Doc# OMA-DS-DS_2_0-2008-0014-INP_Source_Target_Revision.doc[image: image1.jpg]
Input Contribution

Doc# OMA-DS-DS_2_0-2008-0014-INP_Source_Target_Revision.doc
Input Contribution

Input Contribution

	Title:
	Adding Fingerprints to DS 1.2.x
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	DS / DM / Open Distribution

	Submission Date:
	October 2008

	Source:
	Darryl Champagne dgc@funambol.com (dgc@acm.org)

	Attachments:
	Marked up versions of DS 1.2.1 specifications
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	Replaces:
	

1 Reason for Contribution

DS 2.0 has extensive changes to simplify and improve synchronization, especially slow sync.

It is desirable to test some of this functionality in prototypes (or to reuse in a possible DM or DS 1.3). One of the ways to do so is to make minimal changes to a DS 1.2.1 client and server system, so as to test some of the key flows.

This input discusses one way to do so, in a backward compatible fashion.
2 Summary of Contribution

This contribution provides the following proposals:
1. Add some new elements to Meta to hold fingerprints and LUIDs
2. Revise the Data Sync Representation document to show FP use
3. Revise the DS Protocol document to show FP use
4. Add to Device Information to indicate support for Fingerprints

Items not added include revising DM specifications to show how DM could use Fingerprints (which it can, as they are specified in the Common Meta document).
Also note that no support for Large Meta elements is available in DS 1.2, so the working assumption is that the list of IDs and Fingerprints must always fit in a single message.

Also note that this proposal was based upon Fingerprints being character strings. In DS 2.0 they have since been modified to be integers, so the Hierarchy methods specified here are different.
3 Detailed Proposal

1. Add elements to Meta
To utilize Fingerprints in DS 1.2.x, a place needs to be created to carry fingerprint information. A convenient location for this is in Meta (although this stretches the meaning of Metadata, like several prior values). Meta elements may be used in many places, which allow them to hold the information we need, where it is needed. Keeping all DTD changes in one place should simplify parsing changes, and if the parser can handle the new elements / WBXML tags, code to handle Meta information should be easier to make robust enough to ignore unexpected Meta data (if that isn’t already the current behavior), since it deals with a separate namespace.

The key information that needs to be carried is the Fingerprint related to a specific object, and the list of fingerprints and LUIDs at the request or start of a sync. Since DS 1.2.1 does not currently use attributes, rather than the DS 2.0 style of <xxxURI fp=”xxx”>LUID</…>, these need to be combined into a pair of elements (an IDPair). Accordingly, the new Meta Elements of FP, IDContainer, IDPair, and ItemID are shown in the accompanying Revised Meta Information document. See the detailed write-up for each element.
These are then added as relatively minor changes to the DTD, as:

<!ELEMENT MetInf (FieldLevel?, Format?, Type?, Mark?, Size?, Anchor?, Version?, NextNonce?, MaxMsgSize?, MaxObjSize?, EMI*, Mem?, FP?, IDContainer?)>

And the new elements are defined as:

<!ELEMENT IDContainer (IDPair+)>

<!-- An ID Container holds one or more pairs of IDs and Fingerprints -->

<!ELEMENT IDPair (ItemID, FP?)>

<!-- An ID Pair holds exactly one ID and a Fingerprint if available -->

<!ELEMENT ItemID (#PCDATA)>

<!-- An ItemID is generally a standard LUID, but rarely could
be a GUID if not yet mapped -->

<!ELEMENT FP (#PCDATA)>

<!-- An FP is a Fingerprint. It MUST be reasonably unique, and based

upon the actual data stored – e.g. it changes whenever the data changes.

It does not have to be globally unique, but it should be rare to get

the same value twice. A CRC or Hash is a good option, generated on

the client. -->

Because this is intended for prototyping, and early testing, it was not felt that all use cases need to be supported. Therefore it is assumed that anyone who chooses to implement fingerprints will also choose to make good use of them, rather than an absolute minimal form of support. Thus the requirement to use relatively unique fingerprints, rather than allow for dirty bits, and some of the other cases. Additionally, this prototype only deals with client generated fingerprints, since that is expected to be the typical case.
The WBXML tags chosen are just the next available:
	FP
	17

	ID
	18

	IDContainer
	19

	IDPair
	1A

Also note some specific Fingerprint requirements if extended functionality is desired – reserving the # symbol to separate portions of fingerprints for large object chunks, or hierarchy.

The specific changes beyond those listed above are:

5.2.5. FP
Usage: Specifies the fingerprint of the current Item.
Parent Elements: MetInf, IDPair
Restrictions: It MUST be reasonably unique, and based upon the actual data stored – e.g. it changes whenever the data changes. It does not have to be globally unique, but it should be rare to get the same value twice. A CRC or Hash is a good option, generated on the client.
The character # is reserved as a separator for sub-items. This is reserved for Hierarchy definition E.g. a folder object could have a FP for the data within the object (which would only change when the folder object itself changes), as well as a FP for all the data below it in the Hierarchy (which would change when any object below the folder changes), such as 1234#2345, where 1234 changes whenever the foldername (etc.) changes, while 2345 will change whenever objects in the folder, or in sub-folders of the folder change.
Content Model:

	(#PCDATA)

Attributes: None.

Example:

	<FP xmlns=’syncml:metinf’>1234</FP>

5.2.6. IDContainer
Usage: Specifies a container for one or more IDPairs. This is used to convey groups of IDs and the matching Fingerprints, either to determine what to sync, or to propagate a number of FPs at the same time.
Parent Elements: MetInf

Restrictions: When used with an Alert for Slow Sync from the client, it lists all the LUIDs and the matching fingerprints that the client currently has. The server uses this to determine what items of the servers already match what the client has, and allows it to return a list of what IDs the server actually wants sent during the sync. Also, the server may choose to review the FPs to perform a preliminary duplicate detection with any of its items that it already has fingerprints for. This can be used to recover a lost mapping table (or if the client has renumbered items), or can just be used to determine what item to first test for duplicates with.
When used with an Alert for a Slow Sync from the server, this overrides the meaning of a slow sync, such that only those items specified by the server are to be sent, not all.
Content Model:

	(IDPair+)

Attributes: None.

Example:

	<IDContainer xmlns=’syncml:metinf’>
 <IDPair xmlns=’syncml:metinf’>

 <ItemID xmlns=’syncml:metinf’>LUID001</ItemID>

 <FP xmlns=’syncml:metinf’>1234</FP>

 </IDPair>
 <IDPair xmlns=’syncml:metinf’>

 <ItemID xmlns=’syncml:metinf’>LUID002</ItemID>

 <FP xmlns=’syncml:metinf’>2345</FP>

 </IDPair>

</IDContainer>

5.2.7. IDPair
Usage: Specifies a combination of an Item ID and the matching Fingerprint (if available).

Parent Elements: IDContainer
Restrictions: Generally the ID is a LUID. When sent from the client there should generally be a valid Fingerprint included. When sent by the server the FP can either be dropped, or the previous value could be returned (if that might help the client).

Content Model:

	(ItemID, FP?)

Attributes: None.

Example:

	<IDPair xmlns=’syncml:metinf’>

 <ItemID xmlns=’syncml:metinf’>LUID002</ItemID>

 <FP xmlns=’syncml:metinf’>2345</FP>

</IDPair>

5.2.8. ItemID
Usage: Specifies the identifier of the current Item.

Parent Elements: IDPair

Restrictions: Generally this is the LUID for the item. It could be a GUID if an item is not yet mapped, but that should be a special case (and not currently needed).
The character # is reserved as a separator for sub-items. E.g. part 2 of a large object could be identified with LUID002#2.
Content Model:

	(#PCDATA)

Attributes: None.

Example:

	<ItemID xmlns=’syncml:metinf’>LUID001</ItemID>

See the accompanying marked-up Meta Information document.

2. Revise the Data Sync Representation document to show FP use
Fingerprints need to be conveyed in a couple of places, as well as having a minor impact on a couple of functions.
Accordingly, the Filtering section needs to be revised to show when Fingerprints should change, as in section 5.13.1:
When a Filtering request results in different data being returned for a record (such as a subset of fields), then the FP MUST be updated to match. For servers, this means that the FP of the item should be marked as invalid when sending revised data to the client. For the client, this means that a new FP should be returned with the status of the command containing the new data.
Various examples should have the use of FP shown, as in 6.1.14, MoreData, 6.1.17 NoResp, 6.1.27 Target, 6.3.2 Item, 6.5.1 Add, 6.5.8 Map, 6.5.10 Move, 6.5.12 Replace, and 6.5.16 Sync. This is generally shown something like (depending upon context, if Meta tags are needed, namespace, etc.):

 <FP>1234</FP> <!-- If sent by client -->
The section 6.4.1 Status command text needs to describe when it needs to convey a Fingerprint – generally the status of a Replace command.

Note: To support fingerprints when the client does not send Map commands requires the client to send an Item for each Item in the original command, and for those to specify an FP for each.
The section 6.5.1 Add command text needs to describe the requirement for the client to include the Fingerprint for a large object, independent of each particular Chunk:

The OPTIONAL Meta element type specifies meta-information to be used for the command. For example, the common media type or format for all the items can be specified. The scope of the meta-information is limited to the command. Note that a Fingerprint provided here applies to the entire object, in the case of a large object, rather than just for a particular Chunk being transferred. The Fingerprint for the current Chunk would be specified inside the Meta of the Item Element as specified below.
The section 6.5.1 Add command text needs to describe the requirement for the client to include the Fingerprint when sending Add commands, as in:

When sent by the client, each Item within the Add command MUST contain a fingerprint.
The section 6.5.2 Alert command should explain how to include an IDContainer when starting a slow sync. Since none of the current examples are about starting a sync, that text is deferred to the DS Protocol specification, where Slow Sync (etc.) is discussed.

The section 6.5.4 Copy command text needs to explain default values:

If a client issues a Copy command, then by default the server MAY assume that the fingerprint of the copied item is the same as that of the original. If the fingerprint needs to be different (which is a desirable property), then the client MUST specify a new fingerprint in each item of the copy command.
The section 6.5.8 Map command text needs to explain the client sending fingerprints when the server changes items. Most importantly, because MapItem does not support Metadata, we need to restrict our Map commands to just providing one mapping at a time. That way the Meta data at the Map level may be used, as in:

Clients supporting fingerprints in DS 1.2 MUST use only a single MapItem for each Map (or the DTD for MapItem must be revised to support Meta).
Similar to Copy, the section 6.5.10 Move command text needs to explain default values:

If a client issues a Move command, then by default the server MAY assume that the fingerprint of the moved item is the same as that of the original. If the fingerprint needs to be different (which is a desirable property), then the client MUST specify a new fingerprint in each item of the Move command.
Similar to the Add command, the section 6.5.12 Replace command text needs to describe the requirement for the client to include the Fingerprint when sending Replace commands, as in:

When sent by the client, the Replace command SHOULD include a Fingerprint. As an…
And:
When more than one item is sent by a client, each item SHOULD include a Fingerprint in its Meta information. When only one item is sent by the client the Fingerprint MAY be included in the Replace command Meta, or in the Item’s Meta.
See the accompanying marked-up SyncML Representation Protocol, Data Synchronization Usage document.

3. Revise the DS Protocol document to show FP use

In section 6.3, ID Mapping of data items, add FPs to the examples and tables, along with the text:

Additionally, clients MAY generate fingerprints of data items (See FP in [META]).
This revises the diagrams, and various small wording changes.
In section 6.10.2 Large Object Exchange Sequence, add where to include fingerprints on chunks, and how to address them:

When the sender is the client, it MAY include a fingerprint for each chunk of data. To later address that fingerprint, one would specify an ID in the form of LUID#chunk number.
And add examples to the example of the client beginning to send a large object, and the client sending the last chunk of the large object.

In section 6.11 Hierarchical Synchronization, describe the options available for fingerprints and hierarchy:

Fingerprints in a hierarchy apply in two ways:

1) There is a fingerprint on each node. This refers to just the data contained in the node, such as the folder name.

2) There MAY be a fingerprint related to all data beneath that node. This would change as data is modified anywhere below the node in the tree. When this exists, it is identified as a second fingerprint concatenated after the fingerprint of the node itself, separated by the separator character ‘#’. E.g. FPNode#FPTree. Support for this is OPTIONAL.
And also add fingerprints to the tables and examples, specifically including how one can convey multiple modified fingerprints, when items in a hierarchy change:

 <!-- No new FP specified, so the old FP of the object still applies -->

 <!-- OPTIONAL: -->

 <!-- However, moving the object means that both the FP of the Pictures -->

 <!-- directory, as well as the previous location of image1.jpg have -->
 <!-- Changed. As the old location was root, no separate FP, but we -->

 <!-- Need to send the new FP of Pictures. Sending FP for a different -->
 <!-- ID requires sending an IDContainer. -->

 <IDContainer>
 <IDPair>

 <ItemID>1001</ItemID>
 <FP>4567#7777</FP> <!-- Note the FP of just the node is unchanged -->

 </IDPair>
 </IDContainer>

</Meta>
And mention how the statuses from the client to the server will need to update various FPs:

The client status information that follows will contain an Item within each status, which will contain <Meta> to specify the new fingerprint of the original item
Add the text to section 8.1 Initialization Requirements of the Client, to describe what changes in a slow sync:

· If fingerprints are to be used to optimize the slow sync case (and the alert is for a Slow Sync), the client SHOULD include an IDContainer within the Meta information of the Alert, containing IDPairs of ItemID and FP for each data object the client has. The client MAY choose to do so for other alert types, in case the server will subsequently desire a slow sync.
And update the example to match:

 <IDContainer> <!-- Optional for Alert 200 -->
 <IDPair>

 <ItemID>1001</ItemID>
 <FP>1234</FP>

 </IDPair>
 <IDPair>

 <ItemID>etc.</ItemID>
 <FP>etc.</FP>

 </IDPair>

 Etc.

 </IDContainer>

Update section 8.2 Initialization Requirements for Server to show what to do with the information:

· If fingerprints are to be used to optimize the slow sync case (and the alert is for a Slow Sync), the server SHOULD include an IDContainer within the Meta information of the Alert, containing IDPairs containing the ItemID for each data object the client has that the server actually desires to be sent (as opposed to the default slow sync behavior, which is for the client to send all data objects). The server MAY choose to also include the last fingerprint it had for the item. In some situations, the client may be able to utilize the previous fingerprint to issue a field level replace, rather than sending the entire data object.
Similarly, throughout various following examples (Not detailed here), update to show fingerprints being conveyed with the data from the client to the server, with the Map command for Add commands from the server, or with Status for Replace (Move, Copy, etc.) commands from the server.
Also note the expected server behavior when it makes changes:

Note that servers do not send fingerprints, rather they mark their stored fingerprint as invalid for any new item or item modified on the server.
In Section 9.5 Slow Sync, along with example and minor text changes include:

When using fingerprints, the Alert for a Slow Sync from the client SHOULD include an IDContainer within the Meta information of the Alert, containing IDPairs of ItemID and FP for each data object the client has. Alerts for syncs of other types MAY Include an IDContainer and related information. The corresponding Alert for a slow sync back from the server SHOULD include an IDContainer within the Meta information of the Alert, containing IDPairs containing the ItemID for each data object the client has that the server actually desires to be sent. The server MAY choose to also include the last fingerprint it had for the item. Failing to return an IDContainer will result in the normal slow sync behaviour of the client sending all data items.
Note that fingerprints provide several ways to optimize slow syncs:

1) If a server has GUIDs and fingerprints (and probably old LUIDs), it may match the LUID and fingerprints received from the client with its fingerprints and thus regenerate the mapping table. Thus it will only need to request items that have been modified on the client. This can be done even if the client does not recall any prior interactions with the server, or if the prior interactions were merely with a different client that supports the same fingerprint algorithm (such as from the same vendor).
2) If the server and client both support hierarchical fingerprints, then the server can quickly determine if entire trees of the hierarchy are still in sync.
3) If a large object was interrupted, and both client and server support object chunk fingerprints, the server may directly specify just those chunks that it now needs.
See the accompanying marked-up DS Protocol document.

4. Add elements to Meta

To utilize Fingerprints in DS 1.2.x in a backward compatible fashion, a place needs to be created to carry information about fingerprint support (This would not be needed in a DS or DM 1.3). The typical DS location for this is in DevInf.
The simplest way for DS 1.2 is to merely define a common extension, as in:

<DevInf>

 ...

 <Ext>

 <XNam>X-SupportFP</XNam>

 </Ext>

 ...

</DevInf>

Of course, a DS or DM 1.3 implementation would either implement a standard tag if the functionality was optional, or just require support.
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

Members work towards refining this, and performing interoperability testing related to this.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 8)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20060101-I]

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Page 3 (of 8)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20060101-I]

