[image: image3.jpg]
OMA-RD-Execution_Policy_Enforcement_Management-V1_0-20031204-D
Page 4 V(31)

	Execution Policy Enforcement and Management Requirements

Draft Version 1.0 – 12 Dec 2003

	

	Open Mobile Alliance
OMA-RD-Execution_Policy_Enforcement_Management-V1_0-20031204-D

	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

51.
Scope (Informative)

62.
References

62.1
Normative References

62.2
Informative References

73.
Terminology and Conventions

73.1
Conventions

73.2
Definitions

83.3
Abbreviations

94.
Introduction (Informative)

94.1
Actors in the context of EPEM

104.1.1
End Users

104.1.2
Network Operators

104.1.3
Third Party Service Providers

104.1.4
Application Developers

104.2
User settings and resource protection

104.3
EPEM, Common Functions and Integration

115.
Use Cases (Informative)

115.1
Typical Flow in an EPEM Use Case

115.2
Enforcing Execution Policies

115.2.1
Short Description

125.2.2
Actors

125.2.3
Pre-conditions

125.2.4
Post-conditions

135.2.5
Normal Flow

135.2.6
Alternative Flow

135.2.7
Operational and Quality of Experience Requirements

145.2.8
Concrete Examples

145.3
Execution Workflow

145.3.1
Short Description

145.3.2
Actors

155.3.3
Pre-conditions

155.3.4
Post-conditions

155.3.5
Normal Flow

155.3.6
Alternative Flow

165.3.7
Operational and Quality of Experience Requirements

165.3.8
Concrete Examples

165.4
Delegation

165.4.1
Short Description

165.4.2
Actors

175.4.3
Pre-conditions

175.4.4
Post-conditions

175.4.5
Normal Flow

175.4.6
Alternative Flow

175.4.7
Operational and Quality of Experience Requirements

185.4.8
Concrete Examples

185.5
Controlled Exposure of Resources

185.6
Execution Policies for terminal-based Resources

195.7
Discovery of Execution Policies

195.8
Defining the Execution Policies

205.9
Debugging the Execution Policies

205.10
Deploying New Resources

205.11
Sources of Execution Policies

205.12
Prioritization of Execution Policies

205.13
EPEM Delegation

215.14
Use Case A, SMS Spam Prevention Policy

215.14.1
Short Description

215.14.2
Actors

215.14.3
Pre-conditions

215.14.4
Post-conditions

225.14.5
Normal Flow

225.14.6
Alternative Flows

225.14.7
Operational and Quality of Experience Requirements

235.15
Charging Control using Execution Policies

235.15.1
Short Description

235.15.2
Actors

245.15.3
Pre-conditions

245.15.4
Post-conditions

245.15.5
Normal Flow

245.15.6
Alternative Flows

245.15.7
Operational and Quality of Experience Requirements

266.
Requirements (Normative)

266.1
High-Level Functional Requirements

276.1.1
Security

286.1.2
Charging

286.1.3
Administration and configuration

286.1.4
Usability

286.1.5
Interoperability

286.1.6
Privacy

286.2
Overall System Requirements

286.3
System Elements

286.3.1
System Element A

286.3.4
Network interfaces

29Appendix A.
Change History (Informative)

29A.1
Approved Version History

29A.2
Draft/Candidate Version 1.0 History

30Appendix B.
Review of Related Technologies and Standards (Informative)

31Appendix C.
Technologies available to implement Execution Policy Enforcement and Management (Informative)

1. Scope
(Informative)

This document provides use cases and requirements for execution policy enforcement and management within OMA.
An OMA informative technical report [OMA-TR-EPEM] provide a detailed overview of available technologies and deployment models options to support the execution policy enforcement and management use cases.
2. References

Editor’s note: To be done
2.1 Normative References

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”. S. Bradner. March 1997.
URL:http://www.ietf.org/rfc/rfc2119.txt

	
	

	
	

2.2 Informative References

	[OMA-TR-EPEM]
	OMA-TR-Execution_Policy_Enforcement_Management-V1_0-20030927-D

	[RFC 3198]
	Terminology for Policy-Based Management, IETF, URI: http://www.ietf.org/rfc/rfc3198.txt

	[WS-Policy]

	Web Services Policy Framework (WSPolicy), Version 1.1., URI: http://ifr.sap.com/ws-policy/

	
	

	
	

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

Editor’s note: whenever possible the source of the definition will be added to the text.

In particular, a proposal for an appropriate definition of policy in-line with the definitions used in the industry while not confusing the notions of execution policy proposed in this document is encouraged.
	Common Functions
	Editor’s Note: Definition to be taken from CF WI

	Delegation
	Capability to design or configure a system or resource so that it can rely on other systems to perform certain tasks or functions; act of doing so.

	Dynamic Execution Policy
	Execution policy assertion with a time dependency and that therefore must be evaluated at request time.

	Execution Policy
	Set of conditions and actions that must be satisfied on any request or exchange to or from a resource. It can be static or dynamic.

	Execution Policy Assertion
	An individual preference, requirement, capability or other property that can be evaluated (conditions) or executed (actions).

	Execution Policy Enforcement
	Mechanism to execute and validate execution policies on any exchange to and from a resource.

	Execution Policy Enforcer
	Logical entity responsible to execute and validate at least one of execution policy assertion of the execution policy on request to a resource.

	Execution Policy Engine
	Logical entity responsible to interpret an execution policy assertion to produce a decision; also know as execution policy decision point (PDP).

	Execution Policy Execution
	Interpretation and execution of the logic expressed in the execution policy on the request to the resource. This includes evaluating execution policy assertions to produce decisions, issuing requests to other resources specified by execution policy assertions and evaluating the results of such request.

	Execution Workflow
	The expression of a series of execution policy assertions that must be interpreted. Workflows are particular cases of execution policies where sequences in which execution policy assertions must be interpreted and executed are expressed.

	Execution Workflow Engine
	Logical entity that is able to interpret an execution workflow and execute it on a request to the resource to which the execution workflow applies.

	Execution Policy Validation
	Confirmation that all the execution policy assertions have been executed for a request to the resource to which the execution policy applies.

	Principal
	An entity that has an identity. Examples of principals include an individual user, a group of individuals, a corporation, services, applications, system entities and other legal entities.

	Request Condition
	The type of information (e.g. credentials) that the requestor must provide with the request. These are not executions policies as they are provided to the requestor but they may be a subset of execution policies associated and enforced by EPEM.

	Requestor
	Any entity that issues a request to a resource.

	Responder
	Resource that is the target of a request.

	Resource
	Any component, function or application that can receive and process requests.

	Static Execution Policy
	Execution policy assertion that is independent of the time of evaluation and can be evaluated in advance.

3.3 Abbreviations

	EPEM
	Execution Policy Enforcement and Management

	PDP
	Policy Decision Point

	PEP
	Policy Enforcement Point

	SLA
	Service Level Agreement

4. Introduction
(Informative)

Mobile service environments where different entities, e.g. enterprise networks, mobile operators and 3rd party service providers collaborate to provide highly personalised services to mobile subscribers presents new opportunities and benefits to the mobile value chain. Execution policy enforcement and management is driven by the need to reduce management complexity whilst maintaining time to market and consistent new subscriber services.

Execution Policy Enforcement and Management (EPEM) is a formal specification of ways to convey and enforce execution policies. EPEM mediates and manage access to resources The aim of this document is to collect requirements on EPEM.

Execution policy enforcement and management also enables delegation of functionalities to other resources (e.g. common functions or enablers):
· This can help reduce the silos and duplications of functionalities and components often met in the mobile industry.
· This is expected to be an efficient mechanism to exploit common functions by providing a systematic way to express and implement the delegation to such other resources.
This reduction of silos and duplications in particular through delegation of common functions is at the heart of the OMA service environment specified by OMA through its enabler releases.

Whenever requests can be made to a resource, execution policies can be associated to the resource and enforced by an execution policy enforcement mechanism on the request and on the associated response.
The present requirement document is expected to be neutral in terms of the technologies and to cover the different deployments model that can be considered. However, the requirements presented in this document may help in the technology solution and understand the suitability of different deployment models. A detailed review of use cases and illustration on how they can be supported with available technologies and different deployment models can be found in [OMA-TR-EPEM]. This document is also expected to help guide the specification work.
4.1 Actors in the context of EPEM

Figure 1 illustrates the main stakeholders in the context of EPEM.

[image: image1.wmf]EPEM

Operator

Controlled

Service

provider

Resources

Common

Functions

Service Provider

Requestor

Figure 1: Actors in the context of EPEM
EPEM invokes relevant policies to process the request and if successful it passes the request to the target resource.

The following discusses further the various roles and use of EPEM.

4.1.1 End Users

The mobile user wants to personalise her services and express her preferences at a high level utilising some personalization application (e.g. web-based forms with tables, pull-down menus, etc) to map those preferences across available services. These preferences are expressed at the level of the service provider in terms of execution policies that applies to calls that are affected by these preferences settings.
4.1.2 Network Operators
The network operator wants flexible service management to manage requests to resources and to and protect the integrity of its network resources across trust boundaries. Being able to expose resources in a manageable, secure, billable
, auditable and automatable manner is a key requirement. EPEM allows network operators to enhance their service portfolio and encourage the uptake of mobile services by other providers.

4.1.3 Third Party Service Providers
Service providers want to develop trust between the users of their services and themselves and thereby access and manage their preferences regardless of modality or device used. Being able to expose resources in a manageable, secure, billable, auditable and automatable manner is a key requirement of service providers. EPEM allows third party service providers to enhance their service portfolio and encourage the uptake of mobile services, e.g. enterprise.
4.1.4 Application Developers

Applications can be developed tailored to specific end-users using network hosted policies. They will also exploit mobile features by accessing resources exposed in the network. Therefore, the ability to request resources in a secure and automatable way is a key requirement for application developers who want to add mobile features to their applications.

4.2 User settings and resource protection

It is important to note that the EPEM enabler can be used to:

· Protect a resource by ensuring that execution policies are enforced and validated for any message to and from the resource.

· Allow enforcement of preferences or settings established by the user that are expressed and enforced as execution policies (e.g. called by enablers).

· Simplify implementation of resources by allowing delegation to other resources.

4.3 EPEM, Common Functions and Integration

By providing mechanisms to implement delegation of functionalities, the EPEM enabler provide technology options to:

· Use common functions

· Facilitate integration of resources that can share or reuse other resources

Because delegation to common function is be definition common across most use cases, the EPEM enabler can itself be considered as a key common function.
5. Use Cases
(Informative)

5.1 Typical Flow in an EPEM Use Case
This section provides an overview of the typical flow associated to the use of the EPEM enabler.
· Owner of a resource protects the resource with a EPEM enabler using a particular valid implementation and deployment model of the EPEM enabler. Examples are discussed in [OMA-TR-EPEM]

· Owner of a resource establishes the execution policy associated to it [Execution Policy Management]:

· For execution policy enforceer

· Subset of conditions exposed to the requestor

· Owner publishes / register execution policy somewhere [Execution Policy Management]
· Requestor discovers (or knows) resource

· Requestor knows the conditions it must satisfy (e.g. via Service Level Agreement (SLA))

· (Requestor may take prior steps to satisfy the conditions that he/she knows for using the resource)

· Requestor prepares request to resource and provides information / meta-data / credentials to be able to satisfy the conditions that he/she knows for using the resource.
· Request is logically processed by the Execution Policy Enforcer (logical entity / mechanism).
· Request is passed to resource for action (assuming successful validation of all the steps)
.
· (If specified by execution policy, response may be similarly processed before being passed to requestor.

· In such a case, the requestor may also add an execution policy to apply on the response before letting it reach it (e.g. authentication of the source – i.e. the original responder).
Editor’s note: The rest of the section will describe, in details and as prescribed in the template, the use cases enumerated above.
5.2 Enforcing Execution Policies

5.2.1 ASK * MERGEFORMAT Short Description

A set of execution policies (static or dynamic) has been set up in advance by the owner of a resource. They must be satisfied by a requestor before it can access or use the resource.

In this use case we assume that the owner of the resource also enforces the execution policies. Other sections will consider the use cases where these are different parties or in different domains.

5.2.2 Actors

· Owner of the resource:

· It has set up execution policies on the resource that it controls.

· Enforces the execution policies on requests to the resource.

· Requestor:

· Any issuer of request to access and use the resource.

· Provide necessary credentials to use the resource as it has been informed of.

5.2.2.1 Actor Specific Issues

· Owner of the resource:

· Enforcing the execution policies.

· Providing access to its resource

· Requestor:

· Providing necessary credentials to access the resource.

· Using the resource

5.2.2.2 Actor Specific Benefits

· Owner of the resource:

· Can offer access to resource and its use while enforcing conditions of usage expressed in execution policies

· Knows that resource is appropriately protected

· Requestor:

· Can access resources to use within its applications

· Can simplify and automate the way to satisfy the conditions to use a resource while requesting the resource: need on ly to know what credential to pass and how.

5.2.3 Pre-conditions

· Owner of the resource:

· It has set up execution policies on the resource that it controls.

· It has communicated what and how credentials must be passed in a request to the resource to potential requestors:

· E.g. via SLA or a priori agreements / communications.

· Requestor knows resource

· Requestor knows the conditions it must satisfy (e.g. via Service Level Agreement (SLA)):

· E.g. what credentials and how they must be passed with a request.

5.2.4 Post-conditions

· The request from requestor reaches the resource and is executed by or on the resource.

· The response may be treated through additional execution policy steps if imposed by:

· Execution policies of the target resource:

· E.g. a charging event is logged after successful or failed access of the resource

· Or as a repeat of the present use case where the responder becomes the requestor and vice-versa.

5.2.5 Normal Flow

· Requestor prepares request to resource and provides information / meta-data / credentials to be able to satisfy the conditions that he/she knows for using the resource.
· Request is logically processed by the EPEM enabler (logical entity / mechanism):

· Request and / or credentials
 are passed to other resources for action and / or validation of the results as specified by the execution policies (*):

· E.g. The requestor is first authenticated based on credentials then it is checked for authorization to access the request and then it is passed to a charging systems that generates a billing event.
· These may be checked to be up-to-date execution policies. They may or may not depend on the nature of the request and on the requestor.
· Request is passed to resource for action (assuming successful validation of all the steps).

· The action is executed on or by the resource (see post conditions).

· Response is returned to the requestor (see post conditions)

5.2.6 Alternative Flow

· At step (*) above, it is possible that some of the validation fail. In such a case, the following cases may take place:

· The request to the resource fails and an error message is returned to the requestor

· A dialog may be established between the requestor and one of the involved intermediate resource:

· e.g. please provide a new credential or answer the following challenge.

· Other alternative steps are discussed in the use case sections below.

5.2.7 Operational and Quality of Experience Requirements

· The EPEM enabler of the owner of the resource is aware of the execution policies associated to the resource.

· The resource and network is logically setup such that any request to the resource is processed by the EPEM enabler.

· Note that this can be done in numerous manners that may not impose a single EPEM entity.

· Several technology approaches can be considered to provide execution policy enforcement and management. The following list is not exhaustive.

· Pre-composition of the target resource with the delegation mechanisms of the EPEM enabler and the resources to whom functions are delegated as specified by the associated execution policy.

· Possible description of the conditions exposed to the requestor through the resulting composed interface

· Possible description of the conditions exposed to the requestor through meta-data (e.g. a la WS-Policy [WS-Policy] in the case of Web Services)

· Composition at discovery or request of the target resource with the delegation mechanisms of the EPEM enabler and the resources to whom functions are delegated as specified by the associated execution policy.
· Interception of all messages by a single entity (proxy / gateway):

· Trusted client provisioning

· Single point of access any resources in the network

· Pre-composition or dynamic composition through the entity

· Interface with address that is actually the address of the entity
· In addition, the above can be realized with:

· Distributed execution policy enforcement and management functionalities

· Execution policy enforcement and management implemented in front of each resource

· Execution policy enforcement and management implemented within / as part of each resource

· Implementation of the execution policy enforcement and management as a combination of policy engines (PDP and PEP a la [WS-Policy]) and Workflow engines

· Combinations of some of the above.

5.2.8 Concrete Examples

Concrete examples include a location based service exposed by a service provider provided that appropriate authentication, authorization, charging and logging is taking place.

5.3 Execution Workflow

5.3.1 ASK * MERGEFORMAT Short Description

The execution policies setup by the resource owner implement a set of steps that must be performed by different resources that it owns to provide a particular function or application.

The flows associated to these steps remain the same and do not need to be expanded in this section. The present section focuses solely on the steps that implement a particular function or application, acknowledging that these may include enforcement and validation steps as discussed above.
5.3.2 Actors

· Owner of the function or application:

· It has set up execution policies for calls to a particular resource in order to implement the application or function.

· It provides the function or application by executing the prescribed workflow on requests to the function or application.

· Requestor:

· Any issuer of request to access and use the function or application.

· It still provides the necessary credentials to use the resource as it has been informed of.

5.3.2.1 Actor Specific Issues

· Owner of the function or application:

· Execution the execution workflow on calls to the function or application in order to implement it.

· Requestor:

· Using the function or service
5.3.2.2 Actor Specific Benefits

· Owner of the function or application:

· Can easily implement services through the execution workflow specified in the execution policies

· Plus all the benefits enumerated in previous use cases.

· Requestor:

· Can use the service

· Plus all the benefits enumerated in previous use cases.
5.3.3 Pre-conditions

· Owner of the function or application:

· It has set up execution workflow to implement the function or application
· Plus same steps as in previous use cases.

· Requestor knows function or application
· Requestor knows the conditions it must satisfy if any as in the previous use cases.

5.3.4 Post-conditions

· The request from requestor reaches the function or application and the request is executed.

· The response may be treated through additional execution policy steps as for use cases above. These may enforce usage conditions or be additional execution workflow steps to implement the full functionality of the service:

5.3.5 Normal Flow

· Requestor prepares request to function or application and provides information / meta-data / credentials to be able to satisfy the conditions that he/she knows for using the service.
· Request is logically processed by the EPEM enabler (logical entity / mechanism):

· Request and / or credentials are passed to other resources for action and / or validation of the results as specified by the execution policies (*) to implement the steps of the execution workflow.

· Response is returned to the requestor (see post conditions)

5.3.6 Alternative Flow

· At step (*) above, it is possible that some of the validation fail. In such a case, the following cases may take place:

· The request to the function or application fails and an error message is returned to the requestor

· A dialog may be established between the requestor and one of the involved intermediate resource:

· e.g. please provide a new credential or answer the following challenge.

· Other alternative steps are discussed in the use case sections below.

5.3.7 Operational and Quality of Experience Requirements

· Same as for previous use cases.

5.3.8 Concrete Examples

Editor’s note: to be done.
5.4 Delegation

5.4.1 ASK * MERGEFORMAT Short Description

The owner of a resource deploys it by delegating some of the functions (e.g. authentication, charging, logging, …) to other resources. Alternatively, the implementer of a resource implements it by delegating some of the functions to other resources. The delegation is expressed as execution policies enforced in any messages to and from the resource.

.The flows associated to these steps remain the same and do not need to be expanded in this section. The present section focuses solely on the steps that perform delegation of functions, acknowledging that these may include enforcement and validation steps and execution workflow as discussed above.
5.4.2 Actors

· Owner (or implementer) of the resource:

· It deploys or implements the resource by delegating some functions to other resources and expresses these via execution policies.

· Enforces the execution policies on requests to the resource.

· Requestor:

· Any issuer of request to access and use the resource.

· Provide necessary credentials to use the resource as it has been informed of.

5.4.2.1 Actor Specific Issues

· Owner (or implementer) of the resource:

· Resource deployment or implementation by delegation

· Same as in use cases above.

· Requestor:

· Using the resource

· Same as in use cases above

5.4.2.2 Actor Specific Benefits

· Owner (or implementer) of the resource:

· Can simplify implementation or deployment by relying on other resources to provide the delegated functions

· Re-use resources

· Avoid silos

· Simplifies integration:

· Re-use resources through EPEM and execution policies.

· Same as for use cases above.

· Requestor:

· Can access resources to use within its applications

· Same as for use case above.

5.4.3 Pre-conditions

· Owner (or implementer) of the resource:

· It has implemented or deployed resources by relying on a set of execution policies for the resource that it controls.

· Same as for use cases above.

· Same as for use cases above for the requestor.

5.4.4 Post-conditions

· Same as for use cases above.

5.4.5 Normal Flow

· Requestor prepares request to resource and provides information / meta-data / credentials to be able to satisfy the conditions that he/she knows for using the resource.
· Request is logically processed by the EPEM enabler (logical entity / mechanism):

· Request and / or credentials are passed to other resources that perform in particular the delegated functions for action and / or validation of the results as specified by the execution policies (*):

· Request is passed to resource for action (assuming successful validation of all the steps).

· The action is executed on or by the resource (see post conditions).

· Response is returned to the requestor (see post conditions)

5.4.6 Alternative Flow

· At step (*) above, it is possible that some of the validation fail. In such a case, the following cases may take place:

· The request to the resource fails and an error message is returned to the requestor

· A dialog may be established between the requestor and one of the involved intermediate resource:

· e.g. please provide a new credential or answer the following challenge.

· Other alternative steps are discussed in the use case sections below.

5.4.7 Operational and Quality of Experience Requirements

· Delegation may be implemented:

· Directly by the target resource:

· EPEM functionality built in the resource

· By another logical mechanisms:

· As discussed in section 5.2:

· E.g. as a component in front of the resource that intercepts any request to it.

· Way to provide delegation for legacy system:

· New conditions are enforced in front of it

· Conditions already enforced and not expressed in execution policies.

· Same as for use cases above.

Editor’s note: Figure shsoudl be added to illustrates the different options. Contributions are encouraged.

5.4.8 Concrete Examples

Editor’s note: to be done.

5.5 Controlled Exposure of Resources

For all the use cases above, the requestor may be:

· Part of the same domain or system as the resource:

· To simplify enforcement of execution policies on any request or to implement delegation and execution workflows.

· E.g. another resource within the domain etc…

· A third party requestor part of a system and domain different from the target resource:

· To implement services or resources and to enforce that the service or resource is securely exposed only to authorized parties

· To implement delegation and execution workflows and enforce steps like billing, logging.

· E.g. another resource in another domain etc..

In all cases, actors and flows remain the same as above and below. Accordingly the other use case sub-sections are skipped.

Note that as already mentioned, the goal is to expose enabler in a controlled manner. It should not be assumed that authentication, authorization, enbcription or charging is always to be enforced or that these are the only conditions that can be enforced.

5.6 Execution Policies for terminal-based Resources

For all the use cases above, the resources may be:

· In the network of the owner domain but not as a terminal.

· On the terminal:

· When among the technology options covered in section 5.2, an explicit EPEM entity is present this can be:

· On the terminal:

· Actors and flows remain the same as above.

· Accordingly the other use case sub-sections are skipped for this use case.

· In the network, processing (by EPEM enabler) any message to and from the terminal including:

· Within home network

· While roaming etc…

· The only differences with respect to all use cases considered before are at the level of the Operational and Quality of Experience Requirements:

· How does the EPEM enabler determines the execution policies to enforce

· Where are the execution policies enforced:

· Within visited network

· Within the home network, after intercept and redirect to the EPEM enabler:

· From the terminal

· From the visited network

Editor’s note: the above discussions points should be addressed. Contributions are welcome.
5.7 Discovery of Execution Policies

For all the use cases above, what credentials must be provided and how may be explicitly discovered by the requestor instead of being known from the resource owner through a separate channel.

The pre-conditions do not require any more that the requestor be aware of these conditions. Instead during the normal flow, the requestor can discover this meta-data prior to preparing and generating the request. This typically also involves a registration of the conditions.

The actual execution policies may be similarly discovered by the EPEM enabler:

· In advance for static execution policies

· Prior to any enforcement in all the other cases (or before final validation in the case of section 5.4).

· Again this typically involves registration of the execution policies.

5.8 Defining the Execution Policies

For all the use cases above, the execution policies may be:

· Specific to the target resource:

· Set or derived by user’s settings (e.g. derived from privacy considerations).

· Set or derived by owner’s settings

· Limited to the delegatable functions that are not performed by the resource

· Global across all the resources controlled by its owner

· The result of a combination of execution policies that are global across all the resources controlled by the owner and execution policies proper to the target resource.
Using the management interface of the EPEM enabler, the owner of the resource can manage these different execution policies. The combined execution policy associated to a resource can be:

· Generated

· Communicated to requestor as discussed above (in advance or via discovery)

· Communicated to EPEM enabler as discussed above (in advance, via discovery or via update events)

5.9 Debugging the Execution Policies

For all the use cases above, the execution policies may be debugged:

· For execution policy expression or logic errors

· For execution errors:

· E.g. by checking dependencies on other resources and availability of these resources.

· For conflicting execution policies.

5.10 Deploying New Resources

For all the use cases above, in order to satisfy the pre-conditions, the owner of the resource is able to:

· Express / generate the execution policies as discussed in section 5.8
· Communicate these executions policies, when needed (as discussed above) to the the EPEM enabler

· Communicate the appropriate subset of conditions to the requestor, when needed (as discussed above).

5.11 Sources of Execution Policies

For all the use cases above, the execution policies may be:

· Defined by the owner of the resources

· Derived from settings by others (user’s terminal, owner)

· See for example use case in section 5.14
· Defined by a third party:

· E.g. An enterprise may want to establish particular execution policies for access of certain resources by its employees or a person wants to let others perform actions on its behalf.

5.12 Prioritization of Execution Policies

Section 5.11 indicates that there may be multiple sources of execution policies. The owner of the EPEM enabler can provide prioritizations rules between these execution policies.

5.13 EPEM Delegation

For all the use cases above, it is possible that the EPEM that processes messages to and from a resource be provided by a different actor:

· E.g. a resource is made available (e.g. exposed through the Operator’s network or uploaded) by a third party on an operator’s network. EPEM is provided by the operator. Execution policies are provided by the third party, possibly combined with the global execution policies of the operator as discussed in section 5.8.

5.3 Use Case A, SMS Spam Prevention Policy

5.3.1 ASK * MERGEFORMAT Short Description

The Short Message Center (SMSc), the network element managing short message delivery, is augmented with an Execution Policy Enforcement (PEP) functionality. The network operator and subscriber create and store sets of rules appropriate to the screening of short messages.

5.3.2 Actors

· Mobile subscriber who is the subject of the privacy policies

· Mobile originator of SMS messages

· Network Operator
5.3.2.1 Actor Specific Issues

Mobile subscriber

· Wants privacy from unsolicited SMS messages

Network Operator

· Wants to encourage the secure use of SMS amongst its subscribers

5.3.2.2 Actor Specific Benefits

Mobile subscriber

· Is in control of the short messages it receives

Network Operator

· Can execute policies based on user privacy
· Can protect its subscribers from unsolicited SMS messages

5.3.3 Pre-conditions

· The subscriber has a mobile account with operator and is able to express rules on short messages

· Network Operator is able to store user-expressed rules on SMS and enforce those rules according to the conditions

5.3.4 Post-conditions

SMS messages are delivered to the subscriber according to end-user and operator defined rules

5.3.5 Normal Flow

The Short Message Center (SMSc), is augmented with PEP functionality. The network operator and subscriber create and store sets of rules appropriate to the screening of short messages using the Policy Administration Point (Steps 1 & 2 in Figure 2).

Editor’s Note: A generic figure + text must be added to illustrate EPEM and the associated flow. The following text and figure then follows as an illustration of how EPEM can be implemented with PEP and PDP as discussed in Appendices B and C.

Upon receiving notification of a new SMS message (step3) the PEP requests a policy decision (step 4) from the PDP. The PDP, when it receives the decision request, downloads (step 5) the rules appropriate to the subscriber from the Policy Repository. The PDP evaluates the rules and determines whether the Short Message should be sent. It communicates the policy response (step 7) back to the PEP, which either allows or denies the sending of the SMS.

[image: image2.wmf]PEP

Short Message

Service Center

(SMSc)

1. Subscriber creates the Rules

Policy

Administration

Point

Policy Repository

2. Store Rules

3. Originator Creates

Short Message and

sends to subscriber

4. Request Decision

5. Download

Applicable Rules

6. Evaluate

Rules

7. Enforce

Decision

(Allow SMS)

PDP

Figure 2: Flow illustrated in the case of an EPEM implementation based on PEP and PDPs

5.3.6 Alternative Flows

None identified.
5.3.7 Operational and Quality of Experience Requirements

The considerations below are for the illustrated PDP/PDP implementation option.

· An execution policy-enabled application or service will request execution policy decisions from “execution policy enforcement points” in their system.
· A execution policy-enabled application or service may invoke functions within network resources to carry out execution policy decisions.

· The “execution policy decision point” receives PEP decision requests. The PDP will access the “execution policy repository” to obtain relevant policies or rules that are evaluated to determine the decision response.

· Using execution policies, the PDP determines the outcome and returns the decision response to the PEP.

· The “execution policy repository” is defined as the system or database(s) storing the Policy Rules for use by the PDP. The rules are typically in the form of IF <condition> THEN <action>.

· The mobile subscriber is able to provision his privacy preference rules via an appropriate interface to the Execution Policy Administration Point e.g. through his mobile device or via a web based/GUI

· User experience must be uniform, seamless and consistent whenever the user accesses the system

5.4 Charging Control using Execution Policies

5.4.1 ASK * MERGEFORMAT Short Description

In this case policies are being used to protect the third party Application Service Provider (ASP) from being exposed to charges generated by a call to a pre-paid subscriber of the network operator in excess of the pre-paid debit limit.

The third party ASP creates a policy rule to be notified when the subscriber overruns her prepaid balance. The execution policy rule created for this application is called the “PP_CHECK” policy rule for example

5.4.2 Actors

· Third party ASP

· Pre-paid subscriber

· Network Operator
5.4.2.1 Actor Specific Issues

Third party ASP

· Wants to set execution policies to implement and enforce service level agreements with network operator

· Wants specify execution policies whose operational objectives are defined in a SLA.

Pre-paid subscriber

· Wants to be charged according to terms described in his service contract

Network Operator

· Wants to enforce Service Level Agreements

· Wants to manage applications across a diverse and distributed set of service providers

· Wants a flexible service management mechanism, e.g., execution policy management, to manage access to and protect the integrity of network services.

· Wants define network service execution policies, e.g., execution policies for capacity management, for service access authorization, service discovery and load balancing

5.4.2.2 Actor Specific Benefits

Third party ASP

· Is protected from unwarranted charges generated by a call to a pre-paid subscriber of the network operator

Pre-paid subscriber

· Uses services according to the terms of his pre-paid subscription
Network Operator

· Can execute execution policies based on specific network conditions by ASP
5.4.3 Pre-conditions

· The subscriber has a pre-paid account

· The ASP has a SLA in place with the Network Operator

5.4.4 Post-conditions

The network detects that the prepaid account of this called party has overrun its lower bound. This triggers the evaluation of the event condition associated with the PP_CHECK policy rule. As a result the action is executed, and the call leg to the called party is released.

5.4.5 Normal Flow

The application is creating an execution policy rule that is to be enforced by the network on its behalf. The execution policy rule needs to consist of an event condition, to trigger the evaluation of the policy rule once the condition is met. In this case, the event condition is “prepaid_account.balance <=prepaid_account.lower_bound”. The action created is called “subscriber.release_call_leg”. The action and event condition are then associated with the

“PP_CHECK” policy rule.

Invoking the method createNotification on the Execution Policy Domain interface arms the execution policy rule, i.e. the event, in the network, which means that the PP_CHECK policy rule is loaded in the policy engine. The PP_CHECK policy rule is now provisioned in the network, on behalf of the third party application.

As part of the normal operation of the application, a call leg is created and routed to a certain called party in the network. After some time elapses, the network detects that the prepaid account of this called party has overrun its lower bound. This event triggers the evaluation of the event condition associated with the PP_CHECK policy rule. As a result the action is executed, and the call leg to the called party is released, hence protecting the third party ASP from being exposed to unwarranted charges generated by this call leg.

5.4.6 Alternative Flows

None identified.

5.4.7 Operational and Quality of Experience Requirements

· Execution policies may be defined in high-level service terms consistent with a policy information model.

· The high-level representation of a policy is mapped onto an internal representation that is best suited for computations and evaluation.

· Execution policies are stored in an execution policy repository, e.g. a database or repository server

· A rules engine (e.g. an execution policy decision point) reads and evaluatesexecution policies upon receiving a request for execution policy evaluation from an application or upon the triggering of a pre-defined event.

· The rules engine may download appropriate execution policies from the execution policy registry as needed.

· The results of an evaluation are made available to where the recommended actions are applied, (e.g. the requesting application a router, a location database or even a charging and billing database).

· User experience must be uniform, seamless and consistent whenever the user accesses the system.
6. Requirements
(Normative)

Editor’s note: to be done after compilation and review of enough use case.
6.1 High-Level Functional Requirements

Editor’s note: High level requirements wil be categorized in the other sections as the compilation work progresses. For now requirements are mostly simply added to this section.

R-1: The EPEM enabler MUST be compatible with any service registry and discovery mechanisms that may be defined by OMA.

R-2: EPEM enabler MUST NOT impact establishment of SLAs between requestor and owner. (Motivated by section 5.2)
Editor’s note: This requirement is to be re-visisted.

R-3: EPEM MUST be able to derive execution policies from SLAs and enforce them.(Motivated by sections 5.2, 5.8 and 5.11)
R-4: The EPEM enabler MUST be compatible with mechanisms for the owner of a resource to advertise the request conditions in order for another party to use a service enabler. (Motivated by sections 5.2, 5.3, 5.5 to 5.8 and 5.11)
R-5: The EPEM enabler MUST provide mechanisms to enforce the execution policy associated to a resource on any request to that resource and on any associated response. (Motivated by sections 5.2 to 5.7). This is also an OMA Architecture requirement.

Editor’s note: add a reference.

R-6: The EPEM enabler MUST provide mechanisms for the owner of resources to efficiently express the execution policies associated to a resource.
R-7: The EPEM enabler MUST provide mechanisms for the owner of resources to efficiently simulate the execution policies associated to a resource. (Motivated by section 5.8)
R-8: The EPEM enabler MUST provide mechanisms for the owner of resources to efficiently modify the execution policies associated to a resource. (Motivated by section 5.8)
R-9: The EPEM enabler MUST provide mechanisms for the owner of resources to efficiently simulate the execution policies associated to a resource. (Motivated by sections 5.8 and 5.9)
R-10: The EPEM enabler MUST provide mechanisms for the owner of resources to efficiently debug the execution policies associated to a resource. (Motivated by section 5.9)
R-11: The EPEM enabler MUST provide mechanisms for the owner of resources to efficiently prioritize the execution policies associated to a resource. (Motivated by sections 5.8, 5.9 and 5.12)
R-12: The EPEM enabler MUST provide mechanisms for the owner of resources to efficiently manage the execution policies associated to a resource in ways that can be resource-specific. (Motivated by section 5.11)
R-13: The EPEM enabler MUST provide mechanisms for the owner of resources to efficiently manage the execution policies associated to a resource in ways that can be defined across multiple resources. (Motivated by section 5.11)
R-14: The EPEM enabler MUST provide mechanisms for the owner of resources to efficiently manage the execution policies associated to a resource in ways that can be requestor specific. (Motivated by sections 5.2 and 5.11)
R-15: The EPEM enabler MUST provide mechanisms for the owner of resources to efficiently manage the execution policies associated to a resource in ways that can be request specific. (Motivated by sections 5.2 and 5.11)
R-16: The EPEM enabler MUST provide mechanisms for the owner of resources to efficiently manage the execution policies associated to a resource in ways that can be deployment specific. (Motivated by sections 5.2 and 5.11)
R-17: The EPEM enabler SHOULD allow associating new execution policies to a new resource. This SHOULD support mechanisms of extensions from existing execution policies or inheritance mechanisms. facilitate adding or exposing new resources. (Motivated by section 5.10)

R-18: The EPEM enabler MUST support delegation from a resource of any functionality expressed in execution policies. (Motivated by section 5.4).
R-19: The EPEM enabler MUST support requestor and responders located in the same or on different systems, within the same or different domains. (Motivated by sections 5.5, 5.6, 5.8 and 5.11)
R-20: The EPEM enabler MUST be able to act on any message specified by OMA enablers. (Motivated by sections 5.2 to 5.7)
R-21: The EPEM enabler MUST permit efficient, scalable and reliable implementations. (Motivated by sections 5.2 considering the technology options that are available)
R-22: The EPEM enabler MUST support integration with legacy resources that are not aware of the EPEM capabilities and mechanisms. (Motivated by sections 5.4, 5.5, 5.8 and 5.10)
R-23: The EPEM enabler MUST provide ways to express execution policy assertions associated to OMA standard resources. (Motivated by sections 5.5, 5.6, 5.8, 5.10 and 5.11)
R-24: The EPEM enabler SHOULD provide ways to express non-standard execution policy assertions. Motivated by section 5.2 to 5.13)
Editor’s note: Need to revist what will be standardized under EPEM.

R-25: When authorized, principals MUST be able to express preferences or set settings that will be reflected in execution policies. (Motivated by sections 5.8 and 5.11)

· Principals may be end-users who setup preferences that are reflected in execution policies. (Motivated by section 5.14 and by the OMA privacy requirements)
Editor’s note: add a reference.

· Other principals that may have settings that must also be reflected in execution policies. This includes a principal (e.g. enterprise) being able to con stratint usage by others (e.g. its employees) and having this reflected into execution policies that will be enforced for requests to the relevant resources.
R-26: The EPEM enabler SHOULD NOT restrict the technology and deployment options. (Motivated by section 5.2)

R-27: The EPEM enabler MUST support secure exchanges between requestor and responder (Motivated by sections 5.5 and 5.6)

R-28: The EPEM enabler MUST support enforcement of privacy policies (Motivated by section 5.14 and by the OMA privacy requirements)

Editor’s note: add a reference.

R-29: The EPEM enabler MUST enable to derive request conditions from execution policies.

R-30: The EPEM MUST enable delegation by a resource ownere of the enforcement of the execution policies associated to the resource to other parties.
R-31: The EPEM MUST be compatible with requests done on behalf of principals.

R-32: The EPEM MUST be support requests done on behalf of principals.

6.1.1 Security

<This clause identifies the high level security needs to support the requirements identified in this specification. Requirements shall be presented at a high level, and not assume or imply the technology or implementation of the requirements>

6.1.2 Charging

<This clause identifies the high level charging needs to support the requirements identified in this specification. Requirements shall be presented at a high level, and not assume or imply the technology or implementation of the requirements>

6.1.3 Administration and configuration

<This clause identifies the high level administration and configuration needs to support the requirements identified in this specification. Requirements shall be presented at a high level, and not assume or imply the technology or implementation of the requirements>

6.1.4 Usability

<This clause identifies the usability needs to support the requirements identified in this specification. Requirements shall be presented at a high level, and not assume or imply the technology or implementation of the requirements>

6.1.5 Interoperability

<This clause identifies the high level interoperability needs to support the requirements identified in this specification. Requirements shall be presented at a high level, and not assume or imply the technology or implementation of the requirements>

6.1.6 Privacy

<This clause identifies the high level privacy needs to support the requirements identified in this specification. Requirements shall be presented at a high level, and not assume or imply the technology or implementation of the requirements>
6.2 Overall System Requirements

<text>

6.3 System Elements

<This section identifies the high level requirements, on each system element in the use cases, identified in this specification, including the user’s device(s) if relevant. Requirements shall be presented at a high level, and not assume or imply the technology or implementation of the requirements. Each subsection should have a sub-section(s) covering the requirements on interfaces>

6.3.1 System Element A

<This section contains numbered high level requirements on System Element A>

6.3.2 Interfaces to System Element X

<This subsection and the following subsections describe the high level requirements on the interfaces from System Element A to the other Elements in the System.>

6.3.3 Interfaces to System Element Y

<etc>

6.3.4 Network interfaces

<This clause identifies the high level network interface (bearers/protocols) needs to support the requirements identified in this specification. Requirements shall be presented at a high level, and not assume or imply the technology or implementation of the requirements>

Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

A.2 Draft/Candidate Version 1.0 History

<<This section is available in pre-approved versions – it should be removed in the actual approved versions>>

	Document Identifier
	Date
	Sections
	Description

	Draft Versions

OMA-RD-Execution_Policy_Enforcement_Management-V1_0-20030927-D
	27 Sep 2003
	All
	First version proposed to initiate the drafting

	OMA-RD-Execution_Policy_Enforcement_Management-V1_0-20031019-D
	19 Oct 2003
	All
	Baseline version following Tokyo Breakout session and reflecting the agreements captured in OMA-Req-2003-0652-minutesOctober08_EPEMBreakoutTokyo

	OMA-RD-Execution_Policy_Enforcement_Management-V1_0-20031111-D
	11 Nov 2003
	All
	Updated RD that reflect agreements at the end of the first day of the London REQ EPEM breakout session as reflected in the minutes.

	OMA-RD-Execution_Policy_Enforcement_Management-V1_0-20031127-D
	27 Nov 2003
	All
	· Updated RD that reflect agreements at the end of the second day of the London REQ EPEM breakout session as reflected in the minutes.
· Introduction of notion of “request condition” to address some of the issues that the London meeting addressed in cumbersome ways.

	OMA-RD-Execution_Policy_Enforcement_Management-V1_0-20031204-D
	04 Dec 2003
	6
	· Update of requirements based on decisions agreed during the conference call of Dec 1, 2003.

Appendix B. Review of Related Technologies and Standards (Informative)
Editor’s note: This section will provide a overview of:

- IETF
- IETF [RFC 3198] and related IETF policy specifications:

- Common Open Policy Service (COPS)
- IETF Policy Framework

- AAA

- Policy provisioning

- Policy Management
- Web Services: W3C, OASIS:

- web service activities (e.g. Choreography / composition, security)
- Private specifications:

- WS-Policy [WS-Policy]
- Workflow technologies and standards (e.g. Simple Workflow Access Protocol (SWAP)).
- Aspects of Parlay / OSA

- Related OMA activities (e.g. non-exhaustive: Security, Privacy, DRM, DM, MWS, Architecture, …)

- Others?

Editor’s note: The following are technology specific / specification specific statements collected in inputs that should be captured when this appendix and the following one are addressed.

The definitions of execution policy assertions proposed in section 3.2 encompass the definitions of policies as used by IETF [RFC 3198] and WS-Policy [WS-Policy].
EPEM makes use of the web-services policy management paradigm to establish a policy enabled services framework that orchestrates a subscriber’s access to one or more network service enablers. Complementing this, it uses a policy paradigm that is motivated by the IETF policy information model to manage and enforce static policies associated with network service enablers.
Appendix C. Technologies available to implement Execution Policy Enforcement and Management (Informative)

Editor’s Note: The following provides an enumeration of technologies that can be used to implement EPEM. They are provided to help generate use cases. At the later stage, this section may be moved to the TR as the TR progresses.

Several technology approaches can be considered to provide execution policy enforcement and management. The following list is not exhaustive.

· Pre-composition of resources with the target resource as specified by the associated execution policy.

· Possible description of the conditions exposed to the requestor thorugh the resulting composed interface

· Possible description of the conditions exposed to the requestor through meta-data (e.g. a la WS-Policy [WS-Policy] in the case of Web Services)

· Possible registration and discovery of the interface and meta-data

· Composition at discovery or request of resources with the target resource as specified by the associated execution policy.

· Interception of all messages by a single entity (proxy / gateway):

· Trusted client provisioning

· Single point of access any resources in the network

· Pre-composition or dynamic composition through the entity

· Interface with address that is actually the address of the entity

· Distributed execution policy enforcement and management functionalities

· Execution policy enforcement and management implemented in front of each resource

· Execution policy enforcement and management implemented within / as part of each resource

· Implementation of the execution policy enforcement and management as a combination of policy engines (PDP and PEP a la [RFC 3198]) and Workflow engines

· Combinations of some of the above.

� Notions of allowing billable and auditable exposure of resources used throughout this document should be understood as examples of conditions that can be enforced before allowing access and usage of the resource. It does not imply that billing must always take place, nor that this is the sole type of condition can be enforced besides authentication, authorization etc… This comments applies throughout this document.

� In a non typical variation of the flow, the requestor could discover the conditions that it must satisfy.

� In case of failure of some of the execution or validation steps, the request may be returned with the requestor with an error or a dialog may be established between the requestor and one of the involved intermediate resources (e.g. a new prompt / challenge).

� The credentials may result from previous steps performed by the requestor to acquire these credentials as allowed or specified by the details on the executions policies that it is aware of.

� Request conditions are not the execution policies but rather the type of information (e.g. credentials) that the requestor must provide with the request.

(2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ReqDoc-20030912]
(2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ReqDoc-20030912]

_1129987710.ppt

EPEM

Operator

Controlled

Service provider

Resources

Common

Functions

Service Provider

Requestor

_1129406443.ppt

PDP

PEP

Short Message Service Center (SMSc)

1. Subscriber creates the Rules

Policy

Administration

Point

Policy Repository

2. Store Rules

3. Originator Creates Short Message and sends to subscriber

4. Request Decision

5. Download Applicable Rules

6. Evaluate Rules

7. Enforce Decision (Allow SMS)

