possesses the DA-Signed Data and the LRM’s certificate chain (in order to determine whether it needs to request those from the LRM in the Imported-RO Request message).
6. Verify that the DEAPubKeyIdentifier corresponds to one of the DEA the DRM Agent is associated with.

7. For each of the ImportInit attribute data structure, the DRM Agent records the Content_ID and associated RO_ID. The user may decide to request any of the ImportedROs in the list by using the ImportedRO Request message.

If any of the above processing fails, the DRM agent drops the message and does not return an error. If the DRM Agent does not already have a Ticket for this LRM, it uses the Ticket Request message to obtain such a ticket from the DEA. When a Ticket for this LRM is available, the DRM Agent may use the Imported-RO Request message to request the Imported-RO for any of RO_IDs sent by the LRM in the Import Initiation Request message.

7.2.1.3.2 Ticket Request Message Details

The Ticket Request message has the syntax described in Section 6.1. The fields of the message are as follows:

· msgType – This field contains the value 5.
· Pvno – This field contains the value 1.0.

· stid – This field is set as discussed in Section 7.2.1.3.2.1.
· dtid – This field is set as discussed in Section 7.2.1.3.2.1.
· retryCount – This field is set as discussed in Section 7.2.1.3.2.1.
· Attributes – This data structure contains the following attributes: ServerName, ClientIdentifer, EncTypeSet, SigTypeSet, ClientDRMtimeSeconds.
· nbrOfAttrs – This field contains the value 5.
· AttributeStructures – This data structure does not contain any attribute data structure.
· nbrOfAttrStrs – This field contains the value 0.
· Signature – This attribute data structure specifies a digital signature of the message as discussed in Section 7.2.1.3.2.1.
7.2.1.3.2.1. Generating Ticket Request Message

The Device MUST follow the following steps to generate a Ticket Request message:

1. Generate a pseudo random number for the stid header field of the message.

2. Set the dtid header field of the message to 0.
3. Fill in the retryCount field. The value must be 0 for the initial message, 1 for the first retry, etc.

4. Fill in the ClientIdentifier attribute with the Device’s Identifier.
5. Fill in the ServerName for the LRM to which the Ticket is associated with.

6. Fill in list of encryption types supported by the client (EncTypeSet).

7. Fill in list of checksum types supported by the client (SigTypeSet).

8. Fill in the ClientDRMtimeSeconds attribute.
9. Generate the Signature attribute data structure. The data structure consists of a CsumType attribute and a SigValue attribute. The value in CsumType is that indicates in the Key Response by the DEA. The value in SigValue is calculated over the entire message except for the Signature attribute data structure. Use the Device’s Service Authentication Key to compute the keyed checksum.
After the Device sends out the Ticket Request message, it MUST save the value of the stid header field in order to later validate the matching Ticket Response message from the DEA. The Device MUST keep the stid until a configurable time out value. After the time out, the Device will no longer be able to process the corresponding Ticket Response message and must retry and increment the retryCount value.

7.2.1.3.2.2. Processing Ticket Request Message

The DEA MUST perform the following steps to verify the Ticket Request message:

1. Parse the message header. If the header parsing fails, drop the message and do not return an error.

2. Verify the protocol version number in the header. If this protocol version is not supported, send an error message with the DEA_ERR_BAD_PVNO error code.

3. Parse the rest of the message. If the message format is found to be illegal, drop the message and do not return an error.

4. Based on the ClientIdentifier attribute in the Ticket Request message, the DEA looks up the Service Key of the client in the DEA storage. If no record is found, drop the message and do not return an error.
5. Verify the signature attribute using the client’s Service Authentication Key derived from the Service Key retrieved in step 4. If verification fails for any reason, drop the message and do not return an error.

6. Check the ClientDRMtimeSeconds attribute in the Ticket Request message. If the time is outside of the acceptable time window (typically +/- 5 minutes), this message is rejected and a message with the ERR_SKEW error code is returned.

7. If the ClientDRMtimeSeconds value is within an acceptable time window, compute a SHA-1 hash of the Ticket Request message and check if there is already a record with this hash value in the Replay Cache. (Each Replay Cache record consists of a request hash value and the ClientDRMtimeSeconds value. Only the entries corresponding to the acceptable time window, e.g. +/- 5 minutes are kept in the Replay Cache.) If the DEA finds a record in the Replay Cache with the same hash value, a replay attack is assumed and a message with the ERR_REPEAT error code is returned. If no such entries are found, the processing of the Ticket Request message continues as specified below.

8. At this point, the DEA MUST update the Replay Cache with the record corresponding to this Ticket Request message (containing message hash and value of ClientDRMtimeSeconds).

9. If the ServerName value is not in the storage, or the DEA is not authorized by the DA to issue Tickets for the ServerName, then an error message DEA_ERR_S_PRINCIPAL_UNKNOWN is returned.

10. If the ServerName can accommodate none of the requested encryption type, an error message with code DEA_ERR_ETYPE_NOSUPP is returned.

11. If the ServerName can accommodate none of the requested signature type, an error message with code DEA_ERR_SIGTYPE_NOSUPP is returned.

12. If no errors are generated during the processing of the Ticket Request message, then a Ticket Response message is generated.

7.2.1.3.2.3. Verifying a Ticket
An LRM MUST verify a Ticket destined to it using the procedure specified in this section.
1. Parse the Ticket. If the general Ticket format does not fit the specification, then verification fails with the error code ERR_TICKET.

2. If the LRM does not support the ticket version number, then verification fails with the error code ERR_TICKET_VERSION.

3. If the ServerName and ServerDomainBaseID values in the Ticket do not match that of the LRM, then verification fails with the error code ERR_NOT_US.

4. If the version number of the LRM’s Service Key (used to encrypt the PrivateTicketPart) is not the current version used by the LRM, then the LRM does the following:

• If the LRM still possesses its Service Key with the version number specified in the Ticket, the LRM MUST use it to derive the Service Authentication Key to authenticate the Ticket (Step 5 below) and to derive the Service Encryption Key to decrypt the private ticket part and to extract the shared key from the ticket (Step 6 below). At this point, an ERR_BADKEYVER error code is generated and saved but the processing of the Ticket continues with the next step. The LRM SHOULD save the old Serivce Keys for at least the maximum duration of the Tickets.

• Otherwise, Ticket verification fails immediately with the error code ERR_BADKEYVER.

5. Verify the keyed checksum over the Ticket by using the version of the LRM’s Service Key that is specified in the Ticket. If the LRM no longer supports the signature type, then verification fails with the error code ERR_TKT_INAPP_CKSUM. If the signature verification fails, then the overall Ticket verification fails with the error code ERR_BAD_INTEGRITY.

6. Decrypt the private part of the Ticket and then parse the decrypted data. If decryption fails or if parsing fails, then the overall Ticket verification fails with the error code ERR_PRIV_TKT_PART.

7. If Step 4 above previously recorded error code ERR_BADKEYVER, now fail the ticket verification with this error code.

8. If the start of the ticket validity period is in the future by more than the acceptable clock skew (usually configured to be 5 minutes), then verification fails with the error code ERR_TKT_NYV.

9. If the end time of the ticket validity period is passed by more than the acceptable clock skew, then the verification fails with the error code ERR_TKT_EXPIRED.

When an error is detected in Steps 1 through 6 above, the corresponding error code must be considered as Non-Recoverable: the error code MUST NOT be returned by the LRM in an error message. Unless Step 6 succeeds with no errors, the shared key was not successfully extracted from the Ticket, and, therefore, the LRM cannot authenticate an error message.

When an error is detected after Step 6, the corresponding error code MUST be considered as Recoverable: an error message can be authenticated with a keyed checksum that is keyed with the shared key obtained from the Ticket.
7.2.1.3.3 Ticket Response Message Details
The Ticket Response message has the syntax described in Section 6.1. The fields of the message are as follows:

· msgType – This field contains the value 6.
· Pvno – This field contains the value 1.0.

· stid – This field is set as discussed in Section 7.2.1.3.3.1.
· dtid – This field is set as discussed in Section 7.2.1.3.3.1.
· retryCount – This field is set as discussed in Section 7.2.1.3.3.1.
· Attributes – This data structure does not contain any attribute.
· nbrOfAttrs – This field contains the value 0.
· AttributeStructures – This data structure contains the following attribute data structures: DASignedData and TicketResp.
· nbrOfAttrStrs – This field contains the value 2.
· Signature – This attribute data structure specifies a digital signature of the message as discussed in Section 7.2.1.3.3.1.
7.2.1.3.3.1. Generating Ticket Response Message

The DEA MUST follow the following steps to generate a Ticket Response message:

1. Set the stid header field of the message to 0.

2. Set the dtid header field of the message to the same value of the stid header field from the preceding Ticket Request message, so that the response message is tied to the request message.
3. The retryCount from the preceding Ticket Request message is copied to the retryCount in this message.

4. The DEA generates a TicketResp as described below.
a. The DEA randomly generates a Session Key. The DEA MUST assign the type of Session Key based on the intersection of the list of algorithms specified in the EncTypeSet attribute in the preceding Ticket Request message with the list of encryption algorithms supported by the ServerName. If this intersection contains more than one encryption algorithm, the DEA MUST select the strongest one. The encryption algorithm is used to encrypt the data in PrivateTicketPart.
b. The DEA generates a Ticket, as per Section 7.2.1.3.3.2.

c. The DEA chooses an encryption algorithm based on the intersection of the list of algorithms specified in the EncTypeSet attribute in the preceding Ticket Request message with the list of encryption algorithms supported by the DEA. If this intersection contains more than one encryption algorithm, the DEA MUST select the strongest one. The encryption algorithm is used to encrypt the data in EncryptedData.

d. The DEA populates the EncryptedData attribute data structure. The EncType contains the identifier of the encryption algorithm that the DEA chose. The CipherText contains the Session Key type in a KeyType attribute and the Session Key in a KeyValue attribute. The value of the CipherText attribute is encrypted by using the Device Service Encryption Key derived from the Service Key retrieved in step 4 of Section 7.2.1.3.2.2.
5. Populate the DASignedData attribute data structure with the DEA-LRM type DASignedData signed by the DA.
6. Generate the Signature attribute data structure. Specifically, the DEA chooses a keyed checksum algorithm based on the intersection of the list of algorithms specified in the CsumTypeSet attribute in the preceding Ticket Request message with the list of checksum algorithms supported by the DEA. The data structure consists of a CsumType attribute and a SigValue attribute. The DEA then specifies the chosen keyed checksum algorithm identifier in the CsumType attribute. The value in SigValue is calculated over the entire message except for the Signature attribute data structure. Use the Device Service Authentication Key derived from the Service Key retrieved from DEA storage to compute the keyed checksum.

7.2.1.3.3.2. Generating a Ticket

The DEA generates a Ticket attribute data structure as follows:

1. Fill in the TktVnum with the value 1.0.

2. Fill in the ServerDomainBaseID and ServerName values. The ServerDomainID is the same as the ClientDomainID. The ServerName is copied from the preceding Ticket Request message.
3. Fill in the ClientDomainBaseID and ClientName values corresponding to the client.

4. Fill in the AuthTime attribute value. This is the value of ClientDRMtimeSeconds in the record of the ClientName in the DEA storage.

5. Fill in the EndTime attribute value. This is the expiration time for the Ticket and MAY be set according to a policy communicated to the DEA. The format of this policy and the method to communicate the policy to the DEA are outside the scope of these specifications.

6. Fill in the EncType attribute value. This is the identifier of the algorithm the DEA uses to encrypt PrivateTicketPart.
7. Generate the PrivateTicketPart attribute data structure. This data structure contains the Session Key type in a KeyType attribute, the Session Key in a KeyValue attribute, the ClientDomainBaseID attribute and the ClientName attribute. PrivateTicketPart is encrypted by using the Service Key for the ServerName.

8. Fill in the Service Key version number in the outer SkeyVnum attribute. This version number is for the Service Key for the ServerName.

9. Fill in the values of EncTypeSet and SigTypeSet for the ServerName.
10. Compute the keyed checksum for the Ticket and populate the Signature attribute data structure. Specifically, the DEA chooses a checksum algorithm based on the intersection of the list SigTypeSet of algorithms in the ServerName record with the list of keyed checksum algorithms supported by the DEA. If this intersection contains more than one keyed checksum algorithm, the DEA MUST select the strongest one. The DEA then specifies the chosen keyed checksum algorithm identifier in the SigType attribute. The DEA then computes a keyed checksum over the entire Ticket except for the SigType and SigValue attributes and populates SigValue with the computed keyed checksum. (During the keyed checksum calculation, the value of the lengthStr field is adjusted to reflect the missing SigType and SigValue attributes.) The DEA uses the Service Authentication Key of the ServerName to compute the keyed checksum for the Ticket.

7.2.1.3.3.3. Processing Ticket Response Message

The client MUST follow the following procedure to process the Ticket Response message. Note that the client does not send an error message back to the DEA. In some cases, the client will retry with another Ticket Request message:

1. Parse the message header. If the header parsing fails, pretend that the Ticket Response message were never received, i.e. continue waiting for a reply to the initial Ticket Request message until a timeout occurs and then retry.
2. Verify the protocol version number in the header. If this protocol version is not supported, pretend the message were never received.

3. The client looks for an outstanding Ticket Request message whose stid value matches the dtid header field in the Ticket Response message. If there is no match, the client proceeds as if the Ticket Response message were never received.

4. Verify that the retryCount in the preceding Ticket Request message matches the retryCount in the Ticket Response message. If it does not match, the client proceeds as if the reply message were never received.

5. Parse the rest of the Ticket Response message. If the message format is found to be illegal, pretend the message were never received.
6. Verify the keyed checksum (by using the client’s Service Authentication Key). If the checksum does not verify, this message is dropped and the client proceeds as if the message were never received.
7. Process the TicketResp attribute data structure in the response as follows:

a. The client decrypts the value of the Ciphertext attribute in EncryptedData in the TicketResp attribute data structure using its Service Encryption Key. If the value cannot be decrypted because the client does not support the encryption type of the EncryptedData, a fatal error MUST be reported to the user, and the client MUST NOT retry. If the resulting clear text contains formatting errors or contains a Service Key with a type that is not supported by this client, then a fatal error MUST be reported to the user, and the client MUST NOT retry.
b. The client processes the Ticket by using the procedure described in Section 7.2.1.3.3.4. If there is an error in the Ticket, then a fatal error is reported to the user, and the client MUST NOT retry. If the client’s registration status is “not registered” the client rejects the Ticket.

8. Verify that the DASignedData attribute data structure shows that the LRM is associated with the DEA. If the verification fails, then the client MUST abort processing of the message and log the error code DEA_ERROR_DEA_NOT_TRUSTED. If the verification is successful, the Device MUST save this DEA-LRM type DA-Signed Data until it expires, so that it can be passed to another Device in a Move of the RO.
9. If no errors in the Ticket Response message were detected, the client MUST save the full Ticket in a new entry in its ticket cache until the Ticket expires.
7.2.1.3.3.4. Ticket Processing by Client
A client is normally unable to verify the integrity of a Ticket. Still, a client MUST perform some verification on the received Ticket, as specified below. If the verification below fails at any step, the client application reports it as a fatal error to the user, and the client MUST NOT retry:

1. Parse the Ticket. If the general ticket format does not fit the specification, then verification fails.

2. If the ServerName and ServerDomainBaseID in the Ticket do not match what the client was expecting from the DEA, then verification fails.

3. If the end of the Ticket validity period (End Time) is in the past by more than the clock skew period (usually 5 minutes), then verification fails.

7.2.1.3.4 Imported-RO Request Message Details

The Imported-RO Request message has the syntax described in Section 6.1. The fields of the message are as follows:

· msgType – This field contains the value 26.
· Pvno – This field contains the value 1.0.

· stid – This field is set as discussed in Section 7.2.1.3.4.1.
· dtid – This field is set as discussed in Section 7.2.1.3.4.1.
· retryCount – This field is set as discussed in Section 7.2.1.3.4.1.
· Attributes – This data structure contains the following attributes: ClientName, EncTypeSet, ROReqFlags and ClientDRMtimeSeconds.
· nbrOfAttrs – This field contains the value 4.
· AttributeStructures – This data structure contains the following attribute data structures: Ticket and ROReqList.
· nbrOfAttrStrs – This field contains the value 2.
· Signature – This field is set as discussed in Section 7.2.1.3.4.1.
7.2.1.3.4.1. Generating Imported-RO Request Message

The Device MUST follow the following steps to generate an Imported-RO Request message:

1. Generate a pseudo random number for the stid header field of the message.

2. Set the dtid header field of the message to 0.
3. Fill in the retryCount field. The value must be 0 for the initial message, 1 for the first retry, etc.

4. Fill in the ClientName attribute.

5. Fill in list of encryption types supported by the client (EncTypeSet).

6. Fill in the ROReqFlags attribute: If the DRM Agent does not have the DEA-LRM type DA-Signed Data that associates the LRM to the DEA, it sets the corresponding bit to 1; otherwise it sets it to 0. Similarly, if the DRM Agent does not have the LRM’s certificate chain, it sets the corresponding bit to 1, otherwise it sets it to 0.

7. Fill in the ClientDRMtimeSeconds attribute.

8. Insert the Ticket attribute data structure with the LRM Ticket received from the DEA.

9. For each of the ROs that the DRM Agent wants to import, create an RO_ID attribute with the RO_ID and insert it into the RORequestList attribute data structure.

10. Generate the Signature attribute data structure. Specifically, the DRM Agent chooses a keyed checksum algorithm based on the intersection of the list of algorithms specified in the SigTypeSet attribute in the Ticket with the list of keyed checksum algorithms supported by the client. The data structure consists of a SigType attribute and a SigValue attribute. The client then specifies the chosen keyed checksum algorithm identifier in the SigType attribute. The value in SigValue is calculated over the entire message except for the Signature attribute data structure. Use the Session Authentication Key derived from the Session Key obtained from the DEA to compute the keyed checksum.
After the Device sends out the Imported-RO Request message, it MUST save the value of the stid header field in order to later validate the matching Imported-RO Response message from the LRM. The Device MUST keep the stid until a configurable time out value. After the time out, the Device MUST retry the request with the same stid and increment the retryCount value.

7.2.1.3.4.2. Processing Imported-RO Request Message

The LRM MUST perform the following steps to verify the Imported-RO Request message:

1. Parse the message header. If the header parsing fails, drop the message and do not return an error.

2. Verify the protocol version number in the header. If this protocol version is not supported, drop the message and do not return an error.

3. Parse the rest of the message. If the message format is found to be illegal, drop the message and do not return an error.
4. Verify the Ticket as specified in Section 7.2.1.3.2.3. If the Ticket verification fails with a Recoverable error code, save the error code and proceed to the next step without returning an error message yet. If the Ticket verification fails with a Non-Recoverable error code, drop the message and do not return an error.
5. Verify the signature attribute. If verification fails for any reason, drop the message and do not return an error. If the Ticket verification earlier resulted in a Recoverable error code, then the LRM must possess the LRM Service Key and can use it to extract the LRM Session Key for verifying the signature.
6. If the Ticket verification earlier resulted in a Recoverable error code, at this time return the corresponding error message. The same Session Key that was used to verify the signature in Step 5 above MUST now be used to generate a keyed checksum for the error message.
7. Check the ClientDRMtimeSeconds attribute in the Imported-RO Request message. If the time is outside of the acceptable time window (typically +/- 5 minutes), this message is rejected and a message with the ERR_SKEW error code is returned.

8. If the ClientDRMtimeSeconds value is within an acceptable time window, compute a SHA-1 hash of the Imported-RO Request message and check if there is already a record with this hash value in the Replay Cache. (Each Replay Cache record consists of a request hash value and the ClientDRMtimeSeconds value. Only the entries corresponding to the acceptable time window, e.g. +/- 5 minutes are kept in the Replay Cache.) If the LRM finds a record in the Replay Cache with the same hash value, a replay attack is assumed and a message with the ERR_REPEAT error code is returned. If no such entries are found, the processing of the Imported-RO Request message continues as specified below.

9. At this point, the LRM MUST update the Replay Cache with the record corresponding to this Imported-RO Request message (containing message hash and value of ClientDRMtimeSeconds).
10. Parse the ROReqFlags attribute to take notes of whether the DA-Signed Data and LRM’s certificate chain are requested by the DRM Agent. If requested, the DA-Signed Data and the LRM’s certificate chain are included in the Imported-RO Response message.

11. If no errors are generated during the processing of the Imported-RO Request message, then the LRM generates an Imported-RO Response message.

7.2.1.3.5 Imported-RO Response Message Details

The Imported-RO Response message has the syntax described in Section 6.1. The fields of the message are as follows:

· msgType – This field contains the value 27.
· Pvno – This field contains the value 1.0.

· stid – This field is set as discussed in Section 7.2.1.3.5.11.
· dtid – This field is set as discussed in Section 7.2.1.3.5.1.
· retryCount – This field is set as discussed in Section 7.2.1.3.5.1.
· Attributes – This data structure does not contain any attribute.
· nbrOfAttrs – This field contains the value 0.
· AttributeStructures – This data structure contains the RORespList attribute data structure and may contain the DEA-LRM type DASignedData or CertificateChain attribute data structure if requested in the corresponding request.
· nbrOfAttrStrs – This field contains the value 2 or 3.
· Signature – This field is set as discussed in Section 7.2.1.3.5.1.
7.2.1.3.5.1. Generating Imported-RO Response Message

The LRM MUST follow the following steps to generate an Imported-RO Response message:

1. Set the stid header field of the message to 0.

2. Set the dtid header field of the message to the same value of the stid header field from the preceding Imported-RO Request message, so that the response message is tied to the request message.
3. The retryCount from the preceding Imported-RO Request message is copied to the retryCount in this message.
4. If the DA-Signed Data bit of the ROReqFlags is set in the Imported-RO Request message, the LRM adds a DASignedData attribute data structure containing the DEA-LRM type DA-Signed Data that associates the LRM to the DEA.

5. If the LRM’s certificate chain bit of the ROReqFlags is set in the Imported-RO Request message, the LRM adds a CertificateChain attribute data structure containing the LRM’s certificate chain.

6. If the request is a retry, the LRM retrieves the ROReqList attribute data structure from its storage and inserts it to the Imported-RO Response message. The LRM then proceeds to step 9.

7. For each RO_ID listed in the ROReqList of the Imported-RO Request message, the LRM adds an ROResp attribute data structure to the RORespList attribute data structure in the response:

a. If the RO_ID is not recognized, the LRM sets the status code in the RORespStatus attribute to indicate this error and continue to process the next RO_ID.

b. If the LRM is no longer authorized to issue the Imported-RO corresponding to the RO_ID, the LRM sets the status code in the RORespStatus attribute to indicate this error and continue to process the next RO_ID.

c. The LRM sets the status code in the RORespStatus attribute to “Status OK”. The LRM decrements by one the number of Imported-ROs corresponding to the specific Import-Ready Data that the LRM has available for use within the User Domain managed by the DEA corresponding to the LRM.

d. The LRM generates a random REK for use by this Imported-RO. The LRM chooses an encryption algorithm based on the intersection of the list of algorithms specified in the EncTypeSet attribute in the preceding Imported-RO Request message with the list of encryption algorithms supported by the LRM. If this intersection contains more than one encryption algorithm, the LRM MUST select the strongest one. The encryption algorithm is used to encrypt the REK to create the EncryptedData attribute data structure.

e. The LRM creates an Imported-RO that contains within the <rights> element the base64 encoded SHA-1 hash over the concatenation of the values of the RO_ID and ClientIdentifier attributes. The LRM inserts the Imported-RO into the ImportedRights attribute of the corresponding ROResp attribute data structure. The LRM proceed to process the next RO_ID.

8. If this request is not a retry, the LRM stores the RORespList indexed by the stid of the Imported-RO Request message until the Imported-RO Request message no longer exists in the Replay Cache. This allows the LRM to re-send the same RORespList if a retry Imported-RO Request message arrives at the LRM.
9. Generate the Signature attribute data structure. The data structure consists of a SigType attribute and a SigValue attribute. The value in the SigType attribute is the same as the value of the SigType attribute in the preceding Imported-RO Request message. The value in SigValue is calculated over the entire message except for the Signature attribute data structure. Use the Session Authentication Key derived from the Session Key in the Ticket to compute the keyed checksum.

7.2.1.3.5.2. Processing Imported-RO Response Message

The client MUST follow the following procedure to process the Imported-RO Response message. Note that the client does not send an error message back to the LRM. In some cases, the client will retry with another Imported-RO Request message:

1. Parse the message header. If the header parsing fails, pretend that the Imported-RO Response message were never received, i.e. continue waiting for a reply to the initial Imported-RO Request message until a timeout occurs and then retry.
2. Verify the protocol version number in the header. If this protocol version is not supported, pretend the message were never received.

3. The client looks for an outstanding Imported-RO Request message whose stid value matches the dtid header field in the Imported-RO Response message. If there is no match, the client proceeds as if the Imported-RO Response message were never received.

4. Verify that the retryCount in the preceding Imported-RO Request message matches the retryCount in the Imported-RO Response message. If it does not match, the client proceeds as if the reply message were never received.

5. Parse the rest of the Imported-RO Response message. If the message format is found to be illegal, pretend the message were never received.
6. Verify the signature attribute of the message (by using the Session Key in the Ticket). If the keyed checksum does not verify, this message is dropped and the client proceeds as if the message were never received.
7. If DA-Signed Data is requested in the request but the response does not include a DEA-LRM type DASignedData attribute data structure, a fatal error MUST be reported to the user. If DA-Signed Data is requested and the response includes a DEA-LRM type DASignedData attribute data structure, parse and save the DA-Signed Data if there is no error.

8. If LRM’s certificate chain is requested in the request and the response does not include a CertificateChain attribute data structure, a fatal error MUST be reported to the user. If LRM’s certificate chain is requested and the response includes a CertificateChain attribute data structure, verify the certificate chain and in particular, verify that the subject name of the LRM certificate corresponds to the LRM that the DRM Agent is currently communicating with. Also, verify that the LRM certificate has the localRightsManagementDomain key purpose. If there is no error, save the LRM’s certificate chain.

9. For each ROResp attribute data structure in the RORespList attribute data structure of the response, the DRM Agent performs the following:

a. If the RORespStatus indicates an error, report the error to the user and proceed to process the next ROResp attribute data structure. If the RORespStatus indicates a “Status OK”, the DRM Agent proceeds to process the associated ImportedRights attribute.

b. Retrieve the LRM’s certificate from storage and use it to verify the <signature> element of the Imported-RO.

c. Verify that the value of the DASignedData attribute shows that the LRM whose signature is in the Imported-RO is associated with the DEA that issued the Ticket to the client. If the DASignedData does not show this association, then a fatal error MUST be reported to the user, and the client MUST NOT retry.
d. If no errors are generated during the processing of this ROResp attribute data structure, then the DRM Agent stores the received Imported-RO. The DRM Agent also decrypts the EncryptedData attribute data structure to retrieve and stores the REK associated with the Imported-RO.

e. The DRM Agent proceeds to process the next ROResp attribute data structure.
7.2.1.4 RightsAuth-Protocol
This protocol is only applicable to an Imported-RO created by an LRM with a <move> permission that is <pairing>-constrained [SCE REL] and the rightsAuth attribute of the <pairing> constraint is present (and thus includes the Device ID of the Import-recipient Device as the base64 encoded SHA-1 hash over the concatenation of the ROID and the Device ID). If the rightsAuth attribute is present, then the allowPartial attribute MUST be “false.”
Before the Imported-RO can be enabled at a DRM Agent following a Move transaction [SCE-A2A] with a DRM Requestor, the DRM Agent MUST obtain authorization from the DEA by sending an Authorization Request message to the DEA. The DRM Agent MAY request authorization for more than one Imported-RO in one request. These Imported-ROs may have been received from one or more DRM Requestors. The Authorization Request message is specified in Section 7.2.1.4.1. In order to formulate and transmit an Authorization Request message, the DRM Agent MUST be registered with the DEA and have a current Service Key.
After receiving the Authorization Request message, the DEA processes the requests (for each Imported RO) one by one to determine whether the Move is legitimate. The DEA responds to the DRM Agent with an Authorization Response that indicates the status of authorization for each of the Imported-ROs requested. The Authorization Response message is specified in Section 7.2.1.4.2.

After receiving the Authorization Response message, the DRM Agent processes the status responses one by one to determine whether authorization has been granted for each Imported-RO requested. The DRM Agent may only enable those Imported-ROs where authorization has been granted, and MUST NOT enable those Imported-ROs where authorization has not been granted.

The Authorization Request and Response transaction is illustrated in Figure 9 below.

[image: image9.emf]Destination DRM Agent DEA

Auth Request

Auth Response

Figure 9 - Rights Authorization Protocol Messages

7.2.1.4.1 Authorization Request Message Details

The Authorization Request message has the syntax described in Section 6.1. The fields of the message are as follows:

· msgType – This field contains the value 30.
· Pvno – This field contains the value 1.0.
· stid – This field is set as discussed in Section 7.2.1.4.1.1.
· dtid – This field is set as discussed in Section 7.2.1.4.1.1.
· retryCount – This field is set as discussed in Section 7.2.1.4.1.1.

· Attributes – This data structure contains the following attributes: ClientIdentifier, ClientDRMtimeSeconds, SigTypeSet.
· nbrOfAttrs – This field contains the value 3.
· AttributeStructures – This data structure contains a ROAuthRequestList attribute data structure.
· nbrOfAttrStrs – This field contains the value 1.
· Signature – This attribute data structure specifies a digital signature of the message as discussed in Section 7.2.1.4.1.1.
7.2.1.4.1.1. Generating Authorization Request Message

The DRM Agent MUST perform the following steps to generate an Authorization Request message:

1. Generate a pseudo random number for the stid header field of the message.

2. Set the dtid header field of the message to 0.
3. Fill in the retryCount field. The value must be 0 for the initial message, 1 for the first retry, etc.

4. Fill in the ClientIdentifier attribute with the DRM Agent’s Identifier.

5. Fill in the ClientDRMtimeSeconds attribute.

6. Fill in the signature types supported by the DRM Agent (SigTypeSet)

7. For each of the Imported-RO that the DRM Agent wants to request for authorization from DEA, the DRM Agent inserts a ROAuthRequest attribute data structure to the ROAuthRequestList attribute data structure. The fields of each ROAuthRequest attribute data structure are constructed as follows:

a. Fill in the ClientIdentifier attribute with the DRM Requestor’s Identifier for this Imported-RO. For this purpose, the DRM Requestor’s Device ID is stored by the DRM Agent as independently determined by the DRM Agent at the time of the Move (i.e., based on a SAC context rather than a DRM Requestor indication of its Device ID).
b. Fill in the DateTime attribute as specified by the DRM Requestor when the Move is performed.

c. Fill in the Signature attribute data structure with the value provided by the DRM Requestor. This is a keyed checksum of [DRM Requestor Device ID, Date-Time, DRM Agent Device ID, ROID] using the DRM Requestor’s Service Key.

d. Fill in the IsInitialMove attribute as specified by the DRM Requestor.

e. If this is an initial Move, append an ImportedRights attribute to the ROAuthRequest. The ImportedRights attribute contains the Imported-RO <rights> and <signature> elements. If this is not an initial move, append a RO_ID attribute to the ROAuthRequest. For this purpose, the RO_ID is extracted by the DRM Agent directly from the <rights> element (i.e., not from a DRM Requestor indication of this value).

f. Proceed to process the next Imported-RO.

8. Generate the Signature attribute data structure. The data structure consists of a SigType attribute and a SigValue attribute. The value in SigValue is calculated over the entire message except for the Signature attribute data structure. Use the DRM Agent’s Service Key to compute the keyed checksum.
After the DRM Agent sends out the Authorization Request message, it MUST save the value of the stid header field in order to later validate the matching Authorization Response message from the DEA. The DRM Agent MUST keep the stid until a configurable time out value. After the time out, the DRM Agent will no longer be able to process the corresponding Authorization Response message and MUST retry and increment the retryCount value.
7.2.1.4.1.2. Processing Authorization Request Message

The DEA MUST perform the following steps to verify the Authorization Request message:

1. Parse the message header. If the header parsing fails, drop the message and do not return an error.

2. Verify the protocol version number in the header. If this protocol version is not supported, send an error message (per section 6.1.4) with the DEA_ERR_BAD_PVNO error code (if the client’s Service Key is found in Step 4).

3. Parse the rest of the message. If the message format is found to be illegal, drop the message and do not return an error.
4. Based on the (outer) ClientIdentifier attribute in the Authorization Request message, the DEA looks up the Service Key of the client (DRM Agent) in the DEA storage. If no record is found, drop the message and do not return an error.
5. Verify the signature attribute using the client’s Service Key. If verification fails for any reason, drop the message and do not return an error.

6. Check the ClientDRMtimeSeconds attribute in the Authorization Request message. If the time is outside of the acceptable time window (typically +/- 5 minutes), this message is rejected and a message with the ERR_SKEW error code is returned.

7. If the ClientDRMtimeSeconds value is within an acceptable time window, compute a SHA-1 hash of the Authorization Request message and check if there is already a record with this hash value in the Replay Cache. (Each Replay Cache record consists of a request hash value and the ClientDRMtimeSeconds value. Only the entries corresponding to the acceptable time window, e.g. +/- 5 minutes are kept in the Replay Cache.) If the DEA finds a record in the Replay Cache with the same hash value, a replay attack is assumed and a message with the ERR_REPEAT error code is returned. If no such entries are found, the processing of the Authorization Request message continues as specified below.

8. At this point, the DEA MUST update the Replay Cache with the record corresponding to this Authorization Request message (containing message hash and value of ClientDRMtimeSeconds).

9. If no errors are generated during the processing of the Authorization Request message, then an Authorization Response message is generated.

7.2.1.4.2 Authorization Response Message Details
The Authorization Response message has the syntax described in Section 6.1. The fields of the message are as follows:

· msgType – This field contains the value 31.
· Pvno – This field contains the value 1.0.
· stid – This field is set as discussed in Section 7.2.1.4.2.1
· dtid – This field is set as discussed in Section 7.2.1.4.2.1
· retryCount – This field is set as discussed in Section 7.2.1.4.2.1
· Attributes – This data structure contains no attributes.
· nbrOfAttrs – This field contains the value 0.
· AttributeStructures – This data structure contains a ROAuthResponseList attribute data structure.
· nbrOfAttrStrs – This field contains the value 1.
· Signature – This attribute data structure specifies a digital signature of the message as discussed in Section 7.2.1.4.2.1.
7.2.1.4.2.1. Generating Authorization Response Message

The DEA MUST perform the following steps to generate an Authorization Response message:

1. Set the stid header field of the message to 0.

2. Set the dtid header field of the message to the same value of the stid header field from the preceding Authorization Request message (so that the response message is tied to the request message).
3. The retryCount from the preceding Authorization Request message is copied to the retryCount in this message.
4. For each of the ROAuthRequest attribute data structure in the Authorization Request, the DEA determines whether the DRM Agent can enable the RO and constructs a corresponding ROAuthResponse attribute data structure as follows:

a. Fill in the RO_ID attribute of the ROAuthResponse with the RO_ID in the corresponding ROAuthRequest attribute data structure. (Note that if this is an Initial Move, the RO_ID is retrieved from the <rights> element of the ImportedRights attribute.)

b. Based on the ClientIdentifier attribute (that contains the DRM Requestor’s Identifier) in the ROAuthRequest attribute data structure, the DEA looks up the Service Key of the DRM Requestor in the DEA storage. Since the DEA retains all versions of Service Keys for all Devices in the domain, it could perform this verification irrespective of when the DRM Agent asks for authorization.
c. If this is an Initial Move, the DEA performs the following verifications:

i. Verify that there is no DEA record for that RO_ID

ii. Parse the <rights> element and verify that the LRM that generated the <signature> element is legitimately associated with the DEA per DA-Signed Data.

iii. Verify that the ClientIdentifier attribute in the ROAuthRequest matches the Import-recipient Device ID in the <rights> element.

iv. Verify the signature attribute in the ROAuthRequest (by comparing it with a keyed checksum computed over the data [DRM Requestor Device ID, DateTime, DRM Agent Device ID, RO_ID] using the DRM Requestor’s Service Key found in Step 4.b above).

v. Verify that DateTime attribute in the ROAuthRequest is earlier than the DEA’s current Date-Time.

If any of the above verifications fails, the DEA fills in the ROAuthStatus with an error status. If all verifications passed, the DEA fills in the ROAuthStatus with a status code of OK. In the latter case, the DEA also records the RO_ID, the DRM Agent’s Identifier and the current Date-Time to the DEA storage.

d. If this is not an Initial Move, the DEA performs the following:

i. Based on the RO_ID, the DEA finds the Device ID of the Device that has made the most recent successful request and the Date-Time that this occurred as evidenced by the last Date-Time stored by the DEA for this RO_ID.

ii. Verify that the Device ID found is the same as the DRM Requestor Device ID as indicated in the ClientIdentifier attribute in the ROAuthRequest.

iii. Verify the signature attribute in the ROAuthRequest (by comparing it with a keyed checksum computed over the data [DRM Requestor Device ID, DateTime, DRM Agent Device ID, RO_ID] using the DRM Requestor’s Service Key found in Step 4.b above).

iv. Verify that Date-Time retrieved from the DEA record is earlier than the DateTime attribute in the ROAuthRequest. Also verify that DateTime attribute in the ROAuthRequest is earlier than the DEA’s current Date-Time.
If any of the above steps fails, the DEA fills in the ROAuthStatus with a status of error. If all verifications passed, the DEA fills in the ROAuthStatus with a status code of OK. In the latter case, the DEA also updates its record corresponding to the particular RO_ID with the current requesting Device ID and Date-Time.

e. The DEA proceeds to process the next ROAuthRequest attribute data structure.
5. Generate the Signature attribute data structure. Specifically, the DEA chooses a keyed checksum algorithm based on the intersection of the list of algorithms specified in the SigTypeSet attribute in the preceding Authorization Request message with the list of keyed checksum algorithms supported by the DEA. The data structure consists of a SigType attribute and a SigValue attribute. The DEA then specifies the chosen keyed checksum algorithm identifier in the SigType attribute. The value in SigValue is calculated over the entire message except for the Signature attribute data structure. Use the client’s Service Key located from the client’s record of the DEA storage to compute the keyed checksum.

7.2.1.4.2.2. Processing Authorization Response Message

The DRM Agent MUST execute the following procedure to process the Authorization Response message. Note that the DRM Agent does not send an error message back to the DEA.
1. Parse the message header. If the header parsing fails, pretend that the Authorization Response message was never received, i.e. continue waiting for a reply to the initial Authorization Request message until a time-out occurs and then retry.
2. Verify the protocol version number in the header. If this protocol version is not supported, pretend the message was never received.

3. The DRM Agent looks for an outstanding Authorization Request message whose stid value matches the dtid header field in the Authorization Response message. If there is no match, the client proceeds as if the Authorization Response message were never received.

4. Verify that the retryCount in the preceding Authorization Request message matches the retryCount in the Authorization Response message. If it does not match, the client proceeds as if the reply message were never received.

5. Parse the rest of the Authorization Response message. If the message format is found to be illegal, pretend the message was never received.
6. Verify the signature attribute by using the DRM Agent’s Service Key. If the keyed checksum does not verify, this message is dropped and the DRM Agent proceeds as if the message were never received.
7. For each ROAuthResponse attribute data structure in the ROAuthResponseList attribute data structure, the DRM Agent performs the following:

a. Verify that the RO_ID corresponds to one of the Imported-ROs that the DRM Agent has requested for authorization in the Authorization Request.

b. If the ROAuthStatus indicates that the authorization status is OK, the DRM Agent enables the Imported-RO associated.

c. If the ROAuthStatus indicates that the authorization status is Error, the DRM Agent MUST NOT enable the associated Imported-RO.

d. The DRM Agent proceeds to process the next ROAuthResponse.

7.2.2 Transporting KMAC and one or more KREK under a RI Public Key

This section applies to the LRM-RI Create Domain RO protocol.
KMAC and KREK are each 128-bit long keys generated randomly by the LRM. KREK ("Rights Object Encryption Key") is the wrapping key for the content-encryption key KCEK in Rights Objects. KMAC is used for key confirmation of the message carrying one or more KREK.
The asymmetric encryption scheme RSAES-KEM-KWS SHALL be used with the AES-WRAP symmetric-key wrapping scheme to securely transmit KMAC and one or more KREK to a recipient RI using the RI's RSA public key. An independent random value Z SHALL be chosen for each encryption operation. For the AES-WRAP scheme, KMAC and one or more KREK are concatenated to form K, i.e.:

KEK = KDF(I2OSP(Z, mLen), NULL, kekLen)

C2 = AES-WRAP(KEK, KMAC | KREK1 | … | KREKn)

C1 = I2OSP(RSA.ENCRYPT(PubKeyRI, Z), mLen)

C = C1 | C2
where kekLen SHALL be set to 16 (128 bits) and mLen is the length of the modulus of the RI’s RSA public key in octets. In this way, AES-WRAP is used to wrap 128 * (n + 1) bits of key data (KMAC | KREK1 | … | KREKn) with a 128-bit key-encryption key (KEK).

After receiving C, the RI splits it into C1 and C2 and decrypts C1 using its private key (consisting of a private exponent d and the modulus m), yielding Z:

C1 | C2 = C

c1 = OS2IP(C1, mLen)

Z = RSA.DECRYPT(PrivKeyRI, c1) = c1d mod m
where OS2IP converts an octet string to a nonnegative integer and is defined in [PKCS-1].

Using Z, the RI can derive KEK, and from KEK unwrap C2 to yield KMAC and KREK1, …, KREKn.:

KEK = KDF(I2OSP(Z, mLen), NULL, kekLen)

KMAC | KREK1 | … | KREKn = AES-UNWRAP(KEK, C2)

The following URI SHALL be used to identify this key transport scheme in <xenc:EncryptionMethod> elements:

http://www.rsasecurity.com/rsalabs/pkcs/schemas/pkcs-1#rsaes-kem-kdf2-kw-aes128
7.3 Certificate Handling

The certificate profiles are specified in Appendix C. The LRM certificate profile ensures that LRM certificates are distinguishable from DRM Agent/Device certificates and from RI certificates by SCE-conformant Devices. This is achieved by mandating inclusion of the oma-kp-localRightsManagerDevice or oma-kp-localRightsManagerDomain key purpose in the certificate for the LRM.
The LRM certificate profile allows to ensure that LRM certificates are distinguishable from RI certificates by OMA DRM Devices that are not conformant to SCE in that such LRM certificates will be rejected for effective use by DRM Agents in such SCE- non-conformant Devices. This is achieved through exclusion of the oma-kp-rightsIssuer key purpose from the certificate.

The LRM certificate profile also allows LRM certificates to be indistinguishable from RI certificates by OMA DRM Devices that are not conformant to SCE, such that LRM certificates can be used as RI certificates by DRM Agents in such SCE- non-conformant Devices. This is achieved through inclusion of the oma-kp-rightsIssuer key purpose in the certificate.
8. Security Considerations (Informative)
8.1 Trust Model
<text>
8.2 Threat Analysis
<text>
8.3 Privacy

<text>
Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

A.2 Draft/Candidate Version <current version> History

	Document Identifier
	Date
	Sections
	Description

	OMA-TS-SCE_LRM-V1_0-20070209-D
	09 Feb 2007
	n/a
	Initial draft

	OMA-TS-SCE_LRM-V1_0-20070423-D
	23 Apr 2007
	7.3; Appendix C; 6.2; 6.3; 2.1; 6.4.1; B.1; B.2
	* Changed the labels of the interfaces in Section 6 to conform to the labels in the SCE Architecture Document.

* Updated SCR tables

* Inserted the following agreed contribution: OMA-DRM-2007-0093R03

	OMA-TS-SCE_LRM-V1_0-20070927-D
	27 Sep 2007
	6.4.1.1; 5.3.4; 5.3.1.1; B.1; B.2
	* Inserted the following agreed contribution: OMA-DRM-2007-0295R01

* Updated SCR tables

	OMA-TS-SCE_LRM-V1_0-20071011-D
	11 Oct 2007
	6; 6.4.1; 6.4.1.1; 5.3.1.1; 5.3.1.2; 5.3.4.1; 5.3.4.2
	* Inserted the following agreed contribution: OMA-DRM-2007-0353R01

	OMA-TS-SCE_LRM-V1_0-20071129-D
	29 Nov 2007
	6.2; 6.2.1; 6.2.2; 7.2.1
	* Inserted the following agreed contribution: OMA-DRM-2007-0534; OMA-DRM-2007-0539

	OMA-TS-SCE_LRM-V1_0-20071205-D
	05 Dec 2007
	5.3.3
	* Inserted the following agreed contribution: OMA-DRM-2007-0513R02

	OMA-TS-SCE_LRM-V1_0-20071220-D
	20 Dec 2007
	7.3; C.1; 6.2.2; 6.2.1; 5.3.3; 2.1
	* Added Normative reference to DRM DRM TS 2.0

* Added Normative reference to DRM TS 2.1

* Inserted the following agreed contributions: OMA-DRM-2007-0547R02; OMA-DRM-2007-0565R01; OMA-DRM-2007-0566; OMA-DRM-2007-0570

	OMA-TS-SCE_LRM-V1_0-20071221-D
	21 Dec 2007
	5.3.3
	* Incorporated a change from OMA-DRM-2007-0570 that was missed in the 20 Dec 2007 draft

	OMA-TS-SCE_LRM-V1_0-20080204-D
	04 Feb 2008
	5.3.1.2; 5.3.4.2; 7.2.1.3; 6.2.1.1; 6.2.1.3; 6.2.1.4; 6.2.1.5; 6.2.3.1
	* Inserted the following agreed contributions: OMA-DRM-2008-0011R01; OMA-DRM-2008-0012; OMA-DRM-2008-0017R01; OMA-DRM-2008-0018

	OMA-TS-SCE_LRM-V1_0-20080221-D
	21 Feb 2008
	6.1; 7.2.1; 7.2.1.1; 7.2.1.2; 7.2.1.3; 0
	* Inserted text from CR OMA-DRM-2007-0564R03, as per the minutes of OMA DRM Conference Call on 21 Feb 2008.

	OMA-TS-SCE_LRM-V1_0-20080304-D
	04 Mar 2008
	6.2.1.1; Appendix D; 6.2.2; 6.2.3.1; 7.2.1; 7.2.1.3; 0; 6.1.1; 6.1.2; 6.1.2.33; 6.1.2.34; Error! Reference sourot found. (6.1.3.16); 6.1.4; 7.2.1.3.4; 7.2.1.3.5; 0; 0
	· Inserted the following agreed contributions: OMA-DRM-2008-0054; OMA-DRM-2008-0058R01; OMA-DRM-2008-0061R01; OMA-DRM-2008-0078; OMA-D
· RM-2008-0074R02

	OMA-TS-SCE_LRM-V1_0-20080325-D
	25 Mar 2008
	4.1
	*Inserted the following agreed contribution: OMA-DRM-2008-0103 (and updated Table of Contents accordingly)

	OMA-TS-SCE_LRM-V1_0-20080429-D
	29 Apr 2008
	2.1; 5.3.1.1;
5.3.1.2;
5.3.4.1;
5.3.4.2;
6.1; 6.1.1;
6.1.2; 6.1.2.1;
6.1.2.12;
6.1.2.15 - 6.1.2.17;
6.1.2.19 -
6.1.2.24;
6.1.2.27;
6.1.2.30;
6.1.3.9;
6.1.3.12 -
6.1.3.15;
6.1.4; 6.2.1.1;
6.4.1.1; 7.2.1;
7.2.1.1;
7.2.1.1.1;
7.2.1.1.1.1;
7.2.1.1.1.3;
7.2.1.1.2;
7.2.1.1.2.1;
7.2.1.1.2.3;
7.2.1.2;
7.2.1.2.1;
7.2.1.2.1.1;
7.2.1.2.1.3;
7.2.1.2.2;
7.2.1.2.2.1;
7.2.1.2.2.2;
7.2.1.2.2.4;
7.2.1.2.2.5;
7.2.1.3;
7.2.1.3.1;
7.2.1.3.1.1 -
7.2.1.3.1.3;
7.2.1.3.2;
7.2.1.3.2.1 -
7.2.1.3.2.3;
7.2.1.3.3;
7.2.1.3.3.1;
7.2.1.3.3.2;
7.2.1.3.4;

7.2.1.3.5;

7.2.1.3.6;

7.2.1.4;

7.2.1.4.1;

7.2.1.4.2;

7.3; A.2; B.1; B.2
	*Inserted the following agreed contribution: OMA-DRM-2008-0151

	OMA-TS-SCE_LRM-V1_0-20080430-D
	30 Apr 2008
	
	*Corrected document title, document date, and A.2

	OMA-TS-SCE_LRM-V1_0-20080506-D
	06 May 2008
	
	*Corrected Figure 7 accept-changes glitch

	OMA-TS-SCE_LRM-V1_0-20080516-D
	16 May 2008
	6; 6.1; 6.1.1; 6.1.2; 6.1.2.12-6.1.2.39; 6.1.3.13-6.1.3.15; 6.1.3.17-6.1.3.21; 6.1.4; 6.2.1; 6.2.1.1; 6.2.1.4; 6.2.1.5; 6.2.2.1; 6.2.2.2; 7.2.1.1.1; 7.2.1.1.1.3;
7.2.1.1.1.4; 7.2.1.1.2; 7.2.1.1.2.3; 7.2.1.2.1; 7.2.1.2.1.1; 7.2.1.2.1.3; 7.2.1.2.1.4; 7.2.1.2.2; 7.2.1.2.2.2; 7.2.1.2.2.4; 7.2.1.3.1; 7.2.1.3.1.1;-7.2.1.3.1.3; 7.2.1.3.2; 7.2.1.3.2.1; 7.2.1.3.2.2; 7.2.1.3.3; 7.2.1.3.3.1; 7.2.1.3.3.2; 7.2.1.3.4; 7.2.1.3.4.1; 7.2.1.3.4.2; 7.2.1.3.5; 7.2.1.3.5.1; 7.2.1.3.5.2; 7.2.1.3.6; 7.2.1.3.6.1; 7.2.1.3.6.2; 7.2.1.4.1; 7.2.1.4.1.1 ; 7.2.1.4.2; 7.2.1.4.2.1;
7.2.1.4. 7.2.1.5 (new section); A.2
	*Inserted the following agreed contribution: OMA-DRM-2008-0186;
Addressed the following Consistency Review comments: LRM 037 (changed fixed-width font of section 6.1 messages to Times New Roman), LRM 060 (set all Pvno to 1.0), LRM 043 (set all TktVnum to 1.0), LRM 045 (corrected typo), LRM 080 (corrected capitalisation), and LRM 014 (replaced “Device” by “LRM” in section 6.2.1); corrected typo (section 6.1 msgType)

	OMA-TS-SCE_LRM-V1_0-20080528-D
	28 May 2008
	2.1; 4.1; 5; 5.3.4.2; 6; 6.1; 6.1.1; 6.1.2; 6.1.2.1; 6.1.2.3; 6.1.2.8 - 6.1.2.40; 6.1.3.10; 6.1.3.16; 6.1.3.22-6.1.3.27; 6.1.4; 6.2.1.1; 6.2.1.4; 6.2.1.5; 6.2.2; 6.2.2.1-6.2.2.3; 6.2.3; 6.2.3.1-6.2.3.2; 6.2.4; 6.2.4.1; 6.3; 6.3.1; 6.4.1; 6.4.1.1; 7.2.1.1; 7.2.1.1.1; 7.2.1.1.1.1-7.2.1.1.1.4; 7.2.1.1.2; 7.2.1.1.2.3; 7.2.1.2; 7.2.1.2.1; 7.2.1.2.1.1-7.2.1.2.1.2; 7.2.1.2.2; 7.2.1.2.2.1-7.2.1.2.2.5; 7.2.1.3; 7.2.1.3.1; 7.2.1.3.1.1-7.2.1.3.1.2; 7.2.1.3.2; 7.2.1.3.2.1-7.2.1.3.2.3; 7.2.1.3.3; 7.2.1.3.3.1-7.2.1.3.3.4; 7.2.1.3.4; 7.2.1.3.4.1-7.2.1.3.4.2; 7.2.1.3.5; 7.2.1.3.5.1-7.2.1.3.5.2; 7.2.1.4; 7.2.1.4.1; 7.2.1.4.1.1; 7.2.1.4.2; 7.2.1.5; 7.2.1.5.1.1; 7.2.1.5.2.1; 7.2.2; A.2

	*Inserted the following agreed contributions: OMA-DRM-2008-0201; OMA-DRM-2008-0207R01; OMA-DRM-2008-0213R01; OMA-DRM-2008-0230; OMA-DRM-2008-0231R01; OMA-DRM-2008-0232; OMA-DRM-2008-0233; OMA-DRM-2008-0235

	OMA-TS-SCE_LRM-V1_0-20080703-D
	03 Jul 2008
	4.1; 6; 6.1.1; 6.1.2.16; 6.1.2.21; 6.1.2.24; 6.1.2.15; 6.1.2.36; 6.1.2.38; 6.1.2.39; 6.1.3.9; 6.1.3.14; 6.1.3.18; 6.1.3.23; 6.1.3.25; 6.1.3.26; 6.1.4; 6.2.1.1; 6.2.1.4; 6.2.1.5; 6.2.2.1; 6.2.3.1; 6.2.3.2;
6.2.4; 6.2.4.1; 6.4.1.1; 7.2.1; 7.2.1.1 (and subsections); 7.2.1.2 (and subsections); 7.2.1.3 (and subsections); 7.2.1.4 (and subsections)
	*Inserted the following agreed contributions: OMA-DRM-2008-0271; OMA-DRM-2008-0288R01; OMA-DRM-2008-0289R01; OMA-DRM-2008-0290R01

	OMA-TS-SCE_LRM-V1_0-20080805-D
	05 Aug 2008
	6.2.4
	*Corrected error in inserting CR0213R. The following sentence had been deleted from (noted) CR0213 by (agreed) CR0213R01 with respect to the LRM-RI Create Domain RO protocol: “Note a DRM 2.x Domain here means a Domain that is managed solely by a RI (not a part of a User Domain managed by a DEA).”

	OMA-TS-SCE_LRM-V1_0-20080828-D
	28 Aug 2008
	2.2; 3.2; 6.2.1.1; 6.2.1.4; 6.2.3.1;
Sections 4.1, 5.2, 5.3.4, 6.1, 8, 9, and 10 removed (including section headings);
Text (only) of sections 5.3.1.1, 5.3.1.2, and 5.3.3 removed;
After above removal, added sections numbered: 5.1.1, 6.3.1.2 and 6.3.1.3 (to insert CR0359R01)

	*Inserted the following agreed contributions: OMA-DRM-2008-0283R02; OMA-DRM-2008-0359R01

	OMA-TS-SCE_LRM-V1_0-20080831-D
	31 Aug 2008
	Text of section 6.3.1 removed; text and heading of section 6.3.1.1 removed
	

Appendix B. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [IOPPROC].

B.1 SCR for SCE Client

	Item
	Function
	Reference
	Status
	Requirement

	SCE-IMP-C-001
	LRM-managed Import to a specific Device
	6.4
	M
	

	SCE-IMP-C-002
	Import to a specific Device
	5.3.1
	M
	

	SCE-Pairing-C-003
	DEA Management for Device Pairings
	5.3.4
	M
	

B.2 SCR for LRM Server

	Item
	Function
	Reference
	Status
	Requirement

	SCE-Cert-S-001
	Certificate profile for LRM
	C.1
	M
	

	SCE-IMP-S-002
	LRM-managed Import to a specific Device
	6.4
	M
	

	SCE-IMP-S-003
	Import to a specific Device
	5.3.1
	M
	

	SCE-IMP-S-004
	DEA Management for Device Pairings
	5.3.4
	M
	

Appendix C. Certificate Profiles (Normative)
C.1 LRM Certificates

The profile for LRM certificates follows the profile for "X.509-compliant server certificate" in [CertProf] with the following modifications:

	Signature
	MUST be RSA with SHA-1

	Serial Number
	MUST be less than, or equal to, 20 bytes in length

	Issuer Name
	MUST be present and MUST use a subset of the following naming attributes from [CertProf] – countryName, organizationName, organizationalUnitName, commonName, and stateOrProvinceName.

	Subject Name
	MUST be present and MUST use a subset of the following naming attributes from [CertProf] – countryName, organizationName, organizationalUnitName, commonName, and serialNumber.

The structure and contents of a Device subject name shall be as follows:

[countryName=<Country of manufacturer>]

[organizationName=<Manufacturer company name>]

[organizationalUnitName=<Manufacturing location>]

[commonName=<Model name>]

serialNumber=<Unique identifier for Device, as assigned by the Certificate Issuer. Does not have to be the same as the IMEI>

The serialNumber attribute MUST be present. The countryName, organizationName, organizationalUnitName, and commonName may be present. Other attributes are not allowed and must not be included. For all naming attributes of type DirectoryString, the PrintableString or the UTF8String choice must be used.

Note that the maximum length (in octets) for values of these attributes is as follows: countryName – 2 (country code in accordance with ISO/IEC 3166), organizationName, organizationalUnitName, commonName, and serialNumber – 64.
Example:

C="US";O="DRM Devices 'R Us"; CN="DRM Device Mark VI"; SN="1234567890"

	Extensions
	The extKeyUsage extension SHALL be present, and contain (at least) the oma-kp-localRightsManagerDevice or the oma-kp-localRightsManagerDomain key purpose object identifier:

oma-kp-localRightsManagerDevice OBJECT IDENTIFIER ::= {oma-kp <tba>}
oma-kp-localRightsManagerDomain OBJECT IDENTIFIER ::= {oma-kp <tba>}

CAs MUST set this extension to critical.

If the keyUsage extension is present (recommended), then the digitalSignature bit shall be set. When present, this extension shall be set to critical.

CAs MAY include the certificatePolicy extension, indicating the policy the certificate has been issued under, and possibly containing a URI identifying a source of more information about the policy.

CAs are recommended to not include any other extensions, but may, for compliance with [RFC3280], include the authorityKeyIdentifier extension.

CAs MUST NOT include any other critical extensions.

SCE DRM Agents processing LRM certificates MUST meet the requirements on clients processing "X.509-compliant server certificates" defined in [CertProf]. In addition, SCE DRM Agents:

· MUST be able to process LRM certificates up to 1500 bytes long;

· MUST be able to process LRM certificates with serial numbers 20 bytes long; and

· MUST recognize the presence of the oma-kp-localRightsManagerDevice and oma-kp-localRightsManagerDomain object identifiers defined above in the extKeyUsage extension in LRM certificates. If one (or both) of these is present, then the SCE DRM Agent MUST consider the subject certified by the certificate to be a LRM while processing information received from it.
Note: If the oma-kp-rightsIssuer object identifier defined in [OMA DRM 2.1] for the extKeyUsage extension is present in addition to the oma-kp-localRightsManagerDevice or oma-kp-localRightsManagerDomain defined above, then the SCE DRM Agent MUST still consider the subject certified by the certificate to be an LRM while processing information received from it.
(Editor’s note: the oma-kp-localRightsManager object identifier needs to be assigned by a naming authority.)
C.2 CA Certificates

The CA certificates for use by SCE follows the OMA DRM CA certificate profile specified in Section D.3 of [DRM]. In addition, the following requirements apply:

LRMs and SCE DRM Agents MUST meet the requirements on relying parties defined in [CertProf]. Note that this implies, among other things, a requirement on LRMs and SCE DRM Agents to also recognize the basicConstraints and the subjectKeyIdentifier extensions.
Appendix D. Message Examples (Informative)
D.1 LRMRIRegistrationTrigger
<LRMRIRegistrationTrigger

 xmlns:gen="urn:oma:drm:sce:gen"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 type="LRMRIRegistrationTrigger">

 <body>

 <!-- RI ID -->

 <resID>

 <keyIdentifier xsi:type="gen:X509SPKIHash">

 <hash>aXENc+Um/9/NvmYKiHDLaErK0fk=</hash>

 </keyIdentifier>

 </resID>

<reqURL>http://ri.example.com/ro.cgi?tid=qw683hgew7d</reqURL>
<!-- LRM ID -->
<LRMID>

 <keyIdentifier xsi:type="gen:X509SPKIHash">

 <hash>aXENc+Um/9/NvmYKiHDLaErK0fa=</hash>

 </keyIdentifier>

 </LRMID>
 </body>

</LRMRIRegistrationTrigger>

(2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20070101-I]
(2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20070101-I]

_1276550544.vsd
LRM

Rights Issuer

OCSP Responder

LRM-RIRegistrationResponse

LRM-RIHelloResponse

LRM-RIRegistrationRequest

OCSP Request

OCSP Response

LRM-RIHelloRequest

_1276550598.vsd
�

�

1�

LRM

Rights Issuer

DRM2.x Device

LRM-RICreateROResponse

RO Acquisition Protocol

OCSP Request

LRM-RICreateRORequest

OCSP Response

OCSP Responder

_1272731277.vsd
�

�

1�

LRM

Rights Issuer

DRM2.x Device

LRM-RICreateDomainROResponse

OCSP Request

LRM-RICreateDomainRORequest

OCSP Response

OCSP Responder

Distribution of 2.x Domain RO and DCF

_1275476859.vsd
Device

DEA

Key Request

Key Response

Device Registration Response

Device Registration Request

_1271486798.vsd
DEA

DRM Agent

LRM

Import Init Request

Ticket Request

Ticket Response

Imported-RO Request

Imported-RO Response

_1272193574.vsd
�

�

LRM

Rights Issuer

DRM2.x Device

LRM-RIDevPubKeyAcquistion Trigger

4-pass Registration Protocol

LRM-RIDevPubKeyAcquisitionRequest

OCSP Response

LRM-RIDevPubKeyAcquistionResponse

OCSP Request

OCSP Responder

_1270360430.vsd
Destination DRM Agent

DEA

Auth Request

Auth Response

