[image: image1.jpg]Doc# OMA-ARC-2004-0070-OSEproposal_mapped2_ARCHREQ

Submitted to ARC WG

Submission Date: 21 March 2004
Doc # OMA-ARC-2004-0070-OSEproposal_mapped2_ARCHREQ

Submitted to ARC WG

Submission Date: 32 March 2004

Input Contribution

	Title:
	Mapping of the OMA Architecture Requirements to proposed OSE
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	OMA-ARC

	Source:
	Stéphane H. Maes, Oracle stephane.maes@oracle.com
Mark Pozefsky, IBM poz@us.ibm.com

	Attachments
	n/a
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	Replaces:
	N/A

1 Reason for Contribution

This contribution shows how most of the requirements in OMA-ARC-2003-0085R19-Architecture-Requirements can be satisfied by alternative OSE structure proposal described in OMA-ARC-2004-0068-OSE_Proposal.
2 Summary of Contribution

This contribution describes a mapping of OMA Architecture requirements to the OSE proposal presented in OMA-ARC-2004-0068-OSE_Proposal, indicating for each requirement if and how this alternative proposal covers it. The requirements document referenced is the R19 version (OMA-ARC-2003-0085R19-Architecture-Requirements).
3 Detailed Proposal

6.1 High-Level Functional Requirements

	OSE requirements
	Support by proposed OSE Architecture

	1. The OMA Service Environment MUST enable deployment and use of OMA service enablers to allow for a wide variety of business models.
	Enabler implementations can be deployed by 3rd parties and operators. EPEM can also be deployed by all the actors in numerous manners as long as all resources are protected by EPEM.

	2. The OMA Service Environment MUST enable the use and deployment of any service enabler by any authorized actor.
	EPEM guarantees that only authorized actors can use the services provided that they fulfill the conditions of usage. OSE enables the deployment of service enablers in a service provider environment.

	3. The OMA Service Environment MUST facilitate the creation and deployment of services using OMA-defined service enablers.
	OMA applications development (enabler) APIs allow SPs to develop and compose higher level services. OSE enables SPs to deploy, and operate services, by assembling service enablers and other components.

	4. The OMA Service Environment SHOULD enable the definition of components in such a way that functional overlaps between OMA enablers are minimized.
	Any enabler can rely on the other enablers present in the SP domain (or even outside if needed). In addition, EPEM provides mechanisms for delegation and OSE facilitates component replaceability.

	5. The OMA Service Environment MUST provide interfaces towards backend systems (e.g. charging, accounting, payment, provisioning, Operations & Management, etc.).
	OSE provides for "driver" elements that convert standardized interfaces to possibly proprietary backend systems. These drivers allow the use of existing proprietary non-standard network protocol/resources. This allows integration with any network or backend resource present in the SP domain (or elsewhere if needed)

	6. The OMA Service Environment SHOULD support the integration of service enablers, support systems and/or data sources that are not specified within the OMA.
	The OSE drivers enable mappings between non-OMA defined enablers and data sources to standard OMA-defined interfaces exposed by the enabler implementations.

	7. The OMA Service Environment MUST support seamless user mobility, user equipment mobility and service mobility between multi-vendor and multi-domain environments irrespective of the underlying network infrastructure.
	Because of the driver architecture, any underlying resource can be exposed as an OMA enabler at the level of the application development APIs. This decoupling is true across different vendors as well as for different underlying transport protocols and network technologies or infrastructures.

The enabler implementation can be used by applications, even when users are roaming. When needed, such support would have to be provided by either the underlying network resources invoked through drivers or directly by the enabler implementations.

	8. Using components developed according to the OMA Service Environment MUST NOT contradict or prevent any requirements imposed by legislation.
	EPEM supports SP-specified policies and rules. SPs have complete flexibility to define legislation-conformant policies.

	9. The OMA Service Environment MUST provide for extensibility for future service enablers and compatibility between these service enablers.
	All it takes to add an enabler is to build an enabler implementation, and deploy / integrate it through the mechanisms specified by OSPE. The enabler implementation may directly implement the required function or use a driver to invoke an existing resource. Policies for the new enabler can be added to EPEM.

	10. The OMA Service Environment MUST provide for the integration of existing service enablers defined by OMA with each other and with existing systems.
	An application or enabler can invoke any set of enablers in an integrated way. EPEM provides a simple mechanism to combine multiple enablers and applies policies on any such request. Any other application can be implemented using the application development APIs exposed by the enabler implementations. The drivers facilitate integration of enablers with existing underlying systems.

	11. The OMA Service Environment MUST identify and define a set of functions that are common to most, if not all, use cases, and the ways these functions can be exposed and shared. Where such functions have been defined all OMA-specified enablers MUST use them.
	Any enabler implementation can be reused and shared. In addition EPEM can be used to simplify delegation. The architecture therefore allows the identification and reuse of common functions including, but not limited to, authentication, authorization, enabler registration and discovery, enabler configuration, integrity management, group management, etc.

	12. The OMA Service Environment MUST be valid for any kind of service (e.g. messaging, WAP, location, “IN”-like services, corporate services, etc.
	The proposed architecture supports an infinite range of enablers, only limited by the set of standardized specifications and drivers to relate to the underlying resources.

	13. The OMA Service Environment MUST be suitable for services focused on any kind of users or segments, including pre-paid, post-paid, corporate users, mass market, etc.
	See #12. Charging models are decided at the level of the calls to charging enablers or as determined by SP policies enforced by EPEM.

	14. The OMA Service Environment SHOULD enable component reusability.
	See above, the architecture enables the reuse of enablers and components. EPEM facilitates delegation to simplify SP-dictated reuse.

	15. If authorized by a Principal, service enablers, services, service providers or other actors MUST be able to interact with other service enablers, services, or service providers on the behalf of the Principal. For example, the OMA Service Environment MUST support the mechanisms to allow a Principal to delegate consent to an Identity Provider, allowing that Identity Provider to authorize federation of that Principal’s identity at multiple Service Providers.
	EPEM is the mechanism to simplify authentication of a requestor (applications, enablers, any type of SP, or end users) and the authorization of requests to particular resources, even on behalf of other principals. .

The security enablers can be defined to support delegation (to any type of SP).

	16. When authorized, Principals MUST be able to set policies (e.g. charging policies and privacy policies on any request (including discovery).
	EPEM will define policy management processes to support service providers' setting policies or to allow derivation of policies from settings (preferences, SLAs,…)

	17. The OMA Service Environment SHOULD support options for the choice of party for handling authentication, charging and/or storage of user profiles.
	EPEM allows principals and SPs to choose what party will handle authentication, charging, and storage of user and SP profiles.

	18. The OMA Service Environment MUST NOT assume network connections are permanent or long-lived.
	Nothing in the proposed architecture pre-supposes permanent or long-lived connections.

Enablers should be defined with the same principles.

6.1.1 Security

	OSE requirements
	Support by proposed OSE Architecture

	1. The OMA Service Environment MUST provide mechanisms for authentication of users, applications and third-party service providers, and authorization for the use of service enablers across and within service provider domains.
	The architecture supports authentication of requestors (users, applications, SPs) accessing enablers. EPEM enforces authentication, authorization, etc. based on SP-supplied policies and permits the reuse of any enabler based on policies specified by the SP.

	2. The OMA Service Environment MUST enable a Principal to authorize a service enabler or service provider to execute actions on its behalf.
	The architecture supports authorization of service providers and applications accessing enablers. EPEM enforces authentication, authorization, etc. based on SP-supplied policies and permits the reuse of the authorization enablers based on policies specified by the SP. These policies can specify what can be done on the principal’s behalf.

	3. The OMA Service Environment SHOULD NOT disallow different trust models for brokered authentication assertions or for single authentication assertions.
	EPEM supports arbitrary policy specifications allowing any trust model for brokered or single authentication assertions.

	4. The OMA Service Environment MUST allow optimisations if a requestor and responder are in the same domain (i.e. trust domain).
	EPEM allows arbitrary policies to handle authorization and charging by both trusted and un-trusted parties. The policies may also dictate different strengths or types of authentication mechanisms.

	5. The OMA Service Environment MUST enable single sign-on and single log-out to span enablers in a single domain or across multiple Service Provider domains. One-time authentication or a SSO MUST remain valid throughout a continuous session.
	EPEM can delegate authentication to a security enabler that supports the single sign-on and sinle log-out identity functions. Such authentication remains valid throughout a continuous session.

	6. The OMA Service Environment MUST support setting various strengths of security policies and SHOULD support a way for service providers to define and communicate authorization policies for enablers.
	EPEM supports policies setting different authentication strengths and communicating security policies to requestors.

	7. The OMA Service Environment SHOULD support a way to negotiate security settings between service providers.
	If allowed by the policies, EPEM supports negotiation of security settings between requestors and responding SPs. The resulting security setting will be enforced by a combination of EPEM and the security enabler.

	8. The OMA Service Environment SHOULD provide a set of security functions (including methods and data models), which are common to all enablers and can be re-used by existing enablers and in the design of new enablers.
	The proposed architecture allows the reuse any enabler, and EPEM facilitates (through the delegation mechanism) the reuse of any enabler by existing and new enablers.

	9. The OMA Service Environment MUST provide secure and confidential access to services and associated exchanges within and across networks and domains e.g. through methods such as encryption, integrity protection, non-repudiation, authentication (both mutual and one-way) and authorization.
	The proposed architecture supports facilities to provide secure and confidential access to enablers within and across networks and domains using encryption, non-repudiation, mutual authentication, etc. These specific functions are implemented by security enablers and can be enforced by EPEM.

	10. The OMA Service Environment MUST be able to control access to enablers, irrespective of the network technology and domain of origin of the party attempting to access the enabler.
	Based on SP-specified policies, EPEM controls access to enablers, whether through any network type, or across or within an SP domain.

	11. The OMA Service Environment MUST support a mechanism to federate and de-federate identity information across Service Provider domains.
	The proposed architecture can support authentication enablers that handle identity federation across SP domains..

	12. The OMA Service Environment MUST provide mechanisms that ensure protection against security threats.
	The proposed architecture protects SPs by allowing the SP to specify security policies for any requests to be enforced by EPEM, executed implicitly or explicitly. EPEM can invoke security enablers that ensure protection against security threats.

	13. The OMA Service Environment MUST allow a Service Provider to request authentication confirmation from an Identity Provider either on behalf of itself or other Service Providers.
	The proposed architecture support an authentication (including identity) enabler that will allow an SP to request authentication confirmation from an Identity Provider on behalf of itself or other SPs.

	14. The OMA Service Environment MUST provide an interface between the authorization function and the charging enabler.
	In the proposed architecture, the application development interfaces provided by the charging and authorization enabler implementations can be used as an interface between the two.

6.1.2 Charging

	OSE requirements
	Support by proposed OSE Architecture

	1. The OMA Service Environment MUST NOT preclude any charging models between different actors.
	The proposed architecture does not preclude any specific model of charging/billing. These are left to the policies enforced by the EPEM enabler, explicit charging calls made by enablers, and the operation of the backend billing system.

	2. The OMA Service Environment MUST provide an interface where Accounting and Charging information is to be gathered.
	This is provided through the application development APIs of the charging enabler implementation.

6.1.3 Administration and Configuration

	OSE requirements
	Support by proposed OSE Architecture

	1. The OMA Service Environment SHOULD provide for the simplification of the services and service enablers life-cycle management by avoiding manual processes, need of integration due to lack of standards, etc.
	The proposed architecture provides automated life cycle management support based on the requirements identified in OSPE and the infrastructure in the SP domain. Integration can be facilitating by relying on EPEM for delegation, reuse etc…

	2. Subject to authorization by the Service Provider, the OMA Service Environment MUST enable entities (e.g. enterprises) other than the service provider to upload applications, manage the service life cycle and manage devices according to the OMA Device Management requirements.
	The proposed architecture allows SPs to setup policies that will authorize third parties to perform actions normally reserved to the SP, such as upload and manage applications, manage service life cycle of enablers, manage devices, and set policies to expose third party services in controlled and billable ways. Users can provide settings and preferences that are converted into policies enforced by EPEM.

	3. The OMA Service Environment MUST enable the communication of service monitoring data (e.g. performance measurements) between actors.
	The proposed architecture allows SP-supplied policies to dictate which actors are permitted to access which data. Service monitoring is performed in the SP infrastructure and individual enablers.

	4. The OMA Service Environment SHOULD enable easy administration and configuration of users and services.
	The proposed architecture enables easy administration and configuration of users (via the subscriber management enabler) and services (via the life cycle management interfaces) as defined by the requirements in OSPE. EPEM then allows management of users and third parties by deriving policies from preferences and SLAs.

	5. The OMA Service Environment MUST provide the means to manage the activation, registration, authentication, and authorization of users and service components.
	The proposed architecture supports subscriber management and a partner management enablers that handle activation and registration of users and service components respectively. Authentication and authorization is handled by these respective enablers. Registrations, subscriptions, SLAs etc… result in policies that are enforced by EPEM by relying (delegation) on these enablers.

	6. The execution or use of access and authorization functions SHOULD NOT impact the performance of services.
	The proposed architecture allows authorization, service discovery and service selection to be performed either prior to invocation of the service component, or explicitly invoked by the service component (based on the SPs preference) to avoid impact on performance. Scalability and performances of these operations can be handled with conventional technologies (e.g. duplication of components).

	7. The OMA Service Environment SHOULD provide functions for the management of trust between the actors in the OMA environment.
	The proposed architecture supports authentication and authorization enablers that can provide for the management of trust between actors..

	8. The OMA Service Environment MUST provide a mechanism by which device and network information can be communicated to an authorized third-party (with respect to the information holder) in a manageable way. This mechanism MUST allow for the automated discovery of new devices and new characteristics in existing devices.
	The proposed architecture supports SP-supplied policies enforced by EPEM to assure that only authorized third-parties can access device and network information in a manageable way. An OMA-specified enabler will provide for the automated discovery of new devices and new characteristics in existing devices. EPEM is expected to specify how policies may impact the interfaces exposed to third parties so that requests can be appropriately constructed.

	9. The OMA Service Environment MUST provide a mechanism to enable third-parties to obtain an identification for an end-user who uses a particular device to access authorized third-party applications.
	The proposed architecture supports various authentication mechanisms to obtain an end user's identity.

	10. The OMA Service Environment MUST provide a mechanism to allow third-parties to discover the device(s) currently used by an end-user, if registered on a network (e.g. where to send a notification to the employee).
	The proposed architecture supports device discovery techniques.

	11. The OMA Service Environment MUST provide a mechanism for an authorized third-party to discover the conditions for using a service enabler exposed by a particular service provider in a dynamic manner.
	The proposed architecture provides support to discover the conditions for using a service enabler, through the discovery function and EPEM.

	12. The OMA Service Environment MUST support a mechanism for service providers and other authorized actors to enforce the conditions for use of a service enabler.
	The EPEM component of this proposed architecture will enforce the policies supplied by SP and other authorized actors for use of all service enablers..

	13. The OMA Service Environment MUST have a single logical point that handles subscriber and subscription information.
	The proposed architecture supports definition of an enabler to handle subscriber and subscription information.

6.1.4 Usability

	OSE requirements
	Support by proposed OSE Architecture

	1. The OMA Service Environment MUST provide the means to simplify end-user service access and use.
	The proposed architecture supports inclusion of enablers and policy enforcement that can simplify end-user access and use.

6.1.5 Interoperability

	OSE requirements
	Support by proposed OSE Architecture

	1. The OMA Service Environment MUST define the data flows and interfaces between applications and enablers, and between enablers. These are the interfaces where interoperability is required.
	The proposed architecture, including enabler specifications, defines the interfaces to enablers, from applications or other enablers and the impact of policies.

	2. The OMA Service Environment MUST NOT mandate any specific deployments.
	The proposed architecture is logical and it does not mandate any specific deployment; the proposed architecture supports different deployment configurations.

	3. The OMA Service Environment MUST support simplified (e.g., plug-in) and automated integration for enablers with each other.
	The proposed architecture enables the incremental introduction of multivendor service components, through the enabler registration enabler, infrastructure integration mechanisms specified by OSPE and the delegation / protection mechanism provided by EPEM.

	4. The OMA Service Environment MUST provide a common mechanism for Provisioning of services, service enablers and user parameters.
	The proposed architecture supports life cycle management interfaces to provision enablers (OSPE) and services, and permits enabler specifications to provision user parameters.

	5. The OMA Service Environment SHOULD provide a mechanism to manage and use policies (e.g. access policies, charging polices, service level agreements, etc.).
	The EPEM enabler of the proposed architecture supports management and use of policies.

6.1.6 Privacy

	OSE requirements
	Support by proposed OSE Architecture

	1. The OMA Service Environment MUST provide a means to manage and enforce end-user privacy.
	The proposed architecture allows each enabler to enforce end-user privacy or allows the enablers to delegate such enforcement to EPEM and SP-supplied policies. The policies can be derived from the privacy preferences.

	2. The OMA Service Environment MUST support the use of pseudonyms for the communication of Principal’s identities between Service Providers (to enable traceability without disclosing the Principal’s identity).
	The proposed architecture allows enablers that use pseudonyms to identify principals between SPs.

6.2 Overall System Requirements

See previous sections

6.3 System Elements

	OSE requirements
	Support by proposed OSE Architecture

	1. The Service Environment SHOULD NOT preclude the deployment of service enablers in high-availability, high-uptime, scalable environments (e.g. by requiring implementation in ways which disable the use of the functions of this environment).
	The proposed architecture does not introduce any constraints on deployment. In fact, this architecture permits many different deployment models to enforce policy management, including transparent proxies, explicitly addressed elements, and explicitly invoked elements.

	2. The Service Environment MUST allow applications to make use of multiple enablers to create services (e.g. service composability).
	The proposed architecture allows applications to use multiple enablers to create services. For example, EPEM provides a mechanism to implement services as a workflow of enablers. Also in the SP domain, the enabler implementations can be composed at will into new services.

	3. The Service Environment SHOULD enable the definition of components in such a way that consistent design (e.g. reuse of data formats, reuse of components, etc) is encouraged.
	The proposed architecture explicitly encourages the reuse of service components, particularly the delegation of functions through EPEM and the concept of drivers to access underlying resources.

	4. The Service Environment MUST support the ability to simultaneously operate multiple versions (i.e. multiple instances, defined according to different releases of the OMA specifications) of an interface or API.
	The proposed architecture, with its life-cycle management requirements and discovery enabler, provides support for the simultaneous use of multiple versions of interfaces or APIs or enablers.

	5. The Service Environment MUST provide a mechanism to control the QoS and the service quality of the behaviour of enablers.
	The proposed architecture supports the control of service quality for service enablers through policy enforcement via EPEM of SP-supplied policies as well as dedicated enablers and infrastructure monitoring capabilities

	6. The specification of a Service Enabler MUST be done in such a way that allows for scalable implementations.
	The proposed architecture does not introduce any constraints on development of scalable implementations. In fact, this architecture explicitly provides for functional distribution to eliminate single points of failure and to simplify vertical and horizontal scaling techniques. The infrastructure in the SP domain is responsible for resource allocation, load balancing etc…

6.3.1 General requirements on enabler interfaces

	OSE requirements
	Support by proposed OSE Architecture

	1. The interfaces to a Service Enabler MUST NOT constrain the functions of the enabler to a single domain.
	The proposed architecture enables the usage of enablers by applications in 3rd party administrative domains. EPEM simplifies the protection of such enablers when accessed across domains.

	2. When a Service Enabler is defined by OMA a standardized interface MUST be defined for the Service Enabler.
	The proposed architecture assumes standard interfaces will be defined for all OMA service enablers.

6.3.2 Common Directory / Registry

	OSE requirements
	Support by proposed OSE Architecture

	1. The OMA Service Environment MUST have a single logical access point (e.g. Common Directory) to handle: 1) registration, 2) discovery and 3) functions and data that handle information relevant to more than one single service enabler.
	The proposed architecture supports the definition of an enabler to handle registration and discovery of multiple enablers.

6.3.2.1 Interfaces to Common Directory / Registry

	OSE requirements
	Support by proposed OSE Architecture

	1. The OMA Service Environment MUST support Service Registration for Services visible to the end-user.
	The proposed architecture supports the definition of an enabler to handle service registration for end-user visible services (possibly as impacted by policies).

	2. The OMA Service Environment MUST support Service Discovery for services visible to the end user.
	The proposed architecture supports the definition of an enabler to handle service discovery for end-user visible services (possibly as impacted by policies).

	3. The OMA Service Environment MUST support Discovery for an implementation of a Service Enabler.
	The proposed architecture supports the definition of an enabler to handle discovery of enabler implementations (possibly as impacted by policies).

	4. The OMA Service Environment MUST support Registration for an implementation of a Service Enabler.
	The proposed architecture supports the definition of an enabler to handle registration of enabler implementations.

	5. Within the OMA Service Environment it MUST be possible to register, discover, and retrieve information (e.g. a service enabler’s address) using a resource identifier (e.g. a user identifier).
	The proposed architecture supports the definition of an enabler to register, discover, and retrieve information using a resource identifier.

6.3.3 Network interfaces

	1. The OMA Service Environment MUST define a common interface for the operations and management (O&M) of both common and service-specific enablers or applications (including service monitoring and end-to-end service delivery).
	The proposed architecture supports the definition of an enabler or enablers to perform O&M operations. EPEM's delegation capabilities based on SP-specified policies will simplify this task.
Underlying / backend resources can be controlled by enabler implementations through drivers (standard or not).

4 Intellectual Property Rights Considerations

No IPR attached to this contribution has been identified at the moment.

5 Recommendation

This contribution demonstrates how the OSE architecture proposed in OMA-ARC-2004-0068-OSE_Proposal satisfies the OSE requirements.
We recommend that this analysis be documented in the OSE specification, following agreement on OMA-ARC-2004-0068-OSE_Proposal.
NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 11)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
OMA-ARC-2003-0314R1-Parlay-OMA ARCH Reqs Mapping
© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Page 11 (of 11)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20031003]

