[image: image1.jpg]Doc# OMA-DS-2004-0076-FlexibleDataFormat-IC
Submitted to Data Synchronization
21 Apr 2004
Doc# OMA-DS-2004-0076-FlexibleDataFormat-IC
Submitted to Data Synchronization
21 apr 2004

Input Contribution

	Title:
	Flexible Data Format
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	Data Synchronization

	Source:
	Svetlana Guljajeva, FusionOne
+3726515759
sguljajeva@fusionone.com

	Attachments:
	n/a
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	Replaces:
	n/a

1 Reason for Contribution

The reason for contribution is to invite to start a discussion on the flexible data format.

2 Summary of Contribution

This contribution :
· briefly describes the current problems with existing data formats

· notes the need for creation of new unified data format

· lists several use cases with the potential new data format

· invites to start a discussion on the topic

3 Detailed Proposal

Introduction

SyncML as a synchronization protocol was meant to be highly flexible by separating the protocol from the data formats it synchronizes. SyncML chose a number of widely used and well documented formats including vCard (initially version 2.1) and vCalendar (initially version 1.0), together also known as versit. Like the protocol itself these data formats are flexible and extensible.

This flexibility is useful for different vendors adapting the given formats to suit their internal synchronization needs (i.e. when data format interpretation consistency is easily achievable), but it becomes a stumbling block as soon as two vendors having interpreted and adopted the format differently try to synchronize data with one another. The more freedom the sender has in composing the data the more complex must be the analyzing algorithm on the receiving side to take care of all the possible variants of data unit presentation.

When choosing the above mentioned data formats for synchronization vCard and vCalendar were enough to synchronize data objects supported by majority of SyncML devices at that moment. With time, a need for synchronization of other data types arose (like file, folder and e-mail), which were not in the versit. These data objects created a need for additional features in SyncML protocol , which are not always supported by versit data formats (for example, field level changes technique). Besides, some of the existing features of the protocol are defined in a way that makes introduction of the above mentioned new types difficult (for example, filtering). These and some other issues are described in details below.

Thus, it is reasonable to assume that there is a need for creation of new unified data format, that would satisfy all the existing and possible future feature requirements and solve the existing issues outlined below thus decreasing time to market for new features supported by SyncML protocol and implicitly improving the end-user sync experience by increasing the speed and quality of the synchronization.

Use cases

The following are short descriptions of typical use cases of “ideal” unified data format that are not possible now with the existing data formats.

· Painless introduction of new data synchronization objects (see also section 2.2)
· A sync server exists that is used for synchronization of one data type between two devices. A new data type is introduced and supported on both devices. Devices continue to synchronize using the above mentioned sync server with little or no modification to the server.

· A mobile device is using a sync server as a backup storage for its data, i.e. the device synchronizes its data using one way sync from client only. Server is blind about the data being stored. The mobile device then starts to support new data type and uses the same server to backup the new data with little or no modifications to the server.

· A sync server exists that is used for synchronization of one data type between two devices. A notion of new data type is introduced that is expected to be supported and synchronized between these devices. The cost of adding new type to synchronization is minimal, because the existing synchronization framework is reused.

· Data type independent filtering (see also section 2.3)

· The client wants to synchronize e-mail messages with attachments no larger than 50 kB by specifying the corresponding filter using the filter query syntax defined in SyncML protocol. The client does so without any special filtering keywords, using only propery names as comparison items.

· Using field level changes technique (see also section 1.3)

· A meeting event is kept on user’s mobile phone and is being synchronized with user’s PC using SyncML protocol. The meeting has 200 attendees. Every time an attendee responds to a meeting request, the event changes on the PC. The user syncs his/her phone from time to time to update meeting attendees’ information. To increase the speed of sync, user sets up his/her device’s synchronization settings so that it would use field level changes technique on calendar and thus synchronize only the change of the status of those meeting attendees, that have answered the request in the mean time, without syncing the large meeting object every time. Moreover, if there are several meetings like this one, the speed of sync is not increased dramatically, because the size of the attendee status field is very small.

Existing data formats issues

1. Versit issues

The following section summarizes versit issues described in details in [OMA-DS-2004-0021-SyncML-Interoperability-White-Paper-v0.9.doc] and [OMA-DS-2004-0016-contact-card-format-vCard.ppt].

1.1. Multiple properties of the same type

Some devices support multiple properties of the same type (i.e. with the same parameters) but vCard and vCalendar formats do not provide a well-defined way to distinguish these properties from one another.

Example:
TEL;HOME;VOICE:+3726345678

TEL;HOME;VOICE:+3726345679

TEL;HOME;VOICE:+3726345680

If an Add with the telephone information above is received and then a user realised that the second home number was in fact a work number, a replace of the following kind can be sent (the property parameter is changed) :

TEL;HOME;VOICE: +3726345678

TEL;WORK;VOICE: +3726345679

TEL;HOME;VOICE: +3726345680

In this case the receiving device is not able to determine that the number with value “+3726345680” should still be interpreted as the third home number.

Another variant of replace being sent in this case:

TEL;HOME;VOICE: +3726345678

TEL;HOME;VOICE:

TEL;HOME;VOICE: +3726345680

TEL;WORK;VOICE: +3726345679

In this case it is obvious, that the second home number is now deleted and a work number added, but in this case the sending device must maintain a complex history of record changes.
1.2. Semantic ambiguity in vCard

Phone types in vCard do not belong to the same semantic category of parameters although they are specified “on the same level” in the vCard specification [RFC2426]. There are several possible ways to represent one telephone type using telephone types defined in vCard specification [RFC2426]. On the other hand one complex telephone type (like TEL;HOME;WORK;CELL) may actually represent several types at the same time. Because the devices are free to represent and interpret the data in any way (as long as it conforms the vCard specification [RFC2426]), there is a problem of mapping different phone types from different devices so that the result would most correctly reflect the data value and it would be possible to determine any changes made to the property/parameter combinations on any device.

Moreover, some of the valid telephone types combinations are generally considered to be mutually exclusive by popular PIMs (and hence SyncML devices).

Example:

First device supports work cell phone only representing it as TEL;WORK;CELL.

Second device supports cell phone (whether home or work) representing it as TEL;CELL and work phone (whether cell or landline) representing it as TEL;WORK.

If first device is sending its only phone to the second one, it is unclear whether it should be placed into TEL;CELL or TEL;WORK or both. In any chosen case a data loss may occur in subsequent synchronizations.

1.3. Field level changes requirement non-compliance

To decrease the amount of data transferred between the devices a technique called field level changes is used in SyncML [OMA-DS-2003-0548R02-SyncRepresentDataSyncUsage.doc, section 5.8.1]. This is the capability for the originator to send an update to the recipient without having to transfer the entire item. Versit data types are not always suitable for field level changes.
Versit defines 2 methods of specifying that a field was emptied (deleted):

· sending the field with empty value

· not sending the field at all

The first method is not allowed for fields that can’t have empty values (such as date/time fields). The second one is allowed for all fields, but FLC implies that field not sent was not changed, thus it prevents us from using the field level changes technique.

Moreover, versit data types have several constraints that do not allow sending one field without sending another.

Example 1:

It is ambiguous to send the field-level change containing the following vCard

BEGIN:VCARD

VERSION:2.1

N:Doe;John;;;

TEL;HOME:(321) 654-987

END:VCARD
In this case if the receiving side supports more than one HOME phone number, it will have an ambiguity understanding which one was changed.

1.4. Missing features

Versit formats miss several important properties widely supported by devices and applications. For example:

· vCard :

· IM id,

· IM presence,

· Localisation (PoC);

· vCalendar :

· all day or untimed events,

· changed exceptions in recurring events.

2. General issues

2.1. Composite fields

Current definition of the CTCap allows describing fields of items only on two levels:

· Property level – immediate fields of an item

· Parameter level – subfields of a property

This scheme is the result of versit adaptation. While this depth covers majority of fields in existing formats, future data types may easily require more sophisticated field description mechanism.

Example 1:

According to vCal format “ATTENDEE” field of a group calendar event is a structure that may contain 1 to 5 fields depending on implementation:

· E-mail address – the email address of the recipient understood by the messaging system. E-mail address itself can be viewed as a structure, that may contain 1 to 3 fields depending on implementation :

· Address – the email address understood by the messaging system

· Display name – name(s) of the owner of the e-mail address as they’re shown in the messaging system

· Address type – in systems that support multiple delivery mechanisms, the address type plays an important role.

· ROLE – for the role of the attendee in the event
· STATUS - the status of the attendee’s participation in the event

· RSVP - whether the favor of a reply is requested

· EXPECT - the expectation of the attendee’s participation by the originator.

Example 2:

Multiple phone numbers for a contact logically seem like a list and their types are subfields of the composite telephone field:

· phone location(s) – home, work, car

· phone type – voice, fax, pager, msg etc.

· preferred number – true/false

· phone number
Structures in conjunction with lists provide means of describing item fields of any nested complexity. In the ATTENDEE field example the list of attendees for the meeting event can be presented as a list of attendee field structures that consist of the fields described above where e-mail address is a structure itself.
2.2. Data types and data independent sync mechanism

Right now the synchronization algorithm on the sync server is bound to be dependent on the data type it synchronizes because there is no notion of a field data type. The vCard and vCalendar specifications describe the format of every data field (type value), but during the synchronization there is no way for sync server to determine the field type and act accordingly.

Note: There’s a DataType tag in the CTCaps device information, but it only applies to the “unknown” non-Versit formats, like e-mail.

The type of the field content is determined by field name and although there are fields of the same type (datetime, for example), sync engine must parse every field and determine its further actions based on the field name in context of the given data type. This results in the situation when having a new field of a well-known data type (like datetime) result in subsequent changes in all the sync servers to include the support of this new field.

Thus the absence of the strict data type notion for every field:

· slows down the process of sync by increasing the complexity of sync algorithm;

· increases the complexity of sync servers, thus making it difficult to support them and making them error prone;

· makes it difficult to introduce new data objects for synchronization and adapt new versions of the existing ones thus increasing time to market for new device features (e.g. data formats).

2.3. E-mail filtering

Existing e-mail object definition [OMA-SyncML-DataObjEmail-V1_2-20040119-D.doc] uses the MIME email type defined in [RFC822] for the “body + headers + attachments” part of the e-mail object. Because on the SyncML level emailitem is an atomic field and headers and attachments are not defined as separate fields/objects, possibilities of filtering involving those parts of the e-mail objects are very limited. To define a filter for e-mail fields inside the RFC822 body that would otherwise require no special additions to the protocol, in this case we have to define a separate keyword for every field.

Example 1:

It is impossible to filter out the attachments larger than particular size.

Example 2:

It is impossible to truncate the textual body separately. Suppose a client specifies the following filter:

 <Field>

 <Item>

 <Meta><Type>application/vnd.syncml-devinf+xml</Type></Meta>

 <Data>

 <Property>

 <PropName>EMAILITEM</PropName>

 <MaxSize>1000</MaxSize>

 </Property>

 </Data>

 </Item>

 </Field>

Emails with attachments and textual body less than 1000 bytes might be truncated in the middle of attachment.

Objectives

Define and describe a new standard easy-to-implement format definition the main purpose of which will be to serve as the common structure for all the new data types to be synchronized over the SyncML protocol. Take into account the use cases and issues described in this document as well as other existing data formats (e.g.Versit, Liberty ID-SIS Personal Profile Service etc.) and suggestions of other interested parties.
4 Intellectual Property Rights

We are not aware of any IPR associated to this contribution.
5 Recommendation

We request a discussion on the topic and potential approval for creation of corresponding work item.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 6)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20040305]

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Page 6 (of 6)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20040122]

