Versioning

Solving all the problems — badly

(and creating persistent terminology confusion)

IPSO call 2019-12-12 » Carsten Bormann cabo@tzi.org The information in this presentation is public. 1




Software versions

Software gets improved over time, new releases
installed

— Which release do | have?

-> Version number!

Fiction: Development runs in a linear progression

IPSO call 2019-12-12 » Carsten Bormann cabo@tzi.org The information in this presentation is public. 2




Library versions

Version numbers are not just for humans

— describe an interface (obvious in libraries)

Independent evolution of interdependent entities

IPSO call 2019-12-12 » Carsten Bormann cabo@tzi.org The information in this presentation is public. 3




Kinds of changes

— Additions/Extensions

— Reinterpreting existing interactions

Backward compatibility

— Interoperability with legacy [systems]
— may need to replicate known flaws (bug compatibility)

Forward compatibility
— Tolerate evolved input
- enables extensibility

IPSO call 2019-12-12 » Carsten Bormann cabo@tzi.org The information in this presentation is public. 4




Interface vs. Format compatibility

Interfaces: Set of interactions, a protocol
Formats: A reduced interface with one interaction (convey)

Indicated vs. Negotiated Evolution

— Indicated: producer declares, consumer has no say

— Negotiated: Both sides have a say;
producer adapts to consumer

IPSO call 2019-12-12 « Carsten Bormann cabo@tzi.org




Versioning

Originally:
project (map) evolution to a linear number space

Purpose in format evolution:
prevent false interoperation

IPSO call 2019-12-12 » Carsten Bormann cabo@tzi.org The information in this presentation is public. ©




Semantic Versioning (semver)

From library versioning:

— Major: Prevent false interoperation
— Minor: Add features (backwards compatibility)

— Patch: Should be inconsequential

Expresses intent (but note that there are bugs!)

IPSO call 2019-12-12 » Carsten Bormann cabo@tzi.org The information in this presentation is public. 7




Versions vs. features

— Backwards compatible features (ignore unknown)

(Minor semver = roll-up of such features;
works in single-implementation world)

— Must understand features

(Major semver = roll-up)

Version: Single number (or github commit?)
Features: Set of identifiers

IPSO call 2019-12-12 » Carsten Bormann cabo@tzi.org The information in this presentation is public. 8




Example: HTTP

1.0 was baseline for the 1990s
— Lots of features added as header fields

— ignore-unknown (built-in extension mechanism)
essentially attained feature-set of 1.1, but cruft accumulated

1.1 was a major (!) revision

— reinterpreted some of the header fields, roll-up of features

2 was a complete replacement of a layer (3 will be, again)

IPSO call 2019-12-12 » Carsten Bormann cabo@tzi.org The information in this presentation is public. 9




Example: HTML

Very different kind of ecosystem: oligopoly
(especially since the 2000s)

Backward compatibility (new browsers can show old
sites) is must-have

Forward compatibility (old browsers can show new sites
in degraded form) crucial in short term
— long term: not really

(needed as browser upgrade motivation)

IPSO call 2019-12-12 » Carsten Bormann cabo@tzi.org The information in this presentation is public. 10




Guidelines for format evolution

Background: multiple implementations =
different features are introduced in different timescales

- Use features (ignore-unknown) instead of versions
- Use must understand features for moving forward
Strong disincentive to roll-up feature bundles into new

versions: Creates flag day between producers and consumers
-> May be desirable eventually, as a coordinated clean-up

IPSO call 2019-12-12 » Carsten Bormann cabo@tzi.org The information in this presentation is public. 11




Model vs. format evolution

Similar considerations apply

May want to expose feature set in self-description
Version as a roll-up may be attractive sometimes

Versioning vs. must-understand to break false interoperation
Composition, inheritance, enhancement...

Indicate evolution of components?

Evolve model vs. evolving instance (e.g., typo fixes)

IPSO call 2019-12-12 » Carsten Bormann cabo@tzi.org The information in this presentation is public. 12




Profiles

roll-up sets of features for a subset of users
(which subsets might overlap!
- need conflict-free profiles)

might in turn have a feature name (composition)
levels vs. profiles; strictly nested

ZigBee alliance: Profiles do overlap; get rid of profiles

IPSO call 2019-12-12 » Carsten Bormann cabo@tzi.org The information in this presentation is public. 13




Deprecation

explicit deprecation/"replaces" relationship
instead of:

implicit deprecation in linear version progression
(may want to indicate edge on both vertices)

IPSO call 2019-12-12 » Carsten Bormann cabo@tzi.org The information in this presentation is public. 14




Data models vs.
Protocols in general

Data models describe a specific kind of a protocol

— May enable specific kinds of versioning

— Does not have a protocol to do negotiation/adaptation

IPSO call 2019-12-12 » Carsten Bormann cabo@tzi.org The information in this presentation is public. 15




