
1

Remote Vehicle Interface
(RVI)

Rudolf Streif – Jaguar Land Rover

An Open Framework for the Connected Car

© 2015 Jaguar Land Rover – This presentation contains only public information.

2

Jaguar Land Rover (JLR)

JLR is the UK's largest automotive business, built around two iconic British
car brands:
➢ Jaguar – one of the world's premier luxury sports car brands
➢ Land Rover – the world's leading manufacturer of all-wheel drive vehicles

3

JLR Open Software Technology Center (OSTC)

➢ R&D facility in Portland/Oregon focusing on next-generation technologies
➢ 15,000 sqft site opened in 2014
➢ 25,000 sqft site for expansion and incubator to open in 2015
➢ Currently 35 engineers and designers, grow to 80+ by the end of 2015

We want to become the best software company to buy a car from!

The Connected Car

More than a smartphone on wheels!

A New Approach

Open Software – Open Standards

• 80% of connected vehicle functionality shared across platforms
Core IVI and Server functionality are similar, regardless of vendor. The final 20% are the
services that defines the user experience.

• A shared, open source platform will benefit OEMs
A joint architecture and reference implementation allows OEM to minimize cost, vendor
dependencies, and security risks, letting them focus on applications and services that make a
difference.

• A shared, open source platform will benefit service providers
A common architecture allows service providers to easily port their products to additional
OEMs, thus giving them a wider revenue stream from multiple vendors.

Where we are coming from

What we are doing

How do we allow an in-vehicle application to exchange data with other devices
and servers in a simple, robust and secure manner, regardless of connectivity?

Build open source technology to handle authentication, authorization, discovery,
and data exchange between services in a sparsely connected P2P network.

RVI is accepted by the automotive industry as a secure, reliable, and
proven technology choice for connected vehicle projects.

The Problem

The Solution

The Goal

• Enable new breed of 3rd party service providers
Open source implementation enables start-ups to develop in-vehicle apps and their
corresponding backend services, and showcase the finished product to OEMs.

• Alleviate vendor dependency
OEM can replace components at will, using either external or internal resources. All IP of the
replaced components belongs to the OEM.

• Wider talent pool
Large competence base provided through open source community, OEMs, app developers,
and professional service vendors.

Benefits

• Peer-to-peer based
Two nodes can exchange services without an internet connection.

• Provisioning
Services and nodes can be added and deleted from the system.

• Authentication & authorization
All executed services are authenticated and authorized against certified credentials.

• Service discovery
Services and applications can discover and invoke other services.

• Invocation
Services can be remotely invoked over a sparsely connected network.

Feature Set

Three Core Use Cases

Remote Interaction

Software/Firmware
over the Air Updates

Data Collection

HVAC Control Architecture

Service Edge

Service Discovery

jlr.com/vin/1234/hvac -> http://192.168.0.1/hvac

HVAC App

Mobile Device – 192.168.0.2

{
 "method": "call",
 “service”: “jlr.com/vin/1234/set_fan”
 "params": {
 “callback": "http://localhost/hvac_app”
 "arguments": {
 “speed": 7
} } }

Vehicle – 192.168.0.1

Data RouterHVAC Service

1

2

3

4

5

1. Mobile Application Sends Command
HVAC App sends an message, targeting a given service
URI, to Service Edge.

2. Locate Target Node
Service Edge asks local service Service Discovery to
resolve service name to a network address.

3. Return Network Address
Specifies where the target service can be reached.

4. Send Request to Vehicle
The vehicle data router processes the command.

5. Forward Request to HVAC Service
The HVAC Service in the vehicle executes the command.

SOTA Architecture

Service Edge

Service Discovery

jlr.com/vin/1234/sota ->
http://192.168.0.1/sota

Web Backend

Vehicle – 192.168.0.1

Data RouterSOTA Service

2

3

4

1. Web Backend Notifies Vehicle of Update
Web Backend sends update notification for a software package.

2. Locate Target Node
Service Edge asks local service Service Discovery to resolve service name
to a network address.

3. Return Network Address
Specifies where the target service can be reached.

4. Send Request to Vehicle
The vehicle data router processes the command.

5. Forward Request to SOTA Service
The SOTA Service in the vehicle shows update details on the screen and
waits for user confirmation.

6. Vehicle Response to SOTA Server
Response from vehicle gets relayed to the SOTA server which then starts
sending the software package or aborts the transaction based on the
response.

7. SOTA Server Sends Software Package to Vehicle in Chunks
The software package is split up into chunks and sent to the vehicle. SOTA
Service assembles the chunks into the package.

8. SOTA Service Installs Package
SOTA Service installs package and reports installation status back to the
SOTA Server.

1

6

SOTA Server

7

5

6

8

7

8

Database

Backend Server

RVI

Big Data Architecture

Service Edge

Service Discovery

jlr.com/vin/1234/sota ->
http://192.168.0.1/sota

Web Backend

Vehicle – 192.168.0.1

Data RouterBig Data Service

2

3

4

1. Web Backend Notifies Vehicle of Data Subscription
Web Backend sends a data subscription message to the vehicle.

2. Locate target node
Service Edge asks local service Service Discovery to resolve service name
to a network address.

3. Return network address
Specifies where the target service can be reached.

4. Send request to Vehicle
The vehicle data router processes the command.

5. Forward request to Big Data Service
The SOTA Service in the vehicle shows update details on the screen and
waits for user confirmation.

6. Vehicle Sends Data to Big Data Servers
The vehicle collects the subscribed-to data and sends it to the Big Data
Server in regular intervals. If the server cannot be reached the data gets
cached.

7. Big Data Server Receives Data
The Big Data Server receives the data and stores it in the Backend
Database.

8. Big Data Server Provides Realtime Update to Web Backend
The Big Data Server sends data updates in realtime to the web clients who
subscribed to the data through the web backend.

1

6

Big Data Server

5

6

Database

Backend Server

RVI

7
8

Big Data Use Cases

Vehicle Tracking Information and
Animation

 Show vehicle locations and travel
 Filter by date and time
 Display vehicle status information for

every waypoint
 Marker moves along traveled path
 Real-time tracking

http://rvi1.nginfotpdx.net:8000

Big Data Processing

RVI Architecture

Architecture - Overview

• API based
The API is the driving technology. Implementation is
secondary.

• Data Router commonality
Data Router connects all services on all devices.

• Mix of open and closed source
Components can be off the shelf, OSS, proprietary, or
a combination of the above.

• Network complexity shielding
A clean transaction API alleviates services and
applications from connectivity concerns.

Vehicle

App1 App2 App3

IVI Platform

Service

RVI PluginControl Unit

Data Router

JSON-RPC

Data Router

App

Mobile Device

Remote Vehicle Access Manager

Data Router

Charging &
Billing
Service

Customer
Portal Web

Service

Provisioning
Service

Browser

JSON-RPC JSON-RPC JSON-RPC

3rd party
service

3rd party
service

3rd party
Service

JSON-RPC

Software
Over The

Air Service

JSON-RPC

HTTP / HTML5

Analytics /
Big Data

JSON-RPC

Cloud

SMS / 2.5G / 3G/
LTE / WiFi / Bluetooth

JLR/AGL-developed component
OEM/3rd party proprietary component

3rd party reference component
Off the shelf component

CAN

JSON-RPC

Unified Software Stacks

Architecture – Data Router
• Service Edge

Handles all traffic toward locally connected services.

• Authorization
Handles certificates and authorization for all traffic.

• Schedule
Handles traffic store and forward for unavailable destinations.

• Data Link
Controls communication channels to other node.

• Service Discovery
Identifies and locates local and remote services.

• Protocol
Encodes and transmits traffic to other nodes. JLR/AGL-developed component

OEM/3rd party proprietary component
3rd party reference component
Off the shelf component

Vehicle

Data RouterData Router

Service Edge

Data Link

Schedule

SOTA
Manager

SOTA
Manager

Authorization

E911
Trigger
E911

Trigger

Protocol Service Discovery

RVI/ XWalk Plugin

XWalk

XWalk App

Architecture – Backend Server

• Data Router
Standard deployment.

• Provisioning
Creates and distributes certificates granting access
rights to nodes.

• SOTA server
Manages and distributes software packages to nodes.

Cloud / TSP

Remote Vehicle Access ManagerRemote Vehicle Access Manager

Data RouterData Router

ProvisioningProvisioning

Service Edge

Data Link

Schedule

SOTA
Server
SOTA

Server

Protocol

Authorization

E911
PSAP

E911
PSAP

Media
Server

Media
Server

Service Discovery

JLR/AGL-developed component
OEM/3rd party proprietary component

3rd party reference component

Services

Services – Requirements

• Global namespace for all services on all nodes, worldwide
All services on all provisioned devices must be addressable through a single schema.

• Localized service discovery
Locally connected nodes must be able to discover each other's services without Internet access.

• Zero configuration
No configuration outside authorization shall be needed for a newly deployed node to join the system.

• Network agnostic
A service shall be accessed the same way, regardless of the communication method used.

Services – Addressing

• Single name space for all services
New services can be addressed by creating a unique name for them.

• Service name identifies hosting node
Each service name, being unique across the system, carries enough information for Service Discovery to
identify where the node can be found.

• Hide network complexity
All service interaction with other services are done through the service name space, allowing the actual
communication to be carried out behind the scenes.

jaguarlandrover.com/vin/sajwa71b37sh1839/body/lockjaguarlandrover.com/vin/sajwa71b37sh1839/body/lock

1 2 3 4 5

Services – Service Name Example

Name Description

1 Organization Specifies a sub-section hosted by a
specific entity

2 VIN Sub-tree Specifies sub section for all vehicles

3 VIN Vehicle Identification Number

4 Service Name Name of the addressed service

5 Command Command supported by the sevice

Service Edge

Services - Routing

Service Discovery

jlr.com/vin/1234/set_fan -> http://192.168.0.1/hvac

HVAC App

Mobile Device – 192.168.0.2

1. Application sends command
HVAC App sends an message, targeting a given service
URI, to Service Edge.

2. Locate target node
Service Edge asks local service Service Discovery to
resolve service name to a network address.

3. Return network address
Specifies where the target service can be reached.

4. Send request to Vehicle
The vehicle data router processes the command.

5. Forward request to HVAC Service
The HVAC Service in the vehicle executes the command.

{
 "method": "call",
 “service”: “jlr.com/vin/1234/set_fan”
 "params": {
 “callback": "http://localhost/hvac_app”
 "arguments": {
 “speed": 7
} } }

Vehicle – 192.168.0.1

Data RouterHVAC Service

1

2

3

4

5

Authorization

Authorization – Overview

• Certificate based
Certificates, signed by a trusted provisioning server, grants node access to services.

• Self-carried authorization
A node presents its certificates to another node to access its services, without provisioning server
connection.

• Service – service specific certificates
A certificate authorizes a specific set of services to access another specific set of services, and
cannot be used outside that context.

Authorization – Use Case

1. Create and sign certificate
A certificate granting access to the mobile device is created and
signed with provisioning server's private key.

2. Distribute certificate to mobile device
The targeted device receives its certificate

3. Send request and certificate to Vehicle
The certificate states that mobile device has the right to execute the
given request

4. Validate credentials
The certificate and request is validated by the vehicle through a root
certificate

5. Execute request
The validated command is forwarded to the target service for
execution

Backend Server

Provisioning Server

Vehicle 1234

jlr.com/mobile/+447412123123 ->
jlr.com/vin/1234/set_fan

Provisioning Server private key.

Mobile
Device

root certificate

Execute
set_fan

5

1

2

+set_fan

3

4

Authorization – Examples

[organization]/[path][organization]/[path] + wildcards
Access List Format

Specifies the volume control command of the media service on all vehicles.

Specifies all commands under the vehicle_tracking service.

Specifies a specific vehicle's lock command in the body service.
jaguarlandrover.com/vin/sajwa71b37sh1839/body/lock

jaguarlandrover.com/vin/*/media/volume

jaguarlandrover.com/cloud/vehicle_tracking/*

Authorization – Topics not covered

• Protection of certificate inside a node
A credential received by the mobile device needs to be secured in accordance with
the mobile device/IVI/server platform

• Certificate – device binding
A stolen certificate can be presented by another device to gain service access. Device
binding is done on an implementation level using hardware-specific mechanisms

• Secure communication
Protocol implementations are responsible for securing data transmission between
nodes using SSL/TLS or similar technologies

Conclusion

• Connected Vehicle architecture for next generation services

• Open source design, specification, and reference implementation

• Benefits the whole industry

Thank You

http://github.com/PDXostc

automotive-eg-rvi@lists.linuxfoundation.org

#automotive (IRC)

Rudolf Streif

System Architect – Open Software Initiative

rstreif@jaguarlandrover.com

Magnus Feuer

System Architect – Open Software Initiative

mfeuer@jaguarlandrover.com

mailto:automotive-eg-rvi@lists.linuxfoundation.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

