OMA-TS-SRM-V1_1-20090904-D_cb.doc
Page 56 V(200)

	[image: image1.jpg]
	

	OMA Secure Removable Media Specification

	Draft Version 1.1 – 04 Sep 2009

	Open Mobile Alliance

	OMA-TS-SRM-V1_1-20090904-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2009 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

131.
Scope

2.
References
14
2.1
Normative References
14
2.2
Informative References
16
3.
Terminology and Conventions
17
3.1
Conventions
17
3.2
Definitions
17
3.3
Abbreviations
18
3.4
Notations
19
3.5
Binary Structures
19
4.
Introduction
20
4.1
Version 1.0
20
4.2
Version 1.1
20
4.3
Component and Interface Deployment
21
5.
Secure Removable Media Overview
22
5.1
Information Structure
22
5.1.1
Rights
22
5.1.2
RI Certificate Chain
23
5.1.3
Handle
23
5.1.4
Rights Object Identifier
23
5.1.5
Asset Identifier
23
5.1.6
Rights Information
23
5.1.7
List of Asset Identifier
23
5.1.8
Handle List
23
5.1.9
Rights Information List
24
5.1.10
Tokens
24
5.1.11
Broadcast Rights
24
5.2
Security Algorithms
25
5.3
DRM Agent – SRM Agent Communications
25
5.4
Client – Server Model
26
5.5
Recovery Procedures
26
5.5.1
Exception Handling
26
5.5.2
Operation Log
26
5.5.3
Operation Log Extensions for BCAST
27
5.6
Notations of Messages
29
5.6.1
Messages
29
5.6.2
Actions
29
5.6.3
Fields
30
5.6.4
Message Format
30
5.6.5
Extensibility of Binary Messages
32
5.6.6
Status
33
6.
DRM Agent – SRM Agent Protocol
34
6.1
SRM Hello
34
6.1.1
Hello
34
6.2
MAKE (Mutual Authentication and Key Exchange) Process
38
6.2.1
Authentication
39
6.2.2
Key Exchange
43
6.3
Secure Authenticated Channel
46
6.3.1
Key Derivation Function
46
6.3.2
SAC Context
46
6.3.3
Secure Message
47
6.3.4
Message Replay Protection
47
6.3.5
Changing SAC
47
6.3.6
Maintenance of Multiple SACs
49
6.4
Revocation Status Checking
49
6.4.1
CRL Information Exchange
50
6.4.2
OCSP Nonce
52
6.4.3
OCSP Response Processing
54
6.4.4
CRL Delivery from Device to SRM
57
6.4.5
CRL Delivery from SRM to Device
59
6.5
Movement of Rights from Device to SRM
61
6.5.1
Installation Setup
62
6.5.2
Rights Disablement in Device
64
6.5.3
Rights Installation
64
6.5.4
Rights Removal in Device
67
6.6
Movement of Rights from SRM to Device
67
6.6.1
Rights Retrieval
68
6.6.2
Rights Installation in Device
70
6.6.3
Rights Removal
71
6.7
Local Rights Consumption
72
6.7.1
Rights Selection in Device
73
6.7.2
REK Query
74
6.7.3
Rights Consumption and Release
76
6.8
Direct Provisioning of Rights to the SRM
78
6.8.1
RO Acquisition Trigger
79
6.8.2
Signature Query
80
6.8.3
RO Acquisition between RI and DRM Agent
82
6.8.4
Provisioning Setup
82
6.8.5
RO Verification in Device
85
6.8.6
Rights Provisioning
85
6.8.7
RO Removal in Device
88
6.9
SRM Rights Upgrade
89
6.9.1
Trigger
89
6.9.2
Upgrade Rights Retrieval
90
6.9.3
RO Upgrade
90
6.9.4
Rights Upgrade
91
6.10
S2S Rights Move
94
6.10.1
S2S Move Initiation
95
6.10.2
Move Count Decrease
97
6.10.3
Decrypt & Encrypt REK
97
6.10.4
Installation Setup
97
6.10.5
Rights Installation
99
6.10.6
Rights Removal
100
6.11
SRM extensions for BCAST service support
102
6.11.1
Movement of Tokens from Device to SRM
102
6.11.2
Movement of Tokens from SRM to Device
104
6.11.3
Local Token Consumption by the Device
107
6.11.4
Retrieval of Token Information from the SRM
113
6.11.5
Token Removal from the SRM
115
6.11.6
Token Upgrade
117
6.11.7
Movement of Broadcast Rights from Device to SRM
119
6.11.8
Movement of Broadcast Rights from SRM to Device
122
6.11.9
Broadcast Rights Removal
126
6.12
SRM Utilities
126
6.12.1
Handle List Query
126
6.12.2
Rights Information Query
129
6.12.3
Rights Information List Query
131
6.12.4
Handle Removal
133
6.12.5
Rights Enablement
135
6.12.6
Rights Removal
138
6.12.7
Store RI Certificate Chain
139
6.12.8
Get RI Certificate Chain
141
6.12.9
Remove RI Certificate Chain
143
6.12.10
Dynamic Code Page Query
145
6.12.11
Dynamic Code Page Update
147
7.
ROAP Extension
150
7.1
ROAP Trigger
150
8.
Compact Encoding of Rights
152
8.1
WBXML Encoding Rules
152
8.2
Attribute Code Pages
152
8.2.1
Fixed Attribute Code Page
152
8.2.2
Dynamic Attribute Code Pages
153
8.2.3
Reserved Attribute Code Pages
153
8.3
Tag Code Pages
154
8.3.1
Rights Object Container
154
8.3.2
Dynamic Tag Code Page
155
8.3.3
Reserved Tag Code Pages
155
8.4
Processing
155
8.4.1
Device (DRM Agent)
155
8.4.2
SRM (SRM Agent)
156
8.4.3
Rights Issuers
156
8.5
Data Representation
156
8.5.1
Binary Data Representation
156
8.5.2
base64Binary Representation
156
8.6
Normal Processing and Transcoding
156
9.
Replay Protection Mechanisms
158
9.1
Alternative dealing with a full Move Cache
158
Appendix A.
Change History (Informative)
159
A.1
Approved Version History
159
A.2
Draft/Candidate Version V1_1 History
159
Appendix B.
Static Conformance Requirements (Normative)
160
B.1
SCR for Client
160
B.2
SCR for Server
161
B.2.1
SCR for RI
161
B.2.2
SCR for SRM Agent
161
Appendix C.
Transport Mappings
163
C.1
SRM Communication Layer Model
163
C.1.1
Application Layer
163
C.1.2
Other Layers (Informative)
163
Appendix D.
Method for Describing Binary Structures
165
D.1
Mnemonics (Data Types)
165
D.2
Comments
165
D.3
Syntax Description
165
D.4
Padding
166
D.5
Arrays
166
D.6
Optional Variables or Data Structures
167
Appendix E.
Data Format (Normative)
168
E.1
Common Data Structure
168
E.2
Message Fields
170
E.2.1
Version
170
E.2.2
Status
170
E.2.3
AssetID
170
E.2.4
Handle
170
E.2.5
Rights
170
E.2.6
Rights Information List
176
E.2.7
Encrypted REK
176
E.2.8
Encrypted Handle
176
E.2.9
Encrypted New Handle
177
E.2.10
Tokens
177
E.2.11
Broadcast Rights
179
E.3
LAID (List of Asset Identifier)
183
E.4
Handle List
184
E.5
Dynamic Code Pages
184
E.5.1
Attribute Code Page
184
E.5.2
Tag Code Page
185
Appendix F.
SRM Transport Protocol
187
F.1
HTTP Mapping
187
F.1.1
HTTP Headers
187
F.1.2
SRM Requests
187
F.1.3
SRM Responses
187
F.1.4
HTTP Response Codes
188
Appendix G.
SRM-API (Secure Removable Media – Application Programming Interface) (Informative)
189
G.1
Definition Structures
189
G.2
API List
189
G.2.1
Initialise_Message
190
G.2.2
Exchange_Message
191
G.2.3
Finalise_Message
192
G.3
Status Codes for API
192
Appendix H.
Certificates and CRL
193
H.1
Certificate Profiles and Requirements
193
H.2
CRL Profiles and Requirements
195
Appendix I.
Move Permission in Rights Object (Normative)
196
I.1
Extension of Permission Model in REL
196
I.1.1
Element <permission>
196
I.1.2
Element <move>
196
I.1.3
Element <count>
196
I.1.4
Element <system>
197
Appendix J.
Event Counting
198
J.1
Countable DRM Agent Events
198
J.2
Countable SRM Agent Events
198
J.3
Resetting the Event Counter
199
J.4
Threshold-based Event Counting Considerations
199
Appendix K.
SRM and domain Rights Objects (Informative)
200

Figures

21Figure 1: Secure Removable Media System - Component and Interface

29Figure 2: Notation of Message

30Figure 3: Notation of Action

34Figure 4: Sequence Diagram – SRM Hello

38Figure 5: Sequence Diagram – MAKE Process

47Figure 6: Sequence Diagram – Change SAC

50Figure 7: Sequence Diagram – CRL Information Exchange

53Figure 8: Sequence Diagram – OCSP Nonce

55Figure 9: Sequence Diagram – OCSP Processing

57Figure 10: Sequence Diagram – CRL Delivery from Device to SRM

59Figure 11: Sequence Diagram – CRL Delivery from SRM to Device

61Figure 12: Sequence Diagram – Movement of Rights from Device to SRM

68Figure 13: Sequence Diagram – Movement of Rights from SRM to Device

73Figure 14: Sequence Diagram – Local Rights Consumption

74Figure 15: Sequence Diagram – REK Query

78Figure 16: Sequence Diagram – Direct Provisioning of Rights to the SRM

89Figure 17: Sequence Diagram – SRM Rights Upgrade

94Figure 18: Sequence Diagram – SRM to SRM Move

102Figure 19: Sequence Diagram – Token Move from a Device to SRM

105Figure 20: Sequence Diagram –Token Move from SRM to Device

108Figure 21: Sequence Diagram – Local Token Consumption

113Figure 22: Sequence Diagram –Token Information Retrieval from SRM

115Figure 23: Sequence Diagram –Token Removal from the SRM

117Figure 24: Sequence Diagram –Token Upgrade

120Figure 25: Sequence Diagram – Movement of Broadcast Rights from Device to SRM

123Figure 26: Sequence Diagram – Movement of Broadcast Rights from SRM to Device

126Figure 27: Sequence Diagram – Handle List Query

129Figure 28: Sequence Diagram – Rights Information Query

131Figure 29: Sequence Diagram – Rights Information List Query

134Figure 30: Sequence Diagram – Handle Removal

136Figure 31: Sequence Diagram – Rights Enablement

138Figure 32: Sequence Diagram – Rights Removal

140Figure 33: Sequence Diagram – Store RI Certificate Chain

142Figure 34: Sequence Diagram – Get RI Certificate Chain

144Figure 35: Sequence Diagram – Remove RI Certificate Chain

146Figure 36: Sequence Diagram – Dynamic Code Page Query

147Figure 37: Sequence Diagram – Dynamic Code Page Update

163Figure 38: SRM Communication Layer

Tables

26Table 1: Operation Log Entry

28Table 2: Extended Operation Log Entry

28Table 3: Token Transaction Log Entry

30Table 4: Notation of Fields

31Table 5: Message Identifier

33Table 6: Status Code Values

34Table 7: Fields of SrmHelloRequest

34Table 8: Fields of SrmHelloResponse

35Table 9: Status of Srm Hello Message

39Table 10: Fields of AuthenticationRequest

40Table 11: Fields of AuthenticationResponse

40Table 12: Status of Authentication Message

43Table 13: Fields of KeyExchangeRequest

44Table 14: Fields of KeyExchangeResponse

44Table 15: Status of Key Exchange Message

46Table 16: Key Materials

47Table 17: Fields of ChangeSacRequest

48Table 18: Fields of ChangeSacResponse

48Table 19: Status of Change SAC Message

51Table 20: Fields of CRLInformationExchangeResponse

51Table 21: Status of CRL Information Exchange Message

53Table 22: Fields of OCSPNonceResponse

53Table 23: Status of OCSP Nonce Message

55Table 24: Fields of OCSPProcessRequest

55Table 25: Fields of OCSPProcessResponse

56Table 26: Status of OCSP Process Message

57Table 27: Fields of CRLUpdateRequest

57Table 28: Fields of CRLUpdateResponse

57Table 29: Status of CRL Update Message

59Table 30: Fields of CRLRetrievalRequest

59Table 31: Fields of CRLRetrievalResponse

59Table 32: Status of CRL Retrieval Message

62Table 33: Fields of InstallationSetupRequest

62Table 34: Fields of InstallationSetupResponse

62Table 35: Status of Installation Setup Message

64Table 36: Fields of RightsInstallationRequest

64Table 37: Fields of RightsInstallationResponse

65Table 38: Status of Rights Installation Message

68Table 39: Fields of RightsRetrievalRequest

68Table 40: Fields of RightsRetrievalResponse

69Table 41: Status of Rights Retrieval Message

74Table 42: Fields of REKQueryRequest

75Table 43: Fields of REKQueryResponse

75Table 44: Status of REK Query Message

80Table 45: Fields of SignatureQueryRequest

80Table 46: Fields of SignatureQueryResponse

80Table 47: Status of Signature Query Message

82Table 48: Fields of ProvisioningSetupRequest

83Table 49: Fields of ProvisioningSetupResponse

83Table 50: Status of Provisioning Setup Message

85Table 51: Fields of RightsProvosioningRequest

85Table 52: Fields of RightsProvisioningResponse

86Table 53: Status of Rights Provisioning Message

90Table 54: Status of Upgrade Rights Retrieval Message

91Table 55: Fields of RightsUpgradeRequest

92Table 56: Field of RightsUpgradeResponse

92Table 57: Status of Rights Upgrade Message

95Table 58: Fields of S2SmoveInitiationRequest

95Table 59: Fields of S2SMoveInitiationResponse

95Table 60: Status of S2SMoveInitiation Message

97Table 61: Fields of InstallationSetupRequest

98Table 62: Fields of InstallationSetupResponse

98Table 63: Status of Installation Setup Message

99Table 64: Fields of RightsInstallationRequest

99Table 65: Fields of RightsInstallationResponse

99Table 66: Status of Rights Installation Message

103Table 67: Fields of TokenInstallationRequest

103Table 68: Fields of TokenInstallationResponse

103Table 69: Values of Status field of the TokenInstallationResponse

105Table 70: Fields of TokenRetrievalRequest

106Table 71: Fields of TokenRetrievalResponse

106Table 72: Values of Status field of the TokenRetrievalResponse

109Table 73: Fields of TokenConsumptionRequest

109Table 74: Fields of TokenConsumptionResponse

109Table 75:Values of Status field of the TokenConsumptionResponse

111Table 76: Fields of TokenEnablementRequest

111Table 77: Fields of TokenEnablementResponse

111Table 78: Values of Status field of the TokenConsumptionResponse

113Table 79: Fields of TokenInformationRequest

113Table 80: Fields of TokenInformationResponse

114Table 81: Values of Status field of the TokenInformationResponse

115Table 82: Fields of TokenRemovalRequest

115Table 83: Fields of TokenRemovalResponse

115Table 84:Values of Status field of the TokenRemovalResponse

117Table 85: Fields of TokenUpgradeRequest

117Table 86: Fields of TokenInformationResponse

118Table 87: Values of Status field of the TokenInformationResponse

120Table 89: Fields of BroadcastRightsInstallationRequest

121Table 90: Fields of BroadcastRightsInstallationResponse

121Table 91: Status of Broadcast Rights Installation Message

123Table 92: Fields of BroadcastRightsRetrievalRequest

123Table 93: Fields of BroadcastRightsRetrievalResponse

124Table 94: Status of Rights Retrieval Message

127Table 95: Fields of HandleListQueryRequest

127Table 96: Fields of HandleListQueryResponse

128Table 97: Status of Handle List Query Message

129Table 98: Fields of RightsInfoQueryRequest

129Table 99: Fields of RightsInfoQueryResponse

130Table 100: Status of Rights Information Query Message

131Table 101: Fields of RightsInfoListQueryRequest

132Table 102: Fields of RightsInfoListQueryResponse

132Table 103: Status of Rights Information List Query Message

134Table 104: Fields of HandleRemovalRequest

134Table 105: Fields of HandleRemovalResponse

134Table 106: Status of Handle Removal Message

136Table 107: Fields of RightsEnablementRequest

136Table 108: Fields of RightsEnablementResponse

136Table 109: Status of Rights Enablement Message

138Table 110: Fields of RightsRemovalRequest

138Table 111: Fields of RightsRemovalResponse

138Table 112: Status of Rights Removal Message

140Table 113: Fields of RICertificateStoreRequest

140Table 114: Fields of RICertificateStoreResponse

140Table 115: Status of RI Certificate Store Message

142Table 116: Fields of RICertificateQueryRequest

142Table 117: Fields of RICertificateQueryResponse

142Table 118: Status of RI Certificate Query Message

144Table 119: Fields of RICertificateRemovalRequest

144Table 120: Fields of RICertificateRemovalResponse

144Table 121: Status of RI Certificate Removal Message

146Table 122: Fields of DynamicCodePageQueryResponse

146Table 123: Status of Dynamic Code Page Query Message

148Table 124: Fields of DynamicCodePageUpdateRequest

148Table 125: Fields of DynamicCodePageUpdateResponse

148Table 126: Status of Dynamic Code Page Update Message

152Table 127: Fixed WBXML Attribute Code Page – Attribute Names

153Table 128: Fixed WBXML Attribute Code Page – Attribute Values

154Table 129: Fixed WBXML Tag Code Page

165Table 130: Data Types

167Table 131: Ranges

189Table 132: API List

192Table 133: Status Codes

193Table 134: SRM Certificate Profile

195Table 135: CRL Profile

195Table 136: RevokedCertificates Entry fields in CRL Profile

1. Scope

The scope of OMA “Secure Removable Media” is to enable the use of the Secure Removable Media based on the OMA DRM version 2.0, DRM version 2.1, OMA DRM XBS [DRMXBS] and OMA SCE 1.0 (especially the SCE DRM and SCE REL) specifications. This specification defines mechanisms and protocols necessary to implement the Secure Removable Media and the extended parts of the OMA DRM and the OMA SCE system to enable the use of the Secure Removable Media.
2. References

2.1 Normative References

	[AES]
	“NIST FIPS 197: Advanced Encryption Standard (AES)”. November 2001. http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

	[CertProf]
	“Certificate and CRL Profiles”. OMA-Security-CertProf-v1_1. Open Mobile Alliance(. http://www.openmobilealliance.org

	[DRMXBSv1.1]
	“OMA DRM v2.0 Extensions for Broadcast Support” version 1.1, Open Mobile Alliance™, OMA-TS-DRM_XBS-V1_0-20090212-A,

URL: http://www.openmobilealliance.org/

	[HMAC]
	“HMAC: Keyed-Hashing for Message Authentication”. H. Krawczyk, M. Bellare, and R. Canetti. Informational. February 1997. http://www.ietf.org/rfc/rfc2104.txt

	[IOPPROC]
	“OMA Interoperability Policy and Process”. Version 1.1. Open Mobile Alliance™. OMA-IOP-Process-V1_1. http://www.openmobilealliance.org/

	[ISO8601]
	“Data elements and interchange formats -- Information interchange -- Representation of dates and times”, ISO 8601:2004, URL:http://www.iso.org

	[OCSP]
	“RFC 2560: Internet X.509 Public Key Infrastructure: Online Certificate Status Protocol – OCSP”. Myers, M., Ankney, R., Malpani, A., Galperin, S. and C. Adams. June 1999. http://www.ietf.org/rfc/rfc2560.txt

	[OCSP-MP]
	“OMA Online Certificate Status Protocol (profile of [OCSP])”. Version 1.0. Open Mobile Alliance™. http://www.openmobilealliance.org/

	[OMADRMv2.0]
	“Digital Rights Management”. Open Mobile Alliance(. OMA-DRM-DRM-V2_0. http://www.openmobilealliance.org/

	[OMADRMv2.1]
	“Digital Rights Management”. Open Mobile Alliance(. OMA-DRM-DRM-V2_1. http://www.openmobilealliance.org/

	[PKCS-1]
	“PKCS #1 v2.1: RSA Cryptography Standard”. RSA Laboratories. June 2002. http://www.rsasecurity.com/rsalabs

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”. S. Bradner. March 1997. http://www.ietf.org/rfc/rfc2119.txt

	[RFC2234]
	“Augmented BNF for Syntax Specifications: ABNF”. D. Crocker, Ed., P. Overell. November 1997. http://www.ietf.org/rfc/rfc2234.txt

	[RFC2396]
	“Uniform Resource Identifiers (URI): Generic Syntax”. T. Berners-Lee, R. Fielding, L. Masinter. August 1998. http://www.ietf.org/rfc/rfc2396.txt

	[RFC2630]
	“Cryptographic Message Syntax”. R. Housley. June 1999. http://www.ietf.org/rfc/rfc2630.txt

	[RFC3280]
	"Internet Public Key Infrastructure - Certificate and Certificate Revocation List (CRL) Profile". R. Housley, W. Polk, W. Ford, and D. Solo. April 2002. http://www.ietf.org/rfc/rfc3280.txt

	[SCE-DRM]
	“DRM Specification – SCE Extensions, Draft Version”,
OMA-TS-SCE_DRM-V1_0-D, Open Mobile Alliance(,
URL:http://www.openmobilealliance.org/

	[SCE-REL]
	“DRM Rights Expression Language – SCE Extensions, Draft Version”,
OMA-TS-SCE_REL-V1_0-D, Open Mobile Alliance(,
URL:http://www.openmobilealliance.org/

	[SHA1]
	“NIST FIPS 180-2: Secure Hash Standard”. August 2002. http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf

	[WBXML]
	“Binary XML Content Format Specification”. WAP Forum(. WAP-192-WBXML. http://www.openmobilealliance.org/

	[XC14N]
	“Exclusive XML Canonicalization: Version 1.0”. John Boyer, Donald E. Eastlake 3rd and Joseph Reagle. W3C Recommendation. 18 July 2002. http://www.w3.org/TR/xml-exc-c14n/

Informative References

	[HTTP]
	“RFC 2616. Hypertext Transfer Protocol – HTTP/1.1”. J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee. June 1999. http://www.ietf.org/rfc/rfc2616.txt

	[ISO/IEC13818-1]
	“ISO/IEC 13818-1, Information technology - Generic coding of moving pictures and associated audio information - Part 1: Systems”. December 2000

	[SRM-ADv1.1]
	“OMA Secure Removable Media Architecture”. Open Mobile Alliance(. OMA-AD-SRM-V1_1. http://www.openmobilealliance.org/

	[SRM-RDv1.1]
	“OMA Secure Removable Media Requirements”. Open Mobile Alliance(. OMA-RD-SRM-V1_1. http://www.openmobilealliance.org/

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].
All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.
3.2 Definitions

	Broadcast Rights Object
	This is a Rights Object used by the DRM profile of the Service and Content Protection specification [OMA-BCAST-SCP]. BCRO is delivered over a broadcast channel. Encoding of the BCRO is specified in Section 8 of the XBS specification [DRMXBS].

	Broadcast RO Move
	To Move the Broadcast RO between SRM and Device.

	Composite Object
	A content object that contains one or more Media Objects by means of inclusion. (From [OMADRMv2])

	Device
	A Device is the entity (hardware/software or combination thereof) within a user equipment that implements a DRM Agent. The Device is also conformant to the OMA DRM specifications. The Device may include a smartcard module (e.g. a SIM) or not depending upon implementation.

	DRM Agent
	The entity in the Device that manages Permissions for Media Objects on the Device. (From [OMADRMv2])

	Local Rights Consumption
	Operations in which Rights stored in SRMs are transferred for use by the recipient Device for a limited period of time for rendering purposes.

	Media Object
	A digital work e.g. a ringing tone, a screen saver, a Java game or a Composite Object (From [OMADRMv2])

	Move
	To make Rights existing initially on a source Device or SRM fully or partially available for use by a recipient Device or SRM, such that the Rights or parts thereof that become usable on the recipient Device or SRM can no longer be used on the source Device or SRM.

	Generalised Rights Object
	This term is used in this document as a more generic term whenever an RO or a BCRO is meant.

	Handle
	A random number generated by the DRM Agent, which is stored in the SRM and in the Operation Log (kept in the Device) used for associating the DRM Agent to specific Rights for the Move or Local Rights Consumption operation.

	Operation Log
	A secure file, kept in a Device, in which entries containing transaction information (e.g. ROID, Handle) are stored until corresponding transactions are completed. The information in an entry is relevant for the recovery procedures used by a DRM Agent when a transaction is not completed.

	Permission
	Actual usages or activities allowed (by the Rights Issuer) over DRM Content. (From [OMADRMv2.1])

	Provisioning
	To provision Rights directly to an SRM.

	DRM Content
	Media Objects that are consumed according to a set of Permissions in a Rights Object. (From [OMADRMv2.1])

	Rights
	Rights are the collection of permissions and constraints defining under which circumstances access is granted to DRM Content. For the purposes of this document, Rights consist of a Rights Object, its associated state, and other related information.

	Rights Issuer
	An entity that issues Rights Objects to OMA DRM conformant Devices. (From [OMADRMv2.1])

	Rights Move between SRM and Device
	To Move the Rights between SRM and Device.

	Rights Object
	A collection of Permissions and other attributes which are linked to DRM Content. (From [OMADRMv2.1]) An RO is delivered over an interaction channel. The encoding of the RO is specified in [DRMDRMv2.1].

	Secure Authenticated Channel
	A logical channel that provides message integrity and confidentiality.

	Secure Removable Media
	A removable media that implements means to protect against unauthorized access to its internal data and includes an SRM Agent. (e.g. secure memory card, smart card)

	SRM Agent
	A trusted entity embodied in Secure Removable Media. This entity is responsible for storing and removing Rights Objects in Secure Removable Media, for delivering Rights Objects from/to a DRM Agent in a secure manner, and for enforcing permissions and constraints, including securely maintaining state information for stateful rights. The SRM Agent is a part of Secure Removable Media.

	SRM Rights Upgrade
	To upgrade Rights on an SRM with additional permissions and constraints.

	SRM to SRM Rights Move
	To Move the Rights directly from one SRM to another SRM.

	User
	The human user of a Device. The User does not necessarily own the Device. (From [OMADRMv2.1])

3.3 Abbreviations

	AES
	Advanced Encryption Standard

	BCAST
	Mobile Broadcast Services

	CBC
	Cipher Block Chaining

	CEK
	Content Encryption Key

	CRL
	Certificate Revocation List

	DER
	Distinguished Encoding Rules

	DRM
	Digital Rights Management

	HMAC
	Keyed-Hash Message Authentication Code

	HTTP
	Hyper Text Transfer Protocol

	IV
	Initialisation Vector

	KDF
	Key Derivation Function

	LAID
	List of Asset Identifier

	MAC
	Message Authentication Code

	MAKE
	Mutual Authentication and Key Exchange

	MK
	MAC Key

	OCSP
	Online Certificate Status Protocol

	OMA
	Open Mobile Alliance

	OMNA
	Open Mobile Naming Authority

	PKCS
	Public Key Cryptography Standards

	REK
	Rights Object Encryption Key

	REL
	Rights Expression Language

	RFC
	Request For Comments

	RI
	Rights Issuer

	RN
	Random Number

	ROID
	Rights Object Identifier

	RO
	Rights Object

	ROAP
	Rights Object Acquisition Protocol

	RSA
	Rivest-Shamir-Adelman public key algorithm

	RSA-OAEP
	RSA encryption scheme - Optimal Asymmetric Encryption Padding

	RSA-PSS
	RSA Probabilistic Signature Scheme

	R-UIM
	Removable User Identity Module

	SAC
	Secure Authenticated Channel

	SCR
	Static Conformance Requirement

	SD
	Secure Digital

	SHA1
	Secure Hash Algorithm

	SK
	Session Key

	S-MMC
	Secure MultiMediaCard

	SIM
	Subscriber Identity Module

	SRM
	Secure Removable Media

	URI
	Uniform Resource Indicator

	URL
	Uniform Resource Locator

	USIM
	Universal Subscriber Identity Module

	WBXML
	Wireless Binary XML

3.4 Notations

The following notation is used in this specification:
	X | Y
	Concatenation of X and Y

	E (K , M)
	The result of encrypting message M using the RSA key K

	H (X)
	The result of computing a hash on X

	HMAC (K , X)
	The result of computing an HMAC on X using the key K

The following typographical conventions are used in the body of the text: BinaryDataStructureVariables, Message Fields, <XML Elements>
3.5 Binary Structures

This document uses a “C” like language to describe the binary data structures used. The details are provided in Appendix D.
4. Introduction

Secure Removable Media (SRM) is a removable media that implements the means to protect against unauthorised access to its internal data and includes an SRM Agent. Examples of SRM are the secure memory card and the smart card.

The secure memory card has an embedded microprocessor and is capable of storing Rights and DRM Content in a secure manner (e.g. S-MMC, SD). The smart card also has an embedded microprocessor and is capable of storing access codes, user subscription information, secret keys, DRM Content, Rights etc (e.g. SIM, USIM, R-UIM). Differently from the secure memory card, the smart card enables Users to make a telephone call by using the Devices and is issued by a mobile network operator.

If a User has a Device with a physical interface to an SRM, the User can use the SRM as means of increasing the storage space for DRM Content and for the portability of Rights.

The SRM Enabler provides a mechanism to write, read, delete and update Rights in SRM in a secure manner to realise the use cases defined in the OMA SRM requirements document [SRM-RDv1.1]. The architecture, security considerations, and trust model requirements for OMA SRM are specified in the OMA SRM architecture document [SRM-ADv1.1].
4.1 Version 1.0

While the OMA DRM version 2.0 [OMADRMv2.0] and version 2.1 [OMADRMv2.1] define an end-to-end system for DRM Content and Rights Object distribution among the Device, the Rights Issuer and the Content Issuer, SRM TS 1.0 defines mechanisms and protocols to extend OMA DRM version 2.0 to allow Users to Move Rights between the Device and the SRM and to consume Rights stored in the SRM. Especially, the definition of Rights format is compliant to OMA DRM REL 2.0 and 2.1.
4.2 Version 1.1

Based on the new Use Cases and requirements proposed in the SRM 1.1 RD, the SRM 1.1 TS defines several extensions to the SRM 1.0 TS. Especially the security mechanism is totally consistent to that in SRM TS1.0 and the definition of Rights format is compliant to OMA DRM REL and SCE REL which is the extension of OMA DRM REL 2.1.

4.3 Component and Interface Deployment

[image: image2.emf]DRM AgentSRM Agent

DeviceSecure Removable Media

Trusted EntityUser Equipment

Rights Issuer

SRM.DRM-ROAP

Operating System

Secure

Storage

Mass

Storage

Out of Scope

Figure 1: Secure Removable Media System - Component and Interface
The Secure Removable Media system is a set of three entities: Rights Issuer, DRM Agent and SRM Agent.

The Rights Issuer and DRM Agent communicate with each other by the ROAP protocol as defined in [OMADRMv2.0], [OMADRMv2.1], [OMA SCE DRM]. The DRM Agent and SRM Agent exchange messages as specified in section 6.
The SRM Agent has an internal secure communication with the secure storage. The implementation of the communication is out of scope of this specification. For the completeness of the security in the Secure Removable Media system, this specification assumes the follows:

· Only the SRM Agent can access the secure storage (i.e. the DRM Agent cannot directly access the secure storage).

· To perform an action on information in the secure storage, the DRM Agent requests the action to the SRM Agent. After performing the action, the SRM Agent passes the result of the action to the DRM Agent (i.e. the DRM Agent cannot receive information from the secure storage, if the information is not produced by the SRM Agent.).
5. Secure Removable Media Overview
This specification defines actions and interfaces of the Rights Issuer, DRM Agent, and SRM Agent.
5.1 Information Structure
5.1.1 Rights
This section specifies Rights exchanged with SRM(s). Rights may be stored in SRM(s) by being preloaded (refer to [SRM-AD]) or Moved from a Device by the Move Permission granted by Rights Issuers. Rights consist of Rights Meta Data, Rights Object Container, State Information and REK. XML elements and attributes referred to in this section are specified in [OMADRMv2].
The Rights MUST be securely stored in the SRM.

5.1.1.1 Rights Meta Data

Rights Meta Data consists of following information:

· Rights Object Version

· RO Alias

· RI Identifier

· RI URL

· RI Alias

· RI Time Stamp

Appendix E.2.5.1 specifies the data structure of the Rights Meta Data.
5.1.1.2 Rights Object Container
A Rights Object is a collection of Permissions and other attributes which are linked to DRM Content(s). The Rights Object is stored in an SRM in the format of the Rights Object Container. The SRM Agent treats the Rights Object Container as an opaque object, i.e. the SRM does not parse the Rights Object Container.
Consistent with the structure of a DRM 2.0 or 2.1 Rights Object, the Rights Object Container consists of the <rights> element and the <signature> element in the RO payload. The contents of the <rights> element of the Rights Object Container MUST be canonicalised as Exclusive Canonical XML format, as specified in [XC14N]. The RI-signature (i.e. <signature> element in the RO payload) MUST be present in the Rights Object Container. The RI-signature is created by a Rights Issuer that is identified by the <riID> element in the RO payload. The SRM Agent does not verify the RI-signature.
It is RECOMMENDED that the Rights Issuer not generate a Rights Object (in XML format) larger than 4096 bytes if the Rights Object may be stored in an SRM. Appendix E.2.5.2 specifies the data structure of the Rights Object Container.

DRM Agents MAY compact the Rights Object Container using WBXML (as defined in section 7) before transferring Rights from the Device to the SRM. The DRM Agent SHOULD compact the Rights Object Container if it is larger than 4096 bytes.
5.1.1.3 State Information
State Information is the current state (e.g. remaining counts, interval start date) of each stateful permission within a stateful Rights Object. This is present in Rights if the Rights Object is stateful. Appendix E.2.5.3 specifies the data structure of the State Information in detail.
5.1.1.4 REK

REK is Rights Object Encryption Key (REK) in binary form, i.e. no base64 encoding. Appendix E.2.5.5 specifies the data structure of the REK.
5.1.2 RI Certificate Chain
If the SRM Agent supports storage of RI Certificate Chains as indicated in the SrmHelloResponse, the DRM Agent SHOULD send to the SRM the RI Certificate Chains that are required to verify the signature of the Rights it transfers to an SRM Agent (refer to section 6.8.7).

A trust model’s policy may determine whether the DRM Agent is required to verify the RI-signature when the Rights are installed in the Device as a part of the Rights Move (Refer to section 6.6). The default behaviour is that the DRM Agent MUST verify the RI-signature and its RI certificate chain.

When Rights in the SRM are used for the Local Rights Consumption (refer to section 6.7), the DRM Agent SHOULD verify the RI-signature.

If RI-signature verification is required and the SRM does not provide the RI certificate chain, the Device MUST get the certificate chain (if it does not have it already). The DRM Agent can acquire the RI certificate chain via a DRM v2.0 RI Registration or via other methods outside of ROAP. The DRM Agent is not required to check the RI revocation status and RI certification chain expiration during RI-signature verification.
5.1.3 Handle

The Handle is a random number generated by a DRM Agent and used to identify Rights on the SRM that the DRM Agent intends to access for the Move or Local Rights Consumption operation. The Handle is stored in the SRM and in the Operation Log of a Device.

When sending the initial message of Move or Local Rights Consumption, the DRM Agent MUST generate a Handle and send it to the SRM.

The usage of the Handle is specified in the sections for Move and Local Rights Consumption.
5.1.4 Rights Object Identifier
The Rights Object Identifier (ROID) uniquely identifies a Rights Object. This is the value of the <uid> element in the <context> element that is a child of the <rights> element in the Rights Object.
5.1.5 Asset Identifier

The Asset Identifier (AssetID) is included in a Rights Object and identifies a DRM Content. The identification may be equivalent to a subscription identifier or a Group ID for a corresponding group of DRM Contents, see [OMADRMv2].

Devices and SRMs MUST support AssetIDs of at least 256 bytes. It is RECOMMENDED that a content author not use an AssetID larger than 256 bytes if the Rights may be installed in an SRM.
5.1.6 Rights Information

Rights Information consists of Rights Meta Data, Rights Object Container, and State Information. This does not include the REK. The State Information is present in the Rights Information if the Rights Object in the Rights Object Container is stateful. Appendix E.2.5.4 specifies the data structure of the Rights Information.
5.1.7 List of Asset Identifier
The List of Asset Identifier (LAID) is a list that identifies DRM Content which is associated with a Rights Object. Appendix E.3 specifies the data structure of the LAID. The list comprises the hashes of AssetIDs.
5.1.8 Handle List
Handle List consists of the Handles of a group of enabled Rights in an SRM. Appendix E.4 specifies the data structure of the Handle List.
5.1.9 Rights Information List

Rights Information List consists of one or multiple Rights Information. Appendix E.2.6 specifies the data structure of the Rights Information List.
5.1.10 Tokens
Token is the collection of metadata which consists of the following attributes:
· RI ID: Rights Issuer identifier which identifies Token issuer (authorizing RI). Appendix E.2.5 specifies data structure of this attribute.

· Service ID/Program IDs: one or more identifiers of services and/or programs this Token is intended for.

· Movable: indicates whether Token can be moved or not.

· [TBD needs consideration: “Domain IDs: indicates that whether Token can be shared among members of the specific Broadcast Domain(s) defined in [DRMXBS 1.1].”]

· Token Delivery ID: identifies the Token in a similar fashion to the way an RO ID identifies a RO.

· Reporting Information is the compound attribute which consist of

· Token Reporting URL: the presence of this parameter indicates that consumption of this Token must be reported. The parameter defines the URL to which the ROAPTokenConsumptionReport message should be sent.

· Latest Token Consumption Time: after the date/time indicated in this parameter, the device SHALL NOT use any Tokens which have been received after the last ROAP-TokenDeliveryResponse message which includes a token reporting URL. If reports are being made on time by the device, this date is constantly being updated and therefore consumption should never be blocked. This field should only be defined when a token reporting URL is defined.

· Earliest Reporting Time: the device should report consumption after this time and before the latest reporting time.

· Latest Reporting Time: the device should report consumption before this time and after the earliest reporting time.

· Token Quantity: contains the numeric value of this Token (amount of tokens).

Appendix E.2.10 specifies the data structures of the Token attributes.
5.1.11 Broadcast Rights
This section specifies Broadcast Rights exchanged with SRM(s). Broadcast Rights may be Moved from a Device if permission is granted by the Rights Issuer. Broadcast Rights consist of a Broadcast Rights Object (BCRO) Base, BCRO Assets, State Information and Signature.

Broadcast Rights MUST be securely stored in the SRM.

5.1.11.1 BCRO Base

BCRO Base is the OMADRMBroadcastRightsObjectBase() object defined in [DRMXBS]. It contains permissions and constraints associated to broadcast contents.

Appendix E.2.11 specifies the data structure of the BCRO Base.

5.1.11.2 BCRO Assets

BCRO Assets contains Program Encryption Authentication Key (PEAK), Service Encryption Authentication Key (SEAK) or Content Encryption Key (CEK), and Binary Content Identifier (BCI).

· PEAK and SEAK are used to authenticate and encrypt BCAST traffic encryption keys (see [DRMXBS]).

· CEK is used for direct encryption of broadcast content.

· Asset Index is an internal identifier of the asset.

Appendix E.2.11 specifies the data structure of the BCRO Assets.

5.1.11.3 BCRO State Info

BCRO State Info contains state information if BCRO is stateful.

Appendix E.2.11 specifies the data structure of the BCRO State Info.

5.1.11.4 BCRO Signature

BCRO Signature is an optional element and contains OMADRMBroadcastRightsObjectSigned() object excluding OMADRMBroadcastRightsObjectBase() object which is transferred and stored separately.

Appendix E.2.11 specifies the data structure of the BCRO Signature.
5.2 Security Algorithms
The following cryptographic algorithms are used in this specification. The following algorithms MUST be supported by all DRM Agents and SRM Agents.
Hash algorithms:

SHA-1 [SHA1]
MAC algorithms:

HMAC-SHA-1 [HMAC]
Symmetric encryption algorithms:

AES-128-CBC [AES]
Asymmetric encryption algorithms:

RSA-OAEP (v2.1) [PKCS-1]
Signature algorithms:

RSA-PSS (v2.1) [PKCS-1]
5.3 DRM Agent – SRM Agent Communications

A DRM Agent communicates to an SRM Agent over a physical communications channel. How this communication channel is established is beyond the scope of this document. It is presumed that the DRM Agent can use the services of the underlying operating system to discover and to establish the channel. Once this physical channel has been established, one or more logical channels can be established, depending on what kind of information needs to be exchanged and how many trust models are supported by the SRM Agent.

5.4 Client – Server Model

The model used for the communications between the DRM Agent and the SRM Agent is a client – server model. The DRM Agent is always the client and the SRM Agent is always the server. The SRM Agent does not act by itself. It only acts when it receives a request from a client (a DRM Agent) and then responds to that request.

In addition, it is always the DRM Agent that establishes the physical and logical communication channels.
5.5 Recovery Procedures
This section defines the process of exception handling.

5.5.1 Exception Handling
During the execution of access protocols between the DRM Agent and SRM Agent as specified in sections 6.5, 6.6, and 6.7, exception handling may become necessary. Exceptional cases are, for example, the unexpected unplugging of the SRM or Device power-off. In particular, during Move or Local Rights Consumption various exceptions can occur that must be handled properly. The appropriate recovery steps are explained in the subsections of sections 6.5, 6.6, and 6.7. This section defines an Operation Log and the Handle concept, which are needed for the recovery process.

This specification makes the following assumptions:

· If any exception occurs during the Local Rights Consumption in section 6.7, then the Device will stop using the associated DRM Content.

· In some cases, recovery may involve User interaction.
5.5.2 Operation Log

An Operation Log is a secure file, that MUST be kept by the Device, in which entries containing information about a transaction are stored until the transaction is completed. It is used for recovery procedures.

A “transaction” is a complete set of message pairs that must be exchanged between a DRM Agent and an SRM Agent in order to perform a particular SRM operation. The following transactions are defined:
· Movement of Rights from a Device to an SRM (section 6.5)
· Movement of Rights from an SRM to a Device (section 6.6)

· Local Rights Consumption (section 6.7)
After a Secure Authenticated Channel is established as specified in section 6.2, the DRM Agent checks whether there is an entry in the Operation Log associated with the SRM Agent.

If any Operation Log entry exists, recovery procedures may be necessary. The DRM Agent analyses all Operation Log entries (associated with the SRM Agent) in order to determine appropriate recovery actions. Details on the recovery procedure are part of the description of each function in sections 6.5, 6.6, and 6.7.

If no Operation Log entry exists, the DRM Agent MUST create an entry upon starting a Move or Local Rights Consumption transaction with the SRM as specified in sections 6.5, 6.6, and 6.7. When a transaction is successfully completed, the DRM Agent SHOULD remove the entry.
An entry in the Operation Log is specified in Table 1.

Table 1: Operation Log Entry
	Log
	Description

	SRM ID
	This identifies an SRM that the Device is interacting with.

	ROID
	This identifies the Rights Object that is the target of a transaction. Refer to section 5.1.4

	Handle
	This is generated by the DRM Agent and identifies Rights in the SRM.

	Transaction Identifier
	This identifies the transaction that the DRM Agent and SRM Agent are performing. This field is fixed for the duration of the transaction. It SHALL be possible to use this field to determine which entry is the oldest in the Operation Log.

	Current Step
	This represents the current execution step of a transaction as identified by the function identifier and also records whether the transaction is successfully completed or not.
If the function identifier refers to “Movement of Rights from Device to SRM”, then the DRM Agent makes a record after starting one of the following steps:

· Installation Setup Message
· Rights Disablement in Device
· Rights Installation Message
· Rights Removal in Device

If the function identifier refers to “Movement of Rights from SRM to Device”, then the DRM Agent makes a record after starting one of the following steps:

· Rights Retrieval Message

· Rights Installation in Device

· Rights Removal Message
If the function identifier refers to “Local Rights Consumption”, then the DRM Agent makes a record after starting one of the following steps:

· REK Query Message

· Rights Enablement Message

If the Operation Log is full, before a new entry is added, the oldest entry, based on the Transaction Identifier, SHALL be removed. Note that removing an entry will prevent any recovery procedure associated with the entry. While the size of the Operation Log is not specified in this document, it should be large enough to minimise the effect of removing entries for incomplete transactions.
5.5.3 Operation Log Extensions for BCAST

The operations described in section 5.5.2 apply to SRM extensions for BCAST. This section defines necessary extensions to support the following transactions and procedures:

· Movement of Token from Device to SRM (section 6.11.1)

· Movement of Token from SRM to Device (section 6.11.2)

· Local Token Consumption (section 6.11.3)
· Token Upgrade on the SRM procedure (section 6.11.6)
The DRM Agent MUST create an Extended Operation Log entry upon starting any of these transactions. When a transaction is successfully completed, the DRM Agent SHOULD remove the entry.

An entry in the Extended Operation Log is specified in Table 2.
Table 2: Extended Operation Log Entry
	Log
	Description

	Entry Type
	This indicates a type of log entry. Two types are currently defined:

· Rights Object Transaction Log Entry

· Token Transaction Log Entry

	Entry Contents
	If Entry Type field indicates “Rights Object Transaction Log Entry” contents of this field will be operation log entry defined in section 5.5.2.

If Entry Type field indicates “Token Transaction Log Entry” contents of this field are defined in Table 3.

Table 3: Token Transaction Log Entry
	Log
	Description

	SRM ID
	This identifies an SRM that the Device is interacting with.

	RI ID
	This identifies the Rights Issuer that issued Token under consideration

	Token Delivery ID
	This together with RI ID uniquely identifies Token stored on the SRM.

	Transaction Identifier
	This identifies the transaction that the DRM Agent and SRM Agent are performing. This field is fixed for the duration of the transaction. It SHALL be possible to use this field to determine which entry is the oldest in the Operation Log.

	Current Step
	This represents the current execution step of a transaction as identified by the function identifier and also records whether the transaction is successfully completed or not.
If the function identifier refers to “Movement of Token from Device to SRM”, then the DRM Agent makes a record after starting one of the following steps:

· Token Disablement in Device
· Token Installation Request
· Token Installation Response
If the function identifier refers to “Movement of Token from SRM to Device”, then the DRM Agent makes a record after starting one of the following steps:

· Token Retrieval Request
· Token Installation in Device

· Token Removal Request
If the function identifier refers to “Local Token Consumption”, then the DRM Agent makes a record after starting one of the following steps:

· Token Consumption Request
· Token Enablement Request

If the function identifier refers to “Token Upgrade”, then the DRM Agent makes a record after starting one of the following steps:

· Token Upgrade Request
· Token Disablement in Device

5.6 Notations of Messages
This section presents notations used in this specification.
5.6.1 Messages
A message is data sent between a DRM Agent and an SRM Agent in this specification. The communication is based on a request-response mechanism, e.g. first the DRM Agent sends a request message, and the SRM Agent processes the message and then sends back a response with the results of processing the request.

[image: image3.emf]DRM AgentSRM Agent

{message name}Request

{message name}Response

Figure 2: Notation of Message
In Figure 2, the solid line from the DRM Agent to the SRM Agent denotes a request and the solid line from the SRM Agent to the DRM Agent denotes a response. The DRM Agent sends the request to the SRM Agent to perform a specific action. After this, the SRM Agent sends the response back to the DRM Agent.

Names of requests and responses are ended with the string “Request” and “Response” (e.g. RightsInstallationRequest and RightsInstallationResponse).

This notation is used for all messages in this specification.
5.6.2 Actions
An action is a specific operation of the DRM Agent or the SRM Agent. The DRM Agent performs a specific action independently, but the SRM Agent performs a specific action by a request from the DRM Agent. For each action in the SRM, the SRM Agent sends a response to the DRM Agent.

[image: image4.emf]Entity

{action name}

Figure 3: Notation of Action
In Figure 3, the curved line denotes an action. The entity (DRM Agent or SRM Agent) performs an action. Each action has a name (e.g. RightsInstallationInSRM). All action names are ended with the string “In{Place}”, in case that the action is performed in the “Place”.
5.6.3 Fields
A field is a data unit within a message which is passed from an entity to the other entity to make the recipient entity perform an action based on the value of the field.

Messages in this specification carry a set of fields from the DRM Agent to the SRM Agent or vice versa. The fields are denoted by using a table as Table 4 below. A request and response have their own field tables (i.e. one field table for the request and one field table for the response).
Table 4: Notation of Fields

	Fields
	Protection Requirement
	Description

	A
	Integrity
	

	B
	Confidentiality
	

	C
	Integrity & Confidentiality
	

	D
	No
	

The Table 2 shows that a message carries 4 fields – A, B, C, and D. The “Protection Requirement” column denotes the security properties provided by the Secure Authenticated Channel. The “Description” column describes the fields.
5.6.4 Message Format

Some messages between the DRM Agent and SRM Agent are protected by an HMAC and some are not. See Table 3 for which messages are protected by an HMAC.

Messages between the DRM Agent and SRM Agent that are not protected by an HMAC have the following generic format:
MessageFormat ()

 messageIdentifier
7
bslbf

 messageType
1
bslbf

 MessageBody()

 ExtensionsContainer()

}

Messages between the DRM Agent and SRM Agent that are protected by an HMAC have the following generic format:

ProtectedMessageFormat() {
 MessageFormat()
 Hmac()

// Defined in Appendix E.1
}

The fields are defined as follows:

· messageIdentifier - This field defines the identifier of messages being communicated. This is defined in Table 3
· messageType - This flag is set to ‘0’ if this is a request from the DRM Agent to SRM Agent. In case of a response, it is set to ‘1’.

· MessageBody - This field contains fields of a message. The MessageBody is specified in each sub-section in section 6.
· ExtensionsContainer - This field can be used to include extensions in future versions of the SRM enabler. See section 5.6.5 for more details.
· Hmac - HMAC over MessageFormat, generated with the current MAC Key (MK). This field only exists for messages that are integrity protected by an HMAC. Table 3 indicates which messages are protected by an HMAC.

Table 5: Message Identifier

	Identifier Value
	Description
	Protection
	Mandatory/Optional

	
	
	Request protected by an HMAC
	Response protected by an HMAC
	Support by DRM Agent
	Support by SRM Agent

	0
	SRM Hello
	NO
	NO
	M
	M

	1
	Authentication
	NO
	NO
	M
	M

	2
	Key Exchange
	NO
	NO
	M
	M

	3
	CRL Information Exchange
	NO
	NO
	M
	M

	4
	OCSP Nonce
	NO
	NO
	O
	O

	5
	OCSP Process
	NO
	NO
	O
	O

	6
	CRL Update
	NO
	NO
	M
	M

	7
	CRL Retrieval
	NO
	NO
	M
	M

	8
	Installation Setup
	YES
	YES
	M
	M

	9
	Rights Installation
	YES
	YES
	M
	M

	10
	Rights Retrieval
	YES
	YES
	M
	M

	11
	REK Query
	YES
	YES
	M
	M

	12
	Rights Info Query
	YES
	YES
	M
	M

	13
	Handle List Query
	NO
	NO
	M
	M

	14
	Handle Removal
	YES
	YES
	M
	M

	15
	Rights Enablement
	YES
	YES
	M
	M

	16
	Rights Removal
	YES
	YES
	M
	M

	17
	RI Certificate Store
	NO
	NO
	O
	O

	18
	RI Certificate Query
	NO
	NO
	O
	O

	19
	RI Certificate Removal
	NO
	NO
	O
	O

	20
	Dynamic Code Page Query
	NO
	NO
	M
	O

	21
	Dynamic Code Page Update
	NO
	NO
	O
	O

	22
	Rights Info List Query
	NO
	YES
	O
	O

	23
	Change SAC
	NO
	NO
	O
	O

	24
	Signature Query
	YES
	YES
	
	

	25
	Provisioning Setup
	YES
	YES
	
	

	26
	Rights Provisioning
	YES
	YES
	
	

	27
	Upgrade Rights Retrieval
	YES
	YES
	
	

	28
	Rights Upgrade
	YES
	YES
	
	

	29
	S2S Move Initiation
	YES
	YES
	
	

	30
	Token Installation
	YES
	YES
	O
	O

	31
	Token Retrieval
	YES
	YES
	O
	O

	32
	Token Removal
	YES
	YES
	O
	O

	33
	Token Consumption
	YES
	YES
	O
	O

	34
	Token Enablement
	YES
	YES
	O
	O

	35
	Token Information
	YES
	YES
	O
	O

	36
	Token Upgrade
	YES
	YES
	O
	O

	37
	Broadcast Rights Installation
	YES
	YES
	O
	O

	38
	Broadcast Rights Retrieval
	YES
	YES
	O
	O

	31 ~ 127
	Reserved For Future Use
	
	
	
	

In Table 5, ‘M’ denotes that the DRM or SRM Agents MUST support the messages, and ‘O’ denotes that the agents MAY support the messages.

5.6.5 Extensibility of Binary Messages

All messages between a DRM Agent and an SRM Agent contain an ExtensionsContainer() structure. This structure has the following format:
ExtensionsContainer() {

 nbrOfExtensions
8
uimsbf

 for(i = 0 ; i < nbrOfExtensions ; i++) {

 extensionType
8
uimsbf

 size
16
uimsbf

 Extension()

 }

}

The nbrOfExtensions field indicates how many extensions follow. In this version of the specification, the nbrOfExtensions field SHALL contain a value 0. In future versions this field may contain another value.

For each extension the ExtensionsContainer() structure contains the following fields:
· extensionType - an 8-bit integer signalling the type of the extension. Each extension shall have a unique extensionType.
· size - a 16-bit integer specifying the size of the extension, i.e. the size of the Extension field in bytes. If the receiver of the message does not know the extension type, this field can be used to skip to the next extension.
· Extension - this structure contains the fields of the extension. The content of the structure depends on the particular extension and is to be defined in future specifications.
Unknown extensions SHALL be ignored by the receiving (DRM or SRM) Agent.
5.6.5.1 Application of Extensibility in Future Specifications (informative)
Future specifications can use the ExtensionsContainer() mechanism to expand messages. When an extension is specified in a future specification, it can either be included in all messages independent of the version of the involved SRM/DRM Agents or only included when communication between agents of appropriate versions occurs. The decision on where and when a certain extension is to be included is to be taken when the new specification is made.

Extensions can be mandated in future specifications. This means DRM/SRM Agents conformant to those specifications must include the extensions, even though older SRM/DRM Agents will ignore it. The extensions have to be designed in such a way that this does not open an attack opportunity.
5.6.6 Status

Each response (i.e. messageType is set to 1) has a Status field (see Appendix E.2.2) indicating whether its corresponding request (i.e. messageType is set to 0) was successfully processed or not. Table 6 lists the integer values assigned to each status code.
Table 6: Status Code Values
	Value
	Status Name

	0
	Success

	1
	Unknown Error

	2
	Trust Anchor Not Supported

	3
	Device Certificate Chain Verification Failed

	4
	Field Decryption Failed

	5
	SRM Random Number Mismatched

	6
	Version Mismatched

	7
	SAC Not Established

	8
	Old CRL

	9
	OCSP Response Verification Failed

	10
	Invalid OCSP Nonce

	11
	CRL Verification Failed

	12
	CRL Not Found

	13
	Field Integrity Verification Failed

	14
	Duplicate Handle

	15
	Not Enough Space

	16
	Handle Not Found

	17
	Handle Not Removed

	18
	Request Not Supported

	19
	RI Certificate Chain Not Found

	20
	Dynamic Code Pages Not Found

	21
	Handles In-consistent

	22
	Parameter Failed

	23
	Unexpected Request

	24
	AssetID List Too Long

	25 ~ 65535
	Reserved For Future Use

In section 6, for each description of a request/response message pair, a list of valid status values is specified. Should a DRM Agent receive a status value not specified for a particular response message, the DRM Agent SHALL treat the status as having received Unknown Error.

SRM Agent MUST return “Request Not Supported” Status Code in case it receives a request message with Message Identifier of “Reserved For Future Use” (defined in Table 3).
6. DRM Agent – SRM Agent Protocol
6.1 SRM Hello
The SRM Hello message pair is used by the DRM Agent and the SRM to exchange information about each other.
6.1.1 Hello

[image: image5.emf]SrmHelloRequest

SrmHelloResponse

DRM AgentSRM Agent

Figure 4: Sequence Diagram – SRM Hello
6.1.1.1 Description of Messages
The DRM Agent sends the SrmHelloRequest to initiate a logical channel with the SRM Agent. The fields of the request are defined in Table 5.

Table 7: Fields of SrmHelloRequest

	Fields
	Protection Requirement
	Description

	Version
	No
	Version is a <major.minor> representation of the highest SRM protocol version number supported by the DRM Agent.

For this version of the protocol, Version SHALL be set to 1.0.

	Trust Anchor And Device ID Pair List
	No
	Trust Anchor And Device ID Pair List contains the list of trust anchor and Device ID pairs for the Device. The trust anchor identifies the trust model. If the Device has more than one Device ID under a trust model, then only one Device ID under the trust model MUST be present in this list.

Upon receiving the SrmHelloRequest, the SRM Agent selects a protocol version supported by the SRM.
The SRM Agent checks to see if it supports any of the trust anchors in the Trust Anchor And Device ID Pair List. If not, set Status to Trust Anchor Not Supported and send the SrmHelloResponse.
After completing this step, the SRM Agent sends the SrmHelloResponse to the DRM Agent. The fields of the response are defined in Table 8.

Table 8: Fields of SrmHelloResponse

	Fields
	Protection Requirement
	Description

	Status
	No
	The result of processing the SrmHelloRequest message. The Status values are specified in Table 9.

If Status contains any error, only this field is present in the SrmHelloResponse.

	Selected Version
	No
	The protocol version selected by the SRM Agent. The Selected Version will be min(DRM Agent suggested version, highest version supported by the SRM Agent). The min(A,B) = A where A <= B.

	Trust Anchor And SRM ID Pair List
	No
	Trust Anchor And SRM ID Pair List contains the list of trust anchor and SRM ID pairs for the SRM. The trust anchor identifies the trust model. The trust anchors MUST be one of the trust anchors in the Trust Anchor And Device ID Pair List in the SrmHelloRequest. For example, if the Trust Anchor And Device ID Pair List has trust anchors A, B and C and the SRM supports trust anchors B, C and D, then the Trust Anchor And SRM ID Pair List would only contain trust anchors B and C. If the SRM has more than one SRM ID under a trust model, then only one SRM ID under the trust model MUST be present in this list.

	Peer Key Identifier List
	No
	Peer Key Identifier List contains a list of Device IDs stored by the SRM. If any of the identifiers match the Device IDs in the Trust Anchor and Device ID Pair List in the preceding SrmHelloRequest, it means the SRM has already verified the corresponding Device’s certificate chains, and that the DRM Agent does not need to send any of those certificate chains in a later message. If the SRM has verified the Device’s certificate chain, based on the Trust Anchor and Device ID Pair List in the SrmHelloRequest, then the SRM Agent MUST include this field in the SrmHelloResponse.

	Max Number Of AssetIDs
	No
	This field contains the maximum number of H(AssetID)s that can be processed by the SRM Agent in the HandleListQueryRequest (see section 6.8.1.1).

	Optional Messages Supported
	No
	This field indicates which optional messages are supported by the SRM.

Table 9: Status of Srm Hello Message
	Status Value
	Description

	Success
	The request was successfully processed

	Trust Anchor Not Supported
	Trust Anchor in the request is not supported by the SRM Agent

	Parameter Failed
	A field in the request has an invalid length or structure.

	Unknown Error
	Other errors

Upon receiving the SrmHelloResponse and Status is Success, the DRM Agent continues with the MAKE process in section 6.2.
6.1.1.2 Format of Messages
The message format (MessageBody) of the SrmHelloRequest is specified as follows. The messageType is set to ‘0’ and the message is not protected by an HMAC.
EntityId() {

 // SHA-1 of the DER-encoded

 // subjectPublicKeyInfo component

 // of the Entity's certificate

 Hash()

// Defined in Appendix E.1
}

DeviceId() {

 EntityId()

}

TrustAnchor(){

 // SHA-1 of root public key

 EntityId()

}

TrustAnchorAndDeviceIdPairList() {

 // There MUST be at least one pair

 nbrOfPairs
8
uimsbf

 for (i = 0 ; i < nbrOfPairs ; i++) {

 TrustAnchor()

 // The Device’s ID under the Trust Anchor above

 DeviceId()

 }
}

MessageBody() {
 Version()

// Defined in Appendix E.2.1
 TrustAnchorAndDeviceIdPairList()

}

The fields are defined as follows:

· Version - Version field in Table 7
· TrustAnchorAndDeviceIdPairList – Trust Anchor and Device ID Pair List field in Table 7
The message format (MessageBody) of the SrmHelloResponse is specified as follows. The messageType is set to ‘1’ and the message is not protected by an HMAC.
SelectedVersion() {

 Version()

// Defined in Appendix E.2.1
}

SrmId(){

 EntityId()

}

TrustAnchorAndSrmIdPairList() {

 // There MUST be at least one pair

 nbrOfPairs

8
uimsbf
 for (i = 0 ; i < nbrOfPairs ; i++) {

 TrustAnchor()

 // The SRM’s ID under the Trust Anchor above

 SrmId()
 }

}

PeerKeyIdentifier() {

 EntityId()
}

PeerKeyIdentifierList() {

 nbrOfPeerKeyIdentifiers

8
uimsbf

 for (i = 0 ; i < nbrOfPeerKeyIdentifiers ; i++) {

 PeerKeyIdentifier()
 }

}

OptionalMessages() {

 ocspSupported

1
bslbf

 rightsInfoListSupported

1
bslbf

 riCertificateStorageSupported

1
bslbf

 riCertificateRemovalSupported

1
bslbf

 dynamicCodePageSupported

1
bslbf

 changeSacSupported

1
bslbf

 rfu

10
bslbf

}

MessageBody() {

 Status()

// Defined in Appendix E.2.2
 if (Status == 0) {
 SelectedVersion()

 TrustAnchorAndSrmIdPairList()
 PeerKeyIdentifierList()
 maxNbrOfAssetIds

16
uimsbf

 OptionalMessages()

 }

}

The fields are defined as follows:

· Status - Status field in Table 8
· SelectedVersion - Selected Version field in Table 8
· TrustAnchorAndSrmIdPairList – Trust Anchor And SRM ID Pair List field in Table 8
· PeerKeyIdentifierList – PeerKeyIdentifierList field in Table 8
· maxNbrOfAssetIds – Max Number of AssetIDs field in Table 8
· OptionalMessages – Optional Messages Supported field in Table 8. The contained flags have meaning as follows:

· ocspSupported – if ‘0’, the OCSP Nonce and OCSP Process messages in section 6.4.2 and 6.4.3 are not supported by the SRM Agent. If ‘1’, the messages are supported by the SRM Agent.
· rightsInfoListSupported – if ‘0’, the Rights Info List Query message in section 6.8.3 is not supported by the SRM Agent. If ‘1’, the message is supported by the SRM Agent.
· riCertificateStorageSupported – if ‘0’, the RI Certificate Store and RI Certificate Query messages in section 6.8.7 and 6.8.8 are not supported by the SRM Agent. If ‘1’, the messages are supported by the SRM Agent.
· riCertificateRemovalSupported – if ‘0’, the RI Certificate Removal message in section 6.8.9 is not supported by the SRM Agent. If ‘1’, the message is supported by the SRM Agent.
· dynamicCodePageSupported – if ‘0’, the Dynamic Code Page Query and Dynamic Code Page Update messages in section 6.8.10 and section 6.8.11 are not supported by the SRM Agent. If ‘1’, the messages are supported by the SRM Agent.
· changeSacSupported – if ‘0’, the ChangeSac messages in section 6.3.5 are not supported by the SRM Agent. If ‘1’, the messages are supported by the SRM Agent.

6.1.1.3 Exception Handling

There may be an unexpected exception during the Srm Hello message pair processing as specified in section 5.5.1. If the DRM Agent fails to receive the response or finds an error by referring to the Status, then the DRM Agent regards it as an exception and terminates communication by discarding any existing SAC context with the SRM Agent. The User may be informed of this exception.
6.2 MAKE (Mutual Authentication and Key Exchange) Process

[image: image6.emf]DRM AgentSRM Agent

AuthenticationRequest

KeyExchangeRequest

AuthenticationResponse

KeyExchangeResponse

Figure 5: Sequence Diagram – MAKE Process
As shown in Figure 5, the MAKE Process is comprised of two request/response message pairs: Authentication message pair and Key Exchange message pair. The Authentication message pair SHOULD be followed by the Key Exchange message pair. If an SRM Agent receives any request message other than KeyExchangeRequest following receipt of the AuthenticationRequest, the SRM Agent SHOULD return Unexpected Request in the Status field of the response message.

6.2.1 Authentication
The DRM Agent sends the AuthenticationRequest to the SRM Agent to start the MAKE process. This request expresses Device information and preferences. The AuthenticationResponse expresses SRM information and preferences. The DRM Agent and SRM Agent may also exchange their certificate chains and verify them.
6.2.1.1 Description of Messages
The DRM Agent sends the AuthenticationRequest to initiate a MAKE process. The fields of the request are defined in Table 10.
Table 10: Fields of AuthenticationRequest
	Fields
	Protection Requirement
	Description

	Trust Anchor
	No
	Trust Anchor preferred by the DRM Agent. The trust anchor MUST be selected from Trust Anchor And SRM ID Pair List in the SrmHelloResponse. Selection of the trust anchor implicitly selects both the Device ID and the SRM ID.

	Device Certificate Chain
	No
	A certificate chain for the Device under the selected trust anchor. The chain MUST NOT include the root certificate. The Device Certificate MUST come first in the list. Each following certificate MUST directly certify the one preceding it. Refer to Appendix H.1
If the Peer Key Identifier List field is present in the SrmHelloResponse and the list contains the Device ID corresponding to the Device Certificate Chain, then this field need not be sent in the AuthenticationRequest.

	Peer Key Identifier
	No
	An SRM ID under the trust anchor indicated by the Trust Anchor field in this message. If the Device has already verified the corresponding SRM Certificate Chain, then this field SHOULD be present. This informs the SRM to not send the SRM’s certificate chain in the AuthenticationResponse.

	Supported Algorithms
	No
	Supported Algorithms identifies the cryptographic algorithms (hash algorithms, MAC algorithms, signature algorithms, asymmetric encryption algorithms, symmetric encryption algorithm, and key derivation functions) that are supported by the DRM Agent.

Use of algorithms not listed in section 5.2 and 6.3.1 is optional. Since all DRM Agents and all SRM Agents must support the default algorithms, they need not be sent in this field. Only identifiers for algorithms that are not one of the defaults need to be sent in the AuthenticationRequest.

Upon receiving the AuthenticationRequest, the SRM Agent MUST perform the following prodecure:

1. Check if it supports the Trust Anchor. If not, set Status to Trust Anchor Not Supported and send the AuthenticationResponse.

2. If present, verify the Device Certificate Chain. If the verification is good, then continue with step 5. Otherwise, set Status to Device Certificate Chain Verification Failed and send the AuthenticationResponse.
3. If the Device Certificate Chain is not present, do the following:

A. If the SrmHelloResponse did not include the Peer Key Identifier List, set Status to Device Certificate Chain Verification Failed and send the AuthenticationResponse.

B. If the SrmHelloResponse did include the Peer Key Identifier List, then check whether the Trust Anchor matches any trust anchor in the Peer Key Identifier List. If it does not, then set Status to Device Certificate Chain Verification Failed and send the AuthenticationResponse.

4. Check the Peer Key Identifier and determine whether or not to send the SRM’s certificate chain under the Trust Anchor.

5. Select the algorithms to use from the Supported Algorithms.

After these steps, the SRM Agent sends the AuthenticationResponse to carry the result of the action. The fields of the response are defined in Table 11.
Table 11: Fields of AuthenticationResponse
	Fields
	Protection Requirement
	Description

	Status
	No
	The result of processing the AuthenticationRequest message. The Status values are specified in Table 12.
If Status contains any error, only this field is present in the AuthenticationResponse.

	SRM Certificate Chain
	No
	The SRM’s certificate chain under the trust anchor sent in the preceding request. The chain MUST NOT include the root certificate. The SRM Certificate MUST come first in the list. Each following certificate MUST directly certify the one preceding it. Refer to Appendix H.1.
If the Peer Key Identifier field was present in the preceding request, then this field SHOULD NOT be present.

	Encrypted AuthResp Data
	No
	E (PuKeyD , AuthRespData) where AuthRespData = RNS | Version | Selected Algorithms | H(Supported Algorithms)
RNS is a random number generated by the SRM Agent.
Version is copied from the Version field in the SrmHelloRequest.
Selected Algorithms specifies the cryptographic algorithms selected by the SRM Agent.
H(Supported Algorithms) is the hash, using the selected hash algorithm, of the Supported Algorithms field in the AuthenticationRequest.
AuthRespData is encrypted with the Device’s public key (PuKeyD) under the trust anchor specified in the AuthenticationRequest.

Table 12: Status of Authentication Message
	Status Value
	Description

	Success
	The request was successfully processed.

	Trust Anchor Not Supported
	Trust Anchor in the request is not supported by the SRM Agent

	Device Certificate Chain Verification Failed
	The SRM Agent failed to verify the Device Certificate Chain.

	Parameter Failed
	A field in the request has an invalid length or structure.

	Unexpected Request
	This request was received out of sequence or is otherwise not allowed.

	Unknown Error
	Other errors

Upon receiving the AuthenticationResponse and Status is Success, the DRM Agent verifies the SRM Certificate Chain if the certificate chain is present. If the DRM Agent did not send a Peer Key Identifier in the AuthenticationRequest and the certificate chain is not present, then the DRM Agent MUST terminate communications with the SRM. After the verification, the DRM Agent decrypts RNS, Version, Selected Algorithms, and H(Supported Algorithms) with the Device’s private key (under the trust anchor sent in the AuthenticationRequest).
The DRM Agent compares Version to the Version field sent in the SrmHelloRequest, and validates that it supports the Selected Algorithms. If the Selected Algorithms are not supported, then the DRM Agent MUST terminate communications with the SRM. Otherwise, using the selected hash algorithm, the DRM Agent validates the H(Supported Algorithms). If valid, the DRM Agent continues with section 6.2.2.
6.2.1.2 Format of Messages
The message format (MessageBody) of the AuthenticationRequest is specified as follows. The messageType is set to ‘0’ and the message is not protected by an HMAC.
DeviceCertificateChain() {

 CertificateChain()

// Defined in Appendix E.1
}

AlgorithmList() {

 // If number of algorithms is zero,
 // then the default algorithm is used

 nbrOfAlgorithms
8
uimsbf

 for (i = 0 ; i < nbrOfAlgorithms ; i++) {

 Algorithm()

//Defined in Appendix E.1
 }

}

SupportedAlgorithms() {

 // Hash algorithms

 AlgorithmList()
 // HMAC algorithms

 AlgorithmList()

 // Symmetric algorithms

 AlgorithmList()

 // Asymmetric algorithms

 AlgorithmList()

 // KDF algorithms

 AlgorithmList()

}

MessageBody() {
 TrustAnchor()

// Defined in section 6.1.1.2
 DeviceCertificateChain()

 PeerKeyIdentifier()

// Defined in section 6.1.1.2
 SupportedAlgorithms()

}

The fields are defined as follows:

· TrustAnchor – Trust Anchor field in Table 8
· DeviceCertificateChain – Device Certificate Chain field in Table 8
· PeerKeyIdentifier – Peer Key Identifier field in Table 8
· SupportedAlgorithms – Supported Algorithms field in Table 8
The message format (MessageBody) of the AuthenticationResponse is specified as follows. The messageType is set to ‘1’ and the message is not protected by an HMAC.
SelectedAlgorithms() {

 // Hash algorithms

 AlgorithmList()

 // HMAC algorithms

 AlgorithmList()

 // Symmetric algorithms

 AlgorithmList()

 // Asymmetric algorithms

 AlgorithmList()

 // KDF algorithms

 AlgorithmList()

}

HashOfSupportedAlgorithms() {

 // Hash of SupportedAlgorithms from the

 // AuthenticationRequest, using the

 // hash from SelectedAlgorithms

 Hash()

// Defined in Appendix E.1
}

SrmCertificateChain() {

 CertificateChain()

// Defined in Appendix E.1
}

AuthRespData() {

 RandomNumber()

// Defined in Appendix E.1
 Version()

// Defined in Appendix E.2.1
 SelectedAlgorithms()
 HashOfSupportedAlgorithms()
}
EncryptAuthRespData() {

 // Contains the encrypted AuthRespData

 EncryptedData()

// Defined in Appendix E.1
}

MessageBody() {

 Status()

// Defined in Appendix E.2.2
 if (Status == 0) {

 SrmCertificateChain()

 EncryptedAuthRespData()

 }

}

The fields are defined as follows:

· AuthRespData – AuthRespData value of Encrypted AuthResp Data field in Table 9
· RandomNumber – RNS value of Encrypted AuthResp Data field in Table 9
· Version –Version value of Encrypted AuthResp Data field in Table 9
· SelectedAlgorithms – Selected Algorithms value of Encrypted AuthResp Data field in Table 9
· HashOfSupportedAlgorithms – H(Supported Algorithms) value of Encrypted AuthResp Data field in Table 9
· Status - Status field in Table 9
· SrmCertificateChain – SRM Certificate Chain field in Table 9
· EncryptedAuthRespData – Encrypted AuthRespData field in Table 9
6.2.1.3 Exception Handling
There may be an unexpected exception during the Authentication Message processing as specified in section 5.5.1. If the DRM Agent fails to receive the response, finds an error by referring to the Status, fails to verify the SRM Certificate Chain, or fails to decrypt the Encrypted AuthResp Data, then the DRM Agent regards it as an exception and terminates communication by discarding any existing SAC context with the SRM Agent. The User may be informed of this exception.
6.2.2 Key Exchange

This step performs the key exchange and key confirmation.

6.2.2.1 Description of Messages
The DRM Agent generates a random number (RND), and encrypts it with the SRM’s public key. At this step, the DRM Agent also encrypts the hash of the SRM Random Number (RNS) received in the AuthenticationResponse.
Then the DRM Agent sends the KeyExchangeRequest to exchange keys with the SRM Agent. The fields of the request are defined in Table 13.

Table 13: Fields of KeyExchangeRequest

	Fields
	Protection Requirement
	Description

	Encrypted KeyEx Data
	No
	E (PuKeyS , KeyExData) where KeyExData = RND | H(RNS) | Selected Version
Selected Version is identical to the Selected Version received by the DRM Agent in the SrmHelloResponse.
KeyExData is encrypted with the SRM’s public key (PuKeyS) under the trust anchor sent in the AuthenticationRequest.

Upon receiving the KeyExchangeRequest, the SRM Agent decrypts Encrypted KeyExData with the SRM’s private key (under the trust anchor sent in the AuthenticationRequest).
The SRM Agent compares the decrypted H(RNS) to the hash of the random number (RNS) that the SRM Agent sent in the AuthenticationResponse. The hash is computed using the negotiated algorithm. The SRM Agent also compares the decrypted Selected Version to the Selected Version field sent in the SrmHelloResponse.
After this action, the SRM Agent sends the KeyExchangeResponse to carry the result of the action. The fields of the response are defined in Table 12.

Table 14: Fields of KeyExchangeResponse

	Fields
	Protection Requirement
	Description

	Status
	No
	The result of processing the KeyExchangeRequest message. The Status values are specified in Table 15.
If Status contains any error, only this field is present in the KeyExchangeResponse.

	Hash Of RanNum Data
	No
	H(RanNumData) where RanNumData = RND | RNS. RanNumData is hashed by the selected hash algorithm.

Table 15: Status of Key Exchange Message
	Status Value
	Description

	Success
	The request was successfully processed.

	Field Decryption Failed
	The SRM Agent fails to decrypt the encrypted fields.

	SRM Random Number Mismatched
	The SRM Random Number from the DRM Agent is not identical to its original value in the SRM.

	Version Mismatched
	The Selected Version received in KeyExchagenRequest is not matched with the original value sent in the SrmHelloResponse.

	Parameter Failed
	A field in the request has an invalid length or structure.

	Unexpected Request
	This request was received out of sequence or is otherwise not allowed.

	Unknown Error
	Other errors

Upon receiving the KeyExchangeResponse and Status is Success, the DRM Agent confirms whether the hash of the concatenation of the Device Random Number (RND) and the SRM Random Number (RNS) matches the corresponding hash of the random numbers exchanged in the KeyExchangeRequest and AuthenticationResponse respectively.

After the key exchange and key confirmation are successfully finished, the DRM Agent and SRM Agent generate security elements by using the Key Derivation Function as specified in section 6.3.1.

6.2.2.2 Format of Messages
The message format (MessageBody) of the KeyExchangeRequest is specified as follows. The messageType is set to ‘0’ and the message is not protected by an HMAC.
DeviceRandomNumber() {

 RandomNumber()

// Defined in Appendix E.1
}

SrmRandomNumber() {

 RandomNumber()

// Defined in Appendix E.1
}

HashOfSrmRandomNumber() {

 Hash()

// Defined in Appendix E.1
}

SelectedVersion() {

 Version()

// Defined in Appendix E.2.1
}

KeyExData() {

 DeviceRandomNumber()

 HashOfSrmRandomNumber()

 SelectedVersion()

}

EncryptedKeyExData() {

 EncryptedData()

// Defined in Appendix E.1
}

MessageBody() {

 EncryptedKeyExData()

}

The fields are defined as follows:

· KeyExData – KeyExData value of Encrypted KeyEx Data field in Table 13
· DeviceRandomNumber – RND value of Encrypted KeyEx Data field in Table 13
· SrmRandomNumber – RNS value of Encrypted KeyEx Data field in Table 13
· Selected Version – Selected Version value of Encrypted KeyEx Data field in Table 13
· HashOfSrmRandomNumber – Hash of the SrmRandomNumber using the selected hash algorithm
· EncryptedKeyExData – KeyExData encrypted with the SRM’s public key
The message format (MessageBody) of the KeyExchangeResponse is specified as follows. The messageType is set to ‘1’ and the message is not protected by an HMAC.

RanNumData() {

 DeviceRandomNumber()

 SrmRandomNumber()

}

HashOfRanNumData() {

 Hash()

// Defined in Appendix E.1
}

MessageBody() {

 Status()

// Defined in Appendix E.2.2
 if (Status == 0) {

 HashOfRanNumData()

 }

}

The fields are defined as follows:

· RanNumData – RanNumData value of Hash Of RanNum Data field in Table 14
· DeviceRandomNumber – RND value of Hash Of RanNum Data field inTable 14
· SrmRandomNumber – RNS value of Hash Of RanNum Data field in Table 14
· Status - Status field in Table 14
· HashOfRanNumData – Hash of RanNumData field in Table 14 using the selected hash algorithm
6.2.2.3 Exception Handling

There may be an unexpected exception during the Key Exchange Message processing as specified in section 5.5.1. If the DRM Agent fails to receive the response, finds an error by referring to the Status, or fails to verify the random numbers, then the DRM Agent regards it as an exception and terminates communication by discarding any existing SAC context with the SRM Agent. The User may be informed of this exception.
6.3 Secure Authenticated Channel
Whenever sensitive information, such as cryptographic keys, needs to be transferred between the DRM Agent and SRM Agent, a Secure Authenticated Channel (SAC) needs to be used. A SAC is a logical channel that provides message integrity and optionally message confidentiality. A SAC needs to be established using credentials from a trust model under which the sensitive information was created. Therefore, if the Device and SRM support than one trust model in common, then multiple Secure Authenticated Channels can be established by repeating the MAKE process.
6.3.1 Key Derivation Function

After the MAKE process is completed, both the DRM Agent and the SRM Agent have mutually authenticated each other and have exchanged secret random numbers that are used in generating key materials (Session Key and MAC Key). The keys are used in the SAC.

The Key Derivation Function (KDF) is the same as the KDF specified in section 7.1.2 of the OMA DRM v2.0 specification [OMADRMv2]. A trust model may use a different KDF. The following key material in Table 14 is derived from the KDF. When using the KDF, let Z = RND | RNS (RND and RNS include the length fields.), otherInfo = Supported Algorithms | Selected Algorithms, and kLen is 36 bytes (the total size of the key materials in Table 16).

Table 16: Key Materials

	Fields
	Size
	Description
	Nomenclature

	MAC Key
	160 bits
	HMAC-SHA1 Key: The first 20 octets of T as the derived key
	MK0

	Session Key
	128 bits
	AES Key: The next 16 octets of T as the derived key
	SK

By default, the DRM Agent and SRM Agent support the AES128-CBC mode. The padding is performed as specified in [RFC2630].
The formats of RND and RNS are specified in section 6.2.2.2 (DeviceRandomNumber and SrmRandomNumber) and the formats of Supported Algorithms and Selected Algorithms are specified in section 6.2.1.2 (SupportedAlgorithms and SelectedAlgorithms).

6.3.2 SAC Context

Once a SAC has been established, a logical SAC context will exist. The context consists of the following information:

· MAC Key – this key gets updated as specified in section 6.3.4.

· Session Key – this key does not change for the duration of the SAC.

· Selected Algorithms – the algorithms that were negotiated during the MAKE process.

· Trust Anchor – the trust anchor under which the SAC was established. Used when multiple SACs are available and the Device wants to switch to a different SAC as specified in section 6.3.5
· Entity ID – for the Device, this contains the SRM’s ID (under the trust anchor); for the SRM, this contains the Device’s ID (under the trust anchor).

The SAC context exists until a new SAC with the same Device and SRM, under the same trust model, is established. By using the SRM Hello message pair, a DRM Agent can determine if it communicating with the same SRM. If the DRM Agent reuses the SAC context, sends a secure message and gets back a Field Integrity Verification Failed error, this probably indicates that the SAC context is no longer valid. The DRM Agent SHOULD establish a new SAC.
6.3.3 Secure Message

Once the SAC has been established, two types of security are provided. The first type is integrity protection and the other type is confidentiality protection. The integrity protection is performed by generating HMAC (using the negotiated HMAC algorithm) over fields using the current MAC Key (MK) in the SAC Context. The confidentiality protection is performed by encrypting fields using the current Session Key (SK) and the negotiated symmetric encryption algorithm.
6.3.4 Message Replay Protection

Replay protection is provided by using a different MAC Key for every request or response message that requires integrity protection. After the SRM Agent sends a response, if the request or the response required integrity protection, then the SRM Agent MUST generate a new MK. After the DRM Agent receives a response, if the request or the response required integrity protection, the DRM Agent MUST generate a new MK before sending a request needing integrity protection. Using the SAC Context, a new MK is generated as follows:

MKi+1 = H(MKi), where H is the negotiated hashing algorithm
6.3.5 Changing SAC
The DRM Agent changes to a different SAC as illustrated in the following Figure 6:

[image: image7.emf]ChangeSacRequest

ChangeSacResponse

DRM AgentSRM Agent

Figure 6: Sequence Diagram – Change SAC

If an SRM supports multiple trust models, then the SRM MAY implement the Change SAC message pair. If this message pair is supported, this is indicated in the SrmHelloResponse (see section 6.1). If this message pair is not supported, then the DRM Agent MUST use the MAKE process to change to a different SAC. Note that the DRM Agent can use the SRM Hello message pair to determine if it is communicating with the same SRM.
6.3.5.1 Description of Messages
If the SRM supports multiple trust models and the DRM Agent has established multiple SACs (as described in section 6.3), the DRM Agent can send the ChangeSacRequest so that the SRM Agent can change to a different SAC. The fields of the request are defined in Table 17.

Table 17: Fields of ChangeSacRequest

	Field
	Protection Requirement
	Description

	Trust Anchor
	No
	The Trust Anchor under which a SAC was established.

Upon receiving the ChangeSacRequest, the SRM Agent checks that it has established a SAC under the specified trust anchor.

The SRM Agent sends the ChangeSacResponse to carry the result of the processing the request. Upon sending the ChangeSacResponse and if the Status is Success, the SRM Agent MUST change to the SAC identified by the trust anchor and start using that SAC context. The fields of the response are defined in Table 18.

Table 18: Fields of ChangeSacResponse

	Field
	Protection Requirement
	Description

	Status
	No
	The result of processing the ChangeSacRequest message. The Status values are specified in Table 19.

Table 19: Status of Change SAC Message

	Status Value
	Description

	Success
	The request was successfully handled.

	SAC Not Established
	A SAC under the trust anchor has not been established.

	Request Not Supported
	The SRM only supports one trust model and hence does not support this request.

	Unknown Error
	Other errors

Upon receiving the ChangeSacResponse and Status is Success, the DRM Agent MUST change to the SAC and start using that SAC context.
6.3.5.2 Format of Messages
The message format (MessageBody) of the ChangeSacRequest is specified as follows. The messageType is set to ‘0’ and the message is not protected by an HMAC.

MessageBody() {

 TrustAnchor()

// Defined in section 6.1.1.2
}

The fields are defined as follows:

· TrustAnchor – the Trust Anchor field in Table 17.
The message format (MessageBody) of the ChangeSacResponse is specified as follows. The messageType is set to ‘1’ and the message is not protected by an HMAC.

MessageBody() {

 Status()

}

The fields are defined as follows:

· Status – Status field in Table 18.

6.3.5.3 Exception Handling

There may be an unexpected exception during the Change SAC message pair processing as specified in section 5.5.1. If the DRM Agent fails to receive the response or finds an Unknown Error by referring to the Status, then the DRM Agent regards it as an exception and terminates communication by discarding any existing SAC context with the SRM Agent. The User may be informed of this exception.
6.3.6 Maintenance of Multiple SACs
Only one SAC can be set up and maintained at one time between DRM Agent and SRM. But the DRM Agent MAY maintain multiple SACs with different SRMs simultaneously. Each SAC is independent to another one, i.e. DRM Agent can change one SAC without any affection to the other SACs.

For “S2S Rights Move” transaction, the two SACs between DRM Agent and two SRMs SHALL be set up successfully before DRM Agent initiates the “S2S Rights Move” while during the transaction changing SAC is normally conducted when it is needed.
6.4 Revocation Status Checking

Revocation status checking between the SRM Agent and the DRM Agent is a necessary procedure that MUST occur before exchanging any message over the SAC. During mutual authentication between the DRM Agent and SRM Agent, revocation status checking is performed locally by using a cached Certificate Revocation List (CRL). A DRM Agent MUST cache a CRL that contains revocation status about SRMs, and the SRM Agent MUST cache a CRL that contains revocation status about Devices. If the connected SRM or Device, respectively, is on the CRL then the SAC MUST be terminated. Furthermore, the SAC MUST be terminated if the SRM has information that the DRM Agent has been revoked (see section 6.4.3). The validity dates for the cached CRL (whether in the DRM Agent or the SRM Agent) does not need to be checked for revocation status checking. The CRL update schedule and CRL distribution and thereby criteria for ensuring valid CRLs are beyond the scope of this specification. This section specifies protocols that relevant trust models may require to implement revocation checking.
Note: This Enabler does not require revocation status checking of the RI certificate chain when verifying RI signatures during Move or Local Rights Consumption. However, Devices MUST follow [OMADRMv2.1] requirements when performing ROAP.
For a DRM Agent and an SRM Agent to update an old CRL with a newer CRL, this document specifies protocols for the following purposes:

· CRL Information Exchange (Refer to section 6.4.1)

The DRM Agent and SRM Agent exchange CRL numbers in order to determine if CRL(s) in the Device supersede CRL(s) in the SRM or vice versa.

· OCSP Nonce (Refer to section 6.4.2)

The DRM Agent requests a nonce from the SRM Agent. The DRM Agent uses the nonce for the OCSP request so that the SRM Agent can be provided with the current DRM time and check the revocation status of the Device.

· OCSP Response Processing (Refer to section 6.4.3)

The DRM Agent passes an OCSP response to the SRM Agent that includes the revocation status of the DRM Agent and the DRM time.
· CRL Delivery from Device to SRM (Refer to section 6.4.4)

The DRM Agent sends its CRL(s) to the SRM Agent. The SRM Agent replaces the CRL(s) stored in the SRM with the received CRL(s).

· CRL Delivery from SRM to Device (Refer to section 6.4.5)

The DRM Agent retrieves CRL(s) in SRM, and replaces its stored CRL(s) with the retrieved CRL(s).

Some trust models may use an OCSP responder to provide the revocation status of Devices. To enable the SRM Agent to use OCSP to check the revocation status of Devices, the DRM Agent SHOULD support the following:

· OCSP communication protocol between an OCSP responder and the DRM Agent as specified in [OCSP-MP]
· OCSP Nonce request in section 6.4.2
· OCSP request generation with the nonce provided by the SRM Agent
· OCSP Response Processing between the DRM Agent and SRM Agent in section 6.4.3
In order to use OCSP to check the revocation status of Devices, the SRM Agent SHOULD also support the following:

· OCSP Nonce request in section 6.4.2
· OCSP Response Processing in section 6.4.3
The CRL(s) are updated by the following procedure.

The CRL information exchange function in section 6.4.1 is executed.

If the DRM Agent supports the OCSP responder – DRM Agent communication, then the DRM Agent MAY pass the OCSP response to the SRM Agent by using the OCSP Nonce request function in section 6.4.2 and OCSP response processing function in section 6.4.3.

If the CRL information exchange function finds that CRL(s) must be updated, then the CRL delivery function in section 6.4.4 or 6.4.5 is used.

To minimize the impact of not checking the CRL validity dates, the following procedure is introduced

· Event Counting with a threshold as specified in Appendix J
The DRM Agent and the SRM Agent count events until a predefined threshold is reached, upon which a "fresh" CRL is required. Support for Event Counting is OPTIONAL; relevant trust models may mandate the use of the event counting mechanism.
6.4.1 CRL Information Exchange
The DRM Agent reads an SRM’s CRL information list in order to determine if CRL(s) in the Device supersede CRL(s) in the SRM or if CRL(s) in the SRM supersede CRL(s) in the Device as illustrated in Figure 7.

[image: image8.emf]DRM AgentSRM Agent

CRLInformationExchangeRequest

CRLInformationExchangeResponse

Figure 7: Sequence Diagram – CRL Information Exchange

6.4.1.1 Description of Messages
The DRM Agent sends the CRLInformationExchangeRequest to read the CRL Information List from the SRM. The CRLInformationExchangeRequest has no fields.

Upon receiving the CRLInformationExchangeRequest, the SRM Agent sends the CRLInformationExchangeResponse to the DRM Agent. The fields of the response are defined in Table 20.

Table 20: Fields of CRLInformationExchangeResponse

	Fields
	Protection Requirement
	Description

	Status
	No
	The result of processing the CRLInformationExchangeRequest message. The Status values are specified in Table 21.
If Status contains any error, only this field is present in the CRLInformationExchangeResponse.

	CRL Information List
	No
	CRL Information is a pair of CRL Issuer ID and CRL Number. The CRL Information List contains CRL Information of all CRLs in the SRM.

CRL Issuer ID is the 160-bit SHA-1 hash of the public key corresponding to the private key used to sign the CRL (i.e. the keyIdentifier field of the authorityKeyIdentifier component in the CRL).

The CRL Number is the value contained in the CRL number extension of the referenced CRL. This value is used to determine when a particular CRL supersedes another CRL.

Table 21: Status of CRL Information Exchange Message
	Status Value
	Description

	Success
	The request was successfully processed.

	Parameter Failed
	A field in the request has an invalid length or structure.

	Unexpected Request
	This request was received out of sequence or is otherwise not allowed.

	Unknown Error
	The SRM Agent fails to read the CRL Information.

Upon receiving the CRLInformationExchangeResponse, the DRM Agent checks the Status field. If Status is Success, the DRM Agent compares each element in the CRL Information List received from the SRM with the Device’s list. If the CRL Issuer IDs are identical, then the CRL numbers are compared to determine if the SRM’s CRL supersedes the CRL stored in the Device or if the Device’s CRL supersedes the CRL stored in the SRM.

If the DRM Agent finds that CRL(s) in the Device supersedes CRL(s) in the SRM from the same CRL issuer, the DRM Agent MUST transfer the new CRL(s) to the SRM using the CRLUpdateRequest as specified in section 6.4.4. If there are multiple CRL(s) to be updated, the DRM Agent repeats the CRL update request.
If the DRM Agent finds that CRL(s) in the SRM supersede CRL(s) in the Device from the same CRL issuer, the DRM Agent MUST retrieve the new CRL(s) from the SRM Agent using the CRLRetrievalRequest as specified in section 6.4.5. If there are multiple CRL(s) to be updated, the DRM Agent repeats the CRL retrieval request.
6.4.1.2 Format of Messages
The message format (MessageBody) of the CRLInformationExchangeRequest is empty. The messageType is set to’0’ and the message is not protected by an HMAC.

The message format (MessageBody) of the CRLInformationExchangeResponse is specified as follows. The messageType is set to ‘1’ and the message is not protected by an HMAC.

CrlIssuerId() {

 OctetString8()

// Defined in Appendix E.1
}

CrlNumber() {

 OctetString8()

// Defined in Appendix E.1
}

CrlInformation() {

 CrlIssuerId()

 CrlNumber()

}

CrlInformationList() {

 nbrOfCrlInformation
8
uimsbf

 for (i = 0 ; i < nbrOfCrlInformation ; i++) {

 CrlInformation()

 }

}

MessageBody() {

 Status()

// Defined in Appendix E.2.2
 if (Status == 0) {

 CrlInformationList()

 }

}

The fields are defined as follows:

· Status - Status field in Table 20
· CrlInformationList – CRL Information List field in Table 20
6.4.1.3 Exception Handling

There may be an unexpected exception during the CRL Information Exchange Message processing as specified in section 5.5.1. If the DRM Agent fails to receive the response or finds an error by referring to the Status, then the DRM Agent regards it as an exception and terminates communication by discarding any existing SAC context with the SRM Agent. The User may be informed of this exception.
6.4.2 OCSP Nonce
This section is valid only for DRM Agents that support communications with an OCSP Responder. If supported by the SRM Agent, a DRM Agent can get a nonce, for use in an OCSP Request, from an SRM Agent as illustrated in Figure 8.

[image: image9.emf]DRM AgentSRM Agent

OCSPNonceRequest

OCSPNonceResponse

Figure 8: Sequence Diagram – OCSP Nonce

6.4.2.1 Description of Messages
The DRM Agent sends the OCSPNonceRequest to request the SRM Agent to generate a nonce. There are no fields included in this request.
Upon receiving the OCSPNonceRequest, the SRM Agent generates a nonce (i.e. OCSP Nonce) and returns the value by sending the OCSPNonceResponse to the DRM Agent.
If the SRM Agent does not support the OCSP response processing, it MUST return the error code - Request Not Supported.

The fields of the response are defined in Table 22.

Table 22: Fields of OCSPNonceResponse

	Fields
	Protection Requirement
	Description

	Status
	No
	The result of processing the OCSPNonceRequest message. The Status values are specified in Table 23.
If Status contains any error, only this field is present in the OCSPNonceResponse.

	OCSP Nonce
	No
	This is a number randomly generated by the SRM Agent.

	OCSP Responder Key Identifier

	No
	This field identifies a trusted OCSP responder key stored in the SRM. If the identifier matches the key in the certificate used by the Device’s OCSP responder, the DRM Agent MAY remove the OCSP Responder certificate chain from the OCSP response before providing the OCSP response to the SRM.

Table 23: Status of OCSP Nonce Message
	Status Value
	Description

	Success
	The request was successfully processed.

	Request Not Supported
	The SRM Agent does not support the OCSP response processing.

	Parameter Failed
	A field in the request has an invalid length or structure.

	Unexpected Request
	This request was received out of sequence or is otherwise not allowed.

	Unknown Error
	The SRM Agent fails to generate the OCSP Nonce.

Upon receiving the response (Status is Success), the DRM Agent generates a nonce based OCSP request for its own certificate (using the OCSP nonce provided by the SRM Agent) and sends it to the OCSP responder. The OCSP Nonce is identified by the object identifier id-pkix-ocsp-nonce, while the extnValue is the value of the nonce.
6.4.2.2 Format of Messages
The message format (MessageBody) of the OCSPNonceRequest is specified as follows. The messageType is set to’0’ and the message is not protected by an HMAC. This message does not include fields.

The message format (MessageBody) of the OCSPNonceResponse is specified as follows. The messageType is set to ‘1’ and the message is not protected by an HMAC.

OcspNonce() {
 // The length of the nonce MUST be

 // at least 14 bytes and no more than 32 bytes

 OctetString8()

// Defined in Appendix E.1
}

OcspResponderKeyIdentifier() {

 OctetString8()

// Defined in Appendix E.1
}

MessageBody() {

 Status()

// Defined in Appendix E.2.2
 if (Status == 0) {

 OcspNonce()

 OcspResponderKeyIdentifier()

 }

}

The field is defined as follows:

· Status - Status field in Table 22
· OcspNonce – OCSP Nonce field in Table 22
· OcspResponderKeyIdentifier – OCSP Responder Key Identifier field in Table 22
6.4.2.3 Exception Handling

There may be unexpected exceptions during the OCSP Nonce Message processing as specified in section 5.5.1. If the DRM Agent fails to receive the response or receives an error in the Status field (other than Request Not Supported), then the DRM Agent regards it as an exception and terminates communication by discarding any existing SAC context with the SRM Agent. The User may be informed of this exception.
6.4.3 OCSP Response Processing
This section is valid only for DRM Agents that support communications with an OCSP responder. If supported by the SRM Agent, the DRM Agent sends an OCSP Response to the SRM Agent as illustrated in Figure 9.

[image: image10.emf]DRM AgentSRM Agent

OCSPProcessRequest

OCSPProcessResponse

Figure 9: Sequence Diagram – OCSP Processing

6.4.3.1 Description of Messages
Upon receiving the OCSP response from the OCSP responder, the DRM Agent sends the OCSPProcessRequest to pass the response to the SRM Agent. The fields of the request are defined in Table 24.

Table 24: Fields of OCSPProcessRequest

	Fields
	Protection Requirement
	Description

	OCSP Response
	No
	OCSP Response contains the revocation status of the DRM Agent, the time at which the OCSP Response was signed, and the OCSP Nonce transferred by the OCSPNonceResponse as specified in section 6.4.2.

Upon receiving the OCSPProcessRequest, the SRM Agent verifies the OCSP Response. The SRM Agent MUST verify that the OCSP-provided status of all revocable certificates in the Device Certificate Chain is good (refer to [OCSP-MP]). If the status is revoked, the SRM Agent SHOULD keep a record of that status for future use (refer to section 6.4). The SRM Agent MUST be able to detect that an OCSP responder certificate is non-revocable through the use of the id-pkix-ocsp-nocheck extension as specified in [OMADRMv2]. The determination of which certificates in a Device Certificate Chain are revocable is deemed to be part of the trust model of the root of trust of that chain. In case the root of trust does not specify such a policy, the SRM SHALL assume a default model. In the default model only the Device Certificate is revocable and requires an OCSP response to prove its status.
SRM Agents MUST be able to match a nonce sent for OCSP purposes in the OCSPNonceResponse (in section 6.4.2) with a nonce in the received OCSP Response.

With the OCSP response, the SRM Agent is able to verify the revocation status of the Device Certificate during the MAKE process in section 6.2 and can check the freshness of CRL(s) based on the producedAt time in the OCSP response.
The SRM Agent then sends the OCSPProcessResponse. The fields of the response are defined in Table 25. If the SRM Agent does not support the OCSP response processing, it MUST return the error code - Request Not Supported.
Table 25: Fields of OCSPProcessResponse

	Fields
	Protection Requirement
	Description

	Status
	No
	The result of processing the OCSPProcessRequest message. The Status values are specified in Table 26.

Table 26: Status of OCSP Process Message
	Status Value
	Description

	Success
	The request was successfully processed.

	OCSP Response Verification Failed
	The SRM Agent fails to verify the OCSP Response.

	Invalid OCSP Nonce
	The OCSP nonce in the OCSP response is not identical with the OCSP nonce generated by the SRM Agent.

	Request Not Supported
	The SRM Agent does not support the OCSP response processing.

	Parameter Failed
	A field in the request has an invalid length or structure.

	Unexpected Request
	This request was received out of sequence or is otherwise not allowed.

	Unknown Error
	Other errors

If no errors or exceptions (Status = Success or Request Not Supported), the OCSP Process Message processing is completed.

6.4.3.2 Format of Messages
The message format (MessageBody) of the OCSPProcessRequest is specified as follows. The messageType is set to’0’ and the message is not protected by an HMAC.

OcspResponse() {

 OctetString16()

// Defined in Appendix E.1
}

MessageBody() {

 OcspResponse()

}

The field is defined as follows:

· OcspResponse – OCSP Response field in Table 24
The message format (MessageBody) of the OCSPProcessResponse is specified as follows. The messageType is set to ‘1’ and the message is not protected by an HMAC.

MessageBody() {

 Status()

// Defined in Appendix E.2.2
}

The field is defined as follows:

· Status - Status field in Table 25
6.4.3.3 Exception Handling

There may be an unexpected exception during the OCSP Process Message processing as specified in section 5.5.1. If the DRM Agent fails to receive the response, or finds an error by referring to the Status (except Request Not Supported), then the DRM Agent regards it as an exception and terminates communication by discarding any existing SAC context with the SRM Agent. The User may be informed of this exception.
6.4.4 CRL Delivery from Device to SRM

[image: image11.emf]DRM AgentSRM Agent

CRLUpdateResponse

CRLUpdateRequest

Figure 10: Sequence Diagram – CRL Delivery from Device to SRM

6.4.4.1 Description of Messages
The DRM Agent sends the CRLUpdateRequest to replace the current CRL in the SRM with the CRL in the Device. The fields of the request are defined in Table 27.

Table 27: Fields of CRLUpdateRequest

	Fields
	Protection Requirement
	Description

	CRL
	No
	Certificate Revocation List (CRL) contains revocation status information for Device Certificates and/or SRM Certificates. Refer to Appendix H.2

Upon receiving the CRLUpdateRequest, the SRM Agent verifies the signature over the CRL. If the signature of the CRL is valid, and the received CRL is newer than the CRL of the SRM, then the SRM Agent replaces the current CRL in the SRM with the received CRL. The CRL numbers are compared to determine if the received CRL supersedes the CRL stored in the SRM.
The SRM Agent can recognize the CRL issuer by referring to the authorityKeyIdentifier component in the CRL.
The SRM Agent then sends the CRLUpdateResponse. The fields of the response are defined in Table 28.

Table 28: Fields of CRLUpdateResponse

	Fields
	Protection Requirement
	Description

	Status
	No
	The result of processing the CRLUpdateRequest message. The Status values are specified in Table 29.

Table 29: Status of CRL Update Message
	Status Value
	Description

	Success
	The request was successfully processed.

	Old CRL
	CRL in the request is older than the CRL in SRM.

	CRL Verification Failed
	The verification of the signature over CRL is failed.

	Trust Anchor Not Supported
	The issuer of the CRL in the request is not supported by the SRM Agent.

	Parameter Failed
	A field in the request has an invalid length or structure.

	Unexpected Request
	This request was received out of sequence or is otherwise not allowed.

	Unknown Error
	Other errors

6.4.4.2 Format of Messages
The message format (MessageBody) of the CRLUpdateRequest is specified as follows. The messageType is set to ‘0’ and the message is not protected by an HMAC.

MessageBody() {

 Crl()

// Defined in Appendix E.1
}

The field is defined as follows:

· Crl - CRL field in Table 27
The message format (MessageBody) of the CRLUpdateResponse is specified as follows. The messageType is set to ‘1’ and the message is not protected by an HMAC.

MessageBody() {

 Status()

// Defined in Appendix E.2.2
}

The field is defined as follows:

· Status - Status field in Table 28
6.4.4.3 Exception Handling

There may be an unexpected exception during the CRL Update Message processing as specified in section 5.5.1. If the DRM Agent fails to receive the response or finds an error by referring to the Status, then the DRM Agent regards it as an exception and terminates communication by discarding any existing SAC context with the SRM Agent. The User may be informed of this exception.
6.4.5 CRL Delivery from SRM to Device

[image: image12.emf]DRM AgentSRM Agent

CRLRetrievalRequest

CRLRetrievalResponse

Figure 11: Sequence Diagram – CRL Delivery from SRM to Device

6.4.5.1 Description of Messages
The DRM Agent sends the CRLRetrievalRequest to retrieve the CRL in the SRM. The fields of the request are defined in Table 30.
Table 30: Fields of CRLRetrievalRequest
	Fields
	Protection Requirement
	Description

	CRL Issuer ID
	No
	The 160-bit SHA-1 hash of the public key corresponding to the private key used to sign the CRL (i.e. the keyIdentifier field of the authorityKeyIdentifier component in the CRL).

Upon receiving the CRLRetrievalRequest, the SRM Agent retrieves the CRL stored in the SRM that corresponds to the CRL Issuer ID.
The SRM Agent then sends the CRLRetrievalResponse to carry the result of the action. The fields of the response are defined in Table 31.
Table 31: Fields of CRLRetrievalResponse

	Fields
	Protection Requirement
	Description

	Status
	No
	The result of processing the CRLRetrievalRequest message. The Status values are specified in Table 32.

If Status contains any error, only this field is present in the CRLRetrievalResponse.

	CRL
	No
	Certificate Revocation List (CRL) contains revocation status information for Device Certificates and/or SRM Certificates. Refer to Appendix H.2

Table 32: Status of CRL Retrieval Message
	Status Value
	Description

	Success
	The request was successfully processed.

	CRL Not Found
	There is no CRL corresponding to the CRL Issuer ID.

	Parameter Failed
	A field in the request has an invalid length or structure.

	Unexpected Request
	This request was received out of sequence or is otherwise not allowed.

	Unknown Error
	Other errors

Upon receiving the CRLRetrievalResponse, the DRM Agent verifies the signature over the CRL. If the signature of the CRL is valid, and the retrieved CRL is newer than the CRL of the Device, then the DRM Agent replaces the current CRL in the Device with the retrieved CRL. The CRL numbers are compared to determine if the received CRL supersedes the CRL stored in the Device.
6.4.5.2 Format of Messages
The message format (MessageBody) of the CRLRetrievalRequest is specified as follows. The messageType is set to ‘0’ and the message is not protected by an HMAC.

CrlIssuerId() {

 OctetString8()

// Defined in Appendix E.1
}

MessageBody() {

 CrlIssuerId()

}

The field is defined as follows:

· CrlIssuerId – CRL Issuer ID field in Table 30
The message format (MessageBody) of the CRLRetrievalResponse is specified as follows. The messageType is set to ‘1’ and the message is not protected by an HMAC.

MessageBody() {

 Status()

// Defined in Appendix E.2.2
 if (Status == 0) {

 Crl()

// Defined in Appendix E.1
 }

}

The fields are defined as follows:

· Status - Status field in Table 31
· Crl - CRL field in Table 31
6.4.5.3 Exception Handling

There may be an unexpected exception during the CRL Retrieval Message processing as specified in section 5.5.1. If the DRM Agent fails to receive the response, finds an error by referring to the Status or fails the CRL verification, then the DRM Agent regards it as an exception and terminates communication by discarding any existing SAC context with the SRM Agent. The User may be informed of this exception.
6.5 Movement of Rights from Device to SRM
Rights are Moved from a Device to an SRM as illustrated in Figure 12. As shown in Figure 12, this transaction is comprised of two request/response message pairs: Installation Setup message pair and Rights Installation message pair. The Installation Setup message pair SHOULD be followed by the Rights Installation message pair. If an SRM Agent receives any request message other than the RightsInstallationRequest following receipt of the InstallationSetupRequest, the SRM Agent SHOULD return Unexpected Request in the Status field of the response message.

[image: image13.emf]InstallationSetupInSRM

RightsInstallationInSRM

DRM AgentSRM Agent

InstallationSetupResponse

RightsRemovalInDevice

InstallationSetupRequest

RightsInstallationRequest

RightsInstallationResponse

RightsDisablementInDevice

Figure 12: Sequence Diagram – Movement of Rights from Device to SRM
Before sending the InstallationSetupRequest message, the DRM Agent MUST check the following in the Rights Object that will be Moved:

1) Check if the Rights Object has the <move> permission. If there is no <move> permission, then do not perform the Move transaction.

2) Check if the <move> permission has a <system> constraint. If there is no <system> constraint, proceed with sending the InstallationSetupRequest; else check the <context> child element(s) of the <system> constraint. If any <context> child element identifies the SRM protocol, then proceed with sending the InstallationSetupRequest; else do not perform the Move transaction.

Before sending the RightsInstallationRequest message, the DRM Agent MUST check the following in the Rights Object that will be Moved:

1) Check if the <move> permission has a <count> constraint. If there is a <count> constraint, then check the current count value in the state information. If the current count is 0, then do not perform the Move transaction. Otherwise (current count > 0), decrement current count value.

6.5.1 Installation Setup

6.5.1.1 Description of Messages
The DRM Agent sends the InstallationSetupRequest to initiate a Move to the SRM. The fields of the request are defined in Table 33.

Table 33: Fields of InstallationSetupRequest
	Fields
	Protection Requirement
	Description

	Handle
	Integrity & Confidentiality
	The Handle identifies the Rights while stored in the SRM. It is a 10 byte random value generated by the DRM Agent for this Move transaction. Refer to section 5.1.3.

	Size of Rights
	Integrity
	Size of Rights in bytes. This informs the SRM Agent the size of Rights that will be installed in the SRM as specified in section 6.5.3.

Size of Rights = Length of RightsInformation. RightsInformation is specified in section 6.5.3.2.

Upon receiving the InstallationSetupRequest, the SRM Agent MUST perform the following procedure:

1. Verify the integrity of the fields

2. Decrypt the Handle with the Session Key

3. The SRM Agent MUST check if the SRM already has the same Handle. If yes, the SRM Agent sets Status to Duplicate Handle and the SRM Agent sends the InstallationSetupResponse as described below.

4. The SRM Agent checks if the SRM has space for the new Rights. If not, the SRM Agent sets Status to Not Enough Space. Otherwise, the SRM Agent stores the Handle in the SRM securely. The Handle is not included in the Handle List until the Move transaction is completed.

The SRM Agent sends the InstallationSetupResponse to carry the result of the procedure. The fields of the response are defined in Table 34.

Table 34: Fields of InstallationSetupResponse

	Fields
	Protection Requirement
	Description

	Status
	Integrity
	The result of processing the InstallationSetupRequest message. The Status values are specified in Table 35.

Table 35: Status of Installation Setup Message

	Status Value
	Description

	Success
	The request was successfully processed.

	Field Integrity Verification Failed
	The HMAC value of fields in the request did not match the HMAC value generated by the SRM Agent.

	Duplicate Handle
	The SRM already has the Handle and its corresponding Rights.

	Not Enough Space
	The SRM does not have enough space to store Rights having the same size as the Size of Rights.

	Parameter Failed
	A field in the request has an invalid length or structure.

	Unexpected Request
	This request was received out of sequence or is otherwise not allowed.

	Unknown Error
	Other errors

Upon receiving the response, the DRM Agent verifies the integrity of fields in the response.

If no errors or exceptions (Status = Success), the DRM Agent continues with section 6.5.2.

6.5.1.2 Format of Messages
The message format (MessageBody) of the InstallationSetupRequest is specified as follows. The messageType is set to ’0’ and the message is protected by an HMAC.

MessageBody() {

 EncryptedHandle()

// Defined in Appendix E.2.8
 sizeOfRights
16
uimsbf

}

The fields are defined as follows:

· Handle –Handle field in Table 33
· sizeOfRights –Size Of Rights field in Table 33
· EncryptedHandle – Encrypted Handle with the current Session Key (SK)

The message format (MessageBody) of the InstallationSetupResponse is specified as follows. The messageType is set to ‘1’ and the message is protected by an HMAC.

MessageBody() {

 Status()

// Defined in Appendix E.2.2
}

The field is defined as follows:

· Status - Status field in Table 34
6.5.1.3 Exception Handling

There may be unexpected exceptions during the Installation Setup Message processing as specified in section 5.5.1. The exception is classified into one of the following cases.

Case 1: The DRM Agent receives the InstallationSetupResponse with a Status other than Success. (i.e. the Handle was not stored by the SRM Agent)
Case 2: The Installation Setup Message processing is not completed for any reason other than Case 1.

When an exception occurs, the DRM Agent SHOULD immediately attempt to recover from it. If the DRM Agent fails to detect the exception, it MUST recover from the exception by referring to the Operation Log when a new MAKE process is executed.

[Recovery Procedure – Cancellation of Move]

To cancel the Move transaction, the DRM Agent activates a recovery procedure for each type of exception as follows.

For Case 1, the Move is terminated without recovery. If the response contains Duplicate Handle, then the DRM Agent may start the Move transaction with a different Handle.

For Case 2, the DRM Agent sends the HandleRemovalRequest as specified in section 6.8.4 in order to remove the Handle. The Handle recorded in the Operation Log for this Move transaction MUST be used in this request. If the HandleRemovalResponse contains either Success, Handle Not Found or Handle Not Removed in the Status field, then the Move is terminated.

When the Move is terminated, the entry for the Move transaction is removed from the Operation Log.

If the Handle Removal Message processing is not completed for any reason other than those specified above, then the recovery procedure is aborted. The DRM Agent MAY resume the aborted recovery by sending the HandleRemovalRequest when a new MAKE process is executed. To resume the aborted recovery, the DRM Agent refers to the Operation Log as specified in section 5.5.2.
6.5.2 Rights Disablement in Device

6.5.2.1 Action Description

The DRM Agent disables the Rights. The disabled Rights cannot be used for the other purposes except the current Move transaction. After disabling the Rights, the DRM Agent continues with section 6.5.3.

6.5.2.2 Exception Handling

There may be unexpected exceptions as specified in section 5.5.1 when disabling Rights. This exception causes the disablement processing to not complete.

When the exception occurs, the DRM Agent SHOULD immediately attempt to recover from it. If the DRM Agent fails to detect the exception, it MUST recover from the exception by referring to the Operation Log when a new MAKE process is executed. The recovery is same as the procedure for the exceptional Case 2 of the Installation Setup Message processing specified in section 6.5.1.3.
6.5.3 Rights Installation
6.5.3.1 Description of Messages
The DRM Agent sends the RightsInstallationRequest to install the Rights in the SRM. The fields of the request are defined in Table 36.

Table 36: Fields of RightsInstallationRequest
	Fields
	Protection Requirement
	Description

	Handle
	Integrity & Confidentiality
	Same as the Handle transmitted by the InstallationSetupRequest in Table 31. Refer to section 5.1.3.

	REK
	Integrity & Confidentiality
	Refer to section 5.1.1.4

	LAID
	Integrity
	Refer to 5.1.7. This contains the hash value of AssetIDs that are associated with the Rights.

	Rights Information
	Integrity
	Refer to section 5.1.6

Upon receiving the RightsInstallationRequest, the SRM Agent installs the Rights in the SRM. For the installation, the SRM Agent MUST perform the following procedure:

1. Verify the integrity of the request fields

2. Decrypt the Handle and REK with the Session Key
3. Compare the Handle with the Handle in the InstallationSetupRequest
4. Install the Rights Information and REK at a space associated with the Handle.
The SRM Agent sends the RightsInstallationResponse to carry the result of the procedure. The fields of the response are defined in Table 37.
Table 37: Fields of RightsInstallationResponse
	Fields
	Protection Requirement
	Description

	Status
	Integrity
	The result of processing the RightsInstallationRequest message. The Status values are specified in Table 38.

Table 38: Status of Rights Installation Message
	Status Value
	Description

	Success
	The request was successfully processed.

	Field Integrity Verification Failed
	The HMAC value of fields in the request did not match the HMAC value generated by the SRM Agent.

	Handle Not Found
	The Handle in the request does not exist in the SRM.

	Handles In-consistent
	The Handle in this request is different from the Handle in the InstallationSetupRequest.

	Not Enough Space
	The size of Rights Information exceeds Size of Rights in Table 31.

	Parameter Failed
	A field in the request has an invalid length or structure.

	Unexpected Request
	This request was received out of sequence or is otherwise not allowed.

	Unknown Error
	Other errors

Upon receiving the response, the DRM Agent verifies the integrity of fields in the response.
If no errors or exceptions (Status = Success), the DRM Agent continues with section 6.5.4.
6.5.3.2 Format of Messages
The message format (MessageBody) of the RightsInstallationRequest is specified as follows. The messageType is set to ‘0’ and the message is protected by an HMAC.

HandleRek() {

 Handle()

// Defined in E.2.4
 Rek()

// Defined in E.2.5.5
}

EncryptedHandleRek() {

 // Contains the encrypted Handle and REK

 EncryptedData()

// Defined in E.1
}

MessageBody() {

 EncryptedHandleRek()

 Laid()

// Defined in Appendix E.3
 RightsInformation()

// Defined in Appendix E.2.5.4
}

The fields are defined as follows:

· HandleRek – Handle and REK fields in Table 36
· EncryptedHandleRek – Encrypted HandleRek with the current Session Key (SK)
· Laid – LAID field in Table 36
· RightsInformation – Rights Meta Data, Rights Object Container, State Information fields in Table 36 (Refer to Appendix E.2.5.4)
The message format (MessageBody) of the RightsInstallationResponse is specified as follows. The messageType is set to ‘1’ and the message is protected by an HMAC.

MessageBody() {

 Status()

// Defined in Appendix E.2.2
}

The field is defined as follows:

· Status - Status field in Table 37
6.5.3.3 Exception Handling
There may be unexpected exceptions during the Rights Installation Message processing as specified in section 5.5.1. The exception is classified into one of the following cases.

Case 1: The DRM Agent receives the RightsInstallationResponse containing a Status of Handle Not Found (This case will not happen if the Move transaction is properly executed as illustrated in Figure 12)

Case 2: The Rights Installation Message processing in this section is not completed for any reason other than Case 1.
When the exception occurs, the DRM Agent SHOULD immediately attempt to recover from it. If the DRM Agent fails to detect the exception, it MUST recover from the exception by referring to the Operation Log when a new MAKE process is executed.

[Recovery Procedure – Cancellation of Move]

To cancel the Move transaction, the DRM Agent activates a default recovery procedure for each type of exception as follows.

For Case 1, the Move is terminated without recovery.

For Case 2, the DRM Agent sends the HandleRemovalRequest as specified in section 6.8.4 in order to remove the Handle. The Handle recorded in the Operation Log for this Move transaction MUST be used in this request. If the HandleRemovalResponse contains Success in the Status field, then the Move is terminated.

When the Move is terminated, the Rights in the source Device MUST be enabled (i.e. the Rights can be used for any purpose) and the entry for the Move transaction is removed from the Operation Log. In addition, if the Rights contain a <move> permission with a <count> constraint, then the current count value MUST be incremented.
In Case 2, if the HandleRemovalResponse contains a Status of either Handle Not Removed or Handle Not Found, then the DRM Agent continues the Move using the Rights Removal in Device processing defined in section 6.5.4. (Note: This result implies that the Rights were installed successfully in the SRM by the incomplete Rights Installation Message processing. In the case of Handle Not Found, after the installation, it implies the Rights were removed from the SRM or the corresponding Handle was updated to use the Rights.)

If the Handle Removal Message processing is not completed for any reason other than those specified above, then the recovery procedure is aborted. The DRM Agent MAY resume the aborted recovery by sending the HandleRemovalRequest when a new MAKE process is executed. To resume the recovery, the DRM Agent refers to the Operation Log as specified in section 5.5.2.
If the DRM Agent fails more than once to receive a proper Status from the Handle Removal Message processing during the recovery of the Rights Installation Message processing (i.e. fails to receive the response or fails to verify the integrity of the response) and then finally receives Handle Not Found in the Status field of the HandleRemovalResponse, it is possible that the Handle was successfully removed from the SRM by a previous incomplete Handle Removal Message processing. In this case, if the DRM Agent continues the Move with the Rights Removal in Device processing as specified in this section, then the User will lose the Rights.

The default behaviour is that the Move is terminated without further recovery procedures and the entry for the Move transaction is removed from the Operation Log (i.e. the Rights in the source Device stay in a disabled state). A trust model may define other procedures to handle the disabled Rights.
6.5.4 Rights Removal in Device
6.5.4.1 Action Description

The DRM Agent removes the Rights from the source Device permanently. When the Rights Removal in Device processing is completed, the Move is terminated and the entry for the Move transaction is removed from the Operation Log.
6.5.4.2 Exception Handling
There may be unexpected exceptions as specified in section 5.5.1 when removing Rights. The exception causes the removal processing to not complete.

When an exception occurs, the DRM Agent SHOULD immediately attempt to recover from it. If the DRM Agent fails to detect the exception, it MUST recover from the exception by referring to the Operation Log when a new MAKE process is executed. The DRM Agent recovers from the exception by executing the Rights Removal in Device processing.

If the recovery fails, the DRM Agent MAY resume the recovery by removing the Rights from the Device when a new MAKE process is executed. To resume the recovery, the DRM Agent refers to the Operation Log as specified in section 5.5.2.
6.6 Movement of Rights from SRM to Device
Rights are Moved from an SRM to a Device as illustrated in Figure 13. As shown in Figure 13, this transaction is comprised of two request/response message pairs: Rights Retrieval message pair and Rights Removal message pair. The Rights Retrieval message pair SHOULD be followed by the Rights Removal message pair. If an SRM Agent receives any request message other than the RightsRemovalRequest following receipt of the RightsRetrievalRequest, the SRM Agent SHOULD return Unexpected Request in the Status field of the response message.

[image: image14.emf]RightsRetrievalInSRM

DRM AgentSRM Agent

RightsInstallationInDevice

RightsRetrievalRequest

RightsRemovalRequest

RightsRetrievalResponse

RightsRemovalResponse

RightsRemovalInSRM

Figure 13: Sequence Diagram – Movement of Rights from SRM to Device
6.6.1 Rights Retrieval
6.6.1.1 Description of Messages
The DRM Agent sends the RightsRetrievalRequest to initiate the Move of the Rights from the SRM. The fields of the request are defined in Table 39.
Table 39: Fields of RightsRetrievalRequest
	Fields
	Protection Requirement
	Description

	Handle
	Integrity
	This identifies Rights that will be Moved from the SRM to the Device. Refer to section 5.1.3.

	New Handle
	Integrity & Confidentiality
	New Handle is a 10 byte random value generated by the DRM Agent for this Move transaction.

Upon receiving the RightsRetrievalRequest, the SRM Agent MUST perform the following procedure:

1. Verify the integrity of the request fields

2. Find Rights corresponding to the Handle
3. If found, then decrypt the New Handle with the Session Key
4. Check if the SRM already has the same Handle with New Handle. If yes, the SRM Agent sets Status to Duplicate Handle. If no, overwrite the Handle in the SRM with the New Handle, and disable the Rights.
The SRM Agent sends the RightsRetrievalResponse to carry the result of the procedure. The fields of the response are defined in Table 40.
Table 40: Fields of RightsRetrievalResponse
	Fields
	Protection Requirement
	Description

	Status
	Integrity
	The result of processing the RightsRetrievalRequest message. The Status values are specified in Table 41.

If Status contains any error, only this field is present in the RightsRetrievalResponse.

	Rights Information
	Integrity
	Refer to section 5.1.6

	REK
	Integrity & Confidentiality
	Refer to section 5.1.1.4

Table 41: Status of Rights Retrieval Message
	Status Value
	Description

	Success
	The request was successfully processed.

	Field Integrity Verification Failed
	The HMAC value of fields in the request did not match the HMAC value generated by the SRM Agent.

	Handle Not Found
	The Handle in the request does not exist in the SRM.

	Duplicate Handle
	The SRM already has the New Handle and its corresponding Rights.

	Parameter Failed
	A field in the request has an invalid length or structure.

	Unexpected Request
	This request was received out of sequence or is otherwise not allowed.

	Unknown Error
	Other errors

Upon receiving the response, the DRM Agent MUST perform the following procedure:

1. Verify the integrity of fields in the response

2. Decrypt REK with the Session Key
If no errors or exceptions (Status = Success), the DRM Agent continues with section 6.6.2.

6.6.1.2 Format of Messages
The message format (MessageBody) of the RightsRetrievalRequest is specified as follows. The messageType is set to ’0’ and the message is protected by an HMAC.

MessageBody() {

 Handle()

// Defined in Appendix E.2.4
 EncryptedNewHandle()

// Defined in Appendix E.2.9
}

The fields are defined as follows:

· Handle –Handle field in Table 39
· EncryptedNewHandle – New Handle field in Table 39 encrypted with the current Session Key (SK)

The message format (MessageBody) of the RightsRetrievalResponse is specified as follows. The messageType is set to ‘1’ and the message is protected by an HMAC.

MessageBody() {

 Status()

// Defined in Appendix E.2.2
 if (Status == 0) {

 RightsInformation()

// Defined in Appendix E.2.5.4
 EncryptedRek()

// Defined in Appendix E.2.7
 }

}

The fields are defined as follows:

· RightsInformation – Rights Meta Data, Rights Object Container, State Information fields in Table 40 (Refer to Appendix E.2.5.4)
· EncryptedRek – REK field in Table 40 (Rek in Appendix E.2.5.5) encrypted with the current Session Key (SK)

· Status - Status field in Table 40
6.6.1.3 Exception Handling

There may be unexpected exceptions during the Rights Retrieval Message processing as specified in section 5.5.1. The exception is classified into one of the following cases.

Case 1: The DRM Agent receives the RightsRetrievalResponse with a Status other than Success.

Case 2: The Rights Retrieval Message processing in this section is not completed for any reason other than Case 1.

When the exception occurs, the DRM Agent SHOULD immediately attempt to recover from it. If the DRM Agent fails to detect the exception, it MUST recover from the exception by referring to the Operation Log when a new MAKE process is executed.

[Recovery Procedure – Cancellation of Move]

To cancel the Move transaction, the DRM Agent activates a recovery procedure for each type of exception as follows.

For Case 1, the Move is terminated without recovery. If the response contains Duplicate Handle, then the DRM Agent may start the Move transaction with a different Handle.
For Case 2, the DRM Agent sends the RightsEnablementRequest as specified in section 6.8.5 in order to enable the Rights. The New Handle recorded in the Operation Log for this Move transaction MUST be used in this request. If the RightsEnablementResponse contains a Status of either Success or Handle Not Found, then the Move is terminated.

When the Move is terminated, the entry for the Move transaction is removed from the Operation Log.

If the Rights Enablement Message processing is not completed for any reason other than those specified above, then the recovery procedure is aborted. The DRM Agent MAY resume the aborted recovery by sending the RightsEnablementRequest when a new MAKE process is executed. To resume the recovery, the DRM Agent refers to the Operation Log as specified in section 5.5.2.
6.6.2 Rights Installation in Device
6.6.2.1 Action Description

The DRM Agent performs the following procedure:

1. The RI-signature of the Rights SHOULD be verified (note that this requirement MAY not be required under certain trust models as described in section 5.1.2). If the verification fails, the DRM Agent MUST re-enable the Rights on the SRM as described in section 6.8.5 and terminate the Move transaction.

2. In case of stateful Rights, the State Information SHOULD be checked that it is consistent with the <rights> element
. If the State Information is inconsistent, the DRM Agent MUST re-enable the Rights on the SRM as described in section 6.8.5 and terminate the Move transaction.

3. The DRM Agent MUST check that the Rights have a <move> permission. If there is no <move> permission, the DRM Agent MUST re-enable the Rights on the SRM as described in section 6.8.5 and terminate the Move transaction.

4. The DRM Agent MUST check if the <move> permission has a <count> constraint. If there is no <count> constraint, continue with step 5. Otherwise, the DRM Agent MUST check if the remaining count is not zero. If not zero, the DRM Agent MUST decrement the remaining count and continue with step 5. Otherwise (the remaining count is zero), the DRM Agent MUST re-enable the Rights on the SRM as described in section 6.8.5 and terminate the Move transaction.

5. The DRM Agent MUST check if the <move> permission has a <system> constraint. If there is no <system> constraint, continue with step 6. Otherwise, the DRM Agent MUST check if the <context> child element of the <system> constraint identifies the SRM protocol. If it does, continue with step 6. Otherwise, the DRM Agent MUST re-enable the Rights on the SRM as described in section 6.8.5 and terminate the Move transaction.

6. Install the Rights with the following conditions:

A. Rights received via the Move protocol SHALL NOT be rejected based on the content of any DRM V2.0 replay cache. The replay cache is specified in section 9.4 of [OMADRMv2].
B. The Rights SHALL NOT be installed if a Rights Object with the same ROID is already installed. If so, then the DRM Agent MUST re-enable the Rights on the SRM as described in section 6.8.5 and terminate the Move transaction.

C. If the <GUID, RITS> pair for the Rights is already in the Move Cache, then this <GUID, RITS> pair MUST be removed from the Move Cache after installation of the Rights. (See section 8).

After the Rights installation, the DRM Agent continues with section 6.6.3.
6.6.2.2 Exception Handling
There may be unexpected exceptions as specified in section 5.5.1 when installing Rights. The exception causes the installation to not complete.

When an exception occurs, the DRM Agent SHOULD immediately attempt to recover from it. If the DRM Agent fails to detect the exception, it MUST recover from the exception by referring to the Operation Log when a new MAKE process is executed. The recovery is same as the procedure for the exception in Case 2 of the Rights Retrieval Message processing specified in section 6.6.1.3.

6.6.3 Rights Removal
6.6.3.1 Description of Messages
The DRM Agent executes the Rights Removal Message processing as specified in section 6.8.6 in order to remove the original Rights from the SRM.
The Handle in the RightsRemovalRequest MUST be identical to the New Handle in the previous RightsRetrievalRequest specified in section 6.6.1.1.
When the Rights Removal Message processing is completed (Status = Success), the Move is terminated and the entry for the Move transaction is removed from the Operation Log.

6.6.3.2 Format of Messages
Refer to section 6.8.6.2.
6.6.3.3 Exception Handling

There may be unexpected exceptions during the Rights Removal Message processing as specified in section 5.5.1. The exception is classified into one of the following cases.

Case 1: The DRM Agent receives the RightsRemovalResponse containing a Status of Handle Not Found. (This case will not happen if the Move transaction is properly executed as illustrated in Figure 13)

Case 2: The Rights Removal Message processing is not completed for any reason other than Case 1.

When an exception occurs, the DRM Agent SHOULD immediately attempt to recover from it. If the DRM Agent fails to detect the exception, it MUST recover from the exception by referring to the Operation Log when a new MAKE process is executed.

[Recovery Procedure – Completion of Move]

To complete the Move transaction, the DRM Agent activates a recovery procedure for each exception type as follows.

For Case 1, the Move is terminated without recovery.

For Case 2, the DRM Agent sends the RightsRemovalRequest as specified in section 6.8.6 in order to remove the Rights from the SRM. The New Handle recorded in the Operation Log for this Move transaction MUST be used in this request. If the RightsRemovalResponse contains a Status of either Success or Handle Not Found, then the Move is terminated.

When the Move is terminated, the entry for the Move transaction is removed from the Operation Log.

If the Rights Removal Message processing for the exception recovery is not completed for any reason other than those specified above, then the recovery procedure is aborted. The DRM Agent MAY resume the aborted recovery by sending the RightsRemovalRequest when a new MAKE process is executed. To resume the recovery, the DRM Agent refers to the Operation Log as specified in section 5.5.2.
6.7 Local Rights Consumption

[Initiation of Local Rights Consumption]
To use a DRM Content by consuming its associated Rights, the DRM Agent may collect Rights Information associated with the DRM Content from the SRM (Refer to section 6.8.2 and section 6.8.3). If there are more than one associated Rights in the SRM, the DRM Agent may perform it multiple times.
The DRM Agent selects one of the Rights for consumption by referring to permissions and constraints in the Rights Information (refer to section 6.7.1). After the Rights selection, the DRM Agent reads the REK of the selected Rights and disables the Rights (refer to section 6.7.2).
[Local Rights Consumption]
A DRM Content is used by consuming Rights from the SRM as specified in section 6.7.3. Local Rights Consumption is illustrated in Figure 14.

[image: image15.emf]DRM AgentSRM Agent

HandleListQueryRequest

HandleListQueryResponse

HandleListQueryInSRM

RightsInfoQueryRequest

RightsInfoQueryResponse

RightsInfoQueryInSRM

RightsSelectionInDevice

REKQueryRequest

REKQueryResponse

RightsDisablementInSRM

RightsConsumptionInDevice

RightsEnablementRequest

RightsEnablementResponse

RightsEnablementInSRM

Figure 14: Sequence Diagram – Local Rights Consumption
6.7.1 Rights Selection in Device
For a particular DRM Content, both the SRM and the Device may have Rights associated with it. Then the DRM Agent selects one of the Rights. It is assumed that the DRM Agent may read associated Rights Information from the SRM as specified in section 6.8.2 and section 6.8.3. The selection may be achieved by the DRM Agent itself according to the rights evaluation order as specified in [OMADRMv2] or may need User interaction.
If the DRM Agent selects Rights from the Device, the consumption of the Rights is performed as specified in [OMADRMv2].
If the DRM Agent selects Rights from the SRM, then the DRM Agent continues with the REK Query Message processing as specified in section 6.7.2.
6.7.2 REK Query
The DRM Agent receives the REK of Rights from the SRM Agent as illustrated in Figure 15.

[image: image16.emf]DRM AgentSRM Agent

REKQueryRequest

REKQueryResponse

Figure 15: Sequence Diagram – REK Query

6.7.2.1 Description of Messages
The DRM Agent sends the REKQueryRequest for the SRM Agent to read an REK and disable its corresponding Rights in the SRM. The fields of the request are defined in Table 42.
Table 42: Fields of REKQueryRequest
	Fields
	Protection Requirement
	Description

	Handle
	Integrity
	This identifies Rights whose REKs will be transferred from the SRM to the Device. Refer to section 5.1.3.

	New Handle
	Integrity & Confidentiality
	New Handle is a 10 byte random value generated by the DRM Agent for this Local Rights Consumption transaction.

Upon receiving the REKQueryRequest, the SRM Agent MUST performs the following procedure:

1. Verify the integrity of the request fields
2. Find Rights corresponding to the Handle
3. If found, then decrypt the New Handle with the Session Key, read REK of the Rights, overwrite the Handle in the SRM with the New Handle, and disable the Rights
4. Check if the SRM already has the same Handle with New Handle. If yes, the SRM Agent sets Status to Duplicate Handle. If no, read REK of the Rights, overwrite the Handle in the SRM with the New Handle, and disable the Rights
A trust model may decide that the disabled Rights are enabled automatically when a new Device – SRM Hello processing (specified in section 6.1) is executed. Default behaviour is that the disabled Rights SHALL NOT be enabled without a request from the DRM Agent that disabled the Rights.
The SRM Agent sends the REKQueryResponse to carry the result of the procedure. The fields of the response are defined in Table 41.
Table 43: Fields of REKQueryResponse
	Fields
	Protection Requirement
	Description

	Status
	Integrity
	The result of processing the REKQueryRequest message. The Status values are specified in Table 44.
If Status contains any error, only this field is present in the REKQueryResponse.

	REK
	Integrity & Confidentiality
	Refer to section 5.1.1.4

Table 44: Status of REK Query Message
	Status Value
	Description

	Success
	The request was successfully processed.

	Field Integrity Verification Failed
	The HMAC value of fields in the request did not match the HMAC value generated by the SRM Agent.

	Duplicate Handle
	The SRM already has the New Handle and its corresponding Rights.

	Handle Not Found
	The Handle in the request does not exist in the SRM.

	Parameter Failed
	A field in the request has an invalid length or structure.

	Unexpected Request
	This request was received out of sequence or is otherwise not allowed.

	Unknown Error
	Other errors

Upon receiving the response, the DRM Agent MUST perform the following procedure:
1. Verify the integrity of fields in the response
2. Decrypt REK with the Session Key

If no errors or exceptions (Status = Success), the DRM Agent completes the REK Query Message processing.
6.7.2.2 Format of Messages
The message format (MessageBody) of the REKQueryRequest is specified as follows. The messageType is set to ’0’ and the message is protected by an HMAC.

MessageBody() {

 Handle()

// Defined in Appendix E.2.4
 EncryptedNewHandle()

// Defined in Appendix E.2.9
}

The fields are defined as follows:

· Handle –Handle field in Table 42
· EncryptedNewHandle – New Handle field from Table 42 encrypted with the current Session Key (SK)

The message format (MessageBody) of the REKQueryResponse is specified as follows. The messageType is set to ‘1’ and the message is protected by an HMAC.

MessageBody() {

 Status()

// Defined in Appendix E.2.2
 if (Status == 0) {

 EncryptedRek()

// Defined in Appendix E.2.7
 }

}

The fields are defined as follows:

· EncryptedRek – REK field in Table 43 (Rek in Appendix E.2.5.5) encrypted with the current Session Key (SK)

· Status - Status field in Table 43
6.7.2.3 Exception Handling
There may be unexpected exceptions during the REK Query Message processing as specified in section 5.5.1. The exception is classified into one of the following cases.

Case 1: The DRM Agent receives the REKQueryResponse with a Status other than Success.

Case 2: The REK Query Message processing is not completed for any reason other than Case 1.

When an exception occurs, the DRM Agent SHOULD immediately attempt to recover from it. If the DRM Agent fails to detect the exception, it MUST recover from the exception by referring to the Operation Log when a new MAKE process is executed.

[Recovery Procedure]

The DRM Agent activates a recovery procedure for each exception type as follows.

For Case 1, the Local Rights Consumption is terminated without recovery. If the REKQueryResponse contains a Status of Handle Not Found, the DRM Agent may restart the Local Rights Consumption with the Rights Selection in Device processing in section 6.7.1.

For Case 2, the DRM Agent sends the RightsEnablementRequest as specified in section 6.8.5 in order to enable the Rights and to update the State Information, if necessary. The New Handle recorded in the Operation Log for this Local Rights Consumption transaction MUST be used in this request. If the RightsEnablementResponse contains a Status of either Success or Handle Not Found, then the Local Rights Consumption is terminated.

When the Local Rights Consumption transaction is terminated, the entry for the transaction is removed from the Operation Log.

If the Rights Enablement Message processing is not completed for any reason other than those specified above, then the recovery procedure is aborted. The DRM Agent MAY resume the aborted recovery by sending the RightsEnablementRequest when a new MAKE process is executed. To resume the recovery, the DRM Agent refers to the Operation Log as specified in section 5.5.2.
6.7.3 Rights Consumption and Release

The DRM Agent performs the following steps before locally consuming Rights in the SRM in order to use an associated DRM Content:

In case of stateful Rights, the DRM Agent SHOULD verify that the State Information is consistent with the <rights> element
. If the State Information is inconsistent, the DRM Agent MUST re-enable the Rights on the SRM as described in section 6.8.5 and terminate local consumption.

The DRM Agent SHOULD verify the RI signature over the <rights> element (note that this requirement MAY not be required under certain trust models as described in section 5.1.2). If the signature verification fails, the DRM Agent MUST re-enable the Rights on the SRM as described in section 6.8.5 and terminate local consumption.

After the DRM Agent retrieves the REK (as specified in section 6.7.2), the DRM Agent SHALL locally consume the Rights as if the Rights are locally installed in the Device, updating the state as specified in [OMADRMv2]. After local consumption, the DRM Agent SHALL update the State Information (for stateful Rights) in the SRM when it releases the Rights as specified in this section.

Note that a trust model may define different timing of the Rights Enablement Message activation for each constraint. Default behaviour is that the Rights Enablement Message processing is executed after consumption.
6.7.3.1 Description of Messages
The DRM Agent releases the Rights using Rights Enablement Message as specified in section 6.8.5 and the REK MUST be removed after Rights Enablement Message processing is successfully executed.
The State Information field MUST be present when releasing Stateful Rights.
6.7.3.2 Format of Messages
Refer to section 6.8.5.2.
6.7.3.3 Exception Handling
There may be unexpected exceptions during the Rights Enablement Message processing as specified in section 5.5.1. If the DRM Agent fails to receive the response, receives an error in the Status field, or fails to verify the message integrity then the DRM Agent regards it as an exception.

When an exception occurs, the DRM Agent SHOULD immediately attempt to recover from it. If the DRM Agent fails to detect the exception, it MUST recover from the exception by referring to the Operation Log when a new MAKE process is executed.

[Recovery Procedure]

The DRM Agent sends the RightsEnablementRequest. The New Handle recorded in the Operation Log for this Local Rights Consumption transaction MUST be used in this request. If the RightsEnablementResponse contains a Status of either Success or Handle Not Found, then the Local Rights Consumption is terminated.

When the Local Rights Consumption transaction is terminated, the entry for the transaction is removed from the Operation Log.

If the Rights Enablement Message processing for the exception recovery is not completed for any reason other than those specified above, then the recovery procedure is aborted. The DRM Agent MAY resume the aborted recovery by sending the RightsEnablementRequest when a new MAKE process is executed. To resume the recovery, the DRM Agent refers to the Operation Log as specified in section 5.5.2.
6.8 Direct Provisioning of Rights to the SRM
The protocols specified in this section provide necessary functions that are used for Direct Provisioning of Rights to the SRM transaction.

The Figure 16 describes overall flow for how Rights are downloaded and installed to the SRM. As shown in Figure 16, this transaction is comprised of the 2-pass ROAP with trigger between RI and DRM Agent and three request/response message pairs between DRM Agent and SRM Agent: Signature Query message pair, Provisioning Setup and Rights Provisioning message pair.

[image: image17.emf]Rights IssuerDRM AgentSRM Agent

ROAP Trigger

SignatureQueryResponse

SignatureQueryRequest

RO Request

RO Response

ProvisioningSetupRequest

SignatureGenerationInSRM

ProvisioningSetupResponse

ProvisioningSetupInSRM

RightsProvisioningRequest

RightsProvisioningResponse

RightsProvisioningInSRM

ROVerificationInDevice

GenerateRORequest

RORemovalInDevice

Figure 16: Sequence Diagram – Direct Provisioning of Rights to the SRM
The description for overall flow is as follows:

1. The transaction starts from RI sends an ROAP RO Acquisition Trigger to a DRM Agent. If the DRM Agent receives the RO Acquisition Trigger, it processes the trigger message, as specified in the section 6.8.1.

2. The DRM Agent SHALL generate the RO Request message and send it to the RI as follows:

A. The request message SHALL include the SRMID instead of a Device ID.

B. The request message SHALL NOT include the signature because the RO will be downloaded and installed to the SRM.

C. The DRM Agent stores the generated RO Request message.

3. The DRM Agent SHALL execute the SignatureQuery protocol with the SRM Agent, as specified in the section 6.8.2.

A. After receiving the Signature Query Request message, the SRM Agent SHALL generate the signature on the RO Request message.

B. If the value of the <status> element within a valid SignatureQueryResponse message is not “Success”, then the DRM Agent determines this transaction as failure and terminates this transaction.

4. The DRM Agent SHALL execute ROAP RO Acquisition protocol with the RI, as specified in the section 6.8.3.

5. The DRM Agent SHALL execute ProvisioningSetup protocol with the SRM Agent, as specified in the section 6.8.4.

6. The DRM Agent SHALL verify the RO for the SRM Agent, as specified in the section 6.8.5.

7. The DRM Agent SHALL execute RightsProvisioning protocol with the SRM Agent, as specified in the section 6.8.6.

8. The DRM Agent SHALL remove corresponding RO, as specified in the section 6.8.7.

6.8.1 RO Acquisition Trigger

6.8.1.1 Action Description
When the DRM Agent receives an RO Acquisition Trigger, it processes the trigger message as follows:

1. It checks if the trigger is for Direct Provisioning of Rights to the SRM. The DRM Agent SHALL check the presence of the <trustAnchorAndsrmIDPair> element in the trigger, and if the element is present the DRM Agent determines that the trigger is for Direct Provisioning of Rights to the SRM.

2. If the trigger has the <trustAnchorAndsrmIDPair> element, the DRM Agent SHALL compare the <trustAnchor> element and <srmID> element in the <trustAnchorAndsrmIDPair> element with the Trust Anchor and SRMID pair of the SAC Context in an SRM attached Device. There are two possible outcomes of this comparison:
A. If the <trustAnchor> element and the <srmID> element pair in the <trustAnchorAndsrmIDPair> element matches with any Trust Anchor and SRMID pair of the SAC Context in the DRM Agent, the DRM Agent stops the trigger processing.

B. If all of a <trustAnchor> element and a <srmID> element does not match any Trust Anchor and SRMID pair of the SAC Context in the DRM Agent, the DRM Agent SHALL perform the following procedure:

i. If the DRM Agent supports any of the Trust Anchor in the trigger, the DRM Agent SHALL initiate the MAKE procedure. The Authentication Request SHALL include the Trust Anchor that was supported by DRM Agent and included in the trigger. After receiving the Authentication Request, the SRM Agent SHALL check the Trust Anchor in the Authentication Request.

1 If the SRM Agent support the Trust Anchor, the SRM Agent SHALL send the Authentication Response to the DRM Agent with the ‘Success’ status and stop the trigger processing.

2 If the SRM Agent does not support the Trust Anchor, the SRM Agent SHALL send the Authentication Response to the DRM Agent with the error (‘Trust Anchor Not Supported’) status. Upon receiving Authentication Response with error status, the DRM Agent determines this transaction as failure and terminates this transaction.

ii.
If the DRM Agent does not support any of the Trust Anchor in the trigger, the DRM Agent determines this transaction as failure and terminates this transaction.

6.8.2 Signature Query

To confirm an RO acquisition request from an SRM, the DRM Agent requests a signature of the SRM Agent. The Signature Query Message processing is used to get a digital signature of SRM Agent on a RO Request message which was generated by DRM Agent.
6.8.2.1 Description of Messages

The DRM Agent sends the SignatureQueryRequest to get the Signature of the SRM on the RO Request message. The field of the request is defined in Table 45.
Table 45: Fields of SignatureQueryRequest
	Fields
	Protection Requirement
	Description

	RO Request
	Integrity
	RO Request message that was generated by the DRM Agent. The RO Request message needs a signature of an SRM for confirmation of the RO acquisition request.

	Signature Scheme
	Integrity
	This field contains a negotiated signature scheme between the RI and the Device.

Upon receiving the SignatureQueryRequest, the SRM Agent SHALL generate the signature on the received RO Request message. The Signature method is as follows:

· The message except the Signature element is canonicalised according to [OMADRMv2.0], section 5.3.3.

· The result of the canonicalisation, d, is considered as input to the signature operation. The signature is calculated on d in accordance with the rules of the received signature scheme

The SRM Agent sends the SignatureQueryResponse to carry the result of the action. The fields of the response are defined in Table 46.
Table 46: Fields of SignatureQueryResponse

	Fields
	Protection Requirement
	Description

	Status
	Integrity
	The result of processing the SignatureQueryRequest message. The Status values are specified in Table 47.
If Status contains any error, only this field is present in the SignatureQueryResponse.

	Signature of RO Request
	No
	This field contains a signature of the SRM.

Table 47: Status of Signature Query Message

	Status Value
	Description

	Success
	The request was successfully processed.

	Signature Scheme Not Supported
	This signature scheme is not supported by the SRM Agent.

	Parameter Failed
	A field in the request has an invalid length or structure.

	Unexpected Request
	This request was received out of sequence or is otherwise not allowed.

	Unknown Error
	Other errors

If no errors or exceptions (Status = Success), the DRM Agent continues with section 6.8.3.
6.8.2.2 Format of Messages

The message format (MessageBody) of the SignatureQueryRequest is specified as follows. The messageType is set to ’0’ and the message is not protected by an HMAC.

RORequest(){

 OctetString16()

// Defined in Appendix E.1
}
MessageBody() {
 RORequest()
 SignatureScheme()
}

The fields are defined as follows:

· RORequest – RO Request field in Table 45.
· SignatureScheme – negotiated Signature Scheme field in Table 45 between the RI and the Device.
The message format (MessageBody) of the SignatureResponse is specified as follows. The messageType is set to ‘1’ and the message is not protected by an HMAC.

SignatureOfRORequest(){

 OctetString16()

// Defined in Appendix E.1
}

MessageBody() {

 Status()

// Defined in Appendix E.2.2
}

The fields are defined as follows:

· status - Status field in Table 46.

· SignatureOfRORequest – Signature of RO Request field in Table 46.
6.8.2.3 Exception Handling

There may be an unexpected exception during the Signature Query Message processing as specified in section 5.5.1. If the DRM Agent fails to receive the response or finds an error by referring to the Status, then the DRM Agent regards it as an exception and terminates the Signature Query Message processing. The User may be informed of the exception.
6.8.3 RO Acquisition between RI and DRM Agent
6.8.3.1 Action Description

Upon receiving the SignatureQueryResponse, the DRM Agent SHALL insert the received signature on RO Request message into the RO Request message that was stored in the Device and send the resulting RO Request message to the RI.

Upon receiving the RO Request message, the RI SHALL generate the RO Response message and send it to the DRM Agent as follows:

1. The response message SHALL include the SRMID instead of a Device ID.
2. The Rights Objects (in the form of <ProtectedRO> elements) in response message SHALL be cryptographically bound to the SRM Agent, so that the concatenation of KMAC and KREK in the <ProtectedRO> element is encrypted with the SRM Agent’s public key.

If the DRM Agent receives an RO Response message with "Success" as the status, the DRM Agent MUST perform the following procedure:

1. Verify the signature of the RO Response message
2. If the signature is valid, the DRM Agent SHALL check the device ID in the RO Response message. If the device ID matches an SRM ID inserted in the Device, then the DRM Agent SHALL extract the Rights from the protected RO in the RO Response message and the DRM Agent continues with section 6.8.4.
The format of the RO Request message and the RO Response message is same as specified in DRM 2.0 [OMADRMv2.0].
6.8.4 Provisioning Setup

6.8.4.1 Description of Messages

The DRM Agent sends the ProvisioningSetupRequest to initiate a Direct Provisioning of Rights to the SRM. The fields of the request are defined in Table 48.

Table 48: Fields of ProvisioningSetupRequest
	Fields
	Protection Requirement
	Description

	Handle
	Integrity & Confidentiality
	The Handle identifies the Rights while stored in the SRM. It is a 10 byte random value generated by the DRM Agent for this Move transaction. Refer to section 5.1.3.

	Size of Rights
	Integrity
	Size of the Rights in bytes. This informs the SRM Agent about the size of the Rights that will be installed in the SRM as specified in section 6.5.3.Size of Rights = Length of RightsInformation. RightsInformation is specified in section 6.5.3.2.

	Wrapped Key Material
	Integrity & Confidentiality
	The Wrappted Key Material consists of a wrapped concatenation of a MAC key, KMAC and an RO encryption key, KREK. The Wrapped Key Material is same as the C value as specified in DRM v2.1 [OMADRMv2.1] section 7.2.1

Upon receiving the ProvisioningSetupRequest, the SRM Agent MUST perform the following procedure:

1. Verify the integrity of the fields

2. Decrypt the Handle with the Session Key

3. The SRM Agent MUST check if the SRM already has the same Handle. If yes, the SRM Agent sets Status to Duplicate Handle and the SRM Agent sends the ProvisioningSetupResponse as described below.

4. The SRM Agent checks if the SRM has space for the new Rights. If not, the SRM Agent sets Status to Not Enough Space. Otherwise, the SRM Agent stores the Handle in the SRM securely. The Handle is not included in the Handle List until the Move transaction is completed.
5. The SRM Agent MUST check Wrapped KMAC and KREK. The SRM Agent splits it into C1 and C2 and decrypts C1 using its private key (consisting of a private exponent d and the modulus m), yielding Z:
C1 | C2 = C
c1 = OS2IP(C1, mLen)

Z = RSA.DECRYPT(PrivKeySRM, c1) = c1d mod m
where OS2IP converts an octet string to a nonnegative integer and is defined in [PKCS-1].

Using Z, the SRM Agent can derive KEK, and from KEK unwrap C2 to yield KMAC and KREK:

KEK = KDF(I2OSP(Z, mLen), NULL, kekLen)

KMAC | KREK = AES-UNWRAP(KEK, C2)

The following URI shall be used to identify this key transport scheme in <xenc:EncryptionMethod> elements:

http://www.rsasecurity.com/rsalabs/pkcs/schemas/pkcs-1#rsaes-kem-kdf2-kw-aes128
6. The SRM Agent MUST install the REK (KREK) at a space associated with the Handle.

The SRM Agent sends the ProvisioningSetupResponse to carry the result of the procedure. The fields of the response are defined in Table 49.

Table 49: Fields of ProvisioningSetupResponse

	Fields
	Protection Requirement
	Description

	Status
	Integrity
	The result of processing the ProvisioningSetupRequest message. The Status values are specified in Table 50.

	MAC Key
	Integrity & Confidentiality
	The MAC Key is used for key confirmation of the RO Response message carrying REK.

Table 50: Status of Provisioning Setup Message

	Status Value
	Description

	Success
	The request was successfully processed.

	Field Integrity Verification Failed
	The HMAC value of fields in the request did not match the HMAC value generated by the SRM Agent.

	Duplicate Handle
	The SRM already has the Handle and its corresponding Rights.

	Not Enough Space
	The SRM does not have enough space to store Rights having the same size as the Size of Rights.

	Parameter Failed
	A field in the request has an invalid length or structure.

	Unexpected Request
	This request was received out of sequence or is otherwise not allowed.

	Unknown Error
	Other errors

Upon receiving the response, the DRM Agent verifies the integrity of fields in the response.

If no errors or exceptions (Status = Success), the DRM Agent continues with section 6.8.5.

6.8.4.2 Format of Messages

The message format (MessageBody) of the ProvisioningSetupRequest is specified as follows. The messageType is set to ’0’ and the message is protected by an HMAC.

EncryptedHandle() {

 // Contains the encrypted Handle
 EncryptedData()

// Defined in E.1
}
MessageBody() {

 EncryptedHandle()

// Defined in Appendix E.2.8
 sizeOfRights
16
uimsbf
 WrappedKeyMaterial()

// Defined in Appendix E.2.x
}

The fields are defined as follows:

· Handle –Handle field in Table 48
· sizeOfRights –Size Of Rights field in Table 48
· EncryptedHandle – Encrypted Handle with the current Session Key (SK)
· WrappedKeyMaterial – Wrapped MAC Key and REK in Protected RO
The message format (MessageBody) of the ProvisioningSetupResponse is specified as follows. The messageType is set to ‘1’ and the message is protected by an HMAC.

EncryptedMACKey() {

 // Contains the encrypted MAC Key
 EncryptedData()

// Defined in E.1
}
MessageBody() {

 Status()

// Defined in Appendix E.2.2
 EncryptedMACKey()
}

The field is defined as follows:

· Status - Status field in Table 49
6.8.4.3 Exception Handling

There may be unexpected exceptions during the Provisioning Setup Message processing as specified in section 5.5.1. The exception is classified into one of the following cases.

Case 1: The DRM Agent receives the ProvisioningSetupResponse with a Status other than Success. (i.e. the Handle was not stored by the SRM Agent)

Case 2: The Provisioning Setup Message processing is not completed for any reason other than Case 1.

When an exception occurs, the DRM Agent SHOULD immediately attempt to recover from it. If the DRM Agent fails to detect the exception, it MUST recover from the exception by referring to the Operation Log when a new MAKE process is executed.

[Recovery Procedure – Cancellation of Provisioning]

To cancel the Provisioning transaction, the DRM Agent activates a recovery procedure for each type of exception as follows.

For Case 1, the Provisioning is terminated without recovery. If the response contains Duplicate Handle, then the DRM Agent may start the Provisioning transaction with a different Handle.

For Case 2, the DRM Agent sends the HandleRemovalRequest as specified in section 6.9.4 in order to remove the Handle. The Handle recorded in the Operation Log for this Move transaction MUST be used in this request. If the HandleRemovalResponse contains either Success, Handle Not Found or Handle Not Removed in the Status field, then the Provisioning is terminated.

When the Provisioning is terminated, the entry for the Move transaction is removed from the Operation Log.

If the Handle Removal Message processing is not completed for any reason other than those specified above, then the recovery procedure is aborted. The DRM Agent MAY resume the aborted recovery by sending the HandleRemovalRequest when a new MAKE process is executed. To resume the aborted recovery, the DRM Agent refers to the Operation Log as specified in section 5.5.2.
6.8.5 RO Verification in Device

6.8.5.1 Action Description

The DRM Agent MUST verify the MAC value on the RO for SRM using the MAC Key in Provisioning Setup Response message.

6.8.6 Rights Provisioning
6.8.6.1 Description of Messages

The DRM Agent sends the RightsProvisioningRequest to install the Rights in the SRM. The fields of the request are defined in Table 51.
Table 51: Fields of RightsProvosioningRequest
	Fields
	Protection Requirement
	Description

	Handle
	Integrity & Confidentiality
	Same as the Handle transmitted by the ProvisioningSetupRequest in Table 49. Refer to section 6.8.4.1.

	LAID
	Integrity
	Refer to 5.1.7. This contains the hash value of AssetIDs that are associated with the Rights.

	Rights Information
	Integrity
	Refer to section 5.1.6

Upon receiving the RightsProvisioningRequest, the SRM Agent installs the Rights in the SRM. For the installation, the SRM Agent MUST perform the following procedure:

1. Verify the integrity of the request fields

2. Decrypt the Handle with the Session Key
3. Compare the Handle with the Handle in the ProvisioningSetupRequest
4. Install the Rights Information and REK at a space associated with the Handle.
The SRM Agent sends the RightsProvisionResponse to carry the result of the procedure. The fields of the response are defined in Table 52.
Table 52: Fields of RightsProvisioningResponse

	Fields
	Protection Requirement
	Description

	Status
	Integrity
	The result of processing the RightsProvisioningRequest message. The Status values are specified in Table 53.

Table 53: Status of Rights Provisioning Message

	Status Value
	Description

	Success
	The request was successfully processed.

	Field Integrity Verification Failed
	The HMAC value of fields in the request did not match the HMAC value generated by the SRM Agent.

	Handle Not Found
	The Handle in the request does not exist in the SRM.

	Handles In-consistent
	The Handle in this request is different from the Handle in the ProvisioningSetupRequest.

	Not Enough Space
	The size of Rights Information exceeds Size of Rights in Table 31.

	Parameter Failed
	A field in the request has an invalid length or structure.

	Unexpected Request
	This request was received out of sequence or is otherwise not allowed.

	Unknown Error
	Other errors

Upon receiving the response, the DRM Agent verifies the integrity of fields in the response.

If no errors or exceptions (Status = Success), the DRM Agent continues with section 6.8.7.
6.8.6.2 Format of Messages

The message format (MessageBody) of the RightsProvisioningRequest is specified as follows. The messageType is set to ‘0’ and the message is protected by an HMAC.

EncryptedHandle() {

 // Contains the encrypted Handle

 EncryptedData()

// Defined in E.1
}

MessageBody() {

 EncryptedHandle()

 Laid()

// Defined in Appendix E.3
 RightsInformation()

// Defined in Appendix E.2.5.4
}

The fields are defined as follows:

· EncryptedHandle – Encrypted Handle with the current Session Key (SK)
· Laid – LAID field in Table 51
· RightsInformation – Rights Meta Data, Rights Object Container, State Information fields in Table 51 (Refer to Appendix E.2.5.4)
The message format (MessageBody) of the RightsProvisioningResponse is specified as follows. The messageType is set to ‘1’ and the message is protected by an HMAC.

MessageBody() {

 Status()

// Defined in Appendix E.2.2
}

The field is defined as follows:

· Status - Status field in Table 52
6.8.6.3 Exception Handling

There may be unexpected exceptions during the Rights Provisioning Message processing as specified in section 5.5.1. The exception is classified into one of the following cases.

Case 1: The DRM Agent receives the RightsProvisioningResponse containing a Status of Handle Not Found (This case will not happen if the Move transaction is properly executed as illustrated in Figure 12)

Case 2: The Rights Provisioning Message processing in this section is not completed for any reason other than Case 1.

When the exception occurs, the DRM Agent SHOULD immediately attempt to recover from it. If the DRM Agent fails to detect the exception, it MUST recover from the exception by referring to the Operation Log when a new MAKE process is executed.

[Recovery Procedure – Cancellation of the Provisioning transaction]

To cancel the Provisioning transaction, the DRM Agent activates a default recovery procedure for each type of exception as follows.

For Case 1, the Provisioning transaction is terminated without recovery.

For Case 2, the DRM Agent sends the HandleRemovalRequest as specified in section 6.9.4 in order to remove the Handle. The Handle recorded in the Operation Log for this Provisioning transaction MUST be used in this request. If the HandleRemovalResponse contains Success in the Status field, then the Provisioning transaction is terminated.

When the Provisioning transaction is terminated, the Rights in the source Device MUST be enabled (i.e. the Rights can be used for any purpose) and the entry for the Provisioning transaction is removed from the Operation Log. In addition, if the Rights contain a <move> permission with a <count> constraint, then the current count value MUST be incremented.

In Case 2, if the HandleRemovalResponse contains a Status of either Handle Not Removed or Handle Not Found, then the DRM Agent continues the Provisioning transaction using the Rights Removal in Device processing defined in section 6.5.4. (Note: This result implies that the Rights were installed successfully in the SRM by the incomplete Rights Provisioning Message processing. In the case of Handle Not Found, after the installation, it implies the Rights were removed from the SRM or the corresponding Handle was updated to use the Rights.)

If the Handle Removal Message processing is not completed for any reason other than those specified above, then the recovery procedure is aborted. The DRM Agent MAY resume the aborted recovery by sending the HandleRemovalRequest when a new MAKE process is executed. To resume the recovery, the DRM Agent refers to the Operation Log as specified in section 5.5.2.

If the DRM Agent fails more than once to receive a proper Status from the Handle Removal Message processing during the recovery of the Rights Provisioning Message processing (i.e. fails to receive the response or fails to verify the integrity of the response) and then finally receives Handle Not Found in the Status field of the HandleRemovalResponse, it is possible that the Handle was successfully removed from the SRM by a previous incomplete Handle Removal Message processing. In this case, if the DRM Agent continues the Provisioning transaction with the Rights Removal in Device processing as specified in this section, then the User will lose the Rights.

The default behaviour is that the Provisioning transaction is terminated without further recovery procedures and the entry for the Provisioning transaction is removed from the Operation Log (i.e. the Rights in the source Device stay in a disabled state). A trust model may define other procedures to handle the disabled Rights.
6.8.7 RO Removal in Device
6.8.7.1 Action Description

The DRM Agent removes the Rights from the source Device permanently. When the Rights Removal in Device processing is completed, the Provisioning transaction is terminated and the entry for the Provisioning transaction is removed from the Operation Log.

6.8.7.2 Exception Handling

There may be unexpected exceptions as specified in section 5.5.1 when removing Rights. The exception causes the removal processing to not complete.

When an exception occurs, the DRM Agent SHOULD immediately attempt to recover from it. If the DRM Agent fails to detect the exception, it MUST recover from the exception by referring to the Operation Log when a new MAKE process is executed. The DRM Agent recovers from the exception by executing the Rights Removal in Device processing.
If the recovery fails, the DRM Agent MAY resume the recovery by removing the Rights from the Device when a new MAKE process is executed. To resume the recovery, the DRM Agent refers to the Operation Log as specified in section 5.5.2.
6.9 SRM Rights Upgrade
The protocols specified in this section provide necessary functions that are used for SRM Rights Upgrade.

To upgrade the Rights in SRM, DRM Agent should request RI to issue the upgrade rights for SRM. As shown in Figure 17, this transaction is comprised of OMA SCE-DRM RO Upgrade protocol and two SRM request / response message pairs: Upgrade Rights Retrieval message pair and Rights Upgrade message pair. In this transaction when using the RO Upgrade protocol, the <newRO> element in the RO Upgrade response message contains the RO with the upgraded permissions and/or constraints from the RI for the SRM.

[image: image18.emf]DRM Agent

SRM Agent

UpgradeRightsRetrievalRequest

UpgradeRightsRetrievalResponse

Rights Issuer

ROUpgradeResponse

ROUpgradeRequest

RightsUpgradeRequest

RightsUpgradeResponse

UpgradeRightsRetrievalinSRM

RightsUpgradeInSRM

RO Upgrade Trigger

Figure 17: Sequence Diagram – SRM Rights Upgrade

6.9.1 Trigger

The SRM Rights Upgrade transaction MAY be initiated by the RO Upgrade Trigger sent from RI. The definition of RO Upgrade Trigger refers to [SCE-DRM TS].

In the definition of RO Upgrade Trigger, the roID element which specifies the RO to be upgraded is optional. For SRM Rights Upgrade transaction, the roID element SHALL be mandatory in the RO Upgrade Trigger.

When DRM Agent receives the RO Upgrade Trigger with the roID element, DRM Agent SHALL check whether the RO specified by the roID element is installed locally or in SRM. If DRM Agent fails to find the Rights indicated by the roID element, DRM Agent just ignores the trigger without any further operation.

If the RO Upgrade Trigger received by DRM Agent does not contain the roID element, DRM Agent continues to execute the ROUpgrade protocol defined in [SCE DRM TS].
6.9.2 Upgrade Rights Retrieval
 Before DRM Agent executes the RO Upgrade protocol, DRM Agent SHALL retrieve the Rights installed in SRM Agent through the Upgrade Rights Retrieval message pair, and then select the Rights that need to be upgraded.
The selected rights will be set disabled (i.e. the Rights in SRM Agent stay in a disabled state. The disabled Rights cannot be used for the other purposes except the current SRM Rights Upgrade transaction.)
Through the UpgradeRightsRetrievalResponse message, the DRM Agent will get the necessary information for RO Upgrade service from the RightsInformation element.All the Rights information received from the UpgradeRightsRetrievalResponse will be stored in local context and set in the transfer state. (The information in transfer state cannot be used or deleted for the other purposes except the current SRM Rights Upgrade transaction.)
On proposing the UpgradeRightsRetrieval request message, SRM SHALL reserve the storage space for the upgraded rights. Since in SRM specification, the length of “length” element in StateInformation () datastructure is 16 bits, the reserved storage for upgraded rights is set as 65536 bytes.

Generally the message format of Upgrade Rights Retrieval protocol is same to Rights Retrieval protocol except that when the SRM fails to reserve enough storage space for the upgraded rights the Status value of Upgrade Rights Retrieval response message SHALL be set as “Storage reservation Failed”. The value of status of UpgradeRightsRetrieval Response is defined in Table 54.
Table 54: Status of Upgrade Rights Retrieval Message
	Status Value
	Description

	Success
	The request was successfully processed.

	Field Integrity Verification Failed
	The HMAC value of fields in the request did not match the HMAC value generated by the SRM Agent.

	Handle Not Found
	The Handle in the request does not exist in the SRM.

	Duplicate Handle
	The SRM already has the New Handle and its corresponding Rights.

	Parameter Failed
	A field in the request has an invalid length or structure.

	Unexpected Request
	This request was received out of sequence or is otherwise not allowed.

	Storage reservation Failed
	SRM can not reserve enough storage space for the upgraded rights.

	Unknown Error
	Other errors

 If the status value of Rights Retrieval Response is not equal to ‘Success’, the transaction is terminated.
For details of Rights Retrieval protocol, refer to section 6.6.1.

6.9.3 RO Upgrade
DRM Agent executes SCE-DRM RO Upgrade protocol to request upgraded Rights for the Rights of SRM. Based on the <Rights Information> received in Rights Upgrade Initiation session, DRM Agent sends RI the necessary information of the SRM Rights and the additional rights wanted via the RO Upgrade request message; DRM Agent gets the upgraded Rights via the RO Upgrade Response message (i.e. the <newRO> element in the RO Upgrade Response message). As for details of RO Upgrade protocol, please refer to SCE DRM TS specification.

To create the RO Upgrade request message, the DRM Agent should perform as follows:

1. DRM Agent parses the <Rights Information> received in the RightsUpgradeInitiation response message to create the <existingRights> element for RO Upgrade request message.
2. DRM Agent creates the <ROUpgradeInfo> element according to the User’s desire of additional rights for that SRM Rights.

The SRM Rights Upgrade can be initiated via the RO Upgrade Trigger issued by RI.

In the trigger of RO Upgrade, the <roID> element should equal to the RO Id that DRM Agent gets from SRM via parsing the Rights Information. And the ‘roRequested’ attribute for the RO Upgrade request message should be set as ‘true’, so DRM Agent will send the whole protected RO with its state Information to RI to request the upgrade Rights for the SRM.

If no errors or exceptions in the RO Upgrade session (Status = Success), DRM Agent will receive the RO that contains the upgraded permissions and/or constraints from the RI for the SRM. Especially, the RO is issued towards the SRM and the symmetric-key material encapsulated in the RO is protected under SRM’s RSA public key. Then DRM Agent continues with section 6.9.4.

If the RO Upgrade operation fails for some reason (Status does not equal to Success), the DRM Agent can terminate the transaction or re-execute the RO Upgrade protocol again in terms of the error reason of RO Upgrade Response.
6.9.4 Rights Upgrade
6.9.4.1 Description of Messages

The DRM Agent sends the RightsUpgradeRequest to SRM to upgrade the Rights in SRM Agent using the upgraded Rights (the <newRO> element) received in RO Upgrade response. The fields of the request are defined in Table 55.
Table 55: Fields of RightsUpgradeRequest

	Fields
	Protection Requirement
	Description

	Handle
	Integrity & Confidentiality
	Same as the New Handle transmitted by the UpgradeRightsRetrievalRequest message.

	Third Handle
	Integrity & Confidentiality
	Third Handle is a 10 byte random value generated by the DRM Agent for this Rights Upgrade session.

	Size of Rights
	Integrity
	Size of Rights in bytes. This informs the SRM Agent the size of Rights that will be installed in the SRM .

Size of Rights = Length of RightsInformation. .

	REK
	Integrity & Confidentiality
	Refer to section 5.1.1.4

	LAID
	Integrity
	Refer to section 5.1.7. This contains the hash value of AssetIDs that are associated with the Rights.

	Rights Information
	Integrity
	Refer to section 5.1.6

Before sending RightsUpgradeRequest, DRM Agent parses the protected RO received in RO Upgrade response, gets the information to compose the Rights Object Container, State Information, and REK that to be delivered to SRM in RightsUpgradeRequest message for SRM Rights Upgrade.

Upon receiving the RightsUpgradeRequest , SRM Agent installs the Rights in the SRM at the storage space that is reserved in the Upgrade Rights Retrieval session. For the installation, SRM Agent MUST perform the following procedure:

1. Verify the integrity of the request fields

2. Decrypt the Handle with the current Session Key
3. Compare the Handle with the New Handle in the UpgradeRightsRetrievalRequest
4. Decrypt the Third Handle with the current Session Key
5. Install the Rights at the reserved a space described in the Upgrade Rights Retrieval session. Since the reserved storage space MAY be larger than the actual occupied space, the vacant part of the reserved storage SHALL be released and the occupied storage by the installation SHALL be associated with the Third Handle.
6. Remove the disabled Rights Information that is associated with the Handle from SRM
The SRM Agent sends the RightsInstallationResponse to carry the result of the procedure. The fields of the response are defined in Table 56.

Table 56: Field of RightsUpgradeResponse

	Fields
	Protection Requirement
	Description

	Status
	Integrity
	The result of processing the RightsUpgradeRequest message. The Status values are specified inTable 57.

Table 57: Status of Rights Upgrade Message

	Status Value
	Description

	Success
	The request was successfully processed.

	Field Integrity Verification Failed
	The HMAC value of fields in the request did not match the HMAC value generated by SRM Agent.

	Handle Not Found
	The Handle in the request does not exist in SRM Agent.

	Handles In-consistent
	The Handle in this request is different from the Handle in the UpgradeRightsRetrievalRequest.

	Parameter Failed
	A field in the request has an invalid length or structure.

	Unexpected Request
	This request was received out of sequence or is otherwise not allowed.

	Unknown Error
	Other errors

Upon receiving the response, the DRM Agent verifies the integrity of fields in the response.
If no errors or exceptions (Status = Success), the DRM Agent should remove the Rights Information that is saved in local context and set in transfer state when executing the RightsUpgradeInitiation session in this transaction.
6.9.4.2 Format of Messages

The message format (MessageBody) of the RightsUpgradeRequest is specified as follows. The messageType is set to ‘0’ and the message is protected by an HMAC.

MessageBody() {

EncryptedHandle()

// Defined in E.2.4

EncryptedThirdHandle()

// Defined in E.2.4

EncryptedREK()

//
sizeOfRights

// 16 uimsbf
 RightsInformation()

// Defined in Appendix E.2.5.4
}

The fields are defined as follows:

· Handle – Handle fields in Table 55
· EncryptedHandle – Encrypted Handle with the current Session Key (SK)
· EncryptedThirdHandle – Encrypted ThirdHandle with the current Session Key (SK)
· EncryptedREK– Encrypted Rek with the current Session Key
· sizeOfRights –Size Of Rights field in Table 55
· RightsInformation – Rights Meta Data, Rights Object Container, State Information fields in Table 55 (Refer to Appendix E.2.5.4)
The message format (MessageBody) of the RightsUgradeResponse is specified as follows. The messageType is set to ‘1’ and the message is protected by an HMAC.

MessageBody() {

 Status()

// Defined in Appendix E.2.2
}

The field is defined as follows:

· Status - Status field in Table 56
6.9.4.3 Exception Handling

Refer to section 6.5.3.3.

6.10 S2S Rights Move
The protocols specified in this section provide necessary functions that are used for SRM to SRM Rights Move.

Rights in one SRM can be directly Moved to another SRM as illustrated in Figure 18. As shown in Figure 18, this transaction is comprised of four request/response message pairs: S2S Move Initiation message pair, Installation Setup message pair, Rights Installation message pair and Rights Removal message pair. Before executing the Installation Setup session, the DRM Agent should update the count value of move permission that is contained in the StateInformation for the Moved Rights.

The Installation Setup message pair SHOULD be followed by the Rights Installation message pair. If SRM Agent-2 receives any request message other than the RightsInstallationRequest following receipt of the InstallationSetupRequest, SRM Agent-2 SHOULD return Unexpected Request in the Status field of the response message.

In this section, call the session key between SRM Agent-1 and DRM Agent as S1 session key (SK1); call the session key between SRM Agent-2 and DRM Agent as S2 session key (SK2).

[image: image19.emf]DRM Agent

SRM Agent-2

S2SMoveInitiationRequest

S2SMoveInitiationResponse

SRM Agent-1

InstallationSetupResponse

InstallationSetupRequest

RightsInstallationRequest

RightsInstallationResponse

RightsDisablementInSRM

RightsInstallationInSRM

InstallationSetupInSRM

RightsRemovalRequest

RightsRemovalResponse

RightsRemovalInSRM

MoveCountDecrease

Decrypt & Encrypt REK

Figure 18: Sequence Diagram – SRM to SRM Move
6.10.1 S2S Move Initiation
6.10.1.1 Description of Messages

The DRM Agent sends the S2SMoveInitiationRequest to initiate the Move of Rights from the source SRM (SRM Agent-1) to the target SRM (SRM Agent-2). Before DRM Agent initiate the S2S Move, DRM Agent can retrieve the Rights installed in SRM Agent-1 through the Rights Retrieval message pair that is defined in the transaction of “Movement of Rights from SRM to Device” in section 6.6.
The fields of the S2SMoveInitiationRequest are defined in Table 58.

Table 58: Fields of S2SmoveInitiationRequest
	Fields
	Protection Requirement
	Description

	Target SRM Id
	Integrity
	Target SRM Id contains the SRM ID of SRM Agent-2 in the S2S Move transaction.

	Handle
	Integrity
	This identifies Rights that will be Moved from SRM Agent-1 to SRM Agent-2. Refer to section 5.1.3.

	New Handle
	Integrity & Confidentiality
	New Handle is a 10 byte random value generated by the DRM Agent for this Move transaction.

Upon receiving the S2SMoveInitiationRequest , SRM Agent-1 MUST perform the following procedure:

1. Verify the integrity of the request fields
2. Verify the secure status of SRM Agent-2 through CRL
3. If SRM Agent-2 is reliable, find Rights corresponding to the Handle
4. If found, then decrypt the New Handle with the S1 Session Key
5. Check if the SRM already has the same Handle with New Handle. If yes, the SRM Agent sets Status to Duplicate Handle. If no, overwrite the Handle in the SRM with the New Handle, and disable the Rights. (i.e. the Rights in SRM Agen-1 stay in a disabled state. The disabled Rights cannot be used for the other purposes except the current S2S Move transaction.)
The SRM Agent-1 sends the S2SMoveInitiationResponse to carry the result of the procedure. The fields of the response are defined in Table 59.
Table 59: Fields of S2SMoveInitiationResponse
	Fields
	Protection Requirement
	Description

	Status
	Integrity
	The result of processing the S2SMoveInitiationRequest message. The Status values are specified in Table 60.
If Status contains any error, only this field is present in the S2SMoveInitiationResponse.

	Rights Information
	Integrity
	Refer to section 5.1.6.

	REK
	Integrity & Confidentiality
	Encrypted with the S1 Session Key.
Refer to section 5.1.1.4.

Table 60: Status of S2SMoveInitiation Message
	Status Value
	Description

	Success
	The request was successfully processed.

	Field Integrity Verification Failed
	The HMAC value of fields in the request did not match the HMAC value generated by SRM Agent-1.

	Handle Not Found
	The Handle in the request does not exist in SRM Agent-1.

	Duplicate Handle
	SRM Agent-1 already has the New Handle and its corresponding Rights.

	Parameter Failed
	A field in the request has an invalid length or structure.

	Unexpected Request
	This request was received out of sequence or is otherwise not allowed.

	Unknown Error
	Other errors

Upon receiving the response, the DRM Agent MUST perform the following procedure:

1. Verify the integrity of fields in the response
2. Save the information received from the S2SMoveInitiationResponse in local context and set them in the transfer state. The information in transfer state cannot be used or deleted for the other purposes except the current S2S Move transaction.)
If no errors or exceptions (Status = Success), the DRM Agent continues with section 6.10.2.

6.10.1.2 Format of Messages

The message format (MessageBody) of the S2SMoveInitiationRequest is specified as follows. The messageType is set to ’0’ and the message is protected by an HMAC.
TargetSRMId(){
 Hash()

// Defined in Appendix E.1
}

MessageBody() {

TargetSRMID()

Handle()

// Defined in Appendix E.2.4
 EncryptedNewHandle()

// Defined in Appendix E.2.9
}

The fields are defined as follows:

· TargetSRMID– Target SRM ID field in Table 58
· Handle –Handle field in Table 58
· EncryptedNewHandle – New Handle field in Table 55 encrypted with the current Session Key (SK1)
The message format (MessageBody) of the S2SMoveInitiationResponse is specified as follows. The messageType is set to ‘1’ and the message is protected by an HMAC.

MessageBody() {

 Status()

// Defined in Appendix E.2.2
if (Status == 0) {
 RightsInformation()

// Defined in Appendix E.2.5.4
 EncryptedRek()

// Defined in Appendix E.2.7

 }

}

The fields are defined as follows:

· Status - Status field in Table 59
· RightsInformation – Rights Meta Data, Rights Object Container, State Information fields in Table 59 (Refer to Appendix E.2.5.4)
· EncryptedRek – REK field in Table 59 (Rek in Appendix E.2.5.5) encrypted with the current Session Key (SK1)

6.10.1.3 Exception Handling

 Refer to section 6.5.1.3 except that the message name is different to the counter part in section 6.5.1.3.
6.10.2 Move Count Decrease
6.10.2.1 Action Description

The DRM Agent performs the following procedure:

1. The DRM Agent verifies whether there is a count constraint for the Move permission. If not, the DRM Agent proceeds to step 4.
2. Check whether the count constraint for Move permission is less than 1. If not, decreases the value of Move count in StateInformation by 1.
3. If the Move count equals to 0, DRM Agent remove the move permission from the StateInformation, else update the value of Move count in StateInformation with the new value that equals to the original value minus 1.
4. Check whether SRM Agent-2 is still on the connection. If not, terminate the S2S Move transaction.
After updating the StateInformation and confirming that SRM Agent-2 is on the connection, the DRM Agent continues with section 6.10.3.

6.10.3 Decrypt & Encrypt REK
6.10.3.1 Action Description

DRM Agent decrypts the EncryptedRek which is got in S2SMoveInitiationResponse message with the S1 session key and then encrypts the REK with S2 session key creating a new EncyptedRek that will be filled in the RightsInstallationRequest message.

After the new EncryptedRek is produced, DRM Agent SHALL delete the plain REK immediately and continue with section 6.10.4.

6.10.4 Installation Setup

6.10.4.1 Description of Messages

The DRM Agent sends the InstallationSetupRequest to verify whether SRM Agent-2 has enough space to install Moved Rights. The fields of the request are defined in Table 61.

Table 61: Fields of InstallationSetupRequest

	Fields
	Protection Requirement
	Description

	Handle
	Integrity & Confidentiality
	The Handle identifies the Rights that to be Moved to SRM Agent-2. The Handle is identical to the New Handle in the previous S2SMoveInitiation specified in section 6.10.1.

	Size of Rights
	Integrity
	Size of Rights in bytes. This informs SRM Agent-2 the size of Rights that will be installed in SRM Agent-2 as specified in section 6.10.5.

Size of Rights = Length of RightsInformation. RightsInformation is specified in section 6.10.5.2.

Upon receiving the InstallationSetupRequest, the SRM Agent MUST perform the following procedure:

1. Verify the integrity of the fields

2. Decrypt the Handle with the S2 Session Key (SK2)
3. SRM Agent-2 MUST check if SRM Agent-2 already has the same Handle. If yes, the SRM Agent sets Status to Duplicate Handle and the SRM Agent sends the InstallationSetupResponse as described below.

4. The SRM Agent checks if the SRM has space for the new Rights. If not, the SRM Agent sets Status to Not Enough Space. Otherwise, the SRM Agent stores the Handle in the SRM securely. The Handle is not included in the Handle List until the Move transaction is completed.

The SRM Agent sends the InstallationSetupResponse to carry the result of the procedure. The fields of the response are defined in Table 62.

Table 62: Fields of InstallationSetupResponse
	Fields
	Protection Requirement
	Description

	Status
	Integrity
	The result of processing the InstallationSetupRequest message. The Status values are specified in Table 63.

Table 63: Status of Installation Setup Message
	Status Value
	Description

	Success
	The request was successfully processed.

	Field Integrity Verification Failed
	The HMAC value of fields in the request did not match the HMAC value generated by SRM Agent-2.

	Duplicate Handle
	SRM Agent-2 already has the Handle and its corresponding Rights.

	Not Enough Space
	SRM Agent-2 does not have enough space to store Rights having the same size as the Size of Rights.

	Parameter Failed
	A field in the request has an invalid length or structure.

	Unexpected Request
	This request was received out of sequence or is otherwise not allowed.

	Unknown Error
	Other errors

Upon receiving the response, the DRM Agent verifies the integrity of fields in the response.

If no errors or exceptions (Status = Success), the DRM Agent continues with section 6.10.5
6.10.4.2 Format of Messages

The message format (MessageBody) of the InstallationSetupRequest and InstallationSetupResponse refers to section 6.5.1.2.
6.10.4.3 Exception Handling

Refer to section 6.5.1.3.
6.10.5 Rights Installation
6.10.5.1 Description of Messages

The DRM Agent sends the RightsInstallationRequest to install the Rights in SRM Agent-2. The fields of the request are defined in Table 64.
Table 64: Fields of RightsInstallationRequest
	Fields
	Protection Requirement
	Description

	Handle
	Integrity & Confidentiality
	Same as the Handle transmitted by the InstallationSetupRequest in Table 61.

	REK
	Integrity & Confidentiality
	Encrypted with the S2 Session Key.
Refer to section 5.1.1.4

	LAID
	Integrity
	Refer to 5.1.7. This contains the hash value of AssetIDs that are associated with the Rights.

	Rights Information
	Integrity
	Refer to section 5.1.6

Upon receiving the RightsInstallationRequest, SRM Agent-2 installs the Rights in the SRM. For the installation, SRM Agent-2 MUST perform the following procedure:

1. Verify the integrity of the request fields

2. Decrypt the Handle and REK with the S2 Session Key(SK2)
3. Compare the Handle with the Handle in the InstallationSetupRequest
4. Install the Rights Information and REK at a space associated with the Handle.
The SRM Agent sends the RightsInstallationResponse to carry the result of the procedure. The fields of the response are defined in Table 65.

Table 65: Fields of RightsInstallationResponse
	Fields
	Protection Requirement
	Description

	Status
	Integrity
	The result of processing the RightsInstallationRequest message. The Status values are specified in Table 66.

Table 66: Status of Rights Installation Message
	Status Value
	Description

	Success
	The request was successfully processed.

	Field Integrity Verification Failed
	The HMAC value of fields in the request did not match the HMAC value generated by SRM Agent-2.

	Handle Not Found
	The Handle in the request does not exist in SRM Agent-2.

	Handles In-consistent
	The Handle in this request is different from the Handle in the InstallationSetupRequest.

	Not Enough Space
	The size of Rights Information exceeds Size of Rights in Table.

	Parameter Failed
	A field in the request has an invalid length or structure.

	Unexpected Request
	This request was received out of sequence or is otherwise not allowed.

	Unknown Error
	Other errors

Upon receiving the response, the DRM Agent verifies the integrity of fields in the response.

If no errors or exceptions (Status = Success), the DRM Agent continues with section 6.10.6.
6.10.5.2 Format of Messages

The message format (MessageBody) of the RightsInstallationRequest is specified as follows. The messageType is set to ‘0’ and the message is protected by an HMAC.

EncryptedHandle() {

 // Contains the encrypted Handle and REK

 EncryptedData()

// Defined in E.1
}

MessageBody() {

 EncryptedHandle()
EncryptedRek()

// Defined in E.2.5.5
 Laid()

// Defined in Appendix E.3
 RightsInformation()

// Defined in Appendix E.2.5.4
}

The fields are defined as follows:

· Handle – Handle fields in Table 64
· EncryptedHandle – Encrypted Handle with the current Session Key (SK2)
· EncryptedRek– Encrypted REK with the S2 Session Key (SK2)
· Laid – LAID field in Table 64
· RightsInformation – Rights Meta Data, Rights Object Container, State Information fields in Table 64(Refer to Appendix E.2.5.4)
The message format (MessageBody) of the RightsInstallationResponse is specified as follows. The messageType is set to ‘1’ and the message is protected by an HMAC.

MessageBody() {

 Status()

// Defined in Appendix E.2.2
}

The field is defined as follows:

· Status - Status field in Table 65
6.10.5.3 Exception Handling

Refer to section 6.5.1.3. except that the message name is different to the counterpart in section 6.5.1.3.
6.10.6 Rights Removal
6.10.6.1 Description of Messages

The DRM Agent executes the Rights Removal Message processing as specified in section 6.11.6 in order to remove the original Rights from the SRM Agent-1.

The Handle in the RightsRemovalRequest MUST be identical to the New Handle in the previous S2SMoveInitiation specified in section 6.10.1.
When the Rights Removal Message processing is completed (Status = Success), the S2S Move is terminated and the entry for the S2S Move transaction is removed from the Operation Log.
The DRM Agent also removes from local context the information received in S2SMoveInitiation response message in this S2S Move transaction.

6.10.6.2 Format of Messages

Refer to section 6.11.6.2.
6.10.6.3 Exception Handling

Refer to section 6.11.6.3.
6.11 SRM extensions for BCAST service support
6.11.1 Movement of Tokens from Device to SRM
Token is moved from a Device to an SRM via Device to SRM Token Move transaction as illustrated in Figure 19. Transaction is comprised of a single request-response pair: TokenInstallationRequest conveys Token attributes (specified in section 5.1.10) to be installed in the SRM; TokenInstallationResponse contains status of Token Installation in the SRM.

[image: image20.emf]DeviceSRM

TokenDisablementInDevice

TokenInstallationRequest

TokenInstallationResponse

TokenInstallationInSRM

TokenRemovalInDevice

Figure 19: Sequence Diagram – Token Move from a Device to SRM

Token Move from a Device to SRM transaction is defined as follows:

1. Before sending TokenInstallationRequest, the DRM Agent SHALL perform the following actions:

a. Check if Movable attribute defined in section 5.10 allows Token Move for selected Token. Movable attribute SHALL be processed as defined in [DRMXBSv1.1].

b. If Token can be moved then perform Token Disablement in the Device as defined in section 6.11.1.1. Otherwise the DRM Agent MUST NOT perform Token Move.

2. The DRM Agent sends TokenInstallationRequest to the SRM Agent.

3. Upon reception of TokenInstallationRequest, the SRM Agent performs Token Installation in the SRM.

4. The SRM Agent sends TokenInstallationResponse to the DRM Agent.
5. Upon reception of TokenInstallationResponse, the DRM performs Token Removal in the Device.
6.11.1.1 Token Disablement in the Device

6.11.1.1.1 Action Description

The DRM Agent disables the Token. The disabled Token cannot be used for the other purposes except the current Token Move transaction. After disabling the Tokens, the DRM Agent continues with section 6.11.1.2 (Token Installation in the SRM).
6.11.1.1.2 Exception Handling

If Token cannot be disabled, the Device SHALL abandon Token Move.

6.11.1.2 Token Installation in the SRM
6.11.1.2.1 Description of Messages

The DRM Agent sends TokenInstallationRequest to install Token in the SRM. The fields of the request are defined in Table 67.

Table 67: Fields of TokenInstallationRequest
	Fields
	Protection Requirement
	Description

	Token
	Integrity
	Refer to section 5.1.10

Upon receiving the TokenInstallationRequest, the SRM Agent SHALL perform the following actions:

1. Verify the integrity of the fields in TokenInstallationRequest.
2. Install the Token attributes of TokenInstallationRequest in the SRM.
The SRM Agent sends the RightsInstallationResponse to carry the result of the procedure. The fields of the response are defined in Table 68.

Table 68: Fields of TokenInstallationResponse

	Fields
	Protection Requirement
	Description

	Status
	Integrity
	The result of processing the TokenInstallationRequest. The Status values are specified in Table 69.

Table 69: Values of Status field of the TokenInstallationResponse
	Value
	Description

	Success
	The request was successfully processed.

	Field Integrity Verification Failed
	The HMAC value of fields in the request did not match the HMAC value generated by the SRM Agent.

	Not Enough Space
	There is not enough space to store transferred Token.

	Parameter Failed
	A field in the request has an invalid length or structure.

	Unexpected Request
	This request was received out of sequence or is otherwise not allowed.

	Unknown Error
	Other errors

Upon receiving the response, the DRM Agent verifies the integrity of fields in the response. If no errors (Status = Success) or exceptions occur, the DRM Agent SHALL perform Token Removal in the Device as defined in section 6.11.1.3.
In the case value of the Status field in TokenInstallationResponse message processing differs from “Success”, the DRM Agent MAY generate new TokenInstallationRequest. If Token Installation in the SRM cannot be completed succesfully, the DRM Agent SHALL perform Token Enablement in the Device and abandon Token Move Transaction.

6.11.1.2.2 Format of Messages

The message format (MessageBody) of the TokenInstallationRequest is specified as follows. The messageType is set to ‘0’ and the message is protected by an HMAC.

MessageBody() {
 Token()

// Defined in Appendix E.2.10.7
}

The message format (MessageBody) of the RightsInstallationResponse is specified as follows. The messageType is set to ‘1’ and the message is protected by an HMAC.

MessageBody() {

 Status()

// Defined in Appendix E.2.2
}

6.11.1.2.3 Exception Handling

There may be unexpected exceptions during the Token Installation in the SRM. The DRM SHOULD attempt to recover from the exception. If the DRM Agent fails to detect the exception, it MUST recover from the exception by referring to Operation Log when a new MAKE process is executed.
 [Recovery Procedure –Token Move Cancellation]

The DRM Agent SHOULD attempt to cancel Token Move transaction. In that case, the DRM Agent SHALL use Token Information Retrieval procedure to check if Token was succesfully installed in the SRM.

· If Token is not found on the SRM, the DRM Agent MUST enable Token on the Device.

· Otherwise, the DRM Agent MUST perform Token Removal in the SRM and re-enable Token on the Device.

6.11.1.3 Token Removal in the Device

6.11.1.3.1 Action Description

The DRM Agent removes the Token from the source Device permanently.
6.11.1.3.2 Exception Handling

There may be unexpected exceptions during Token Removal in Device. The DRM SHOULD attempt to recover from the exception. If the DRM Agent fails to detect the exception, it MUST recover from the exception by referring to Operation Log when a new MAKE process is executed.

[Recovery Procedure – Token Move Cancellation]

The DRM Agent SHOULD attempt to cancel Token Move transaction. In that case, the DRM Agent MUST perform Token Removal in the SRM and re-enable Token on the Device.

6.11.2 Movement of Tokens from SRM to Device
Tokens are moved from a Device to an SRM via SRM to Device Token Move transaction as illustrated in Figure 20. It is comprised of two protocols: Token Retrieval from the SRM and Token Removal from the SRM.

Token Retrieval Protocol consists of a message pair: TokenRetrievalRequest identifies Token to be Moved; TokenRetrievalResponse contains Token and status of TokenRetrievalRequest processing.

[image: image21.emf]DeviceSRM

TokenInstallationInDevice

TokenRetrievalRequest

TokenRetrievalResponse

TokenRemovalInSRM

TokenRemovalRequest

TokenRemovalResponse

TokenRetrievalInSRM,

TokenDisablementInSRM

Figure 20: Sequence Diagram –Token Move from SRM to Device
Token Move from a SRM to Device transaction is defined as follows:

1. The DRM Agent sends TokenRetrievalRequest to the SRM Agent.

2. Upon reception of TokenRetrievalRequest, the SRM Agent SHALL perform the following actions:

a. Locate Token on the SRM.

b. Disable Token on the SRM (see section 6.11.2.2).

3. The SRM Agent sends TokenRetrievalResponse to the DRM Agent.

4. Upon reception of TokenRetrievalResponse, the DRM Agent SHALL perform the following actions:

a. Check if Movable attribute defined in section 5.1.10 allows Token Move for retrieved Token.

b. If Token can be moved then initiate Token Removal from the SRM protocol (as defined in section 6.11.5). Otherwise restore Token Move transaction as defined in section 5.5.3.

5. If Token Removal in the SRM protocol cannot be completed succesfully (i.e. unexpected exceptions occur), the DRM Agent SHALL rollback Token Move transaction as defined in section 5.5.3.

6.11.2.1 Token Retrieval from the SRM
6.11.2.1.1 Description of Messages

The DRM Agent sends TokenRetrievalRequest to the SRM Agent to request Token Move from SRM to Device. The fields of the request are defined in Table 70.

Table 70: Fields of TokenRetrievalRequest
	Fields
	Protection Requirement
	Description

	RI ID
	Integrity
	Refer to section 5.1.10

	Token Delivery ID
	Integrity
	Refer to section 5.1.10

Upon receiving the TokenRetrievalRequest, the SRM Agent SHALL perform the following actions:

1. Verify the integrity of the fields in TokenRetrievalRequest.
2. Locate Token on the SRM using RI ID and Token Delivery ID from TokenRetrievalRequest.
3. Disable Token on the SRM as defined in section 6.11.2.2.
The SRM Agent sends the TokenRetrievalResponse to carry the result of the procedure. The fields of the response are defined in Table 71.

Table 71: Fields of TokenRetrievalResponse

	Fields
	Protection Requirement
	Description

	Status
	Integrity
	The result of processing the TokenRetrievalRequest. The Status values are specified in Table 72.

	Token
	Integrity
	Refer to section 5.1.10

Table 72: Values of Status field of the TokenRetrievalResponse
	Value
	Description

	Success
	The request was successfully processed.

	Field Integrity Verification Failed
	The HMAC value of fields in the request did not match the HMAC value generated by the SRM Agent.

	Not Found
	The Token is not found on SRM.

	Disablement Failed
	The SRM Agent failed to disable Token on SRM.

	Parameter Failed
	A field in the request has an invalid length or structure.

	Unexpected Request
	This request was received out of sequence or is otherwise not allowed.

	Unknown Error
	Other errors

Upon receiving the response, the DRM Agent verifies the integrity of fields in the response. If no errors (Status = Success) or exceptions occur, the DRM Agent SHALL perform Token Installation in the Device.

In the case value of the Status field in TokenInstallationResponse message processing differs from “Success”, the DRM Agent MAY generate new TokenInstallationRequest.

6.11.2.1.2 Format of Messages

The message format (MessageBody) of the TokenRetrievalRequest is specified as follows. The messageType is set to ‘0’ and the message is protected by an HMAC.

MessageBody() {

 RiId()

// Defined in Appendix E.2.5

 TokenDeliveryId()

// Defined in Appendix E.2.10.4
}

The message format (MessageBody) of the TokenRetrievalResponse is specified as follows. The messageType is set to ‘1’ and the message is protected by an HMAC.

MessageBody() {
 Status()

// Defined in Appendix E.2.2

if (Status == 0) {

 Token()

// Defined in Appendix E.2.10.7
}

}

6.11.2.1.3 Exception Handling

There may be unexpected exceptions during the Token Retrieval messages processing. The DRM SHOULD attempt to recover from the exception. If the DRM Agent fails to detect the exception, it MUST recover from the exception by referring to Operation Log when a new MAKE process is executed.
[Recovery Procedure –Token Move Cancellation]

The DRM Agent SHOULD attempt to cancel Token Move transaction. In that case, the DRM Agent MUST re-enable Token in the SRM (if disabled) using Token Enablement procedure specified in section 6.11.3.3 and abandon Token Move transaction.

6.11.2.2 Token Disablement in the SRM

6.11.2.2.1 Action Description

The SRM Agent disables the Token. The disabled Token cannot be used for the other purposes except the current Token Move from SRM to Device transaction. The disabled Token can only be enabled by the Device which induced Token disablement.
6.11.2.2.2 Exception Handling

If Token cannot be disabled, the SRM Agent SHALL generate relevant error code.

6.11.2.3 Token Installation in the Device
6.11.2.3.1 Action Description

The DRM Agent installs Token in the Device. Upon completing of Token Installation in the Device, the DRM Agent SHALL perform Token Removal from the SRM.
6.11.2.3.2 Exception Handling

There may be unexpected exceptions during the Token Installation in the Device or Token Removal from the SRM. The DRM SHOULD attempt to recover from the exception. If the DRM Agent fails to detect the exception, it MUST recover from the exception by referring to Operation Log when a new MAKE process is executed.
[Recovery Procedure –Token Move Cancellation]

The DRM Agent SHOULD attempt to cancel Token Move transaction. In that case, the DRM Agent MUST re-enable Token in the SRM using Token Enablement procedure specified in section 6.11.3.3 and abandon Token Move transaction.

6.11.3 Local Token Consumption by the Device
This section defines a mechanism which allows a Device to consume Tokens that are stored on SRM without Moving Tokens to a Device (e.g. Token Move transaction may be prohibited by Movable attribute).

Local Token Consumption transaction is comprised of two phases:

1. Retrieval of selected Token from the SRM and Token consumption by the Device:
· TokenConsumptionRequest identifies Token to be transferred from SRM to Device

· TokenConsumptionResponse transfers Token to Device

2. Update of Token data and Token Enablement in SRM

· TokenEnablementRequest transfers updated Token attributes to the SRM Agent

· TokenEnablementResponse conveys status of Token update and enablement in SRM

[image: image22.emf]DeviceSRM

TokenSelectionInDevice

TokenDisablementInSRM

TokenConsumptionRequest

TokenConsumptionResponse

TokenEnablementRequest

TokenEnablementResponse

TokenConsumptionInDevice

TokenEnablementInSRM

Figure 21: Sequence Diagram – Local Token Consumption
Local Token Consumption transaction is defined as follows:

2. The DRM Agent selects Token for consumption. If information about the Tokens stored on the SRM is not available on the device, it SHALL be retrieved from the SRM using Token Information Retrieval protocol (refer to section 6.11.4).

3. The DRM Agent sends TokenConsumptionRequest to the SRM Agent.

4. Before sending TokenConsumptionResponse, the SRM Agent SHALL perform Token Disablement in SRM.

5. The SRM Agent sends TokenConsumptionResponse.

6. Token is used by the DRM Agent for token-based contents consumption.

7. After Token consumption is completed sends TokenEnablementRequest to the SRM Agent.

8. Upon reception of TokenEnablementRequest, the SRM Agent updates Token attributes stored on the SRM and performs Token Enablement in the SRM.

9. The SRM Agent sends TokenEnablementResponse.

6.11.3.1 Token Consumption Request
6.11.3.1.1 Description of Messages

The DRM Agent sends TokenConsumptionRequest to the SRM Agent to request Token for consumption by the Device. The fields of the request are defined in Table 73.

Table 73: Fields of TokenConsumptionRequest
	Fields
	Protection Requirement
	Description

	RI ID
	Integrity
	Refer to section 5.1.10

	Token Delivery ID
	Integrity
	Refer to section 5.1.10

	Requested Amount of Token
	Integrity
	Contains the requested amount of Tokens.

Upon receiving the TokenRemovalRequest, the SRM Agent SHALL perform the following actions:

1. Verify the integrity of the fields in TokenRetrievalRequest.
2. Locate Token on the SRM using RI ID and Token Delivery ID.
3. Check if stored value of Token Quantity attribute is more than or equals value of the Requested Amount of Token in the TokenConsumptionRequest.
4. If Requested Amount of Token successfully validates against Token Quantity value stored on the SRM, the SRM Agent SHALL disable requested amount of Token on the SRM as defined in section 6.11.3.2.
The SRM Agent sends the TokenConsumptionResponse carrying the result of the procedure to the DRM Agent. The fields of the response are defined in Table 74.

Table 74: Fields of TokenConsumptionResponse

	Fields
	Protection Requirement
	Description

	Status
	Integrity
	The result of processing the TokenConsumptionRequest. The Status values are specified in Table 75.

	RI ID
	Integrity
	Refer to section 5.1.10

	Service ID/Program IDs
	Integrity
	Refer to section 5.1.10

	Domain IDs
	Integrity
	Refer to section 5.1.10

	Movable
	Integrity
	Refer to section 5.1.10

	Reporting Information
	Integrity
	Refer to section 5.1.10

	Token Quantity
	Integrity
	Granted amount of Token which equals to Requested Amount of Token in the TokenConsumptionRequest.

Table 75: Values of Status field of the TokenConsumptionResponse
	Value
	Description

	Success
	The request was successfully processed.

	Field Integrity Verification Failed
	The HMAC value of fields in the request did not match the HMAC value generated by the SRM Agent.

	Not Found
	The Token Delivery ID is not found on SRM.

	Insufficient Amount of Tokens
	Value of the stored Amount parameter for requested Token is less than Requested Amount of Token in the Token ConsumptionRequest.

	Parameter Failed
	A field in the request has an invalid length or structure.

	Unexpected Request
	This request was received out of sequence or is otherwise not allowed.

	Unknown Error
	Other errors

Upon receiving the response, the DRM Agent verifies the integrity of fields in the response. If no errors or exceptions occur (Status = Success), the Device can consume Tokens. After Token consumption is completed, the Device shall perform Token Enablement in the SRM.

In the case value of the Status field in TokenConsumptionResponse message processing differs from “Success”, the DRM Agent MAY send another TokenConsumptionRequest or abandon Local Token Consumption transaction.

6.11.3.1.2 Format of Messages

The message format (MessageBody) of the TokenRetrievalRequest is specified as follows. The messageType is set to ‘0’ and the message is protected by an HMAC.

MessageBody() {

 RiId()

// Defined in Appendix E.2.5

 TokenDeliveryId()

// Defined in Appendix E.2.10.4

 TokenQuantity()

// Defined in Appendix E.2.10.6
}
The fields are defined as follows:

· TokenQuantity – Request Amount of Token field in Table 74.
The message format (MessageBody) of the TokenRetrievalResponse is specified as follows. The messageType is set to ‘1’ and the message is protected by an HMAC.

MessageBody() {
 Status()

// Defined in Appendix E.2.2

 RiId()

// Defined in Appendix E.2.5

 TokenDeliveryId()

// Defined in Appendix E.2.10.4

 ServiceProgramIds()

// Defined in Appendix E.2.10.1

 Movable()

// Defined in Appendix E.2.10.2

 DomainIds()

// Defined in Appendix E.2.10.3

 ReportingInformation()

// Defined in Appendix E.2.10.5

 TokenQuantity()

// Defined in Appendix E.2.10.6
}

6.11.3.1.3 Exception Handling

There may be unexpected exceptions during the Token Consumption messages processing. The DRM SHOULD attempt to recover from the exception. If the DRM Agent fails to detect the exception, it MUST recover from the exception by referring to Operation Log when a new MAKE process is executed.
[Recovery Procedure –Token Move Cancellation]

The DRM Agent SHOULD attempt to cancel Local Token Consumption transaction. In that case, the DRM Agent MUST re-enable Token in the SRM (if disabled) using Token Enablement procedure specified in section 6.11.3.3 and abandon Local Token Consumption transaction.

6.11.3.2 Disablement of Tokens in the SRM

6.11.3.2.1 Action Description

The SRM Agent disables the amount of Token which is currently in use by Local Token Consumption transaction. The disabled amount of Token is stored in the Token Quantity in Use attribute, and cannot be used for the other purposes except the current Local Token Consumption transaction. The disabled amount of tokens can only be enabled during transaction with the Device which induced Token disablement.

Token which is in use by Local Token Consumption transaction can only be used by another Local Token Consumption transaction. Token Move is not possible, however Token Removal is allowed.
6.11.3.2.2 Exception Handling

If Token cannot be disabled, the SRM Agent SHALL generate relevant error code.

6.11.3.3 Token Enablement in the SRM
6.11.3.3.1 Description of Messages

The DRM Agent sends TokenEnablementRequest to the SRM Agent to enable Token in the SRM. The fields of the request are defined in Table 76.

Table 76: Fields of TokenEnablementRequest
	Fields
	Protection Requirement
	Description

	RI ID
	Integrity
	Refer to section 5.1.10

	Token Delivery ID
	Integrity
	Refer to section 5.1.10

	Reporting Information
	Integrity
	Refer to section 5.1.10

	Remaining Amount of Token
	Integrity
	Contains the amount of Token remaining after consumption.

Upon receiving the TokenConsumptionRequest, the SRM Agent SHALL perform the following actions:

1. Verify the integrity of the fields in TokenRetrievalRequest.
2. Locate Token in the SRM using RI ID and Token Delivery ID.
3. Check if value of the Token Quantity in Use attribute for the current transaction is more than or equals value of the Remaining Amount of Token field in the TokenEnablementRequest.
4. If Requested Amount of Token successfully validates against Token Quantity value stored on the SRM, the SRM Agent SHALL update Token Quantity, Token Quantity in Use and Reporting Information attributes in the SRM. Otherwise it terminates TokenEnablement request processing and generates TokenEnablementResponse indicating “Invalid Token Amount” in the Status field.
The SRM Agent sends the TokenEnablementResponse to carry the result of the procedure. The fields of the response are defined in Table 77.

Table 77: Fields of TokenEnablementResponse

	Fields
	Protection Requirement
	Description

	Status
	Integrity
	The result of processing the TokenConsumptionRequest. The Status values are specified in Table 78.

Table 78: Values of Status field of the TokenConsumptionResponse
	Value
	Description

	Success
	The request was successfully processed.

	Field Integrity Verification Failed
	The HMAC value of fields in the request did not match the HMAC value generated by the SRM Agent.

	Not Found
	The Token Delivery ID is not found on SRM.

	Invalid Token Amount
	Remaining Amount of Token in the TokenEnablementRequest does not appear to be valid.

	Parameter Failed
	A field in the request has an invalid length or structure.

	Unexpected Request
	This request was received out of sequence or is otherwise not allowed.

	Unknown Error
	Other errors

Upon receiving the response, the DRM Agent verifies the integrity of fields in the response. If no errors (Status = Success) or exceptions occur, Local Token Consumption transaction is completed.

In the case value of the Status field in TokenEnablementResponse message processing differs from “Success”, the DRM Agent MAY send another TokenEnablementRequest or abandon Local Token Consumption.

6.11.3.3.2 Format of Messages

The message format (MessageBody) of the TokenEnablementRequest is specified as follows. The messageType is set to ‘0’ and the message is protected by an HMAC.

MessageBody() {
 RiId()

// Defined in Appendix E.2.5

 TokenDeliveryId()

// Defined in Appendix E.2.10.4

 ReportingInformation()

// Defined in Appendix E.2.10.5

 TokenQuanity()

// Defined in Appendix E.2.10.6
}

The fields are defined as follows:

· TokenQuantity – Remaining Amount of Token field in Table Table 74.
The message format (MessageBody) of the TokenEnablementResponse is specified as follows. The messageType is set to ‘1’ and the message is protected by an HMAC.

MessageBody() {
 Status()

// Defined in Appendix E.2.2

}

6.11.3.3.3 Exception Handling

There may be unexpected exceptions during the Token Enablement messages processing. The DRM SHOULD attempt to recover from the exception. If the DRM Agent fails to detect the exception, it MUST recover from the exception by referring to Operation Log when a new MAKE process is executed.
[Recovery Procedure – Local Token Consumption Recovery]

The DRM Agent SHOULD re-attempt to perform Token Enablement procedure.

6.11.4 Retrieval of Token Information from the SRM

The DRM Agent can obtain information about the Tokens stored on the SRM using the Token Information Retrieval procedure illustrated in Figure 22. This protocol is intended for use in conjunction with Token Move from the SRM to Device and Local Token Consumption transactions.

[image: image23.emf]DeviceSRM

TokenInformationRequest

TokenInformationResponse

TokenInformationRetrieval

Figure 22: Sequence Diagram –Token Information Retrieval from SRM

6.11.4.1 Description of Messages

The DRM Agent sends TokenInformationRequest to the SRM Agent to request Token Information from SRM. The fields of the request are defined in Table 79.

Table 79: Fields of TokenInformationRequest
	Fields
	Protection Requirement
	Description

	RI ID
	Integrity
	Refer to section 5.1.10. If this element is present, only information on Tokens issued from this RI is returned.

	Service/Program IDs
	Integrity
	Refer to section 5.1.10. If this element is present, only information on Tokens issued for this Service/Program is returned.

Upon receiving the TokenInformationRequest, the SRM Agent SHALL perform the following actions:

1. Verify the integrity of the fields in TokenInformationRequest.
2. Retrieve requested information from the SRM based on the search criteria defined in TokenInformationRequest.
The SRM Agent sends the TokenInformationResponse to carry the result of the procedure. The fields of the response are defined in Table 80.

Table 80: Fields of TokenInformationResponse

	Fields
	Protection Requirement
	Description

	Status
	Integrity
	The result of processing the TokenRetrievalRequest. The Status values are specified in Table 81.

	RI ID
	Integrity
	Refer to section 5.1.10

	Token Delivery ID
	Integrity
	Refer to section 5.1.10

	Service ID/Program IDs
	Integrity
	Refer to section 5.1.10

	Movable
	Integrity
	Refer to section 5.1.10

	Domain IDs
	Integrity
	Refer to section 5.1.10

	Latest Token Consumption Time
	Integrity
	Refer to section 5.1.10

	Token Quantity
	Integrity
	Refer to section 5.1.10

Table 81: Values of Status field of the TokenInformationResponse
	Value
	Description

	Success
	The request was successfully processed.

	Field Integrity Verification Failed
	The HMAC value of fields in the request did not match the HMAC value generated by the SRM Agent.

	Not Found
	The Token Delivery ID is not found on SRM.

	Parameter Failed
	A field in the request has an invalid length or structure.

	Unexpected Request
	This request was received out of sequence or is otherwise not allowed.

	Unknown Error
	Other errors

Upon receiving the response, the DRM Agent verifies the integrity of fields in the response.
6.11.4.2 Format of Messages

The message format (MessageBody) of the TokenInformationRequest is specified as follows. The messageType is set to ‘0’ and the message is protected by an HMAC.

MessageBody() {

 RiId()

// Defined in Appendix E.2.5

 ServiceProgramIds()

// Defined in Appendix E.2.10.1
}

The message format (MessageBody) of the TokenInformationResponse is specified as follows. The messageType is set to ‘1’ and the message is protected by an HMAC.

MessageBody() {
 Status()

// Defined in Appendix E.x

if (Status == 0) {

nbrOfTokens
8
uimsbf

for (i = 0; i < nbrOfTokens; i++)

{

RiId()

// Defined in Appendix E.2.5

TokenDeliveryId()

// Defined in Appendix E.2.10.4
ServiceProgramIds()

// Defined in Appendix E.2.10.1
Movable()

// Defined in Appendix E.2.10.2

DomainIds()

// Defined in Appendix E.2.10.3

LatestTokenConsumptionTime
// Defined in Appendix E.2.10.4
TokenQuantity()

// Defined in Appendix E.2.10.6

}
}

The fields are defined as follows:

· nbrOfTokens is the number of Tokens retrieved from the SRM based on the search criteria specified in TokenInformationRequest.

6.11.5 Token Removal from the SRM

The DRM Agent can request the SRM Agent to delete certain ROs using the Token Removal from the SRM procedure illustrated in Figure 23. Token Removal can be initiated upon the request from user. The DRM Agent uses this procedure within Token Move from the Device to SRM transaction.

[image: image24.emf]DeviceSRM

TokenRemovalInSRM

TokenRemovalRequest

TokenRemovalResponse

Figure 23: Sequence Diagram –Token Removal from the SRM

6.11.5.1 Description of Messages

The DRM Agent sends TokenRemovalRequest to the SRM Agent to request Token removal from SRM. The fields of the request are defined in Table 82.

Table 82: Fields of TokenRemovalRequest
	Fields
	Protection Requirement
	Description

	RI ID
	Integrity
	Refer to section 5.1.10

	Token Delivery ID
	Integrity
	Refer to section 5.1.10

Upon receiving the TokenRemovalRequest, the SRM Agent SHALL perform the following actions:

1. Verify the integrity of the fields in TokenRetrievalRequest.
2. Locate Token on the SRM using RI ID and Token Delivery ID from the TokenRemovalRequest.
3. Perform Token Removal by the SRM.
The SRM Agent sends the TokenRemovalResponse to carry the result of the procedure. The fields of the response are defined in Table 83.

Table 83: Fields of TokenRemovalResponse

	Fields
	Protection Requirement
	Description

	Status
	Integrity
	The result of processing the TokenRetrievalRequest. The Status values are specified in Table 84.

Table 84:Values of Status field of the TokenRemovalResponse
	Value
	Description

	Success
	The request was successfully processed.

	Field Integrity Verification Failed
	The HMAC value of fields in the request did not match the HMAC value generated by the SRM Agent.

	Not Found
	The Token is not found on SRM.

	Remove Failed
	The SRM Agent failed to Remove Token on SRM.

	Parameter Failed
	A field in the request has an invalid length or structure.

	Unexpected Request
	This request was received out of sequence or is otherwise not allowed.

	Unknown Error
	Other errors

Upon receiving the response, the DRM Agent verifies the integrity of fields in the response.
6.11.5.2 Format of Messages

The message format (MessageBody) of the TokenRetrievalRequest is specified as follows. The messageType is set to ‘0’ and the message is protected by an HMAC.

MessageBody() {
 RiIds()

// Defined in Appendix E.2.5
 TokenDeliveryID()

// Defined in Appendix E.2.10.4
}

The message format (MessageBody) of the TokenRetrievalResponse is specified as follows. The messageType is set to ‘1’ and the message is protected by an HMAC.

MessageBody() {
 Status()

// Defined in Appendix E.x

}

6.11.5.3 Token Removal by the SRM
6.11.5.3.1 Action Description

The SRM Agent removes the Token from the source SRM permanently.
6.11.5.3.2 Exception Handling

If Token cannot be removed from the SRM, the SRM Agent SHALL generate relevant error code.

6.11.6 Token Upgrade

The DRM Agent can upgrade Tokens stored on the SRM using the Token Upgrade procedure illustrated in Figure 24.

[image: image25.emf]DeviceSRM

TokenUpgradeRequest

TokenUpgradeResponse

TokenUpgradeInSrm

TokenSelectionInDevice,

TokenDisablementInDevice

TokenRemovalInDevice

Figure 24: Sequence Diagram –Token Upgrade

6.11.6.1 Description of Messages

The DRM Agent sends TokenUpgradeRequest to the SRM Agent to request Token Upgrade in the SRM. The fields of the request are defined in Table 85.

Table 85: Fields of TokenUpgradeRequest
	Fields
	Protection Requirement
	Description

	RI ID
	Integrity
	Refer to section 5.1.10.

	Token Delivery ID
	Integrity
	This Token Delivery ID is used to identify Token stored on the SRM. Token Delivery ID is defined in section 5.1.10.

	New Token Delivery ID
	Integrity
	Specifies new Token Delivery ID to be set instead of the value stored in SRM. Token Delivery ID is defined in section 5.1.10.

	Reporting Information
	Integrity
	Specifies new Reporting Information (e.g. Latest Token Consumption Time) to be set instead of the value stored in SRM. Reporting Information is defined in section 5.1.10.

	Token Quantity
	Integrity
	Specifies new Token Quantity to be set instead of the value stored in SRM. Token Quantity is defined in section 5.1.10.

Note: If this field is present in the request, the DRM Agent MUST disable Token in the Device prior to sending TokenUpgradeRequest.

Upon receiving the TokenInformationRequest, the SRM Agent SHALL perform the following actions:

1. Verify the integrity of the fields in TokenUpgradeRequest.
2. Upgrade Token stored on the SRM based on new values given in TokenUpgradeRequest.
The SRM Agent sends the TokenUpgradeResponse to carry the result of the procedure. The fields of the response are defined in Table 86.

Table 86: Fields of TokenInformationResponse

	Fields
	Protection Requirement
	Description

	Status
	Integrity
	The result of processing the TokenRetrievalRequest. The Status values are specified in Table 87.

Table 87: Values of Status field of the TokenInformationResponse
	Value
	Description

	Success
	The request was successfully processed.

	Field Integrity Verification Failed
	The HMAC value of fields in the request did not match the HMAC value generated by the SRM Agent.

	Not Found
	The Token Delivery ID is not found on SRM.

	Parameter Failed
	A field in the request has an invalid length or structure.

	Unexpected Request
	This request was received out of sequence or is otherwise not allowed.

	Unknown Error
	Other errors

Upon receiving the response, the DRM Agent verifies the integrity of fields in the response. If no errors or exceptions occur (Status = Success), the DRM Agent continues with section X (Token Consumption).
6.11.6.2 Format of Messages

The message format (MessageBody) of the TokenUgradeRequest is specified as follows. The messageType is set to ‘0’ and the message is protected by an HMAC.

MessageBody() {
 TokenQuantityPresent
1
uimsbf

 RiId()

// Defined in Appendix E.2.5

 TokenDeliveryId()

// Defined in Appendix E.2.10.4

 NewTokenDeliveryId()

// Defined in Appendix E.2.10.4

 ReportingInformation()
// Defined in Appendix E.2.10.5

 if (TokenQuantityPresent)

 {

 TokenQuantity()

// Defined in Appendix E.2.10.6

 }

}
NewTokenDeliveryID()

{

 TokenDeliveryID()

// Defined in Appendix E.2.10.4

}

The fields are defined as follows:
· TokenQuantityPresent – this flag incdicates presense of Token Quantity attribute in this data structure. If it is present, this flag is set to ‘1’.
The message format (MessageBody) of the TokenInformationResponse is specified as follows. The messageType is set to ‘1’ and the message is protected by an HMAC.

MessageBody() {
 Status()

// Defined in Appendix E.2.2

}
6.11.6.2.1 Exception Handling

There may be unexpected exceptions during the Token Upgrade messages processing. The DRM SHOULD attempt to recover from the exception. If the DRM Agent fails to detect the exception, it MUST recover from the exception by referring to Operation Log when a new MAKE process is executed.
[Recovery Procedure –Token Upgrade Recovery]

The DRM Agent SHOULD attempt to recover Token Upgrade transaction. In that case, the DRM Agent MAY check if Token Upgrade was succesfully performed in the SRM by using Token Information Retrieval procedure. If Token Upgrade was successful, the DRM Agent MUST re-enable Token in the Device. Otherwise, the DRM Agent MAY restart or cancel Token Upgrade procedure.

After recovering the Token Upgrade transaction, the DRM MUST remove operational log entry for this procedure.
6.11.7 Movement of Broadcast Rights from Device to SRM

Broadcast Rights are Moved from a Device to an SRM as illustrated in Figure 25. This transaction is comprised of two request-response message pairs: Installation Setup message pair (as defined in section 6.11.7.1) and Broadcast Rights Installation message pair.

Before sending InstallationSetupRequest message the DRM MUST do the following,
1. Per each selected asset (contained in BCRO base), check if Move transaction is allowed by checking presence of move action type in OMADRMAction() object (this object is defined in [DRMXBS]). If Move is not allowed for the current asset(s), then do not include this asset in BCRO Assets data defined in section 5.1.11.2. If Move is not allowed for any asset in the BCRO then do not perform Move transaction.

2. Per each move action check if the count constraint is present in the OMADRMAction() object. If it is present check value of the count attribute. If the value is “0” then do not perform the Move transaction for the current asset(s).

3. Per each move action check if the system constraint is present in the OMADRMAction() object. If it is present then check value of the system_id attribute. If system_id subfield indicates the SRM protocol then add this asset(s) in BCRO Asset data.

[image: image26.emf]DRM AgentSRM Agent

BCRODisablementInDevice

BroadcastRightsInstallationRequest

BroadcastRightsInstallationResponse

BroadcastRightsInstallationInSRM

InstallationSetupRequest

InstallationSetupResponse

InstallationSetupInSRM

BCROProcessingInDevice

Figure 25: Sequence Diagram – Movement of Broadcast Rights from Device to SRM

6.11.7.1 Installation Setup
The DRM agent SHALL use Installation Setup procedure defined in section 6.5.1 with the following adaptation:

· Size of Rights field in the InstallationSetupRequest message MUST be the size of Broadcast Rights that will be installed in the SRM

· Size of Rights = Length of BcroBase + Length of BcroAssets + Length of BcroStateInfo (if present) + Length of BcroSignature (if present).
6.11.7.2 BCRO Disablement in Device
The DRM agent SHALL use Rights Disablement procedure defined in section 6.5.2 with the following adaptation:

· The DRM Agent SHALL only disable the use of assets that will be Moved within the current transaction. These assets can only be enabled when Moved back from SRM to Device or during transaction recovery.

6.11.7.3 Broadcast Rights Installation
6.11.7.3.1 Description of Messages

The DRM Agent sends the BroadcastRightsInstallationRequest to install the Broadcast Rights in the SRM. The fields of the request are defined in Table 89.

Table 89: Fields of BroadcastRightsInstallationRequest
	Fields
	Protection Requirement
	Description

	Handle
	Integrity & Confidentiality
	Same as the Handle transmitted by the InstallationSetupRequest in 6.11.7.1. Refer to section 5.1.3.

	BCRO Base
	Integrity
	Refer to section 5.1.11.1.

	BCRO Assets
	Integrity & confidentiality
	Refer to section 5.1.11.2.

	BCRO State Info
	Integrity
	Refer to section 5.1.11.3.

	BCRO Signature
	Integrity
	Refer to section 5.1.11.4.

Upon reception of the BroadcastRightsInstallationRequest, the SRM Agent installs the BroadcastRights in the SRM. For the installation, the SRM Agent MUST perform the following procedure:

1. Verify the integrity of the request fields

2. Decrypt the Handle and BCRO Assets with the Session Key
3. Compare the Handle with the Handle in the InstallationSetupRequest
4. Install the BCRO Base, BCRO Assets , BCRO State Info and BCRO Signature at a space associated with the Handle.
The SRM Agent sends the BroadcastRightsInstallationResponse to carry the result of the procedure. The fields of the response are defined in Table 90.

Table 90: Fields of BroadcastRightsInstallationResponse

	Fields
	Protection Requirement
	Description

	Status
	Integrity
	The result of processing the RightsInstallationRequest message. The Status values are specified in Table 91.

Table 91: Status of Broadcast Rights Installation Message

	Status Value
	Description

	Success
	The request was successfully processed.

	Field Integrity Verification Failed
	The HMAC value of fields in the request did not match the HMAC value generated by the SRM Agent.

	Handle Not Found
	The Handle in the request does not exist in the SRM.

	Handles In-consistent
	The Handle in this request is different from the Handle in the InstallationSetupRequest.

	Not Enough Space
	The size of BCRO Base exceeds Size of Rights in InstallationSetupRequest.

	Parameter Failed
	A field in the request has an invalid length or structure.

	Unexpected Request
	This request was received out of sequence or is otherwise not allowed.

	Unknown Error
	Other errors

Upon receiving the response, the DRM Agent verifies the integrity of fields in the response.

If no errors or exceptions (Status = Success), the DRM Agent continues with section 6.11.9.
6.11.7.3.2 Format of Messages

The message format (MessageBody) of the RightsInstallationRequest is specified as follows. The messageType is set to ‘0’ and the message is protected by an HMAC.

MessageBody() {

 EncryptedHandle()

// Defined in Appendix E.2.8
 BcroBase()

// Defined in Appendix E.2.11.1

 BcroAssets()

// Defined in Appendix E.2.11.2

 BcroStateInfo()

// Defined in Appendix E.2.11.3

 BcroSignature()

// Defined in Appendix E.2.11.4

}

The fields are defined as follows:

· EncryptedHandle – Handle encrypted with the current Session Key
· BCROBase – BCRO Base filed in Table 89
· BCROAsset – BCRO Assets field in Table 89
· BCROStateInfo – BCRO State Info field in Table 89
· BCROSignature – BCRO Signature field in Table 89
The message format (MessageBody) of the RightsInstallationResponse is specified as follows. The messageType is set to ‘1’ and the message is protected by an HMAC.

MessageBody() {

 Status()

// Defined in Appendix E.2.2
}

The field is defined as follows:

· Status - Status field in Table 90
6.11.7.3.3 Exception Handling

The DRM Agent SHALL follow the procedures defined in section 6.5.3.3.

6.11.7.4 Post-processing of Broadcast Rights in Device

6.11.7.4.1 Action Description

The DRM Agent MAY remove the Broadcast Rights from the source Device permanently. However, due to a broadcast nature of these rights, they may be delivered to a Device multiple times. In order to avoid duplication of Broadcast Rights in several Devices, the DRM Agent SHALL store the indication in the Device that these Broadcast Rights were disabled.

In addition, if some of assets in the BCRO were not Moved to SRM (within BCRO Assets), the DRM Agent SHALL not remove the Broadcast Rights from the Device.

When this action is completed, the Move is terminated and the entry for the Move transaction is removed from the Operation Log.

6.11.7.4.2 Exception Handling

If the removal process is performed and cannot be complete, the DRM Agent SHALL follow the procedure defined in section 6.5.4.2.

6.11.8 Movement of Broadcast Rights from SRM to Device

Broadcast Rights are Moved from an SRM to a Device as illustrated in Figure 26. This transaction is comprised of two request/response message pairs: Broadcast Rights Retrieval message pair and Rights Removal message pair. The Broadcast Rights Retrieval message pair MAY be followed by the Rights Removal message pair. If an SRM Agent receives any request message other than the RightsRemovalRequest following receipt of the BroadcastRightsRetrievalRequest, the SRM Agent SHOULD return Unexpected Request in the Status field of the response message.

[image: image27.emf]DRM AgentSRM Agent

RightsInstallationInDevice

RightsRemovalRequest

RightsRemovalResponse

RightsRemovalInSRM

BroadcastRightsRetrievalRequest

BroadcastRightsRetrievalResponse

RightsRetrievalInSRM,

AssetsDistablementInSRM

Figure 26: Sequence Diagram – Movement of Broadcast Rights from SRM to Device

6.11.8.1 Rights Retrieval

6.11.8.1.1 Description of Messages

The DRM Agent sends the RightsRetrievalRequest to initiate the Move of the Rights from the SRM. The fields of the request are defined in Table 92.

Table 92: Fields of BroadcastRightsRetrievalRequest

	Fields
	Protection Requirement
	Description

	Handle
	Integrity
	This identifies Rights that will be Moved from the SRM to the Device. Refer to section 5.1.3.

	New Handle
	Integrity & Confidentiality
	New Handle is a 10 byte random value generated by the DRM Agent for this Move transaction.

	Asset Index List
	Integrity
	Asset Index List is a list of indexes of assets selected for the current Move transaction. This field is optional, and if it is not included complete list of BCRO Assets SHALL be delivered in BroadcastRightsRetrievalResponse. Asset index is defined in section 5.1.11.2.

Upon receiving the RightsRetrievalRequest, the SRM Agent MUST perform the following procedure:

1. Verify the integrity of the request fields

2. Find Rights corresponding to the Handle
3. If found, then decrypt the New Handle with the Session Key
4. Check if the SRM already has the same Handle with New Handle. If yes, the SRM Agent sets Status to Duplicate Handle. If no, overwrite the Handle in the SRM with the New Handle, and disable the Rights.
The SRM Agent sends the RightsRetrievalResponse to carry the result of the procedure. The fields of the response are defined in Table 93.
Table 93: Fields of BroadcastRightsRetrievalResponse

	Fields
	Protection Requirement
	Description

	Status
	Integrity
	The result of processing the RightsRetrievalRequest message. The Status values are specified in Table 6.

If Status contains any error, only this field is present in the BroadcastRightsRetrievalResponse.

	BCRO Base
	Integrity
	Refer to section 5.1.11.1.

	BCRO Assets
	Integrity & Confidentiality
	Refer to section 5.1.11.2. Contains the list of BCRO Assets as requested in BroadcastRightsRetrievalRequest.

	BCRO State Info
	Integrity
	Refer to section 5.1.11.3.

	BCRO Signature
	Integrity
	Refer to section 5.1.11.4.

Table 94: Status of Rights Retrieval Message

	Status Value
	Description

	Success
	The request was successfully processed.

	Field Integrity Verification Failed
	The HMAC value of fields in the request did not match the HMAC value generated by the SRM Agent.

	Handle Not Found
	The Handle in the request does not exist in the SRM.

	Duplicate Handle
	The SRM already has the New Handle and its corresponding Rights.

	Parameter Failed
	A field in the request has an invalid length or structure.

	Unexpected Request
	This request was received out of sequence or is otherwise not allowed.

	Unknown Error
	Other errors

Upon receiving the response, the DRM Agent MUST perform the following procedure:

1. Verify the integrity of fields in the response

2. Decrypt BCRO Assets contents with the Session Key
If no errors or exceptions (Status = Success), the DRM Agent continues with section 6.11.8.3.

6.11.8.1.2 Format of Messages

The message format (MessageBody) of the RightsRetrievalRequest is specified as follows. The messageType is set to ’0’ and the message is protected by an HMAC.

MessageBody() {

 Handle()

// Defined in Appendix E.2.4
 EncryptedNewHandle()

// Defined in Appendix E.2.9

 AssetIndexListPresent
1
uimsbf

 rfu
7
uimsbf

 if (AssetIndexListPresent)

 {

 AssetIndexList()

// Defined in Appendix E.2.11.2.6

 }
}

The fields are defined as follows:

· Handle –Handle field in Table 92
· EncryptedNewHandle – New Handle field in Table 4 encrypted with the current Session Key (SK)
· AssetIndexListPresent – indicates presence of Asset Index List in this message

· AssetIndexList – Asset Index List field in Table 92
The message format (MessageBody) of the RightsRetrievalResponse is specified as follows. The messageType is set to ‘1’ and the message is protected by an HMAC.

MessageBody()
 Status()

// Defined in Appendix E.2.2
 if (Status == 0) {
BcroBase()

// Defined in Appendix E.2.11.1

BcroAssets()

// Defined in Appendix E.2.11.2

BCROStateInfo()

// Defined in Appendix E.2.11.3

BCROSignature()

// Defined in Appendix E.2.11.4

 }
}
The fields are defined as follows:

· Status - Status field in Table 93
6.11.8.1.3 Exception Handling

The DRM Agent SHALL follow the procedure defined in section 6.6.1.3.

6.11.8.2 BCRO Asset Disablement in the SRM
6.11.8.2.1 Action Description

The SRM Agent disables assets identified in the BroadcastRightsRetrievalRequest. The disabled BCRO Asset cannot be used for the other purposes except the current Move transaction.
6.11.8.2.2 Exception Handling

When the exception occurs, the DRM Agent SHOULD immediately attempt to recover from it. If the DRM Agent fails to detect the exception, it MUST recover from the exception by referring to the Operation Log when a new MAKE process is executed.
6.11.8.3 Rights Installation in Device

6.11.8.3.1 Action Description

The DRM Agent performs the following procedure:

1. The RI signature over the Broadcast Rights SHOULD be verified if present (note that signature verification MAY not be required under certain trust models as described in section 5.1.2). If the verification fails, the DRM Agent MUST re-enable the Broadcast Rights on the SRM as described in section N and terminate the Move transaction.

2. Per each asset delivered in BroadcastRightsRetrievalResponse, check if the move action count constraint is present in the OMADRMAction() object. If it is present decrement current value of the count attribute.
3. Install the Broadcast Rights with the following conditions:

A. Broadcast Rights received via the Move protocol SHALL NOT be rejected based on the content of any DRM V2.0 replay cache. The replay cache is specified in section 9.4 of [OMADRMv2].

B. The Broadcast Rights SHALL NOT be installed if a BCRO with the same enabled asset(s) in the OMADRMAsset() object (see [DRMXBS]) is already installed on the device. If so, then the DRM Agent MUST re-enable the Broadcast Rights on the SRM as described in section 6.11.10. and terminate the Move transaction.
C. If a BCRO with the same asset(s) is already installed but the asset is disabled in the Device, the DRM Agent MUST enable the Broadcast Rights on the Device and update asset state information based on the data received from the SRM.
After the Broadcast Rights installation, the DRM Agent MAY continue with section 6.11.9.
6.11.8.3.2 Exception Handling

There may be unexpected exceptions when installing Broadcast Rights. The exception causes the installation to not complete.

When an exception occurs, the DRM Agent SHOULD immediately attempt to recover from it. If the DRM Agent fails to detect the exception, it MUST recover from the exception by referring to the Operation Log when a new MAKE process is executed.
6.11.9 Broadcast Rights Removal
The DRM Agent SHALL use Rights Removal procedure defined in section 6.6.3.1.
6.12 SRM Utilities
The protocols specified in this section provide necessary functions that are used for the Rights Move and Local Rights Consumption.

6.12.1 Handle List Query
To read Rights from an SRM, the DRM Agent has to be aware of the identifier of the Rights in the SRM (i.e. Handle). The Handle List Query Message processing is used to read a Handle List from the SRM as illustrated in Figure 16.

[image: image28.emf]DRM AgentSRM Agent

HandleListQueryRequest

HandleListQueryResponse

Figure 27: Sequence Diagram – Handle List Query
6.12.1.1 Description of Messages
The DRM Agent sends the HandleListQueryRequest to read the Handle List from the SRM. The field of the request is defined in Table 95.
Table 95: Fields of HandleListQueryRequest
	Fields
	Protection Requirement
	Description

	Hash Of AssetID List
	No
	List of H(AssetID)

	Handle List Length
	No
	Maximum Handle List length in bytes that the DRM Agent can process. If this value is non-zero, the SRM Agent MUST send a Handle List shorter than or equal to the Handle List Length value.

If a Handle List is longer than the Handle List Length, the SRM Agent divides the Handle List into several chunks.

The H(AssetID) in the HandleListQueryRequest is the identification of a DRM Content. The DRM Content can be associated with one or multiple Rights. The SRM Agent generates and returns a Handle List of Rights that are associated with the DRM Content.

Upon receiving the HandleListQueryRequest, the SRM Agent performs the following procedure:

· If the number of H(AssetID)’s in the Hash Of AssetID List is zero, the SRM Agent generates a Handle List of all enabled Rights in the SRM. If there are no Handles stored in the SRM, the SRM returns Status = Success and an empty Handle List in the response message.
· Otherwise, the SRM Agent generates a Handle List of enabled Rights in the SRM that are associated with the requested DRM Content identified by the H(AssetID)’s in the request. If there are no Handles stored in the SRM associated with the Hash Of AssetID List, the SRM returns Status = Success and an empty Handle List in the response message.
The SRM Agent sends the HandleListQueryResponse to carry the result of the action. The fields of the response are defined in Table 96. If the number of H(AssetID)s in the HandleListQueryRequest is more than the Max Number Of AssetIDs specified in the SrmHelloResponse, the SRM Agent MUST return the error - AssetID List Too Long.
Table 96: Fields of HandleListQueryResponse

	Fields
	Protection Requirement
	Description

	Status
	No
	The result of processing the HandleListQueryRequest message. The Status values are specified in Table 45.

If Status contains any error, only this field is present in the HandleListQueryResponse.

	Handle List
	No
	This field contains a Handle List or a chunk of it if a Handle List has been divided into several chunks. If no Handles exist in the SRM associated with the Hash Of AssetID List in the request, this field will contain no Handles.

	Continuation Flag
	No
	It is assumed that a Handle List is divided into several chunks.

‘0’: The Handle List in this response is the last chunk of the whole Handle List, or the Handle List is not divided into chunks

‘1’: A Handle List has been divided into several chunks. The Handle List in this response is a chunk of the whole Handle List, and there are subsequent chunks.

Table 97: Status of Handle List Query Message
	Status Value
	Description

	Success
	The request was successfully processed.

	AssetID List Too Long
	The number of H(AssetID)s in the request exceeds the Maximum Number Of AssetIDs.

	Parameter Failed
	A field in the request has an invalid length or structure.

	Unexpected Request
	This request was received out of sequence or is otherwise not allowed.

	Unknown Error
	Other errors

If the Continuation Flag contains the value ‘1’ and Status is Success, the DRM Agent SHOULD send the HandleListQueryRequest (containing same field values as the previous request) again in order to read the next chunk. The DRM Agent repeats the HandleListQueryRequest until the response contains the value ‘0’ in the Continuation Flag field. If the DRM Agent receives excessive number of chunks, then the DRM Agent may not have an enough buffer to process all chunks. Then the DRM Agent can abort the repetition of the Handle List Query Message processing. If the Continuation Flag contains the value ‘0’ and no errors or exceptions (Status = Success), the HandleListQueryRequest message processing is completed.
If the DRM Agent sends a different message or sends the HandleListQueryRequest with different field values than the previous values, then the SRM Agent resets the operation (i.e. the SRM Agent returns the Handle List from the first chunk again).
6.12.1.2 Format of Messages
The message format (MessageBody) of the HandleListQueryRequest is specified as follows. The messageType is set to ’0’ and the message is not protected by an HMAC.

MessageBody() {

 nbrOfAssetId

8
uimsbf
 for (i = 0 ; i < nbrOfAssetId ; i++) {

 HashOfAssetId()

// Defined in Appendix E.3
 }

 handleListLength

16
uimsbf

}

The fields are defined as follows:

· nbrOfAssetId – Number of HashOfAssetId in Hash Of AssetId List field in Table 43
· HashOfAssetId – Hash of AssetId
· handleListLength – Handle List Length field in Table 43
The message format (MessageBody) of the HandleListQueryResponse is specified as follows. The messageType is set to ‘1’ and the message is not protected by an HMAC.

MessageBody() {

 Status()

// Defined in Appendix E.2.2
 if (Status == 0) {

 HandleList()

// Defined in Appendix E.4
 continuationFlag

1
bslbf
 rfu

7
bslbf
 }

}

The fields are defined as follows:

· status - Status field in Table 44
· HandleList – Handle List field in Table 44
· continuationFlag – Continuation Flag field in Table 44
6.12.1.3 Exception Handling

There may be an unexpected exception during the Handle List Query Message processing as specified in section 5.5.1. If the DRM Agent fails to receive the response or finds an error by referring to the Status, then the DRM Agent regards it as an exception and terminates the Handle List Query Message processing. The User may be informed of the exception.
6.12.2 Rights Information Query

The DRM Agent requests the SRM Agent to read Rights Information including the Rights Meta Data, Rights Object Container, and State Information from the SRM as illustrated in Figure 28. The Rights Information does not include REK.

[image: image29.emf]DRM AgentSRM Agent

RightsInfoQueryRequest

RightsInfoQueryResponse

Figure 28: Sequence Diagram – Rights Information Query

6.12.2.1 Description of Messages
The DRM Agent sends the RightsInfoQueryRequest to read the Rights Information (Rights Meta Data, Rights Object Container, and State Information) without the REK from the SRM. The fields of the request are defined in Table 98.
Table 98: Fields of RightsInfoQueryRequest

	Fields
	Protection Requirement
	Description

	Handle
	Integrity
	This identifies Rights whose Rights Information will be transferred from the SRM to the Device. Refer to section 5.1.3.

Upon receiving the RightsInfoQueryRequest, the SRM Agent MUST perform the following procedure:

1. Verify the integrity of the request fields

2. Find Rights corresponding to the Handle
The SRM Agent sends the RightsInfoQueryResponse to carry the result of the procedure. The fields of the response are defined in Table 99.
Table 99: Fields of RightsInfoQueryResponse

	Fields
	Protection Requirement
	Description

	Status
	Integrity
	The result of processing the RightsInfoQueryRequest message. The Status values are specified in Table 100.

If Status contains any error, only this field is present in the RightsInfoQueryResponse.

	Rights Meta Data
	Integrity
	Refer to section 5.1.1.1

	Rights Object Container
	Integrity
	Refer to section 5.1.1.2

	State Information
	Integrity
	Refer to section 5.1.1.3. This field is not present if the Rights Object in the Rights Object Container is stateless.

Table 100: Status of Rights Information Query Message

	Status Value
	Description

	Success
	The request was successfully processed.

	Field Integrity Verification Failed
	The HMAC value of fields in the request did not match the HMAC value generated by the SRM Agent.

	Handle Not Found
	The Handle in the request does not exist in the SRM.

	Parameter Failed
	A field in the request has an invalid length or structure.

	Unexpected Request
	This request was received out of sequence or is otherwise not allowed.

	Unknown Error
	Other errors

Upon receiving the response, the DRM Agent verifies the integrity of fields in the response.

If no errors or exceptions (Status = Success), the Rights Information Query Message processing is completed.
6.12.2.2 Format of Messages
The message format (MessageBody) of the RightsInfoQueryRequest is specified as follows. The messageType is set to’0’ and the message is protected by an HMAC.

MessageBody() {

 Handle()

// Defined in Appendix E.2.4
}

The fields are defined as follows:

· Handle –Handle field in Table 98
The message format (MessageBody) of the RightsInfoQueryResponse is specified as follows. The messageType is set to ‘1’ and the message is protected by an HMAC.

MessageBody() {

 Status()

// Defined in Appendix E.2.2
 if (Status == 0) {

 RightsInformation()

// Defined in Appendix E.2.5.4
 }

}

The fields are defined as follows:

· RightsInformation – Rights Meta Data, Rights Object Container, Rights Meta Data fields in Table 99
· Status - Status field in Table 99
6.12.2.3 Exception Handling

There may be an unexpected exception during the Rights Information Query Message processing as specified in section 5.5.1. If the DRM Agent fails to receive the response, finds an error by referring to the Status (except Handle Not Found), or fails to verify the integrity of fields, then the DRM Agent regards it as an exception and terminates communication with the SRM Agent. The User may be informed of the exception.
6.12.3 Rights Information List Query

The DRM Agent MAY request the SRM Agent to read the Rights Information List as illustrated in Figure 29.
The User may need to know the Rights Information before he/she can decide which Rights to retrieve. The Rights Information List Query message is used to read lists of Rights information from the SRM. By using this message, the DRM Agent SHOULD get the latest list of Handles with Rights Information from the SRM Agent before the Movement of Rights or Local Rights Consumption. The Rights Information List Query message is OPTIONAL for the SRMs.

[image: image30.emf]DRM AgentSRM Agent

RightsInfoListQueryRequest

RightsInfoListQueryResponse

Figure 29: Sequence Diagram – Rights Information List Query
6.12.3.1 Description of Messages
The DRM Agent sends the RightsInfoListQueryRequest to read the Rights Information List from the SRM. The field of the request is defined in Table 101.
Table 101: Fields of RightsInfoListQueryRequest

	Fields
	Protection Requirement
	Description

	Hash Of AssetID List
	No
	List of H(AssetID)

	Rights Information List Length
	No
	Maximum Rights Information List length in bytes that the DRM Agent can process. If this value is non-zero, the SRM Agent MUST send a Rights Information List shorter than or equal to the Rights Information List Length value.

If a Rights Information List is longer than the Rights Information List Length, the SRM Agent divides the Rights Information List into several chunks.

The H(AssetID) in the RightsInfoListQueryRequest is the identification of a DRM Content. The DRM Content can be associated with one or multiple Rights. The SRM Agent generates and returns a Rights Information List that is associated with the DRM Content.
Upon receiving the RightsInfoListQueryRequest, the SRM Agent performs the following actions:

· If the number of H(AssetID)s in the Hash Of AssetID List is zero, the SRM Agent generates a Rights Information List of all enabled Rights in the SRM.
· Otherwise, the SRM Agent generates a Rights Information List of enabled Rights in the SRM that are associated with the requested DRM Contents identified by the H(AssetID)s in the request.
The SRM Agent sends the RightsInfoListQueryResponse to carry the result of the action. The fields of the response are defined in Table 102. If the number of H(AssetID)s in the RightsInfoListQueryRequest is more than the Max Number Of AssetIDs specified in the SrmHelloResponse, the SRM Agent MUST return the error - AssetID List Too Long.

Table 102: Fields of RightsInfoListQueryResponse

	Fields
	Protection Requirement
	Description

	Status
	Integrity
	The result of processing the RightsInfoListQueryRequest message. The Status values are specified in Table 103.

If Status contains any error, only this field is present in the RightsInfoListQueryResponse.

	Rights Information List
	Integrity
	This field contains a Rights Information List or a chunk of it if the Rights Information List has been divided into several chunks.

	Continuation Flag
	Integrity
	It is assumed that a Rights Information List is divided into several chunks.

‘0’: The Rights Information List in this response is the last chunk of the whole Rights Information List, or the Rights Information List is not divided into chunks.

‘1’: A Rights Information List has been divided into several chunks. The Rights Information List in this response is a chunk of the whole Rights Information List, and there are subsequent chunks.

Table 103: Status of Rights Information List Query Message

	Status Value
	Description

	Success
	The request was successfully processed.

	AssetID List Too Long
	The number of H(AssetID)s in the request exceeds the Maximum Number Of AssetIDs.

	Request Not Supported
	This request is not supported by the SRM Agent.

	Parameter Failed
	A field in the request has an invalid length or structure.

	Unexpected Request
	This request was received out of sequence or is otherwise not allowed.

	Unknown Error
	Other errors

Upon receiving the response, the DRM Agent verifies the integrity of fields in the response.

If the Continuation Flag contains the value ‘1’ and Status is Success, the DRM Agent SHOULD send the RightsInfoListQueryRequest again, with the same field values, in order to read the next chunk. The DRM Agent repeats the RightsInfoListQueryRequest until the response contains the value ‘0’ in the Continuation Flag field. If the Continuation Flag contains the value ‘0’ and no errors or exceptions (Status = Success), the RightsInfoListQueryRequest message processing is completed.

If the DRM Agent sends a different message or sends the RightsInfoListQueryRequest with different field values than the previous values, then the SRM Agent resets the operation (i.e. the SRM Agent returns the Rights Information List from the first chunk again).

If a Rights Information List is divided into several chunks, where a chunk will contain a portion of the complete list, the DRM Agent MUST concatenate all chunks in sequence from the SRM Agent in order to receive the complete Rights Information List.
6.12.3.2 Format of Messages
The message format (MessageBody) of the RightsInfoListQueryRequest is specified as follows. The messageType is set to ’0’ and the message is not protected by an HMAC.
MessageBody() {

 nbrOfAssetId

8
uimsbf
 for (i = 0 ; i < nbrOfAssetId ; i++) {

 HashOfAssetId()

// Defined in Appendix E.3
}

 rightsInfoListLength

16
uimsbf

}

The fields are defined as follows:

· nbrOfAssetId – Number of HashOfAssetId in Hash Of AssetId List field in Table 101
· HashOfAssetId – Hash of AssetId
· rightsInfoListLength – Rights Information List Length field in Table 101
The message format (MessageBody) of the RightsInfoListQueryResponse is specified as follows. The messageType is set to ’0’ and the message is protected by an HMAC.

MessageBody() {

 Status()

// Defined in Appendix E.2.2
 if (Status == 0) {

 RightsInformationList()

// Defined in Appendix E.2.6
 continuationFlag

1
bslbf

 rfu

7
bslbf
 }

}

The fields are defined as follows:

· Status - Status field in Table 102
· RightsInformationList – Rights Information List field in Table 102
· continuationFlag – Continuation Flag field in Table 102
6.12.3.3 Exception Handling
There may be an unexpected exception during the Rights Information List Query Message processing as specified in section 5.5.1. If the DRM Agent fails to receive the response or finds an error by referring to the Status, then the DRM Agent regards it as an exception and terminates the Rights Information List Query Message processing. The User may be informed of the exception.
6.12.4 Handle Removal

The DRM Agent requests the SRM Agent to remove a Handle from the SRM as illustrated in Figure 30 when its corresponding Rights do not exist in the SRM.

[image: image31.emf]DRM AgentSRM Agent

HandleRemovalRequest

HandleRemovalResponse

Figure 30: Sequence Diagram – Handle Removal

6.12.4.1 Description of Messages
The DRM Agent sends the HandleRemovalRequest to remove the Handle from the SRM. The fields of the request are defined in Table 52.

Table 104: Fields of HandleRemovalRequest

	Fields
	Protection Requirement
	Description

	Handle
	Integrity & Confidentiality
	Handle that will be removed from the SRM. Refer to section 5.1.3.

Upon receiving the HandleRemovalRequest, the SRM Agent MUST perform the following procedure:

1. Verify the integrity of the fields

2. Decrypt the Handle with the Session Key

3. Remove the matched Handle in the SRM

If Rights corresponding to the Handle already exist in the SRM, then the SRM Agent returns Handle Not Removed in the Status.

The SRM Agent sends the HandleRemovalResponse to carry the result of the procedure. The fields of the response are defined in Table 53.
Table 105: Fields of HandleRemovalResponse

	Fields
	Protection Requirement
	Description

	Status
	Integrity
	The result of processing the HandleRemovalRequest message. The Status values are specified in Table 54.

Table 106: Status of Handle Removal Message
	Status Value
	Description

	Success
	The request was successfully processed.

	Field Integrity Verification Failed
	The HMAC value of fields in the request did not match the HMAC value generated by the SRM Agent.

	Handle Not Found
	The SRM Agent cannot find the matched Handle.

	Handle Not Removed
	The SRM Agent cannot remove the Handle because Rights corresponding to the Handle already exist in the SRM.

	Parameter Failed
	A field in the request has an invalid length or structure.

	Unexpected Request
	This request was received out of sequence or is otherwise not allowed.

	Unknown Error
	Other errors

Upon receiving the response, the DRM Agent verifies the integrity of fields in the response.

If no errors or exceptions (Status = Success), the Handle Removal Message processing is completed.

6.12.4.2 Format of Messages
The message format (MessageBody) of the HandleRemovalRequest is specified as follows. The messageType is set to ’0’ and the message is protected by an HMAC.

MessageBody() {

 EncryptedHandle()

// Defined in Appendix E.2.8
}

The fields are defined as follows:

· EncryptedHandle – Handle field in Table 52 encrypted with the current Session Key (SK)

The message format (MessageBody) of the HandleRemovalResponse is specified as follows. The messageType is set to ‘1’ and the message is protected by an HMAC.

MessageBody() {

 Status()

// Defined in Appendix E.2.2
}

The field is defined as follows:

· Status - Status field in Table 105
6.12.4.3 Exception Handling

There may be an unexpected exception during the Handle Removal Message processing as specified in section 5.5.1. The recovery from the exception is handled as a part of a Move transaction.
6.12.5 Rights Enablement

The DRM Agent requests the SRM Agent to enable Rights in the SRM using this function as illustrated in Figure 31.

[image: image32.emf]DRM AgentSRM Agent

RightsEnablementRequest

RightsEnablementResponse

Figure 31: Sequence Diagram – Rights Enablement

6.12.5.1 Description of Messages
The DRM Agent sends the RightsEnablementRequest to enable the Rights in the SRM. The fields of the request are defined in Table 107.

Table 107: Fields of RightsEnablementRequest

	Fields
	Protection Requirement
	Description

	Handle
	Integrity & Confidentiality
	Handle identifies Rights that will be enabled in the SRM. Refer to section 5.1.3.

	State Information
	Integrity
	New State Information that replaces the original State Information in the SRM. This field is OPTIONAL.

Upon receiving the RightsEnablementRequest, the SRM Agent MUST perform the following procedure:

1. Verify the integrity of the request fields

2. Decrypt the Handle with the Session Key
3. Enable the Rights corresponding to the Handle. If the State Information is present, overwrite the State Information of the found Rights in the SRM with the State Information. If the Rights are already enabled, then the SRM Agent returns Success in the Status field without executing this action.
The SRM Agent sends the RightsEnablementResponse to carry the result of the procedure. The fields of the response are defined in Table 108.
Table 108: Fields of RightsEnablementResponse

	Fields
	Protection Requirement
	Description

	Status
	Integrity
	The result of processing the RightsEnablementRequest message. The Status values are specified in Table 109.

Table 109: Status of Rights Enablement Message
	Status Value
	Description

	Success
	The request was successfully processed.

	Field Integrity Verification Failed
	The HMAC value of fields in the request did not match the HMAC value generated by the SRM Agent.

	Handle Not Found
	The Handle in the request does not exist in the SRM.

	Parameter Failed
	A field in the request has an invalid length or structure.

	Unexpected Request
	This request was received out of sequence or is otherwise not allowed.

	Unknown Error
	Other errors

Upon receiving the response, the DRM Agent verifies the integrity of fields in the response.

If no errors or exceptions (Status = Success), the Rights Enablement Message processing is completed.

6.12.5.2 Format of Messages
The message format (MessageBody) of the RightsEnablementRequest is specified as follows. The messageType is set to’0’ and the message is protected by an HMAC.

MessageBody() {

 stateInformationPresent
1
bslbf
 rfu
7
bslbf
 EncryptedHandle()

// Defined in Appendix E.2.8
 if (stateInformationPresent) {

 StateInformation()

// Defined in Appendix E.2.5.3
 }

}

The fields are defined as follows:

· EncryptedHandle – Handle field in Table 107 encrypted with the current Session Key (SK)

· stateInformationPresent – if ‘1’, then StateInformation is present in this message

· StateInformation – State Information field in Table 107
The message format (MessageBody) of the RightsEnablementResponse is specified as follows. The messageType is set to ‘1’ and the message is protected by an HMAC.

MessageBody() {

 Status()

// Defined in Appendix E.2.2
}

The field is defined as follows:

· Status - Status field in Table 108
6.12.5.3 Exception Handling
There may be unexpected exceptions during the Rights Enablement Message processing as specified in section 5.5.1. If the DRM Agent fails to receive the response, receives an error in the Status field, or fails to verify the message integrity, then the DRM Agent regards it as an exception.

The recovery from the exception is handled as a part of a Move or a Local Rights Consumption transaction.
6.12.6 Rights Removal
The DRM Agent requests the SRM Agent to remove Rights from the SRM using this function as illustrated in Figure 32.

[image: image33.emf]DRM AgentSRM Agent

RightsRemovalRequest

RightsRemovalResponse

Figure 32: Sequence Diagram – Rights Removal

6.12.6.1 Description of Messages
The DRM Agent sends the RightsRemovalRequest to remove the Rights in the SRM. The fields of the request are defined in Table 110.

Table 110: Fields of RightsRemovalRequest

	Fields
	Protection Requirement
	Description

	Handle
	Integrity & Confidentiality
	Handle identifies Rights that will be removed in the SRM. Refer to section 5.1.3.

Upon receiving the RightsRemovalRequest, the SRM Agent performs the following procedure:

1. Verify the integrity of the request fields

2. Decrypt the Handle with the Session Key
3. Remove the Rights corresponding to the Handle and also remove the locally stored Handle
The SRM Agent sends the RightsRemovalResponse to carry the result of the procedure. The fields of the response are defined in Table 111.
Table 111: Fields of RightsRemovalResponse

	Fields
	Protection Requirement
	Description

	Status
	Integrity
	The result of processing the RightsRemovalRequest message. The Status values are specified in Table 112.

Table 112: Status of Rights Removal Message
	Status Value
	Description

	Success
	The request was successfully processed.

	Field Integrity Verification Failed
	The HMAC value of fields in the request did not match the HMAC value generated by the SRM Agent.

	Handle Not Found
	The Handle in the request does not exist in the SRM.

	Parameter Failed
	A field in the request has an invalid length or structure.

	Unexpected Request
	This request was received out of sequence or is otherwise not allowed.

	Unknown Error
	Other errors

Upon receiving the response, the DRM Agent verifies the integrity of fields in the response.

If no errors or exceptions (Status = Success), the Rights Removal Message processing is completed.

6.12.6.2 Format of Messages
The message format (MessageBody) of the RightsRemovalRequest is specified as follows. The messageType is set to ’0’ and the message is protected by an HMAC.

MessageBody() {

 EncryptedHandle()

// Defined in Appendix E.2.8
}

The fields are defined as follows:

· EncryptedHandle – Handle field in Table 110 encrypted with the current Session Key (SK)

The message format (MessageBody) of the RightsRemovalResponse is specified as follows. The messageType is set to ‘1’ and the message is protected by an HMAC.

MessageBody() {

 Status()

// Defined in Appendix E.2.2
}

The field is defined as follows:

· Status - Status field in Table 111
6.12.6.3 Exception Handling
There may be an unexpected exception during the Rights Removal Message processing as specified in section 5.5.1. If the DRM Agent fails to receive the response, receives an error in the Status field, or fails to verify the message integrity, then the DRM Agent regards it as an exception.

The recovery from the exception is handled as a part of a Move transaction.
6.12.7 Store RI Certificate Chain
The DRM Agent requests the SRM Agent to store Rights Issuer’s certificate chains in the SRM as illustrated in Figure 33. The DRM and SRM Agents MAY support these messages.

[image: image34.emf]DRM AgentSRM Agent

RICertificateStoreRequest

RICertificateStoreResponse

Figure 33: Sequence Diagram – Store RI Certificate Chain

6.12.7.1 Description of Messages
The DRM Agent sends the RICertificateStoreRequest to store an RI certificate chain in the SRM. The fields of the request are defined in Table 113.

Table 113: Fields of RICertificateStoreRequest

	Fields
	Protection Requirement
	Description

	RI ID
	No
	The hash of the Rights Issuer’s public key in the RI Certificate (i.e. the hash of the complete DER-encoded subjectPublicKeyInfo component in the RI Certificate). The default hash algorithm is SHA-1.

	RI Certificate Chain
	No
	Rights Issuer’s certificate chain

Upon receiving the RICertificateStoreRequest, the SRM Agent stores the RI ID and certificate chain. If there already exists the RI certificate chain, this is overwritten with the certificate chain in the request.

The SRM Agent sends the RICertificateStoreResponse to carry the result of the action. The fields of the response are defined in Table 114.

Table 114: Fields of RICertificateStoreResponse

	Fields
	Protection Requirement
	Description

	Status
	No
	The result of processing the RICertificateStoreRequest message. The Status values are specified in Table 115.

Table 115: Status of RI Certificate Store Message
	Status Value
	Description

	Success
	The request was successfully processed.

	Not Enough Space
	The SRM does not have enough space to store the certificate chain.

	Request Not Supported
	RI Certificate Chain cannot be stored in the SRM.

	Parameter Failed
	A field in the request has an invalid length or structure.

	Unexpected Request
	This request was received out of sequence or is otherwise not allowed.

	Unknown Error
	Other errors

If no errors or exceptions (Status = Success), the RI Certificate Store Message processing is completed.

6.12.7.2 Format of Messages
The message format (MessageBody) of the RICertificateStoreRequest is specified as follows. The messageType is set to ’0’ and the message is not protected by an HMAC.

RiId() {

 OctetString8()

// Defined in Appendix E.1
}

RiCertificateChain() {

 CertificateChain()

// Defined in Appendix E.1
}

MessageBody() {

 RiId()

 RiCertificateChain()

}

The fields are defined as follows:

· RiId – RI ID field in Table 113
· RiCertificateChain – RI Certificate Chain field in Table 113
The message format (MessageBody) of the RICertificateStoreResponse is specified as follows. The messageType is set to ‘1’ and the message is not protected by an HMAC.

MessageBody() {

 Status()

// Defined in Appendix E.2.2
}

The field is defined as follows:

· Status - Status field in Table 114
6.12.7.3 Exception Handling

There may be an unexpected exception during the RI Certificate Store Message processing as specified in section 5.5.1. If the DRM Agent fails to receive the response, or finds an error by referring to the Status (except Not Enough Space and Request Not Supported), then the DRM Agent regards it as an exception and terminates communication by discarding any existing SAC context with the SRM Agent. The User MAY be informed of this exception.
6.12.8 Get RI Certificate Chain
The DRM Agent requests the SRM Agent to read Rights Issuer’s certificate chains from the SRM as illustrated in Figure 34. The DRM and SRM Agents MAY support these messages.

[image: image35.emf]DRM AgentSRM Agent

RICertificateQueryRequest

RICertificateQueryResponse

Figure 34: Sequence Diagram – Get RI Certificate Chain

6.12.8.1 Description of Messages
The DRM Agent sends the RICertificateQueryRequest to read an RI certificate chain from the SRM. The fields of the request are defined in Table 116.

Table 116: Fields of RICertificateQueryRequest

	Fields
	Protection Requirement
	Description

	RI ID
	No
	The hash of the Rights Issuer’s public key in the RI Certificate (i.e. the hash of the complete DER-encoded subjectPublicKeyInfo component in the RI Certificate). The default hash algorithm is SHA-1.

Upon receiving the RICertificateQueryRequest, the SRM Agent reads the RI certificate chain identified by the RI ID from the SRM.

The SRM Agent sends the RICertificateQueryResponse to carry the result of the action. The fields of the response are defined in Table 117.

Table 117: Fields of RICertificateQueryResponse

	Fields
	Protection Requirement
	Description

	Status
	No
	The result of processing the RICertificateQueryRequest message. The Status values are specified in Table 66.
If Status contains any error, only this field is present in the RICertificateQueryResponse.

	RI Certificate Chain
	No
	Rights Issuer’s certificate chain

Table 118: Status of RI Certificate Query Message
	Status Value
	Description

	Success
	The request was successfully processed.

	RI Certificate Chain Not Found
	The SRM Agent cannot find the matched RI certificate chain.

	Request Not Supported
	This request is not supported by the SRM Agent.

	Parameter Failed
	A field in the request has an invalid length or structure.

	Unexpected Request
	This request was received out of sequence or is otherwise not allowed.

	Unknown Error
	Other errors

If no errors or exceptions (Status = Success), the RI Certificate Query Message processing is completed.

6.12.8.2 Format of Messages
The message format (MessageBody) of the RICertificateQueryRequest is specified as follows. The messageType is set to ’0’ and the message is not protected by an HMAC.

RiId() {

 OctetString8()

// Defined in Appendix E.1
}

MessageBody() {

 RiId()

}

The field is defined as follows:

· RiId – RI ID field in Table 116
The message format (MessageBody) of the RICertificateQueryResponse is specified as follows. The messageType is set to ‘1’ and the message is not protected by an HMAC.

RiCertificateChain() {

 CertificateChain()

// Defined in Appendix E.1
}

MessageBody() {

 Status()

// Defined in Appendix E.2.2
 if (Status == 0) {

 RiCertificateChain()

 }

}

The fields are defined as follows:

· Status - Status field in Table 117
· RiCertificateChain – RI Certificate Chain field in Table 117
6.12.8.3 Exception Handling

There may be an unexpected exception during the RI Certificate Query Message processing as specified in section 5.5.1. If the DRM Agent fails to receive the response, or finds an error by referring to the Status (except RI Certificate Chain Not Found and Request Not Supported), then the DRM Agent regards it as an exception and terminates communication by discarding any existing SAC context with the SRM Agent. The User MAY be informed of this exception.
6.12.9 Remove RI Certificate Chain
The DRM Agent requests the SRM Agent to remove an RI certificate chain from the SRM as illustrated in Figure 35. The DRM and SRM Agents MAY support these messages.

[image: image36.emf]DRM AgentSRM Agent

RICertificateRemovalRequest

RICertificateRemovalResponse

Figure 35: Sequence Diagram – Remove RI Certificate Chain

6.12.9.1 Description of Messages
The DRM Agent sends the RICertificateRemovalRequest to remove the RI certificate chain from the SRM. The fields of the request are defined in Table 119.

Table 119: Fields of RICertificateRemovalRequest

	Fields
	Protection Requirement
	Description

	RI ID
	No
	The hash of the Rights Issuer’s public key in the RI Certificate (i.e. the hash of the complete DER-encoded subjectPublicKeyInfo component in the RI Certificate). The default hash algorithm is SHA-1.

Upon receiving the RICertificateRemovalRequest, the SRM Agent finds the RI certificate chain identified by the RI ID and removes it.

The SRM Agent sends the RICertificateRemovalResponse to carry the result of the action. The fields of the response are defined in Table 120.
Table 120: Fields of RICertificateRemovalResponse

	Fields
	Protection Requirement
	Description

	Status
	No
	The result of processing the RICertificateRemovalRequest message. The Status values are specified in Table 121.

Table 121: Status of RI Certificate Removal Message
	Status Value
	Description

	Success
	The request was successfully processed.

	RI Certificate Chain Not Found
	The SRM Agent cannot find the matched RI certificate chain.

	Request Not Supported
	This request is not supported by the SRM Agent.

	Parameter Failed
	A field in the request has an invalid length or structure.

	Unexpected Request
	This request was received out of sequence or is otherwise not allowed.

	Unknown Error
	Other errors

If no errors or exceptions (Status = Success), the RI Certificate Removal Message processing is completed.

6.12.9.2 Format of Messages
The message format (MessageBody) of the RICertificateRemovalRequest is specified as follows. The messageType is set to ’0’ and the message is not protected by an HMAC.

RiId() {

 OctetString8()

// Defined in Appendix E.1
}

MessageBody() {

 RiId()

}

The field is defined as follows:

· RiId – RI ID field in Table 119
The message format (MessageBody) of the RICertificateRemovalResponse is specified as follows. The messageType is set to ‘1’ and the message is not protected by an HMAC.

MessageBody() {

 Status()

// Defined in Appendix E.2.2
}

The field is defined as follows:

· Status - Status field in Table 120
6.12.9.3 Exception Handling

There may be an unexpected exception during the RI Certificate Removal Message processing as specified in section 5.5.1. If the DRM Agent fails to receive the response, or finds an error by referring to the Status (except RI Certificate Chain Not Found and Request Not Supported), then the DRM Agent regards it as an exception and terminates communication by discarding any existing SAC context with the SRM Agent. The User MAY be informed of this exception.
6.12.10 Dynamic Code Page Query

The DRM Agent requests the SRM Agent to read the WBXML Dynamic Code Pages (see section 7.2.2 and 7.3.2) as illustrated in Figure 36. The SRM Agent MAY support these messages.

[image: image37.emf]DRM AgentSRM Agent

DynamicCodePageQueryRequest

DynamicCodePageQueryResponse

Figure 36: Sequence Diagram – Dynamic Code Page Query
6.12.10.1 Description of Messages
The DRM Agent sends the DynamicCodePageQueryRequest to read the WBXML Dynamic Code Pages from the SRM. The DynamicCodePageQueryRequest has no fields.

Upon receiving the DynamicCodePageQueryRequest, the SRM Agent reads the Dynamic Code Pages from its internal storage and the SRM Agent sends the DynamicCodePageQueryResponse to carry the result of the action. The fields of the response are defined in Table 122.
Table 122: Fields of DynamicCodePageQueryResponse

	Fields
	Protection Requirement
	Description

	Status
	No
	The result of processing the DynamicCodePageQueryRequest message. The Status values are specified in Table 123.
If Status contains any error, only this field is present in the DynamicCodePageQueryResponse.

	Attribute Code Page
	No
	The Dynamic Attribute Code Page

	Tag Code Page
	No
	The Dynamic Tag Code Page

Table 123: Status of Dynamic Code Page Query Message
	Status Value
	Description

	Success
	The request was successfully processed.

	Dynamic Code Pages Not Found
	The WBXML Dynamic Code Pages do not yet exist on the SRM. The DRM Agent MAY create new Code Pages as required.

	Request Not Supported
	This request is not supported by the SRM Agent.

	Parameter Failed
	A field in the request has an invalid length or structure.

	Unexpected Request
	This request was received out of sequence or is otherwise not allowed.

	Unknown Error
	Other errors

If no errors or exceptions (Status = Success or Status = Dynamic Code Pages Not Found), the Dynamic Code Page Query Message processing is completed.

6.12.10.2 Format of Messages
The MessageBody of the DynamicCodePageQueryRequest is empty. The messageType is set to ’0’ and the message is not protected by an HMAC.

The message format (MessageBody) of the DynamicCodePageQueryResponse is specified as follows. The messageType is set to ‘1’ and the message is not protected by an HMAC.

MessageBody() {

 Status()

// Defined in Appendix E.2.2
 if (Status == 0) {

 AttributeCodePage()

// Defined in Appendix E.5.1
 TagCodePage()

// Defined in Appendix E.5.2
 }

}

The fields are defined as follows:

· Status - Status field in Table 122
· AttributeCodePage – Attribute Code Page field as defined in E.5.1
· TagCodePage – Tag Code Page field in section E.5.2
6.12.10.3 Exception Handling

There may be an unexpected exception during the Dynamic Code Page Query as specified in section 5.5.1. If the DRM Agent fails to receive the response, or finds an error by referring to the Status (except Dynamic Code Pages Not Found and Request Not Supported), then the DRM Agent regards it as an exception and terminates communication by discarding any existing SAC context with the SRM Agent. The User MAY be informed of this exception.
6.12.11 Dynamic Code Page Update

The DRM Agent requests the SRM Agent to store an updated WBXML Dynamic Code Page on the SRM as illustrated in Figure 37. The DRM and SRM Agents MAY support these messages.

[image: image38.emf]DRM AgentSRM Agent

DynamicCodePageUpdateRequest

DynamicCodePageUpdateResponse

Figure 37: Sequence Diagram – Dynamic Code Page Update
6.12.11.1 Description of Messages
The DRM Agent sends the DynamicCodePageUpdateRequest to store an updated set of Dynamic Code Pages in the SRM. The updated code pages SHALL replace any existing code pages. The fields of the request are defined in Table 124.

Table 124: Fields of DynamicCodePageUpdateRequest

	Fields
	Protection Requirement
	Description

	Attribute Code Page
	No
	The Dynamic Attribute Code Page

	Tag Code Page
	No
	The Dynamic Tag Code Page

Upon receiving the DynamicCodePageUpdateRequest, the SRM Agent stores the updated code page(s). If the updated code page already exists in the SRM then it is overwritten.

The SRM Agent sends the DynamicCodePageUpdateResponse to carry the result of the action. The fields of the response are defined in Table 125.

Table 125: Fields of DynamicCodePageUpdateResponse

	Fields
	Protection Requirement
	Description

	Status
	No
	The result of processing the DynamicCodePageUpdateRequest message. The Status values are specified in Table 126

Table 126: Status of Dynamic Code Page Update Message

	Status Value
	Description

	Success
	The request was successfully processed.

	Not Enough Space
	The SRM does not have enough space to store the dynamic code tables

	Request Not Supported
	Dynamic Code Tables cannot be stored in the SRM.

	Parameter Failed
	A field in the request has an invalid length or structure.

	Unexpected Request
	This request was received out of sequence or is otherwise not allowed.

	Unknown Error
	Other errors

If no errors or exceptions (Status = Success), the Dynamic Code Page Update Message processing is completed.
6.12.11.2 Format of Messages
The message format (MessageBody) of the DynamicCodePageUpdateRequest is specified as follows. The messageType is set to ’0’ and the message is not protected by an HMAC.

MessageBody() {

 attributeCodePagePresent

1
bslbf

 tagCodePagePresent

1
bslbf
 rfu

6
bslbf
 if (attributeCodePagePresent) {

 AttributeCodePage()

// Defined in Appendix E.5.1
 }

 if (tagCodePagePresent) {

 TagCodePage()

// Defined in Appendix E.5.2
 }

}

The fields are defined as follows:

· attributeCodePagePresent – indicates whether the AttributeCodePage is present.

· tagCodePagePresent – indicates whether the TagCodePage is present.

· AttributeCodePage – Attribute Code Page field as defined in E.5.1
· TagCodePage – Tag Code Page field in section E.5.2
The message format (MessageBody) of the DynamicCodePageUpdateResponse is specified as follows. The messageType is set to ‘1’ and the message is not protected by an HMAC.

MessageBody() {

 Status()

// Defined in Appendix E.2.2
}

The field is defined as follows:

· Status - Status field in Table 125
6.12.11.3 Exception Handling

There may be an unexpected exception during the Dynamic Code Page Update Message processing as specified in section 5.5.1. If the DRM Agent fails to receive the response, or finds an error by referring to the Status (except Not Enough Space and Request Not Supported), then the DRM Agent regards it as an exception and terminates communication by discarding any existing SAC context with the SRM Agent. The User MAY be informed of this exception.
7. ROAP Extension

These sections define the extension to DRM v2.0 ROAP protocol messages.
7.1 ROAP Trigger
This specification extends XML Schema for ROAP RO Acquisition Trigger for Direct Provisioning of Rights to the SRM procedure as shown in Figure 16. A ROAP RO Acquisition Trigger MAY be delivered from an RI to a DRM Agent to initiate the RO Acquisition protocol for Direct Provisioning of Rights to SRM. Rights Issuer has to indicate to the DRM Agent in host device that the Rights Object is to be downloaded and installed to the SRM Agent. The ROAP RO Acquisition Trigger SHALL include at least one <trustAnchorAndsrmIDPair> element for Direct Provisioning of Rights to the SRM procedure. In case of Direct Provisioning of Rights to the SRM, a DRM Agent on receiving ROAP RO Acquisition Trigger with <trustAnchorAndsrmIDPair> element MUST interact with a SRM that have identifier matching with <srmID> element under the trust anchor identified trust model, to extract the necessary information used to generate the ROAP RO Request message, and consequently send the built ROAP RO Request message to the Rights Issuer.
TBD: the name for extended RO Acquisition Trigger need to be changed to prevent the backward compatibility issue.

The schema below depicts the additional element to the RO Acquisition Trigger schema.
<complexType name="ROAcquisitionTrigger">

 <complexContent>

 <extension base="roap: BasicRoapTrigger">

 <sequence>

 <element name="domainID" type="roap:DomainIdentifier" minOccurs="0"/>

 <element name="domainAlias" type="string" minOccurs="0"/>

 <sequence maxOccurs="unbounded">

 <element name="roID" type="ID"/>

 <element name="roAlias" type="roap:String80" minOccurs="0"/>

 <element name="contentID" type="anyURI" minOccurs="0" maxOccurs="unbounded"/>
 <element name="trustAnchorAndsrmIDPair" type="roap:trustAnchorAndsrmIdentifierPair" minOccurs="0"/>
</sequence>

 </sequence>

 </extension>

 </complexContent>

</complexType>
The <trustAnchorAndsrmIDPair> element identifies the SRM under a trust model to be downloaded and installed the Rights Object. If the RO Acquisition Trigger includes a <trustAnchorAndsrmIDPair> element, the DRM Agent SHALL initiate the Direct Provisioning of Rights to the SRM procedure as specified in Section 6.8 after receiving the RO Acquisition Trigger. If an SRM support multiple trust models, the RI sends several <trustAnchorAndsrmIDPair> elements.

The following schema fragment defines the trustAnchorAndsrmIDPair type.

<complex Type name="trustAnchorAndsrmIdentifierPair">
<sequence>

<element name="trustAnchor" type="roap:Identifier"/>
<element name="srmID" type="roap:Identifier"/>
</sequence>

</complexType>
The <trustAnchor> element identifies the trust model. The only identifier currently defined is the hash of the root CA's public key info, as it appears in the certificate (i.e. the hash of the complete DER-encoded subjectPublicKeyInfo component in the root CA's certificate). The default hash algorithm is SHA-1.
The <srmID> element identifies the SRM. The only identifier currently defined is the hash of the SRM's public key info, as it appears in the certificate (i.e. the hash of the complete DER-encoded subjectPublicKeyInfo component in the SRM's certificate under the Trust Anchor). The default hash algorithm is SHA-1.
8. Compact Encoding of Rights

This section specifies the compact encoding of the SRM 1.0 Rights Object Container (<oma-dd:roContainer>). This encoding is used if the Rights Object Container roFormat indicates WBXML encoding.

WBXML 1.3 [WBXML] is a simple method that allows compacting XML documents in a loss-less manner. A WBXML decoder processes a WBXML encoded document by interpreting it byte-by-byte. Some bytes represent decoding instructions, some represent XML element start tags, attribute names or attribute values. The decoding process is stateful. The decoder maintains one global state, which determines whether it is processing elements, or attributes. Within each state, the decoder maintains an independent notion of a selected code page.
8.1 WBXML Encoding Rules

The following rules MUST be followed when WBXML encoding the <roContainer>:
· WBXML version 1.3 MUST be used (encoded as u_int8 value 0x03)

· The public identifier value "-//OMA//SRM 1.0//EN" MUST be used (encoded as mb_u_int32 value of 0x14). This document type identifier is registered by OMNA.

· The character set MUST be UTF-8 (encoded as mb_u_int32 value 0x6A).

· The string table MAY be used to specify string values of literal tokens. The string table SHOULD NOT be used to encode WBXML strings.

· All strings SHOULD be encoded inline.
8.2 Attribute Code Pages

8.2.1 Fixed Attribute Code Page
Attribute code page 0 in the context of the public identifier "-//OMA//SRM 1.0//EN" is a fixed code page. This holds attribute names and attribute values that correspond to the Rights Objects used in SRM 1.0, DRM 2.0, DRM 2.1 and BCAST 1.0. This code table is fixed and future versions of SRM will not add additional values to this code table.
Table 127: Fixed WBXML Attribute Code Page – Attribute Names

	Attribute Name
	WBXML Attribute Code
	Comment

	GLOBAL TOKENS
	00 – 04
	

	xmlns:o-ex
	05
	

	xmlns:o-dd
	06
	

	xmlns:ds
	07
	

	xmlns:oma-dd
	08
	

	xmlns:xenc
	09
	

	o-ex:id
	0A
	

	o-ex:idref
	0B
	

	Algorithm
	0C
	

	URI
	0D
	

	oma-dd:onExpiredURL
	0E
	

	oma-dd:timer
	0F
	

	oma-dd:mode
	10
	

	oma-dd:timed
	11
	

	oma-dd:contentAccessGranted
	12
	

	oma-dd:token-timed-count-timer
	13
	

	xmlns:roap
	14
	

	
	15 – 3F
	Not Used

	
	40 – 44
	GLOBAL TOKENS

	
	45 – 7F
	Not Used

Table 128: Fixed WBXML Attribute Code Page – Attribute Values

	Attribute Value
	WBXML Attribute Value Code

	GLOBAL TOKENS
	80 - 84

	http://odrl.net/1.1/ODRL-EX
	85

	http://odrl.net/1.1/ODRL-DD
	86

	http://www.openmobilealliance.com/oma-dd
	87

	http://www.w3.org/2000/09/xmldsig#
	88

	http://www.w3.org/2001/04/xmlenc#
	89

	http://www.w3.org/2000/09/xmldsig#sha1
	8A

	http://www.w3.org/2001/04/xmlenc#kw-aes128
	8B

	http://www.w3.org/2001/10/xml-exc-c14n#
	8C

	http://www.rsasecurity.com/rsalabs/pkcs/schemas/pkcs-1#rsa-pss-default
	8D

	#K_MAC_and_K_REK
	8E

	move
	8F

	copy
	90

	true
	91

	false
	92

	urn:oma:bac:dldrm:roap-1.0
	93

	UNUSED
	94 - BF

	GLOBAL TOKENS
	C0 – C4

	UNUSED
	C5 – FF

8.2.2 Dynamic Attribute Code Pages
Attribute code page 1 in the context of the public identifier "-//OMA//SRM 1.0//EN" is a dynamic code page. The attribute name codes and attribute value codes are not defined in this specification. The dynamic attribute code page is defined to allow forward compatibility in WBXML encoding. The values within the dynamic attribute code page are stored on the SRM. The dynamic code page is unique per SRM. Normally a new SRM will have an empty dynamic attribute code page.

As defined in section 6.8.10, DRM Agents MAY retrieve the SRM’s dynamic code page from the SRM. DRM Agents MUST NOT delete attribute codes from the SRM’s dynamic code page.

During the process of compacting an XML Document before transferring it to the SRM, the DRM Agent MAY add new attribute code values and attribute name codes to the dynamic code page. DRM Agents SHOULD add new attribute codes if the XML Document to be compacted contains any attributes or attribute values that do not exist in either code page 0 or the existing dynamic code page.
8.2.3 Reserved Attribute Code Pages
All attribute code pages 2 to 127 in the context of the public identifier "-//OMA//SRM 1.0//EN" are reserved for future use by OMA.
8.3 Tag Code Pages

8.3.1 Rights Object Container
The element tag code page defined in this section is to be used together with tag code page 1 and attribute code pages 0 and 1 to encode and decode the Rights Object Container’s <roContainer> element.
Table 129: Fixed WBXML Tag Code Page
	Tag Name
	WBXML Attribute Code

	
	No content, No attributes
	Content, No attributes
	No Content, Attributes
	Content, Attributes

	rights
	05
	45
	85
	C5

	o-ex:context
	06
	46
	86
	C6

	o-ex:agreement
	07
	47
	87
	C7

	o-ex:asset
	08
	48
	88
	C8

	o-ex:inherit
	09
	49
	89
	C9

	o-ex:permission
	0A
	4A
	8A
	CA

	o-ex:requirement
	0B
	4B
	8B
	CB

	o-ex:constraint
	0C
	4C
	8C
	CC

	o-ex:digest
	0D
	4D
	8D
	CD

	o-dd:version
	0E
	4E
	8E
	CE

	o-dd:uid
	0F
	4F
	8F
	CF

	o-dd:play
	10
	50
	90
	D0

	o-dd:display
	11
	51
	91
	D1

	o-dd:execute
	12
	52
	92
	D2

	o-dd:print
	13
	53
	93
	D3

	o-dd:export
	14
	54
	94
	D4

	o-dd:move
	15
	55
	95
	D5

	o-dd:save
	16
	56
	96
	D6

	o-dd:tracked
	17
	57
	97
	D7

	o-dd:count
	18
	58
	98
	D8

	o-dd:datetime
	19
	59
	99
	D9

	o-dd:start
	1A
	5A
	9A
	DA

	o-dd:end
	1B
	5B
	9B
	DB

	o-dd:interval
	1C
	5C
	9C
	DC

	o-dd:accumulated
	1D
	5D
	9D
	DD

	o-dd:individual
	1E
	5E
	9E
	DE

	oma-dd:timed-count
	1F
	5F
	9F
	DF

	oma-dd:system
	20
	60
	A0
	E0

	oma-dd:access
	21
	61
	A1
	E1

	oma-dd:token-based
	22
	62
	A2
	E2

	oma-dd:token-constraint-count
	23
	63
	A3
	E3

	oma-dd:token-constraint-timed-count
	24
	64
	A4
	E4

	oma-dd:token-accumulated
	25
	65
	A5
	E5

	oma-dd:token-unit
	26
	66
	A6
	E6

	oma-dd:token-consumed
	27
	67
	A7
	E7

	oma-dd:roContainer
	28
	68
	A8
	E8

	xenc:EncyptedKey
	29
	69
	A9
	E9

	xenc:EncryptionMethod
	2A
	6A
	AA
	EA

	xenc:CipherData
	2B
	6B
	AB
	EB

	xenc:CipherValue
	2C
	6C
	AC
	EC

	ds:DigestMethod
	2D
	6D
	AD
	ED

	ds:DigestValue
	2E
	6E
	AE
	EE

	ds:KeyInfo
	2F
	6F
	AF
	EF

	ds:RetrievalMethod
	30
	70
	B0
	F0

	ds:SignedInfo
	31
	71
	B1
	F1

	ds:CanonicalizationMethod
	32
	72
	B2
	F2

	ds:SignatureMethod
	33
	73
	B3
	F3

	ds:Reference
	34
	74
	B4
	F4

	ds:Transforms
	35
	75
	B5
	F5

	ds:Transform
	36
	76
	B6
	F6

	ds:SignatureValue
	37
	77
	B7
	F7

	roap:X509SPKIHash
	38
	78
	B8
	F8

	hash
	39
	79
	B9
	F9

	ds:Signature
	3A
	7A
	BA
	FA

In the context of the public identifier “-//OMA//SRM 1.0//EN”, within tag code page 0, tag codes from the range 3B-3F, 7B-7F, BB-BF and FB-FF are reserved for future use by OMA.
8.3.2 Dynamic Tag Code Page
Tag code page 1 in the context of the public identifier "-//OMA//SRM 1.0//EN" is a dynamic code page. The tag name codes are not defined in this specification. The dynamic tag code page is defined to allow forward compatibility in WBXML encoding. The values within the dynamic tag code page are stored on the SRM. The dynamic code page is unique per SRM. Normally a new SRM will have an empty dynamic tag code page.

As defined in section 6.12.10, DRM Agents MAY retrieve the SRM’s dynamic tag code page from the SRM. DRM Agents MUST NOT delete tag-name codes from the SRM’s dynamic code page.
During the process of compacting an XML document before transferring it to the SRM, the DRM Agent MAY add new tag-name codes to the dynamic code page. DRM Agents SHOULD add new tag name codes if the XML document to be compacted contains any tags that do not exist in either code page 0 or the existing dynamic code page.
8.3.3 Reserved Tag Code Pages
All tag code pages 2 to 127 in the context of the public identifier "-//OMA//SRM 1.0//EN" are reserved for future use by OMA.

8.4 Processing
8.4.1 Device (DRM Agent)
DRM Agents MUST support WBXML encoding of the <roContainer> element as defined in section E.2.5.2. DRM Agents SHOULD be able to generate and extend dynamic code pages if they are supported by the target SRM. DRM Agents SHOULD be able to encode tags, and attributes that do not have a well known token-code using the WBXML LITERAL token.

DRM Agents MUST support WBXML decoding of the <roContainer> element as defined in section E.2.5.2.

DRM Agents MAY support updating of SRM dynamic code tables.
8.4.2 SRM (SRM Agent)
SRM Agents MAY support storage of the dynamic attribute code page and dynamic tag code page.

SRM Agents do not need to support WBXML encoding or decoding.

8.4.3 Rights Issuers

As the WBXML encoding of Rights Object Containers is supported by DRM Agents, Rights Issuers do not need to support WBXML enocoding of Rights Object Containers.
8.5 Data Representation
8.5.1 Binary Data Representation

The WBXML OPAQUE token provides a method to encode raw binary data. DRM Agents MUST use the WBXML OPAQUE token to represent whitespace in the XML.
8.5.2 base64Binary Representation
Some elements in the Rights Obejct Container hold base64Binary data. All base64Binary data within the <rights> element MUST be encoded in the WBXML form directly as a literal string. All base64Binary data within the <signature> element MUST be base64 decoded prior to WBXML encoding and then encoded using the OPAQUE token.
8.6 Normal Processing and Transcoding
After a DRM Agent receives a WBXML encoded <roContainer> from an SRM, that DRM Agent MUST decode the message into XML format before any other processing is applied. Before a DRM Agent Moves a Rights Object Container to an SRM, the DRM Agent MUST canonicalise contents of the <rights> element of XML using Exclusive Canonicalisation without comments, and MAY encode the <roContainer> element using WBXML. The criterion by which a DRM Agent determines whether it should WBXML encode an <roContainer> is outside the scope of this specification. It is anticipated that individual SRM form factors will have different recommendations. In general, it is RECOMMENDED that DRM Agents SHOULD WBXML encode all <roContainer> elements larger than 2kB.

If the SRM does not support storage of dynamic code pages then the DRM Agent MUST use only the fixed code pages. If the <roContainer> contains any additional tags, attributes or attribute values, these SHOULD be encoded using the WBXML LITERAL token.

The WBXML SWITCH token SHALL be used to switch between the fixed code pages and dynamic code pages.

The normal process for a DRM Agent to encode a Rights Object Container is:

· Construct the <roContainer> as XML

· DRM Agent MUST canonicalise contents of the <rights> element of XML using Exclusive Canonicalisation without comments.

· Encode the <roContainer> using as WBXML:

· Initially attempt to use only the fixed attribute code page and fixed tag code page.

· If the SRM Agent indicated support for dynamic code pages in the SrmHelloResponse message then:

· If during the encoding any unknown attributes, attribute values or tags are found, then DRM Agents SHOULD retrieve the dynamic code pages from the SRM, before continuing processing.

· Continue the encoding making use of the additional attributes, attribute values, and tags that are specified in the dynamic code pages.

· If the dynamic code pages do not contain the necessary attributes, then the DRM Agent SHOULD add new attributes codes, attribute values and tags as required to the relevant dynamic tag code page.

· If updates were made to a dynamic code table then the DRM Agent MUST store the updated code table on the SRM. If the update to the dynamic code pages on the SRM fails for any reason, the DRM Agent SHOULD discard the WBXML encoded <roContainer>. The DRM Agent MAY re-start the processing as if the SRM Agent does not support dynamic code pages; or it MAY use plain XML to represent the <roContainer>.

· If the SRM Agent does not support dynamic code pages:

· Continue the encoding making use of the WBXML LITERAL token to encode unknown attributes and tags.

The normal process for a DRM Agent to decode a WBXML encoded <roContainer> is:

· Attempt to decode the WBXML encoded <roContainer> to XML:

· Initially attempt to decode using only the fixed attribute code page and fixed tag code page.

· If during the decoding any unknown application tokens are discovered, then if the SRM indicated support for dynamic code pages in the SrmHelloResponse message then retrieve the dynamic code pages from the SRM.

· Continue the decoding by making use of the additional application tokens that are specified in the dynamic code pages.

· If an application token is not specified in either the fixed code pages or dynamic code pages, then a critical error has occurred. The DRM Agent SHOULD delete the Rights Object from the SRM.

· Process the re-constructed XML <roContainer> as normal.
9. Replay Protection Mechanisms

To prevent Rights that have been Moved from being re-installed with a replay attack or by restore from off-device storage, the DRM Agent MUST have a Move Cache with a reliable identification (GUID, see [OMADRMv2]) for all Stateless ROs that have been Moved to an SRM. In [OMADRMv2], this identification consists of the ROID. However, a reduced size RO identification MAY be used, such as the hash over the Rights Object Container, truncated to a minimum size of 6 bytes. The Move Cache also holds the <timeStamp> element (RITS) of the RO.

Immediately after the Rights are removed during a successful Move of a Stateless RO from the Device to an SRM, the DRM Agent MUST insert the <GUID, RITS> pair corresponding to the RO in the Move Cache.

If a <GUID, RITS> pair is to be inserted in the Move Cache, but the Move Cache is full and the RITS in the RO is later than the earliest RITS in the Move Cache, then the DRM Agent MUST replace the entry with the earliest RITS in the Move Cache with the new <GUID, RITS> pair. If the RITS in the RO is equal to or earlier than the earliest RITS in the Move Cache, the <GUID, RITS> pair is not inserted.

When receiving a Stateless RO in a way other than Move (e.g. when restoring a backup from off-device storage (see [OMADRMv2])), the DRM Agent MUST perform the following procedure:

a) Check if the Move Cache contains the GUID of the received RO. If it does, then a) holds, otherwise a) fails.

b) If a) holds, the RO is rejected.

c) If a) fails and the Move Cache is not full, the RO is installed.

d) If a) fails, the Move Cache is full and the RITS of the RO is after the earliest RITS in the Move Cache, the RO is installed.

e) If a) fails, the Move Cache is full and the RITS of the RO is earlier than or equal to the earliest RITS in the Move Cache, the RO is rejected.

Notice that this procedure corresponds to the procedure for the replay protection mechanism for Stateless ROs uploaded to an RI from [OMADRMv2.1].

Multiple copies of the same RO (i.e. two ROs having the same ROID) SHALL NOT be installed simultaneously on the same Device. Disabled ROs (e.g. during an RO Upload or Move protocol) are considered as installed, i.e. when an RO is disabled, another copy of it MUST not be installed.

The Move Cache MUST have capacity to contain at least 100 entries. It is recommended that the Move Cache has the capacity to contain more entries.

When a Stateless RO is Moved from an SRM to the Device, and its <GUID, RITS> pair is already in the Move Cache, then this <GUID, RITS> pair MUST be removed from the Move Cache. Notice that this happens when a Stateless RO is Moved from the DRM Agent to the SRM, and later returns to the same DRM Agent via a Move operation.
9.1 Alternative dealing with a full Move Cache
When the Move Cache is full, the DRM Agent MAY store a part with the oldest RITS values of the Move Cache on off-device storage. In this case, the DRM Agent MUST provide for integrity protection of the externally stored part. Additionally, the DRM Agent MUST record securely that it stored a part of the Move Cache on external storage and an identification of the latest externally stored part. When an RO with a RITS before the earliest RITS in the Move Cache is delivered out-of-band or re-installed from off-device storage, the DRM Agent MUST request the externally stored part of the Move Cache, verify its integrity, verify that it is the latest externally stored part and verify if the RO has been Moved. If the integrity verification of the externally stored part fails, or if the externally stored part indicates that the RO has been Moved, the RO MUST NOT be installed. Otherwise the RO is installed. If an RO with a RITS equal to the earliest RITS in the Move Cache is delivered out-of-band or restored from a backup, both the Move Cache and the externally stored part MUST be consulted.

Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	OMA-TS-SRM-V1_0-20090310-A
	10 Mar 2009
	Initial document to address the basic starting point

 Ref TP Doc# OMA-TP-2009-0099-INP_SRM_V1_0_ERP_for_Notification_and_Final_Approval

	
	
	

A.2 Draft/Candidate Version V1_1 History
	Document Identifier
	Date
	Sections
	Description

	Draft Versions

OMA-TS-SRM-V1_1-20090507-D
	07 May 2009
	6.8
	Incorporates input to committee:

 OMA-DRM-2009-0076-CR_SRMv1_1_TS_Direct_Provisioning_of_Rights

	Draft Versions

OMA-TS-SRM-V1_1-20090608-D
	08 Jun 2009
	2.1

6.8
	Incorporates input to committee:

 OMA-DRM-2009-0092-CR_Changes_to_section_6.8

	Draft Versions

OMA-TS-SRM-V1_1-20090703-D
	03 July 2009
	1, 2.1, 2.2, 3.2

6.9
	Incorporates input to committee:

 OMA-DRM-2009-0080R01-CR_SRM_TS_Update_Scope_References_Definitions
 OMA-DRM-2009-0103R02-CR_SRM_TS_SRM_Rights_Upgrade

	Draft Versions

OMA-TS-SRM-V1_1-20090904-D
	04 Sep 2009
	7

6.10

6.8

6.9

4

6.3.6
5.1.10

6.11

5.5.3

6.8.2

5.1.11

6.11.7-9
	Incorporates input to committee:

 OMA-DRM-2009-0077R02-CR_SRMv1_1_TS_ROAP_Extension
 OMA-DRM-2009-0097R04-CR_SRM_TS_S2S_Move

 OMA-DRM-2009-0117R02-CR_SRMv1_1_TS_Update_Direct_Provisioning_of_Rights
 OMA-DRM-2009-0135R02-CR_SRM_TS_TBD_solved_for_SRM_Upgrade

 OMA-DRM-2009-0147R01-CR_SRM_TS_Update_of_Introduction

 OMA-DRM-2009-0148-CR_SRM_TS_Maintenance_of_Multiple_SACs

 OMA-DRM-2009-0158R02-CR_SRM_TS_Token_Information_Structure

 OMA-DRM-2009-0159R01-CR_TS_SRM_Token_Move_Protocols

 OMA-DRM-2009-0160R01-CR_TS_SRM_Local_Token_Consumption

 OMA-DRM-2009-0161R01-CR_TS_SRM_Token_Utility_Protocols

 OMA-DRM-2009-0162R01-CR_TS_SRM_Operation_Log_Extension_for_Tokens

 OMA-DRM-2009-0169R03-CR_Add_the_function_for_SignatureQueryResponse

 OMA-DRM-2009-0172-CR_TS_SRM_BCRO_Information_Structure

 OMA-DRM-2009-0173R02-CR_TS_SRM_BCRO_Move_Protocols

Appendix B. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [IOPPROC].
Items in the SCR table are grouped by functions. Group types of SCR items represent functions as followings:

· CRT: Cryptographic algorithms

· HEL: SRM Hello message

· SAC: Mutual authentication/key exchange and Secure Authenticated Channel

· CRL: CRL processing

· OCSP: OCSP processing

· MOV: Rights Move

· LRC: Local Rights Consumption

· UTIL: Utility messages for Rights Move and Local Rights Consumption

· CERT: Functions for RI’s certificates delivery and verification

· LOG: Operation log

· CAC: Move cache

B.1 SCR for Client
The table below enumerates the client conformance requirements on DRM Agents.

	Item
	Function
	Reference
	Requirement

	SRM-CRT-C-001-M
	Hash Algorithms: SHA-1
	Section 5.2
	

	SRM-CRT-C-002-M
	MAC Algorithms: HMAC-SHA1
	Section 5.2
	

	SRM-CRT-C-003-M
	Symmetric Encryption Algorithms: AES-128-CBC
	Section 5.2
	

	SRM-CRT-C-004-M
	Asymmetric Encryption Algorithms: RSA-OAEP
	Section 5.2
	

	SRM-CRT-C-005-M
	Signature Algorithms: RSA-PSS
	Section 5.2
	

	SRM-HEL-C-001-M
	Device – SRM Hello
	Section 6.1
	

	SRM-SAC-C-001-M
	Mutual Authentication and Key Exchange: MAKE
	Section 6.2
	

	SRM-SAC-C-002-M
	Key Derivation Function
	Section 6.3.1
	

	SRM-SAC-C-003-M
	MAC Key update
	Section 6.3.4
	

	SRM-SAC-C-004-O
	Change SAC
	Section 6.3.5
	

	SRM-CRL-C-001-M
	CRL Number Exchange between Device and SRM
	Section 6.4.1
	

	SRM-CRL-C-002-M
	CRL Delivery from Device to SRM
	Section 6.4.4
	

	SRM-CRL-C-003-M
	CRL Delivery from SRM to Device
	Section 6.4.5
	

	SRM-CRL-C-004-M
	Certificate revocation status checking using cached CRL
	Section 6.4
	

	SRM-OCSP-C-001-O
	OCSP Nonce transfer from SRM to Device
	Section 6.4.2
	

	SRM-OCSP-C-002-O
	OCSP Response transfer from Device to SRM
	Section 6.4.3
	

	SRM-OCSP-C-003-O
	OCSP Request generation
	Section 6.4.2
	

	SRM-MOV-C-001-M
	Device to SRM Move
	Section 6.5
	0

	SRM-MOV-C-002-M
	Exception Recovery for Device to SRM Move
	Section 6.5.1.3, 6.5.2.2, 6.5.3.3, 6.5.4.2
	0 AND 0

	SRM-MOV-C-003-M
	SRM to Device Move
	Section 6.6
	0 AND 0

	SRM-MOV-C-004-M
	Exception Recovery for SRM to Device Move
	Section 6.6.1.3, 6.6.2.2, 6.6.3.3
	0 AND 0 AND 0

	SRM-MOV-C-005-M
	Rights derivation from RO Payload
	Section 5.1.1
	

	SRM-MOV-C-006-M
	Move permission support
	Appendix I
	

	SRM-LRC-C-001-M
	REK transfer from SRM to Device
	Section 6.7.2
	0

	SRM-LRC-C-002-M
	Exception Recovery for REK Transfer to Device
	Section 6.7.2.3
	0 AND 0

	SRM-LRC-C-003-M
	State Information Update
	Section 6.7.3
	0 AND 0

	SRM-LRC-C-004-M
	Exception Recovery for State Information Update
	Section 6.7.3.3
	0 AND 0

	SRM-UTIL-C-001-M
	Handle List transfer from SRM to Device
	Section 6.8.1
	

	SRM-UTIL-C-002-M
	Rights Information Transfer to Device
	Section 6.8.2
	

	SRM-UTIL-C-003-O
	Rights Information List Query
	Section 6.8.3
	

	SRM-UTIL-C-004-M
	Handle Removal from SRM
	Section 6.8.4
	

	SRM-UTIL-C-005-M
	Rights Enablement in SRM
	Section 6.8.5
	

	SRM-UTIL-C-006-M
	Rights Removal from SRM
	Section 6.8.6
	

	SRM-UTIL-C-007-M
	Dynamic Code Page Query
	Section 6.8.10
	

	SRM-UTIL-C-008-O
	Dynamic Code Page Update
	Section 6.8.11
	

	SRM-UTIL-C-009-M
	WBXML Encoding & Decoding
	Section 7
	

	SRM-CERT-C-001-O
	RI Certificate Transfer from Device to SRM
	Section 6.8.7
	

	SRM-CERT-C-002-O
	RI Certificate Transfer from SRM to Device
	Section 6.8.8
	

	SRM-CERT-C-003-O
	RI Certificate Removal from SRM
	Section 6.8.9
	

	SRM-CERT-C-004-M
	RI Certificate Chain processing and validation for Move
	Section 5.1.2
	

	SRM-CERT-C-005-O
	RI Certificate Chain processing and validation for Local Rights Consumption
	Section 5.1.2
	

	SRM-REV-C-001-O
	SRM removal detection
	Section 5.5.1
	

	SRM-LOG-C-001-M
	Operation Log
	Section 5.5.2
	

	SRM-CAC-C-001-M
	Move Cache
	Section 8
	

B.2 SCR for Server
The table below enumerates the client conformance requirements on Rights Issuers and SRM Agents.

B.2.1 SCR for RI

	Item
	Function
	Reference
	Requirement

	SRM-MOV-S-001-M
	Issuing Rights Object with Move permission
	Appendix I
	

B.2.2 SCR for SRM Agent

	Item
	Function
	Reference
	Requirement

	SRM-CRT-S-001-M
	Hash Algorithms: SHA-1
	Section 5.2
	

	SRM-CRT-S-002-M
	MAC Algorithms: HMAC-SHA1
	Section 5.2
	

	SRM-CRT-S-003-M
	Symmetric Encryption Algorithms: AES-128-CBC
	Section 5.2
	

	SRM-CRT-S-004-M
	Asymmetric Encryption Algorithms: RSA-OAEP
	Section 5.2
	

	SRM-CRT-S-005-M
	Signature Algorithms: RSA-PSS
	Section 5.2
	

	SRM-HEL-S-001-M
	Device – SRM Hello
	Section 6.1
	

	SRM-SAC-S-001-M
	Mutual Authentication and Key Exchange: MAKE
	Section 6.2
	

	SRM-SAC-S-002-M
	Key Derivation Function
	Section 6.3.1
	

	SRM-SAC-S-003-M
	MAC Key update
	Section 6.3.4
	

	SRM-SAC-S-004-O
	Change SAC
	Section 6.3.5
	

	SRM-CRL-S-001-M
	CRL Number Exchange between Device and SRM
	Section 6.4.1
	

	SRM-CRL-S-002-M
	CRL Store
	Section 6.4.4
	

	SRM-CRL-S-003-M
	CRL Query
	Section 6.4.5
	

	SRM-CRL-S-004-M
	Certificate revocation status checking using cached CRL
	Section 6.4
	

	SRM-OCSP-S-001-O
	Nonce generation for a secure time stamp using OCSP Response
	Section 6.4.2
	

	SRM-OCSP-S-002-O
	OCSP Response processing and validation
	Section 6.4.3
	

	SRM-OCSP-S-003-O
	Device revocation status checking using OCSP Response
	Section 6.4.3
	

	SRM-OCSP-S-004-O
	CRL issue data validation using OCSP Response
	Section 6.4.4
	

	SRM-MOV-S-002-M
	Rights Installation Setup
	Section 0
	

	SRM-MOV-S-003-M
	Rights Installation
	Section 6.5.3
	

	SRM-MOV-S-004-M
	Rights Query
	Section 6.6.1
	

	SRM-LRC-S-001-M
	REK Query
	Section 6.7.2
	

	SRM-LRC-S-002-M
	State Information Update
	Section 6.7.3
	0

	SRM-UTIL-S-001-M
	Handle List Generation
	Section 6.8.1
	

	SRM-UTIL-S-002-M
	Rights Information Query
	Section 6.8.2
	

	SRM-UTIL-S-003-O
	Rights Information List Query
	Section 6.8.3
	

	SRM-UTIL-S-004-M
	Handle Removal
	Section 6.8.4
	

	SRM-UTIL-S-005-M
	Rights Enablement
	Section 6.8.5
	

	SRM-UTIL-S-006-M
	Rights Removal
	Section 6.8.6
	

	SRM-UTIL-S-007-O
	Dynamic Code Page Query
	Section 6.8.10
	

	SRM-UTIL-S-008-O
	Dynamic Code Page Update
	Section 6.8.11
	

	SRM-CERT-S-001-O
	RI Certificate Store
	Section 6.8.7
	

	SRM-CERT-S-002-O
	RI Certificate Query
	Section 6.8.8
	

	SRM-CERT-S-003-O
	RI Certificate Removal
	Section 6.8.9
	

Appendix C. Transport Mappings

This section shows SRM communication layer model and includes explanation of each layer. This section clarifies the scope of OMA SRM enabler and the work-scope of external organizations related to each type of SRM.

C.1 SRM Communication Layer Model

The SRM communication layer model divides the functions of a protocol into a series of layers. Each layer has the property that it only uses the functions of the layer below, and only exports functionality to the layer above. This section briefly dictates the specifications on how one layer interacts with another.

[image: image39.emf]Application Layer

Middle Layer

Transformation Layer

SRM Access Layer

Figure 38: SRM Communication Layer

The SRM communication layer model consists of 4 layers: SRM access layer, transformation layer, middle layer and application layer. SRM access layer, transformation layer and middle layer have different property depending on each SRM type. However the application layer defines a common function of a protocol between Devices and SRM regardless of the layers below.

C.1.1 Application Layer

The application layer defines services that facilitate communication between DRM Agents and SRM Agents. This layer is independent of lower layers so that this layer is common to all SRM types.

OMA Secure Removable Media enabler specifies this layer.

C.1.2 Other Layers (Informative)

OMA Secure Removable Media enabler does not specify these layers, and these layers are defined by external organizations related to each type of SRM.

C.1.2.1 Middle Layer

The middle layer relieves the application layer of concern regarding syntactical differences in a message's data representation between Device and SRM. This layer provides functional interface defined by OMA SRM enabler for DRM agents and SRM Agents in the application layer. The implementation of this layer depends on each type of SRM.

C.1.2.2 Transformation Layer

The transformation layer defines fragmentation and de-fragmentation of the representation of digital data in Devices and SRM(s) and data blocks over a data line.

C.1.2.3 SRM Access Layer
The SRM access layer defines all the electrical and physical specifications for Device and SRM. This includes bus width, data rate, clock frequencies, and SRM form factor. The major functions and services performed by the SRM access layer are:

· Establishment and termination of a connection to a communications medium

· Modulation or conversion between data blocks and the corresponding signals transmitted over a communications channel

· Format of command line and data line

· SRM states and transition between each state

This layer also detects and corrects errors that may occur physically.
Appendix D. Method for Describing Binary Structures

D.1 Mnemonics (Data Types)
Section 2.2.6 of ISO/IEC 13818-1 [ISO/IEC13818-1] lists several data types supported by that standard. Most are not needed for SRM. The following table lists the mnemonics and data types that are needed for SRM.
Table 130: Data Types

	Mnemonic
	Data Type
	Equivalent C Type

	bslbf
	Bit string, left bit first, where "left" is the order in which bit strings are written in this document. Bit strings are written as a string of 1s and 0s within single quote marks, e.g. '1000 0001'. Blanks within a bit string are for ease of reading and have no significance.
	None

	tcimsbf
	Two’s complement integer, msb (sign) bit first.
	int

	uimsbf
	Unsigned integer, most significant bit first.
	unsigned int

As seen above, the data types are all big-endian.
D.2 Comments
Comments may be interspersed in the description. Comments follow a C++ style, being preceded by two forward slashes, i.e. “//”. It is suggested that they appear before the data structure or variable needing the comment. Comments are illustrated in the examples provided below.
D.3 Syntax Description
A data structure description starts with a name for the data structure. The name is begins with an upper case letter, followed by one or more upper and lower case letters (A-Z, a-z) and numbers (0-9) and finally ending with “()” (open and close parenthesis). The length of the name should be kept to a reasonable length. This document suggests that only the first letter of words be capitalized. The name of the data structure is followed by a “{“ (open brace) and a newline. Next comes a list of one or more field names (one per line) and followed a “}” (close brace). The following is an example description of a data structure called DsName():

DsName(){

 fieldName1

 .

 .

 fieldNamen
}

A field name represents either another data structure or a variable. If another data structure, the data structure is defined elsewhere. If a variable, then the field name is followed by two elements. Variable names follows the same rules as the name of a data structure except that it MUST begin with a lower case letter and is not followed by “()”. On the same line following variable name, the next element, nbrBits, indicates the size of the variable in bits. The next element is the dataType of the variable, taken from Table 78 above.

The following example is for a data structure that contains an additional data structure and a 16 bit unsigned integer. The inner data structure contains a bit flag and a 32 bit signed integer.
Example(){

 InnerDataStructure()

 //A 16 bit unsigned integer

 uint16Var
16
uimsbf

}

InnerDataStructure(){

 //A 1 bit Boolean flag

 bitFlag
1
bslbf

 //A 32 bit signed integer

 int32Var
32
tcimsbf

}
D.4 Padding
Although it is strictly not required, it is highly recommended that all integer variables and data structures start on byte boundaries. Therefore, when defining bit variables, it is up to the person defining the syntax to ensure that padding bits are defined to align the next variable or data structure on a byte boundary. The InnerDataStructure() example above should be rewritten as follows:

InnerDataStructure(){

 //A 1 bit Boolean flag

 bitFlag
1
bslbf

 //Padding bits, reserved for future use

 rfu
7
bslbf

 //A 32 bit signed integer

 int32Var
32
tcimsbf

}

D.5 Arrays
For describing an array, a C “for loop” is used. For example, the following data structure describes an array of 10 bytes:

FixedArrayExample(){

 for(i=0; i < 10; i++){

 byte
8
uimsbf

 }

}

A more complex example is a variable length (0 – 255) array of signed 16 bit integers.

VariableArrayExample(){

 nbrOfElements
8
uimsbf

 for (i=0; i < nbrOfElements; i++){

 int16
16
tcimsbf

 }

}

For variable sized arrays, there should be a size field (of type uimsbf) that is large enough to hold the maximum number of entries in the array. The following table lists a few of the possible ranges:

Table 131: Ranges
	Number of bits
	Range

	8
	0 - 255

	16
	0 - 65,535

	24
	0 - 16,777,215

	32
	0 - 4,294,967,295

D.6 Optional Variables or Data Structures
Many times there is a need for a variable or a data structure to be optional. In order to indicate whether the variable or data structure is present, a bit flag should be defined to indicate the presence. If multiple fields are optional, the indicator bit flags should be combined to minimize padding. The following example illustrates a data structure with a 16 bit integer, an optional data structure (which will not be defined), an 8 bit variable, an optional 64 bit integer and an optional fixed sized array.
OptionalExample(){

 int16
16
tcimsbf

 dsPresent
1
bslbf

 int64Present
1
bslbf

 arrayPresent
1
bslbf

 //Pad to 8 bit boundary

 rfu
5
bslbf

 if(dsPresent){

 DataStructure()

 }

 uint8
8
uimsbf

 if(int64Present){

 int64
64
tcimsbf

 }

 if(arrayPresent){

 for(i=0; i<10; i++){

 byte
8
uimsbf

 }

 }

}

For variable sized arrays, it is recommended that an optional array be indicated by the size field. So if the size field has a value of 0 (zero), then the array is not present.

Optional variables or data structures may also be indicated by the value of a previous variable as illustrated in the following example:
OptionalExample2(){

 status
16
uimsbf

 if(status == 0){

 DataStructure()

 }

}
Appendix E. Data Format (Normative)
E.1 Common Data Structure

An OctetString8 contains a variable length octet string. The minimum length is 0 octets and the maximum length is 255 octets.

OctetString8(){

 length
8
uimsbf

 for(i = 0; i < length; i++){

 octet
8
uimsbf

 }

}

The fields are defined as follows:

· length – Length of the octet string
· octet – An octet (byte)
An OctetString16 contains a variable length octet string. The minimum length is 0 octets and the maximum length is 65535 octets.
OctetString16(){

 length
16
uimsbf

 for(i = 0; i < length; i++){

 octet
8
uimsbf

 }

}

The fields are defined as follows:

· length – Length of the octet string
· octet – An octet (byte)
A RandomNumber contains a string of random octets.

RandomNumber(){

 OctetString8()

}

A list of the algorithms is allowed by this specification.

Algorithm(){

 // The following algorithms are defined:

 // 0 SHA-1

 // 1 HMAC-SHA1

 // 2 AES-128-CBC

 // 3 RSA-OAEP

 // 4 DRMV2-KDF

 algorithmId
8
uimsbf

}

A Hash contains an octet string that is the result of a cryptographic hash operation. For calculation of Asset ID hash, the SHA-1 hash algorithm is used. For all other cases, the hash algorithm used is the negotiated hash algorithm.
Hash(){
 // Hash Value
 OctetString8()

}

The Hmac describes an octet string that is the result of a cryptographic HMAC operation. The HMAC algorithm used is the negotiated HMAC algorithm.
Hmac(){
 // HMAC Value
 OctetString8()

}

The EncryptedData describes an octet string that contains the encrypted data that is a result of either a symmetric or asymmetric encryption operation. The encryption algorithm is the negotiated encryption algorithm.
EncryptedData(){
 // Holds the IV, length is non-zero if IV is present
 OctetString8()

 // Encrypted Data
 OctetString16()

}
The Certificate and CertificateChain describes an octet string comprised in certificates specified in Appendix H.

Certificate() {

 OctetString16()

}

CertificateChain(){
 nbrOfCerts
8
uimsbf

 for (i = 0 ; i < nbrOfCerts ; i++) {

 Certificate()

 }

}
The Crl describes an octet string comprised CRL(s) specified in Appendix H.

Crl(){

 OctetString16()

}
E.2 Message Fields
E.2.1 Version
A data structure for an SRM protocol version (Version) is described as follows:

Version() {

 major
4
uimsbf

 minor
4
uimsbf

}

E.2.2 Status

A 16 bit value that contains the result of processing a request as follows:

Status() {

 status
16
uimsbf

}

E.2.3 AssetID
A data structure for a DRM Asset identifier (AssetId) is described as follows. This is specified in section 5.1.5.
AssetId () {

 OctetString16()

// Defined in Appendix E.1
}

E.2.4 Handle

A data structure for a string comprised in a Handle is described as follows:

Handle() {

 for (i = 0 ; i < 10 ; i++) {

 byte
8
uimsbf

 }

}
E.2.5 Rights

E.2.5.1 Rights Meta Data

A data structure for a Rights Meta Data (RightsMetaData) is described as follows:

RightsObjectVersion() {

 major

4
uimsbf

 minor

4
uimsbf

}

RoAlias() {

 OctetString16()

// Defined in Appendix E.1
}

RiId() {

 OctetString8()

// Defined in Appendix E.1
}

RiUrl() {

 OctetString16()

// Defined in Appendix E.1
}

RiAlias() {

 OctetString16()

// Defined in Appendix E.1
}

MetaData() {

 roAliasPresent

1
bslbf

 riUrlPresent

1
bslbf

 riAliasPresent

1
bslbf

 riTimeStampPresent

1
bslbf

 rfu

4
bslbf

 RightsObjectVersion()

 if (roAliasPresent) {

 RoAlias()

 }

 RiId()

 if (riUrlPresent) {

 RiUrl()

 }

 if (riAliasPresent) {

 RiAlias()

 }

 if (riTimeStampPresent) {

 riTimeStamp

40
uimsbf

 }

}

RightsMetaData() {

 length

16
uimsbf

 MetaData()

}

The fields are defined as follows:

· roAliasPresent - if ‘1’, then RoAlias is present in this message
· riUrlPresent - if ‘1’, then RiUrl is present in this message
· riAliasPresent - if ‘1’, then RiAlias is present in this message
· riTimeStampPresent – if ‘1’, then RiTimeStamp is present in this message

· RightsObjectVersion – Rights Object Version in section 5.1.1.1
· RoAlias – RO Alias in section 5.1.1.1
· RiId – RI Identifier in section 5.1.1.1
· RiUrl – RI URL in section 5.1.1.1
· RiAlias – RI Alias in section 5.1.1.1
· riTimeStamp – Rights Issuer TimeStamp in UTC (RITS, see [OMADRMv2]). The coding is as follows:
RiTimeStamp = Y << 26 + M << 22 + D << 17 + H << 12 + M << 6 + S where

Y is the year minus 2000, e.g. for the year 2007 Y=7;
M is the month, where M=0 corresponds to January;
D is the day, where M=0 corresponds to the first day of the month;
H is the hour (0-23);
M is the minute (0-59);
S is the second (0-59).
· length – Length of MetaData
· MetaData – Containing data of Rights Meta Data
E.2.5.2 Rights Object Container
A data structure for a Rights Object Container (RightsObjectContainer) is described as follows:

RightsObjectContainer() {

 //The following RO formats are defined for roFormat:

 // 0 = XML

 // 1 = WBXML

 roFormat
8
uimsbf

 OctetString16()

// Defined in Appendix E.1
}

The octet string comprised in the Rights Object Container is an XML document of type oma-dd:RightsObjectContainer. It is instantiated as a <oma-dd:roContainer> element and contains the <rights> element and the <signature> element from the RO payload as specified in section 5.1.1.2. The XML schema is as follows:

<!--Rights Object Container Definitions -->

<element name="roContainer" type="oma-dd:RightsObjectContainer">

<complexType name=”RightsObjectContainer”>

 <sequence>

 <element name=”rights” type=”o-ex:rightsType”/>

 <element name=”signature” type=”ds:SignatureType”/>

 </sequence>

</complexType>
E.2.5.3 State Information
A data structure for a State Information (StateInformation) is described as follows:

StateInformation() {

 // Length of StateInfo
 length
16
uimsbf
 StateInfo()
}
The field is defined as follows:

· length – the total length of StateInfo() data (in bytes)
StateInfo() {

 nbrOfAssetIds
8
uimsbf

 for (i = 0 ; i < nbrOfAssetIds ; i++) {
// <asset> elements

 HashOfAssetId()

// Defined in Appendix E.3
 }

 nbrOfPermissions
8
uimsbf

 for (i = 0 ; i < nbrOfPermissions ; i++) {
// <permission> elements

 PermissionState()

 }

}
The fields are defined as follows:

· nbrOfAssetIds - the number of <asset> elements, where each <asset> element has a AssetId
· HashOfAssetId() - Hash of AssetId
· nbrOfPermissions - the number of <permission> elements, where each <permission> element refers to zero or more <asset> elements above
PermissionState() {

 constraintPresent

1
bslbf

 assetPresent

1
bslbf

 playPresent

1
bslbf

 displayPresent

1
bslbf

 executePresent

1
bslbf

 printPresent

1
bslbf

 exportPresent

1
bslbf
 movePresent

1
bslbf
 // for future extension: all zeros now

 rfu

8
bslbf
 if (constraintPresent) {

 ConstraintState()

 }

 if (assetPresent) {

 HashOfAssetId()

// Defined in Appendix E.3
 }

 if (playPresent) {

 ConstraintState()

 }

 if (displayPresent) {

 ConstraintState()

 }

 if (executePresent) {

 ConstraintState()

 }

 if (printPresent) {

 ConstraintState()

 }

 if (exportPresent) {

 ConstraintState()

 }

 if (movePresent) {

 ConstraintState()

 }

}
The fields are defined as follows:

· constraintPresent, assetPresent, playPresent, displayPresent, executePresent, printPresent, exportPresent, and movePresent - each of these flags corresponds to each of <constraint>, <asset>, <play>, <display>, <execute>, <print>, <export>, and <move> element in the <permission> element. If any of these elements exists, its corresponding flag is set to 1.

· assetPresent - if <asset> exists, then this permission is applied only to the AssetId whose Hash value equals to HashOfAssetId()
ConstraintState() {

 countPresent

1
bslbf
 timedCountPresent

1
bslbf

 intervalPresent

1
bslbf

 accumulatedPresent

1
bslbf

 rfu

4
bslbf

 if (countPresent) {

// For count

 remainingCount

32
uimsbf

 }

 if (timedCountPresent) {
// For timed-count

 remainingTimedCount

32
uimsbf

 }

 if (intervalPresent) {

 // YYYY-MM-DDThh:mm:ssZ [ISO8601]
 // All zeros if the asset has NOT been rendered

 for (i = 0 ; i < 20 ; i++) {

 byte

8
uimsbf

 }

 }

 if (accumulatedPresent) {
 accumulatedTime

32
uimsbf
// upto 2^32 seconds

 }
}
The fields are defined as follows:

· countPresent, timedCountPresent, intervalPresent, and accumulatedPresent - each of these flags corresponds to each of <count>, <timed-count>, <interval>, <accumulated> element in the <constraint> element.
· remainingCount - This value indicates how many times are left for the <count> element.

· remainingTimedCount - This value indicates how many times are left for the <timed-count> element.

· accumulatedTime - This value indicates how many seconds are consumed.

E.2.5.4 Rights Information

A data structure for a Rights Information (RightsInformation) is described as follows. The Rights Meta Data, Rights Object Container, and State Information comprise a Rights Information.

RightsInformation() {

 stateInformationPresent

1
bslbf
 rfu

7
bslbf
 RightsMetaData()

 RightsObjectContainer()

 if (stateInformationPresent) {

 StateInformation()

 }

}

E.2.5.5 REK
A data structure for a REK (Rek) is described as follows:

Rek() {
 for(i = 0 ; i < 16 ; i++){
 byte
8
uimsbf

 }

}

E.2.6 Rights Information List

A data structure for Rights Information List is described as follows:

RightsInformationList() {

 nbrOfAssetId
16
uimsbf
 for (i = 0 ; i < nbrOfAssetId ; i++) {

 HashOfAssetID()

// Defined in Appendix E.3
 nbrOfRightsInfo
16
uimsbf

 for (j = 0 ; j < nbrOfRightsInfo ; j++) {

 //List of Handle and Rights Information

 Handle()

// Defined in Appendix E.2.4
 RightsInformation()
// Defined in Appendix E.2.5.4
 }

 }

}

The fields are defined as follows:

· nbrOfAssetId – Number of hashes of AssetIds in the Rights Information List
· HashOfAssetId – Hash of AssetId. A DRM Content identified by this AssetID is associated with subsequent Rights Information.
· nbrOfRightsInfo – This is the number of enabled Rights in an SRM that are associated with the DRM Content identified by the AssetId
· Handle – This identifies enabled Rights in an SRM that are associated with a DRM Content identified by the AssetId
· RightsInformation – Rights Information of Rights identified by the Handle
E.2.7 Encrypted REK

A data structure for an encrypted REK is described as follows.

EncryptedRek() {

 //Contains the encrypted REK

 EncryptedData()

// Defined in Appendix E.1
}

E.2.8 Encrypted Handle

A data structure for an encrypted Handle is described as follows.

EncryptedHandle() {

 //Contains the encrypted Handle

 EncryptedData()

// Defined in Appendix E.1
}

E.2.9 Encrypted New Handle

A data structure for an encrypted new Handle is described as follows.

EncryptedNewHandle() {

 //Contains the encrypted New Handle

 EncryptedData()

// Defined in Appendix E.1
}

E.2.10 Tokens

E.2.10.1 Service/Program IDs

A data structure for Service/Program IDs (ServiceProgramIds) is described as follows:

ServiceProgramIds() {
 ServiceProgramIdsPresent

1
uimsbf
 rfu

7
uimsbf

 if (ServiceProgramIdsPresent)

 {

 nbrOfServiceProgramIds

8
uimsbf
 for (i=0 ; i<nbrOfServiceProgramIds ; i++){

 ServiceProgramFlag

1
uimsbf
 rfu

7
uimsbf

 OctetString16()

// Defined in Appendix E.1

 }

 }
}

The fields are defined as follows:
· ServiceProgramIdsPresent – this flag indicates presence of service and/or identifiers in this data structure. If they are present, this flag is set to ‘1’.
· nbrOfServiceProgramIds – the number of service and program identifiers
· ServiceProgramFlag – indicates which identifier is contained
· 0 – service_CID (see [DRMXBSv1.1] for details)

· 1 – program_CID (see [DRMXBSv1.1] for details)

E.2.10.2 Movable

A data structure for Movable attribute (Movable) is described as follows:

Movable() {
 MovableFlag
1
uimsbf
 rfu
7
uimsbf

}

The fields are defined as follows:
· MovableFlag – indicates if Token Move transaction is permitted or not
· 0 – Token Move is not permitted
· 1 – Token Move is permitted
E.2.10.3 Domain IDs

A data structure for Domain IDs (DomainIds) is described as follows:

DomainIds() {
 DomainIdsPresent

1
uimsbf
 rfu

7
uimsbf

 if (DomainIdsPresent)

 {

 nbrOfDomainIds

8
uimsbf
 for (i=0 ; i<nbrOfDomainIds ; i++){

 OctetString8()

// Defined in Appendix E.1

 }

 }
}

The fields are defined as follows:
· DomainIdsPresent – this flag indicates presence of domain identifiers in this data structure. If they are present, this flag is set to ‘1’.

· nbrOfDomainIds – the number of domain identifiers

E.2.10.4 Token Delivery ID

A data structure for Token Delivery ID (TokenDeliveryId) is described as follows:

TokenDeliveryId() {
 OctetString8()

// Defined in Appendix E.1

}

E.2.10.5 Reporting Information

A data structure for Reporting Information (ReportingInformation) is described as follows:
ReportingInformation() {
 ReportingInformationPresent

1
uimsbf
 if (ReportingInformationPresent)

 {

 TokenReportingURL()

 LatestTokenConsumptionTime

40
mjdutc

 EarliestReportingTime

40
mjdutc

 LatestReportingTime

40
mjdutc

 }

}
The fields are defined as follows:
· ReporingInformationPresent – this flag indicates presence of reporting information in this data structure. If it is present, this flag is set to ‘1’.
TokenReportingURL(){

 OctetString16()

//Defined in Appendix E.1

}

E.2.10.6 Token Quantity

A data structure for Token Quantity (TokenQuantity) is described as follows:

TokenQuantity() {
 TokenQuantity

32
uimsbf
}
E.2.10.7 Token

A data structure for Token (Token) is described as follows:

Token() {

RiId()

// Defined in Appendix E.2.5

TokenDeliveryId()

// Defined in Appendix E.2.10.4
ServiceProgramIds()

// Defined in Appendix E.2.10.1

Movable()

// Defined in Appendix E.2.10.2

DomainIds()

// Defined in Appendix E.2.10.3

ReportingInformation()

// Defined in Appendix E.2.10.5

TokenQuantity()

// Defined in Appendix E.2.10.6

}

E.2.11 Broadcast Rights

E.2.11.1 BCRO Base

A data structure for BCRO Base (BcroBase) is described as follows:

BcroBase() {
 OctetString16()

// Defined in Appendix E.1

}
E.2.11.2 BCRO Assets
A data structure for BCRO Assets (BcroAssets) is described as follows:

BcroAssets() {
 nbrOfAssets
8
uimsbf

 for (i=0 ; i<nbrOfAssets ; i++) {

 AssetIndex
8
uimsbf
 AssetType
1
uimsbf

 rfu
7
uimsbf

 If (AssetType == 0) {

 EncryptedSPeak()
// Defined in Appendix E.2.10.1.3

 } else {

 EncryptedCek()

// Defined in Appendix E.2.10.1.5

 }

 }

}
The fields are defined as follows:

· nbrOfAssets – number of assets (SEAKs, PEAKs and/or CEKs) in the BCRO Assets
· AssetIndex – Asset Index defined in section 5.1.11.2
· AssetType – indicates the type of the asset in BCRO Assets
· If set to ‘0’, asset contains SEAK or PEAK
· Otherwise, asset contains CEK
· SPeak – SEAK or PEAK defined in section 5.1.11.2
· Cek – CEK defined in section 5.1.11.2
E.2.11.2.1 Asset Index

A data structure for Asset Index (AssetIndex) is described as follows:

AssetIndex() {

 byte
8
uimsbf

}

E.2.11.2.2 SPEAK
A data structure for SPEAK (SPeak) is described as follows:

Speak() {

 for (i=0 ; i<32 ; i++) {

 byte
8
uimsbf

 }

}

E.2.11.2.3 Encrypted SPEAK
A data structure for Encrypted SPEAK (EncryptedSPeak) is described as follows:

EncryptedSpeak() {

 //Contains the encrypted SPEAK

 EncryptedData()

//Defined in Appendix E.1

}

E.2.11.2.4 CEK
A data structure for CEK (Cek) is described as follows:

Cek() {

 for (i=0 ; i<16 ; i++) {

 byte
8
uimsbf

 }

}

E.2.11.2.5 Encrypted CEK
A data structure for Encrypted CEK (EncryptedCek) is described as follows:

Cek() {

 //Contains the encrypted SPEAK

 EncryptedData()

//Defined in Appendix E.1

}

E.2.11.2.6 Asset Index List

A data structure for Asset Index List (AssetIndexList) is described as follows:

AssetIndexList() {

 nbrOfAssetIndexes
8
uimsbf

 for (i=0 ; i<nbrOfAssetIndexes ; i++) {

 AssetIndex()

// Defined in Appendix E.2.11.2

 }

}

E.2.11.3 BCRO State Info
A data structure for BCRO State (BcroStateInfo) is described as follows:

BcroStateInfo() {
 length

16
uimsbf

 nbrOfPermissions

8
uimsbf

 for (i=0 ; i<nbrOfPermissions ; i++) {

 AssetIndexList()

// Defined in Appendix E.2.11.2.6

 nbrOfActions

7
uimsbf

 rfu

1
uimsbf

 for (j=0 ; j<nbrOfActions ; j++) {

 ActionType

8
uimsbf

 ConstraintsStates()

// Defined in Appendix E.2.10.3.1

 }

 }

}
The fields are defined as follows:

· length – length of BCROStateInfo
· nbrOfPermissions – number of permissions is this data structure; permission consists of asset indexes and associated allowed actions and constraints on these actions
· nbrOfAssetIndexes – number of asset indexes
· nbrOfActions – number of allowed actions
· ActionType – defines action type (e.g. play, move, etc.)
· ConstraintsStates – contains constraint state information per action
E.2.11.3.1 Constraints States
A data structure for Constraints States (ConstraintsStates) is described as follows:

ConstraintsStates() {
 ConstraintsStatesPresent

1
uimsbf

 CountConstraintPresent

1
uimsbf

 TimeCountConstraintPresent
1
uimsbf

 TimeIntervalConstraintPresent
1
uimsbf

 AccumulatedConstraintPresent
1
uimsbf

 rfu

3
uimsbf

 if (ConstraintsStatesPresent)

 {

 if (CountConstraintPresent) {

 OctetString8()

// Defined in Appendix E.1

 }

 if (TimeCountConstraintPresent) {

 OctetString8()

// Defined in Appendix E.1

 }

 if (TimeIntervalConstraintPresent) {

 StartDateTime

40
mjdutc

 }

 if (AccumulatedConstraintPresent) {

 OctetString8()

// Defined in Appendix E.1

 }

 }

}

The fields are defined as follows:

· ConstraintsStatesPresent – this flag indicates when constaints states are present is this data structure
· CountConstraintPresent, TimeCountConstraintPresent, TimeIntervalConstraintPresent, AccumulatedConstraintPresent – each of these flag correspond to each of constraint descriptors defined in [DRMXBSv1.1]
· StartDateTime – contains date and time when the permission was first exercised
E.2.11.4 BCRO Signature
A data structure for BCRO Signature (BcroSignature) is described as follows:

BcroSignature() {
 BcroSignaturePresent

1
uimsbf

 if (BcroSignaturePresent)

 {

 OctetString16()

 }

}

The fields are defined as follows:

· BcroSignaturePresent – this flag indicates when BCRO Signature is present is this data structure

E.3 LAID (List of Asset Identifier)
A data structure for an LAID is described as follows:
Hash of AssetID is calculated using the SHA-1 hash algorithm.

HashOfAssetId() {

 // Contains the hash of a AssetId

 Hash()

// Defined in Appendix E.1
}

Laid () {

 nbrOfAssetId
8
uimsbf

 for (i = 0 ; i < nbrOfAssetId ; i++) {

 HashOfAssetId()

 }

}

The fields are defined as follows:

· nbrOfAssetId – Number of H(AssetId) comprised in an LAID
· HashOfAssetId – H(AssetId) comprised in an LAID
E.4 Handle List
A data structure for a Handle List (HandleList) is described as follows:

HandleList () {

 nbrOfAssetId
16
uimsbf

 for (i = 0 ; i < nbrOfAssetId ; i++) {

 HashOfAssetId()

// Defined in Appendix E.3
 Handle()

// Defined in Appendix E.2.4
 }

}

The fields are defined as follows:

· nbrOfAssetId – Number of hash of AssetIds in a Handle List. If the Handle List is divided into chunks, this represents the number of hashed AssetIds in a chunk.
· HashOfAssetId – Hash of AssetId. A DRM Content identified by this AssetID is associated with a Rights in an SRM identified by a subsequent Handle.
· Handle – This identifies an enabled Rights in an SRM that is associated with the DRM Content identified by the AssetId
E.5 Dynamic Code Pages
E.5.1 Attribute Code Page
A data structure for the Dynamic Attribute Code Page (AttributeCodePage) is described as follows.

AttributeName() {

 OctetString8()

// Defined in Appendix E.1
}

AttributeValue() {

 OctetString8()

// Defined in Appendix E.1
}

CodePage() {

 rfu1
1

bslbf
 nbrOfAttrs
7
uimsbf

 for(i = 0 ; i < nbrOfAttrs ; i++){

 AttributeName()

 }

 rfu2
1

bslbf
 nbrOfAttrValues
7
uimsbf

 for(i = 0 ; i < nbrOfAttrValues ; i++){

 AttrributeValue()

 }
}

AttributeCodePage() {

 length
16
uimsbf

 CodePage()

}

The fields are defined as follows:

· nbrOfAttrs – The number of Attribute Start Tokens in the dynamic code page. The maximum allowed value is 122.
· AttributeName – The specific string value of well-known Attribute. The array is an ordered list of all Attribute Start Tokens in the dynamic code page. The first Attribute Name in the array has the token value of 6 and each subsequent Attribute Name has a token value incremented by 1.
· nbrOfAttrValues – The number of Attribute Value Tokens in the dynamic code page. The maximum allowed value is 122.
· AttributeValue – The specific string value of a well-known Attribute Value. The array is an ordered list of all Attribute Value Tokens in the dynamic code page. The first Attribute Value in the array has the token value of 133 and each subsequent Attribute Value has a token value incremented by 1.
· length – Length of CodePage
· CodePage – Containing data of Dynamic Attribute Code Page

E.5.2 Tag Code Page

A data structure for the Dynamic Tag Code Page (TagCodePage) is described as follows.

TagName() {

 OctetString8()

// Defined in Appendix E.1
}

CodePage() {

 rfu
2

bslbf
 nbrOfTags
6
uimsbf

 for(i = 0 ; i < nbrOfTags ; i++){

 TagName()

 }

}

TagCodePage() {

 length
16
uimsbf

 CodePage()

}

The fields are defined as follows:

· nbrOfTags – The number of Tag Names in the dynamic code page. The maximum allowed value is 59.
· TagName – The specific string value of a well-known Tag/element Name. The array is an ordered list of all Tag Names in the dynamic code page. The first Tag Name in the array has the tag identity of 6 and each subsequent Tag Name has a tag identity incremented by 1.

· length – Length of CodePage
· CodePage – Containing data of Dynamic Tag Code Page
Appendix F. SRM Transport Protocol

F.1 HTTP Mapping
An SRM MAY support an HTTP transport layer (as middle layer) to communicate with the DRM agent if it can implement a local HTTP server. In this case the DRM Agent can connect to the SRM as an HTTP client. The data are then transported and exchanged between the two entities over HTTP. This appendix defines this HTTP mapping.

The following sections describe how the data are delivered using the HTTP 1.1 protocol.
F.1.1 HTTP Headers

The HTTP Content-Type header MUST be supported. This header describes the media type that is present in the body part of the HTTP Request/Response.

The DRM Agent MUST include an HTTP Accept header when sending a request over HTTP. The Accept header specifies the media types that the DRM Agent will accept in response to the request.

Implementations MAY support other HTTP headers than those specified herein. The presence of HTTP headers other than those specified here when a message is received over HTTP SHOULD NOT by itself cause termination of the session.
F.1.2 SRM Requests
· The DRM Agent SHALL send SRM requests as the body of HTTP POST requests. Example:

POST /SRM HTTP/1.1

Host: 127.0.0.1:3516

Content-Type: application/vnd.oma.drm.srm-pdu

... [Application Data] ...

In the above example the DRM Agent is using the Request-URI field for specifying the path component. The absolute URI of the SRM is specified using the HTTP Host header.

· The DRM Agent SHALL use the absolute path “/SRM” (without the quotes) to address the SRM Agent

· If the SRM has its own IP address then the DRM agent SHALL address the SRM agent via this IP address and the standard HTTP port number 80 (e.g. 192.168.0.1:80) otherwise the DRM agent SHALL use port 3516 with the local IP address 127.0.0.1 for SRM Requests (i.e. 127.0.0.1:3516)

· The DRM Agent SHOULD use persistent connections when sending requests over HTTP.

· The DRM Agent SHALL support chunk as mandated in [HTTP]

· The DRM Agent SHALL indicate to the SRM that the message is a SRM message using the HTTP Content-Type header with value application/vnd.oma.drm.srm-pdu. The following is an example of such a header field:

Content-Type: application/vnd.oma.drm.srm-pdu
· The DRM Agent SHALL use the HTTP Accept header to indicate acceptable media types in response to SRM requests sent over HTTP. The DRM Agent MUST accept at least the following media types:

· application/vnd.oma.drm.srm-pdu

Example:

· Accept: application/vnd.oma.drm.srm-pdu

· HTTP requests from the DRM Agent MUST contain one, and only one, SRM request message.
F.1.3 SRM Responses
· The SRM SHALL send SRM responses as the body of HTTP responses.

· The HTTP Content-Type header MUST be set to application/vnd.oma.drm.srm-pdu when a SRM message constitutes the message-body of a response. Example:

Content-Type: application/vnd.oma.drm.srm-pdu

If the HTTP Content-Type header value in the Response does not match the above Content-Type, the DRM Agent SHALL terminate the session.
· The SRM MUST NOT include multipart responses in an HTTP response.

· The SRM MUST include an HTTP Cache-Control header with the value no-transform when sending an integrity-protected SRM message. The no-transform directive prohibits network caches from doing any content transformations. The no-cache option must also be set in order to prevent caching of responses.

The following is an example:

Cache-Control: no-transform; no-cache
F.1.4 HTTP Response Codes

An SRM that refuses to perform a SRM message exchange with a DRM Agent SHOULD return a 403 (Forbidden) response. In the case of an error while processing an HTTP request, the SRM MUST return a 500 (Internal Server Error) response. This type of error SHOULD be returned for HTTP-related errors detected before control is passed to the SRM engine, or when the SRM engine reports an internal error (for example, the SRM schema cannot be located). If the type of a SRM request cannot be determined, the SRM MUST return a 500 (Internal Error) response code.

In these cases (i.e. when the HTTP response code is 4xx or 5xx), the content of the HTTP body is not significant.

In all other cases, the SRM MUST respond with 200 (OK) and a suitable SRM message (possibly with SRM-related error information) in the HTTP body.

DRM Agents MUST be able to handle HTTP response codes specified here (200, 400, 403, 404, and 500).
Appendix G. SRM-API (Secure Removable Media – Application Programming Interface) (Informative)
The various SRM platforms may support different transport protocols for communication with Devices. This section defines a common set of APIs that may be used between DRM Agents and SRM Agents to support the different SRM platforms. The APIs specify the field format of message requests and responses. They are based on C language format. They are applied as follows:
· Message Request: API call with input fields
· Message Response: Result of API with output fields
G.1 Definition Structures
	/*********************** To input Input/Output data **********************/

typedef struct {

 unsigned long
len;

/* length of input/output */

 unsigned char*
buf;

/* buffer pointer */

} f_bytes;

/************************ To Error Code List *******************************/

typedef unsigned short STATUS_CODE;

G.2 API List
Table 132: API List

	API
	Function

	Initialise_Message
	Initialise the API processing layer.

	Exchange_Message
	Sends the request and receives the response.

	Finalise_Message
	Finalise the API processing layer.

G.2.1 Initialise_Message
	Declaration：
STATUS_CODE API_SRM_Initialise (void *arg);

Input：
arg

Data for initialising the library. It depends on the specific SRM.
Output：
None

Return value：
SUCCESS
MEMORY_ERROR

INTERNAL_ERROR
UNKNOWN_ERROR

Function:
Initialises API processing layer.
Prior condition：

None

Post condition：

None

Notice：

The processing in this API is dependent on the type of SRM. Each SRM provides specific functions to initialise processing with this API.

G.2.2 Exchange_Message
	Declaration：
STATUS_CODE API_SRM_Exchange (f_bytes *request, f_bytes *response);
Input：
request

Request from the DRM Agent to the SRM Agent
Output：
response

Response from the SRM Agent to the DRM Agent
Return value：
SUCCESS
BUFFER_OVERFLOW_ERROR

NO_SRM_ERROR
MEMORY_ERROR

INTERNAL_ERROR
UNKNOWN_ERROR
Function:

Sends a request to the SRM Agent and receives a response from the SRM Agent.
Prior condition：

None

Post condition：

None

Notice：

When the returned value is not SUCCESS, the value of output field response is not defined in the case that the API allocates the memory for processing. It means the DRM Agent does not have to deallocate the memory where response.buf points even if response.buf != NULL.

G.2.3 Finalise_Message

	Declaration：
STATUS_CODE API_SRM_Finalise (void *arg);
Input：
arg

Data for finalizing the library. It depends on the specific SRM.
Output：
None
Return value：
SUCCESS
INTERNAL_ERROR
UNKNOWN_ERROR

Function:

Finalises the API processing layer.
Prior condition：

None

Post condition：

None
Notice：
The processing in this API is dependent on the type of SRM. Each SRM provides specific functions to finalise processing with this API.

G.3 Status Codes for API
Table 133: Status Codes
	Error Code
	Description

	SUCCESS
	Success.

	BUFFER_OVERFLOW_ERROR
	The length of output data exceeds the allocated buffer.

	NO_SRM_ERROR
	Connection to SRM is failed.

	MEMORY_ERROR
	Memory error in the API.

	INTERNAL_ERROR
	Uncategorised Internal error in the API.

	UNKNOWN_ERROR
	Unknown error.

Appendix H. Certificates and CRL

H.1 Certificate Profiles and Requirements
The profile for Device Certificates follows the profile of the DRM Agent Certificates in OMA DRM v2.0 [OMADRMv2]. The DRM Agent Certificate in OMA DRM v2.0 is referred to as Device Certificate in this specification. SRM Agents processing Device Certificates MUST meet all requirements on entities processing user certificates defined in [CertProf]. In addition, SRM Agents:

· MUST be able to process Device Certificates up to 1500 bytes long;

· MUST be able to process Device Certificates with serial numbers up to 20 bytes long;

· MUST recognize and require the presence of the oma-kp-drmAgent object identifier defined in the extKeyUsage extension in Device Certificates; and

· MUST support the cRLDistributionPoints extension

The profile for SRM Certificates follows the profile for “User Certificates for Authentication” in [CertProf] with the following modifications in Table 82:

Table 134: SRM Certificate Profile

	Fields
	Values

	Version
	Version 3 (Integer value is 2)

	Signature
	MUST be RSA with SHA-1

	Serial Number
	MUST be less than, or equal to, 20 bytes in length

	Issuer Name
	MUST be present and MUST use a subset of following naming attributes from [CertProf] – countryName, organizationName, organizationalUnitName, commonName, and stateOrProvinceName.

	Subject Name
	MUST be present and MUST use a subset of the following attributes from [CertProf] – countryName, organizationName, organizationalUnitName, commonName, and serialNumber

The structure and contents of an SRM subject name shall be as follows:

[countryName=<Country of manufacturer>]

[organizationName=<Manufacturer company name>]

[organizationalUnitName=<Manufacturing location>]

[commonName=<Model name>]

[serialNumber=<Unique identifier for SRM, as assigned by the Certificate Issuer>]
The serialNumber attribute MUST be present. The countryName, organizationName, organizationalUnitName, and commonName may be present. Other attributes are not allowed and must not be included. For all naming attributes of type DirectoryString, the PrintableString or the UTF8String choice must be used.

Note that the maximum length (in octets) for values of these attributes is as follows: countryName - 2 (country code in accordance with ISO/IEC 3166), organizationName, organizationalUnitName, commonName, and serialNumber - 64.

Example:

C="US";O="DRM SRMs 'R Us"; CN="DRM SRM Mark V"; SN="1234567890"

	Extensions
	The extKeyUsage extension SHALL be present, and contain (at least) the oma-kp-srmAgent key purpose object identifier:

oma-kp-srmAgent OBJECT IDENTIFIER ::= {oma-kp 3}

The oma-kp object identifier is defined as follows:

oma-kp OBJECT IDENTIFIER ::= {oma 1}

oma OBJECT IDENTIFIER ::= {joint-iso-itu-t(2) identified-organizations(23) wap(43) oma(6)}

CAs are recommended to set this extension to critical.

· If CAs include the keyUsage extension (recommended), then both the digitalSignature bit and the keyEncipherment bit must be set, if the corresponding private key is to be used both for authentication and decryption. Otherwise only the applicable bit shall be set. When present, this extension shall be set to critical.

CAs may include the certificatePolicy extension, indicating the policy the certificate has been issued under, and possibly containing a URI identifying a source of more information about the policy.

CAs are recommended to not include any other extensions, but may, for compliance with [RFC3280], include the authorityKeyIdentifier extension. CAs may also include the authorityInfoAccess extension from [RFC3280] for OCSP responder navigation purposes, and the cRLDistributionPoints extension to identify how CRL information is obtained.

CAs MUST NOT include any other critical extensions.

DRM Agents processing SRM Certificates MUST meet all requirements on entities processing user certificates defined in [CertProf]. In addition, DRM Agents:

· MUST be able to process SRM Certificates up to 1500 bytes long;

· MUST be able to process SRM Certificates with serial numbers up to 20 bytes long;

· MUST recognize and require the presence of the oma-kp-srmAgent object identifier defined in the extKeyUsage extension in SRM Certificates; and

· MUST support the cRLDistributionPoints extension

The profiles for RI Certificates, CA Certificates, and OCSP Responder Certificates follow the profiles specified in Appendix D.2, D.3, and D.4 of the OMA DRM v2.0 specification [OMADRMv2] respectively.
H.2 CRL Profiles and Requirements

The profile for CRLs follows the CRL profile in the Certificate Revocation List (CRL) profile in [RFC3280] with the following modifications in Table 83:

Table 135: CRL Profile

	Fields
	Values

	Version
	Version 2 (Integer value is 1)

	Signature
	MUST be RSA with SHA-1

	Issuer
	MUST be present and MUST use a subset of following naming attributes from Certificate profiles in [OMADRMv2] – countryName, organizationName, organizationalUnitName, commonName, and stateOrProvinceName.

	ThisUpdate
	The issue date of this CRL

	NextUpdate
	The date by which the next CRL will be issued

	RevokedCertificates entries
	See Table 84

	Extensions
	CAs SHALL include the Key Identifier extension, identifying the public key corresponding to the private key used to sign a CRL.

CAs SHALL include the CRL Number extension, which is used to determine when a particular CRL supersedes another CRL.

CAs are recommended to not include any other extensions, but may, for compliance with [RFC3280], include the Issuing Distribution Point extension from [RFC3280] to identify how CRL information is obtained.

CAs MUST NOT include any other critical extensions.

When there are no revoked Device Certificates or SRM Certificates, the revoked certificates list MUST be absent. Otherwise, revoked Device Certificates or SRM Certificates are listed by the fields in Table 84.

Table 136: RevokedCertificates Entry fields in CRL Profile

	Fields
	Values

	UserCertificate
	Revoked certificate serial number

	RevocationDate
	Date of revocation decision

	CRL Entry Extensions
	CAs may define private CRL entry extensions to carry information unique to them.

Except the private CRL entry extensions, CAs MUST NOT include any other critical extensions.

Appendix I. Move Permission in Rights Object (Normative)

The Move permission in a Rights Object grants the permission to Move the Rights Object between Devices and SRMs.

I.1 Extension of Permission Model in REL

This document defines the extension of the OMA DRM REL specification [OMADRMv2] to include the Move permission in Rights Objects.

I.1.1 Element <permission>

	Element
	<!ELEMENT o-ex:permission (o-ex:constraint?, o-ex:asset*, o-dd:play?, o-dd:display?, o-dd:execute?, o-dd:print?, oma-dd:export?, o-dd:move?)>

	Semantics
	In addition to the semantics as defined in OMA DRM REL [OMADRMv2], SRM adds an optional <move> element to the <permission> element.

A single Rights Object can have only one <move> permission. When present, the parent <permission> element MUST NOT have any <asset> elements. For the other child elements (permissions), refer to the OMA DRM REL specification [OMADRMv2].

I.1.2 Element <move>
	Element
	<!ELEMENT o-dd:move (o-ex:constraint?)>

	Semantics
	The <move> element grants the permission to Move a Rights Object from a Device to an SRM or from an SRM to a Device. It contains an optional <constraint> element.
The <move> element has the semantics of moving a Rights Object between Devices and SRMs.

If the <move> element has a <constraint> child element, only the <count> or <system> constraints are allowed and all other constraints MUST NOT be present. If the <constraint> element is specified, the DRM Agent MUST grant move rights according to the <constraint> child element and the top-level <constraint> element if any. If no child <constraint> element is specified, the DRM Agent MUST grant move rights according to the top-level <constraint> element if any. If neither child nor top-level <constraint> element is specified, the DRM Agent MUST grant unlimited move rights.

I.1.3 Element <count>
	Element
	<!ELEMENT o-dd:count (#PCDATA)>

	Semantics
	In addition to the semantics as defined in OMA DRM REL [OMADRMv2]:

If the parent <constraint> element is a child element of a <move> element, the <count> element specifies the number of times the <move> permission may be granted over the Rights Object itself.

I.1.4 Element <system>

	Element
	<!ELEMENT oma-dd:system (o-ex:context+)>

	Semantics
	In addition to the semantics as defined in OMA DRM REL [OMADRMv2]:

The <system> constraint is allowed to also constrain the <move> permission.
In the case of a <move> permission, the <system> constraint specifies the OMA DRM protocol(s) that MUST be used to move Rights Objects. In this case, the <context> elements SHALL contain a <version> element and a <uid> element. The <version> element specifies the minimum version of a protocol that MUST be used. The URN to identify the SRM protocol is registered with the OMNA.
Furthermore, the <system> constraint, used with the SRM protocol identifier URN, can be used to specify that the <play> or <display> permissions MUST only be granted if the Rights Object are stored on an SRM.

Appendix J. Event Counting
In order to minimize the impact of not checking the CRL validity dates, the concept of event counting with a threshold is defined in this section. Event counting is optional and consequently the normative statements in this Appendix and its subsections apply only in case event counting is implemented.
In this Appendix and its subsections, the term entity refers either to a DRM Agent or a SRM Agent. Each entity MUST keep an event counter, which starts at zero, and gets incremented, whenever a countable event occurs (see J.1 and J.2). When a “fresh” CRL is received, the event counter is reset; see section J.3.

The value of the predefined threshold is not defined in this specification, but set by a relevant trust model; however, the following implementation considerations may be taken into account.

· A very high threshold value effectively disables revocation status checking.

· Devices and SRMs MAY have different threshold values.

· Although this Enabler specifies a single counting mechanism, in practice, multiple counters may be used. For example, a trust model may choose to have one counter for each event type and each with its own threshold value.

The behaviour of an entity when the predefined threshold is reached is not defined in this specification but can be set by a relevant trust model. For example, a trust model may require that an entity must disallow all countable events once the threshold value is reached.
The DRM Agent MUST maintain an independent event counter for each supported trust model.

J.1 Countable DRM Agent Events

Countable DRM Agent events are:

· Moving Rights to an SRM (see section 6.5)

Suggested counter increment operation point: Following RightsDisablementInDevice and prior to RightsInstallationRequest.
If during recovery, HandleRemovalResponse Status = Success, then prior to enabling disabled Rights in Device, counter may be decremented to reverse increment operation.

· Moving Rights from an SRM (see section 6.6)

Suggested counter increment operation point: Following RightsRemovalResponse for which Status = Success.

· Local Rights Consumption from an SRM (see section 6.7)

Suggested counter increment operation point: Following REKQueryResponse for which Status = Success.
J.2 Countable SRM Agent Events
Countable SRM Agent events are:

· Moving Rights from an SRM (see section 6.6)

Suggested counter increment operation point: Following successfully handled RightsRemovalRequest and prior to associated RightsRemovalResponse.
· Local Rights Consumption from an SRM (see section 6.7)

Suggested counter increment operation point: Following successfully handled REKQueryRequest and prior to associated REKQueryResponse.
J.3 Resetting the Event Counter
Once the event counter has reached its threshold value, a “fresh” CRL for the other entity type is needed. The entity MUST have means to determine whether or not a CRL is considered "fresh" based on the entity’s “current date-time”. How the “current date-time” is determined depends on whether or not the entity supports DRM Time. Resetting the event counter to zero SHALL require a “fresh” CRL for the other entity type, i.e. a DRM Agent needs a fresh CRL for SRMs and an SRM Agent needs a fresh CRL for Devices. Note that there may be only one CRL that covers both Devices and SRMs.

If an entity supports DRM Time, then the “current date-time” is just the current DRM Time. If the cached CRL is fresh according to the current DRM Time, the entity (which supports DRM Time) can reset its event counter. Otherwise, the entity MUST get a fresh CRL before resetting its event counter. How or from where an entity gets a fresh CRL is beyond the scope of this document.

If an entity does not support DRM Time, then the entity MUST get a nonce-based secure date-time and use this as the current date-time. Once the nonce-based secure date-time is received and validated, the entity can check the freshness of its cached CRL. If the cached CRL is fresh, the entity can reset its event counter. Otherwise, the entity MUST get a fresh CRL before resetting its event counter. An entity generating a nonce MAY store the nonce in volatile or non-volatile memory. If the nonce is not available at the point of receiving the supposed nonce-based secure date-time, the date-time MUST be rejected.

Because it is anticipated that most SRMs will not support DRM Time, the SRM Agent MUST provide a nonce to the DRM Agent, which in turn MUST get a nonce-based secure date-time and provide it back to the SRM. Also, the DRM Agent MUST provide CRLs to the SRM Agent.

The SRM Agent SHOULD provide its current event counter and the threshold so that a Device can then ensure that the threshold is never reached by providing the SRM Agent with timely date-time to update the SRM.
J.4 Threshold-based Event Counting Considerations
Effective implementation of optional threshold-based event counting requires an entity to be able to periodically acquire a measure of "current date-time" that is verifiable as originating from a trusted source. If there is a malicious or unintended delay in making a response to a nonce-based date-time query available to the entity awaiting the response, then such delay increases the likelihood that the entity deems a CRL as acceptably fresh when it should not. If the date-time query occurs after the entity’s counter has already reached its threshold, then delaying the response delays the point at which the entity once again becomes useful to handle countable events.

To minimize any adversarial advantage of holding back or delaying responses to nonce-based date-time queries, a trust model may elect to prevent an entity from handling events until it receives a successful response to an outstanding date-time query or until it purges the nonce corresponding to that query, even if the entity’s counter has not reached its threshold.

In order to enable each entity to make maximally effective use of just a single event counter, a trust model may assign different weights to different countable event types. Differential weighting would give a trust model the flexibility to allow, for example, a Device which is used predominantly for Local Rights Consumption transactions to go significantly longer between CRL freshness checks than a Device that regularly engages in Move transactions to SRMs. If weights are assigned differentially, the same weight applies to the incrementing and to the decrementing (if any) when recovery is performed.

Appendix K. SRM and domain Rights Objects (Informative)

The SRM enabler allows RIs to issue Domain ROs with a <move> permission. This allows all Devices that are members of a Domain to receive a copy of the Domain RO and to Move their copy of the Domain RO to an SRM.

The result of Moving a Domain RO from a Device to an SRM is that the Domain RO is stored on an SRM and is disabled on the Device. In the process, the RO ceases to be a Domain RO and becomes an RO that can be consumed by any Device to which the SRM is connected to. In addition, the RO can be Moved to any other Device that is not a member of the Domain.

The Move Cache ensures that once a Device has moved its copy of the Domain RO to an SRM, it cannot reinstall the original Domain RO if this is received via a mechanism different than a Move, e.g. out-of-band delivery, restore of a backup, etc. (see section 8). This mechanism does allow the RO to be Moved back to the Device (provided the potential constraints on the <move> permission still allow for this). A DRM Agent (as specified in this enabler) will, however, not install an RO that is already installed in the Device (or accumulate or otherwise combine any available state information associated with the RO).

Note that in case all members of the Domain Move their copy of the Domain RO to an SRM (even the same SRM), then all those copies may be available for unlimited move to Devices that are not members of the Domain. An RI may choose to limit this by constraining the <move> permission. If for example the <move> permission is constrained with a <count> constraint set to the value of ‘1’, then Domain member Devices can move their copy of the Domain RO to an SRM once. This allows Users to remove the SRM from the Domain member Device and insert it into any device and locally consume the Rights from the SRM, but they cannot move the RO from the SRM to the device.

In addition, in case a Domain RO contains stateful constraints, then the result of Moving the Domain RO to an SRM is that all state that is available to the DRM Agent is moved to the SRM. If all members of the Domain Move their copy of the stateful Domain RO to an SRM (even the same SRM), then all these stateful ROs are individually available for Moving to and/or local consumption on a single Device, which may be or not be a member of the Domain. If an RI wants to strictly limit the state that is available to a single Device to the value set by the stateful constraints in the Domain RO, then it should not include a <move> permission into a stateful Domain RO. Note that Rights derived from a stateful Domain RO cannot be moved from an SRM to a device if one instance of this Domain RO is already installed in this device.
� For example, if the Rights have a <count> constraint of 5 but the State Information indicates that the remaining count is 10, the State Information is inconsistent.

� For example, if the Rights have a <count> constraint of 5 but the State Information indicates that the remaining count is 10, the State Information is inconsistent.

(2009 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20090101-I]
(2009 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20090101-I]

_1254578909.vsd
�

�

ChangeSacRequest

ChangeSacResponse

DRM Agent

SRM Agent

_1305532639.vsd
Device�

SRM�

TokenSelectionInDevice�

�

TokenDisablementInSRM�

�

TokenConsumptionRequest�

TokenConsumptionResponse�

TokenEnablementRequest�

TokenEnablementResponse�

�

TokenConsumptionInDevice�

�

TokenEnablementInSRM�

_1309070717.vsd
�

�

DRM Agent

SRM Agent

UpgradeRightsRetrievalRequest

UpgradeRightsRetrievalResponse

Rights Issuer

ROUpgradeResponse

ROUpgradeRequest

RightsUpgradeRequest

RightsUpgradeResponse

UpgradeRightsRetrievalinSRM

RightsUpgradeInSRM

RO Upgrade Trigger

_1312035531.vsd
Device�

SRM�

TokenUpgradeRequest�

TokenUpgradeResponse�

�

TokenUpgradeInSrm�

TokenSelectionInDevice, TokenDisablementInDevice�

�

TokenRemovalInDevice�

�

_1313558454.vsd
DRM Agent�

SRM Agent�

RightsInstallationInDevice�

RightsRemovalRequest�

RightsRemovalResponse�

�

�

RightsRemovalInSRM�

BroadcastRightsRetrievalRequest�

BroadcastRightsRetrievalResponse�

�

RightsRetrievalInSRM,
AssetsDistablementInSRM�

_1313578757.vsd
DRM Agent

SRM Agent

Device

Secure Removable Media

Secure Storage

Operating System

Mass Storage

Trusted Entity

User Equipment

Rights Issuer

SRM.DRM-ROAP

Out of Scope

_1312357957.vsd
DRM Agent�

SRM Agent�

BCRODisablementInDevice�

BroadcastRightsInstallationRequest�

BroadcastRightsInstallationResponse�

�

�

BroadcastRightsInstallationInSRM�

InstallationSetupRequest�

InstallationSetupResponse�

�

InstallationSetupInSRM�

BCROProcessingInDevice�

�

_1309609984.vsd
�

�

DRM Agent

SRM Agent-2

S2SMoveInitiationRequest

S2SMoveInitiationResponse

SRM Agent-1

InstallationSetupResponse

InstallationSetupRequest

RightsInstallationRequest

RightsInstallationResponse

RightsDisablementInSRM

RightsInstallationInSRM

InstallationSetupInSRM

RightsRemovalRequest

RightsRemovalResponse

RightsRemovalInSRM

MoveCountDecrease

Decrypt & Encrypt REK

_1306914586.vsd
Device�

SRM�

�

TokenDisablementInDevice�

TokenInstallationRequest�

TokenInstallationResponse�

�

�

TokenInstallationInSRM�

�

TokenRemovalInDevice�

_1304916729.vsd
Device�

SRM�

TokenInstallationInDevice�

TokenRetrievalRequest�

TokenRetrievalResponse�

�

TokenRemovalRequest�

TokenRemovalInSRM�

�

TokenRemovalResponse�

�

TokenRetrievalInSRM, TokenDisablementInSRM�

_1305526557.vsd
Device�

SRM�

TokenInformationRequest�

TokenInformationResponse�

�

TokenInformationRetrieval�

_1305528115.vsd
Device�

SRM�

�

TokenRemovalRequest�

TokenRemovalInSRM�

TokenRemovalResponse�

_1301329208.vsd
�

�

�

Rights Issuer

DRM Agent

SRM Agent

ROAP Trigger

SignatureQueryRequest

SignatureQueryResponse

RO Request

RO Response

ProvisioningSetupRequest

SignatureGenerationInSRM�

ProvisioningSetupResponse

ProvisioningSetupInSRM�

RightsProvisioningRequest

RightsProvisioningResponse

RightsProvisioningInSRM�

ROVerificationInDevice�

GenerateRORequest�

RORemovalInDevice�

_1238846834.vsd
�

�

DRM Agent

SRM Agent

OCSPProcessRequest

OCSPProcessResponse

_1250603633.vsd
�

�

�

Entity

{action name}�

_1251008289.vsd
�

�

�

RightsRetrievalInSRM�

DRM Agent

SRM Agent

RightsInstallationInDevice�

RightsRetrievalRequest

RightsRemovalRequest

RightsRetrievalResponse

RightsRemovalResponse

RightsRemovalInSRM�

_1254570523.vsd
�

�

SrmHelloRequest

SrmHelloResponse

DRM Agent

SRM Agent

_1254312988.vsd
�

�

�

HandleListQueryInSRM�

RightsInfoQueryRequest

RightsInfoQueryResponse

RightsInfoQueryInSRM�

RightsSelectionInDevice�

REKQueryRequest

REKQueryResponse

RightsDisablementInSRM�

RightsConsumptionInDevice�

RightsEnablementRequest

RightsEnablementResponse

RightsEnablementInSRM�

DRM Agent

SRM Agent

HandleListQueryRequest

HandleListQueryResponse

_1251008081.vsd
�

�

�

InstallationSetupInSRM�

RightsInstallationInSRM�

DRM Agent

SRM Agent

InstallationSetupResponse

RightsRemovalInDevice�

InstallationSetupRequest

RightsInstallationRequest

RightsInstallationResponse

RightsDisablementInDevice�

_1241267773.vsd
�

�

DRM Agent

SRM Agent

RightsInfoListQueryRequest

RightsInfoListQueryResponse

_1242452822.vsd
�

�

DRM Agent

SRM Agent

DynamicCodePageUpdateRequest

DynamicCodePageUpdateResponse

_1250603481.vsd
�

�

{message name}Response

DRM Agent

SRM Agent

{message name}Request

_1242452023.vsd
�

�

DRM Agent

SRM Agent

DynamicCodePageQueryRequest

DynamicCodePageQueryResponse

_1239106080.vsd
�

�

DRM Agent

SRM Agent

RICertificateQueryRequest

RICertificateQueryResponse

_1239106097.vsd
�

�

DRM Agent

SRM Agent

RICertificateRemovalRequest

RICertificateRemovalResponse

_1239106052.vsd
�

�

DRM Agent

SRM Agent

RICertificateStoreRequest

RICertificateStoreResponse

_1238846247.vsd
�

�

CRLRetrievalRequest

DRM Agent

SRM Agent

CRLRetrievalResponse

_1238846666.vsd
�

�

DRM Agent

SRM Agent

CRLInformationExchangeRequest

CRLInformationExchangeResponse

_1238846774.vsd
�

�

DRM Agent

SRM Agent

OCSPNonceRequest

OCSPNonceResponse

_1238846363.vsd
�

�

CRLUpdateResponse

DRM Agent

SRM Agent

CRLUpdateRequest

_1237618928.vsd
�

�

DRM Agent

SRM Agent

HandleListQueryRequest

HandleListQueryResponse

_1237639784.vsd
�

�

REKQueryResponse

DRM Agent

SRM Agent

REKQueryRequest

_1237721196.vsd
�

�

DRM Agent

SRM Agent

AuthenticationRequest

KeyExchangeRequest

AuthenticationResponse

KeyExchangeResponse

_1237625318.vsd
�

�

DRM Agent

SRM Agent

RightsInfoQueryRequest

RightsInfoQueryResponse

_1237139195.vsd
�

�

DRM Agent

SRM Agent

RightsEnablementRequest

RightsEnablementResponse

_1237142125.vsd
�

�

DRM Agent

SRM Agent

RightsRemovalRequest

RightsRemovalResponse

_1237105531.vsd
�

�

DRM Agent

SRM Agent

HandleRemovalRequest

HandleRemovalResponse

_1211286387.vsd
Application Layer

Middle Layer

Transformation Layer

SRM Access Layer

