Doc# OMA-ARC-2006-0009-PEEM-TS-Decoupling-interfaces-from language-and-implementation.doc[image: image1.jpg]
Input Contribution

Doc# OMA-ARC-2006-0009-PEEM-TS-Decoupling-interfaces-from language-and-implementation.doc
Input Contribution

Input Contribution

	Title:
	PEEM TS Decoupling interfaces from language and implementation
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	OMA-ARC

	Submission Date:
	January 27, 2006

	Source:
	Michael Brenner, mrbrenner@lucent.com
Anders Lundqvist, andlundqvi@bea.com

	Attachments:
	n/a
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	
	<att x>
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	
	<att y>
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	
	<att z>
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	Replaces:
	n/a

Reason for Contribution

The reason for this contribution is to provide an explanation in support of development of PEEM interfaces in the absence of development of language specification, and to address comments received in the Athens meeting, as well as comments provided in the recently submitted OMA-ARC-2006-0005-PEM1_specification_discussion, and later in OMA-ARC-2006-0012-Comments OMA-ARC-2005-0418R02. With respect to the latter, some of the comments received were addressed in revision 418R03 (those that had to do with the introduction of Ruleset definition, and with the use of “evaluated” vs. “evaluated and executed”) and responses to those will not be given or repeated here, unless the issue is a larger issue.

This contribution will make frequent references to possible implementation and use implementations examples. We want to be very clear that we consider implementation aspects outside the scope of the specifications, and we do not ask for any of the material here to be included in the PEEM TS. However, comments that were made against 418 (different revisions) relate to language choices, execution models and design issues – hence implementation, and many of them argue that PEM-1as proposed in 418 requires/favors a specific implementation. Therefore we had no choice but use similar counterarguments – namely discussing design and implementations issues and examples to demonstrate that 418 is not related to any specific language or to any specific execution model or to any otherwise specific implementation.

Summary of Contribution

This contribution makes the case that interface specification development should and can be completely decoupled from the policy expression language specification development, as well as from the behaviour of the PEEM implementation that needs to interpret and use arguments passed back and forth via such interfaces. It also explains why the parameters suggested do not indicate or favour any particular implementation.

Detailed Proposal

	[COMMONPOL]
	“A Document Format for Expressing Privacy Preferences”, H. Schulzrinne, J. Morris, H. Tschofenig, J. Cuellar, J. Polk, and J. Rosenberg, October 23, 2005, October 2005,
URL: http://www.ietf.org/internet-drafts/draft-ietf-geopriv-common-policy-06.txt

Introduction

In most general terms, a statement that can be made is that sound architecture principles dictate that an interface exposed by any given resource should only represent an agreed means of communication between another resource and the resource that exposes the interface. In other words, the resource that makes use of the exposed interface of a resource, must see that resource as a “black box” to which it sends some input data, and from which it may receive some input data, based on the agreed-to interface definition. It is correct to assume that the resource using such interface has some expectations with respect to the processing of the input sent to the other resource, but it cannot and does not presume how this processing is accomplished – all it cares about is to see the results of such processing in the output that it may receive.

PEEM as a “black box”

How does the above apply to PEEM ? PEEM as a “black box” exposes interfaces PEM-1 and PEM-2. Requests to PEEM will be invoked using PEM-1 for requests for policy evaluation and execution, and PEM-2 for requests for policy management. Requestors using the PEM-1 interface (also known as E-requestors) need to have a means of communicating input/output context for policy evaluation and execution. Requestors using the PEM-2 interface (also known as M-requestors) need to have a means of communicating input and/or output context for the management of policies. E-requestors and M-requestors are only concerned with the quality and validity of the information passed across those interfaces, and they do not and should not care how PEEM is processing that information. From PEEM perspective, processing of that information is likely a combination of some PEEM implementation mechanisms and the identification and interpretation of a policy written in a policy expression language. It is irrelevant to the E-requesters and M-requesters the extent to which PEEM implements directly some of the mechanisms and the extent to which such mechanisms are part of the policy itself. It is also irrelevant to the E-requesters and M-requesters in what policy expression language the policy is written – this is only of concern to the PEEM implementation itself, who needs to be able to interpret that language. All what PEEM needs to and should care about is to be able to understand the input context passed via its exposed interfaces, and to be able to communicate output results of its processing (via its own mechanisms or via the interpreted policy itself) to the E-requesters, or M-requesters respectively.

Explanation of proposed PEM-1 characteristics
To further help the explanation, several scenarios will be explored, using a proposal that was forwarded for PEM-1 interface multiple I/O profiles. Before getting to the scenarios, we provide here a summary explanation on the use of I/O profiles for PEM-1. The reason for proposing the support for multiple profiles was to allow:

· A choice of different options for an E-requester to convey input context and receive output context. It is recognized that any level of structured format for an interface is better than none, but given the large variety of E-requesters that PEEM wants to support (OMA enablers, applications, other resources) it is also recognized that while a single formatted profile can always be worked with, it may not be the most straightforward to cover all cases. We also anticipate that new profiles may be added to the ones proposed.

· A way to differentiate/optimize any possible PEEM implementations, if so desired by the vendors. A vendor may support all profile options, or a subset of the profile options. A vendor may also provide an optimized implementation for one of the options, even if it supports multiple options. We have not yet discussed the mandatory nature of any of the I/O profiles. The only mandatory requirement at this point is for support of at least one of the I/O profiles.

The generic format of the PEM-1 proposed interface includes 3 types of data:

· IOProfileType. This can be set to RulesetType, SROEType, BLOBType – and could be expanded in future to additional types.

· RulesetID. This is an identifier (a reference) for a specific policy, and it is used as a means to indicate the use of a specific policy (a ruleset). A ruleset is in essence a policy, which consists of the rules that operate as a whole to satisfy a specific request for evaluation and execution (using the definitions for evaluation and execution as per the last PEEM AD draft available). The concept is only introduced to distinguish from the generic policy concept, because it restricts the policy to the rules that will effectively be evaluated and executed in a specific instance. It is possible that this set of rules indeed is the existing set of rules, in which case the notion of ruleset and policy are identical. The ruleset concept does not imply how the collection of rules to-be-evaluated-and-executed is assembled. The ruleset could be pre-provisioned (using the PEEM PEM-2 interface specification or a different way of making it available to PEEM) or could be assembled by PEEM at run-time, based on input context received from an E-requester using the PEM-1 interface specification. A. RulesetID really makes sense for a pre-identified set of rules (a set of rules identified at policy provisioning time as having to be evaluated and executed “as a whole”). To associate a RulesetID to a set of rules at run-time, does not make much sense. In the presence of the RulesetID, a PEEM implementation can use it if it has pre-provisioned rules under such identifier, or it can ignore it, it has other means to identify the set of applicable rules using the input context provided. The set of rules identified can be the total existing set, or a subset.The absence of RulesetID could be for 2 reasons. If it is by mistake (in the sense that RulesetID is mandatory for a particular profile), in the absence of the RulesetID, a PEEM implementation would obviously have to either assume a default (how to select a default is an implementation issue, for example the default could be “all the rules that exist”), or have a different way to deal with identifying the needed set of rules, and therefore ignore the RulesetID, or in worst case return an error to the E-requester if a default has not been identified, and if the implementation is not capable to function without it. On the other hand, if the IOProfile does not need or use a RulesetID, than this is not an issue. In either case, RulesetID does not indicate or force a particular language, or a particular implementation, and its presence or absence can be handled appropriately by any PEEM implementation as explained – as long as the implementation is consistent in itself. In short, the mandatory nature of RulesetID for specific profile imposes on the E-requester to provide that parameter, and allows PEEM implementations to handle the presence or absence of the parameter as they see optimal for their implementation.

· IOProfile

· For IOProfileType=RulesetType, this is a list of attribute-value pairs that matches the list of variables for the policy identified via the RulesetID

· For IOProfileType=SROEType, this is a pre-categorized list of meta-attribute-value pairs, grouped in 4 meta-categories:

· Subject (the attributes in this meta-category identify the requester – e.g. requester’s identity, 3rd party domain)

· Resource (the attributes in this meta-category identify the requested resource – e.g. location enabler, presence enabler)

· Operation (the attributes in this meta-category identify the requested operation and its input/output arguments)

· Environment (the attributes in this meta-category may identify environmental conditions, state at the time of the request)

· For IOProfileType=BLOBType, this represents the format of the BLOB as decided at policy writing time, and made available to the E-requester. Note that this could result into something identical to RulesetProfile, or SROEProfile, but it also could result into a new different profile. One of the benefits of supporting this is to allow de-facto establishment of new valid profiles which may be considered to become part of the specification in future phases.

The current proposal is to have the IOProfileType as mandatory and the RulesetID as mandatory for some profiles – still to be discussed.

Possible IOProfile and language/implementations combinations scenarios
With that introduction, we will now proceed to explore possible scenarios.

The crux of the explanation is that all what is needed in ANY implementation and ANY language, to support ANY incoming profile is to be able to parse the incoming profile. An implementation that can only parse one profile will be weaker than one that can parse multiple profiles. The assumption is that ANY language needs to support variables, so it can use the incoming parsed input to match it against policy variables.

Since textual explanations are lengthy, and may be specific to the specific scenario investigated, we are first providing a summary analysis in the form of 2 tables. Table 1 represents the matching of different IOProfiles to Policy Expression languages of different complexity. It demonstrates that the specific language is completely decoupled from the PEM-1 format. It also shows that it is irrelevant from that perspective if the PEL is simple or complex. It also shows that ANY language would need to support I/O variables of different types, and one possibility is that it may have to support some pre-determined names/keywords for variables (e.g. for the SROE profile). At the same time, the accent is on the “may” in this case – other implementations may exist as well (e.g. ordering of the input parameters). It is indeed premature to assess whether we will use or not “reserved keywords”, but we can’t exclude this is a possibility. It will be determined in the process of working on specification details.The table also shows that they may be necessary irrespective of IOProfile. In other words, even for supporting one of the profiles only (e.g. the BLOBProfile), it would still have to have support for I/O variables of different types, and the use of reserved keywords for certain variables may be something imposed in the BLOB by the policy when it is written. The point is, that if a language and an implementation is chosen that requires the use of reserved keywords, than the issue of a namespace needs to be dealt with. This may need to be dealt with as part of the specification, if we run into this problem at specification time, but certainly needs to be addressed at the time that the interface parameters are finally and completely being addressed.

	Incoming IOProfile ->
	RulesetProfile
	SROEProfile
	BLOBProfile

	Policy Expression Language (PEL)
	
	
	

	Simple ruleset language
	PEL needs to have support for any I/O variables that could be part of the profile
	PEL needs to have support for any I/O variables that could be part of the profile. PEL may needs to support named or ordered variables (e.g. maybe pre-determined variables/keywords).
	PEL needs to have support for any I/O variables that could be part of the profile. PEL may needs to support named or ordered variables (e.g. maybe pre-determined variables/keywords).

	Complex programming language
	PEL needs to have support for any I/O variables that could be part of the profile
	PEL needs to have support for any I/O variables that could be part of the profile. PEL may needs to support named or ordered variables (e.g. maybe pre-determined variables/keywords).
	PEL needs to have support for any I/O variables that could be part of the profile. PEL may needs to support named or ordered variables (e.g. maybe pre-determined variables/keywords).

Table 1: Matching of different IOProfiles to Policy Expression languages of different complexity

Table 2 represents the matching of different profiles to different PEEM implementations.

In table 2, the following notation is used:

Ruleset-Impl = an implementation that only supports RulesetProfile

SROE-Impl = an implementation that only supports SROEProfile

BLOB-Impl = an implementation that only supports BLOBProfile

Ruleset-SROE-Impl = an implementation that only supports RulesetProfile and SROEProfile

Ruleset-BLOB-Impl = an implementation that only supports RulesetProfile and BLOBProfile

SROE-BLOB-Impl = an implementation that only supports SROEProfile and BLOBProfile

Ruleset-SROE-BLOB-Impl = an implementation that only supports RulesetProfile, SROEProfile and BLOBProfile

Match = the case in which an implementation’s parser matches the incoming profile

Minimal implementation = an implementation that will return an error when it identifies that the incoming IOProfileType is not one of the profiles supported; no attempt will be made to parse and an error will returned

Better implementation = an implementation that will attempt to parse the message even when it identifies that the incoming IOProfileType is not one of the profiles supported; if parsing is successful, it will continue to identify applicable rules. If the parsing is not successful (e.g. there is a match between the incoming profile and the one of the patterns supported by the implementation) an error will returned

Table 2 conveys the following information: although it is expected that PEEM implementation would advertise its supported profiles, and therefore those would be appropriately used by the requesters, ANY implementation can handle correctly ANY profile, regardless of implementation/execution model, as long as it attempts to parse the incoming PEM-1 request.

	Incoming IOProfile ->
	RulesetProfile
	SROEProfile
	BLOBProfile

	Type of implementation
	
	
	

	Ruleset-Impl
	Match
	Minimal implem – return error.

Better implem – can deal with it there is a match in profiles (if the advertised format for supported profiles matches the incoming profile, even if the IOProfileType says differently)
	Minimal implem – return error

Better implem – can deal with it there is a match in profiles.

	SROE-Impl
	Minimal implem – return error.

Better implem – can deal with it if there is a match between profiles.
	Match
	Minimal implem – return error.

Better implem – can deal with it if there is a match between profiles.

	BLOB-Impl
	Minimal implem – return error.

Better implem – can deal with it if there is a match between profiles.
	Minimal implem – return error.

Better implem – can deal with it if there is a match between profiles.
	Perfect match

	Ruleset-SROE-Impl
	Match
	Match
	Minimal implem – return error.

Better implem – can deal with it if there is a match between profiles.

	Ruleset-BLOB-Impl
	Match
	Minimal implem – return error.

Better implem – can deal with it if there is a match between profiles.
	Match

	SROE-BLOB-Impl
	Minimal implem – return error.

Better implem – can deal with it if there is a match between profiles.
	Match
	Match

	Ruleset-SROE-BLOB-Impl
	Match
	Match
	Match

Table 2: Matching of different IOProfiles to PEEM implementations (by profile support)

What follows is a more detailed analysis, for specific scenarios.

Based on the proposed profiles, we identify the following possibilities:

1. E-requester uses RulesetProfile

a. PEEM implementation supports the RulesetProfile (or supports all profiles)

i. Policy expression language used is [COMMONPOL] with extensions (extensions are meant to include support for variables, delegation to other resources, Boolean and arithmetic operators to be used in policy expressions).

1. [COMMONPOL] already has the notion of “ruleset”. It can easily associate a ruleset identifier to a policy, and will use the RulesetID to identify the policy. The [COMMONPOL] extensions (proposed in a separate contribution 408) will support definition of any list of variables to match a list of attribute-value pairs.

2. PEEM would pass the list of attribute-value pairs to the identified policy. If the attribute list matches to the list of variables in the policy, the policy variables are set to the values in the input attribute list, the policy is evaluated and the results are returned via the attribute-value pairs defined as output variables. If the attribute list does not match to the policy variables list, and the policy cannot be evaluated or cannot be predictable because of the mismatch (this is an optimization detail outside the scope of discussion) an error is returned to indicate an invalid list of attributes.

ii. Policy expression language used is “WS-BPEL with extensions”

1. WS-BPEL may or may not have to add the notion of a “ruleset” as an extension. If it does, then this case should be similar to the 1.a.i.1 case, since the assumption is that WS-BPEL already has the means to define variables. Assuming that the notion of ruleset and ruleset identification is difficult or unwanted to be added to WS-BPEL because of its particular informational model, this is still not a problem. This is why: the idea of having a ruleset with a precise identification is to allow for an identification of a “set of rules” that are applicable for a particular request. Whether the “set of rules” is pre-identified (e.g. at the time the policy is provisioned) or not (the set of applicable rules is identified at run-time, based on the input context) is irrelevant. What is relevant is that when it comes to evaluation and execution process, only an identified set of rules will be evaluated and executed. Such set could indeed be the total set of existing rules, or it could be a subset of the total set. If that is the case, a WS-BPEL based policy will identify the applicable set of rules based on the input context received in the attribute-value pairs (e.g. while traversing the rules-tree) and may ignore the RulesetID if it is not providing any optimization advantages.

2. The assumption is that evaluation and execution is similar as described in the 1.a.i.2 case, or if not similar, there is a way in WS-BPEL to pass input from an attribute-value pairs list to the policy and from the policy to the output attributes in the attributes-value pairs list. We also assume that there is a way to convey an error in validation, whether similar or not to the one described in the 1.a.i.2 case.

iii. Policy expression language is some other language

1. we have already explored what happens if the language (or supporting informational model) supports or does not support the notion of an identified ruleset. Any language used to express policies needs to have a means of passing input/output data, and we explained how such data in the attribute-value pairs list would be used. Based on the explanations provided, any language in which policies may be expressed can identify the appropriate policy and use input/output data to evaluate the policy and return a decision.

b. PEEM implementation does not support the RulesetProfile

i. The PEEM implementation would have to return an error value that is indicative of the fact that this IOProfile is not supported; it may provide additional information to indicate which profiles are supported. It is generally assumed that the supported IOProfiles would have been made available to the E-requesters before or at PEEM deployment time.

2. E-requester uses SROEProfile

a. PEEM implementation supports the SROEProfile (or supports all profiles)

i. Policy expression language used is [COMMONPOL] with extensions

1. The general observation is that SROEProfile is similar with the RulesetProfile, hence a similar explanation applies. [COMMONPOL] already has the notion of “ruleset”. It can easily associate a ruleset identifier to a policy, and identify the policy using the RulesetID. There is also the possibility that the ruleset does not have to be pre-identified, and that the set of applicable rules may be identified using the input context (S, R, O, E meta-parameters). That would be done as explained in case 1.a.ii.1 before. The [COMMONPOL] with extensions (proposed in a separate contribution) will support definition of variables to match the list of Subject, Resource, Operation, Environment meta-variables. Further refinements of those meta-categories may also be specified (e.g. user-identity, 3rd party domain for the “Subject” meta-category). It is generally assumed that the supported meta-parameters values would have been made available to the E-requesters before or at PEEM deployment time.

2. PEEM would pass the list of meta-attributes-value pairs to the identified policy. If the attribute list matches to the list of variables in the policy, the policy variables are set to the values in the input attribute list, the policy is evaluated and the results are returned via the attribute-value pairs defined as output variables. If the attribute list does not match to the policy variables list, and the policy cannot be evaluated or cannot be predictable because of the mismatch (this is an optimization detail outside the scope of discussion) an error is returned to indicate an invalid list of attributes.

ii. Policy expression language used is “WS-BPEL with extensions”

1. The general observation is that SROEProfile is similar with the RulesetProfile, hence a similar explanation applies. See previous explanation for 1.a.ii.

iii. Policy expression language is some other language

1. The general observation is that SROEProfile is similar with the RulesetProfile, hence a similar explanation applies. See previous explanation for 1.a.iii.

b. PEEM implementation does not support the SROEProfile

i. The general observation is that SROEProfile is similar the RulesetProfile, hence a similar explanation applies. See previous explanation for 1.b.i.

3. E-requester uses BLOBProfile

a. PEEM implementation supports the BLOBProfile (or supports all profiles)

i. Policy expression language used is [COMMONPOL] with extensions

1. The important aspect is that [COMMONPOL] with extensions needs to support a means to pass input/output arguments (as explained in 1.a.i.1). Assuming that the BLOB profile matches a profile made available by the PEEM implementation for this case, the identification of the parameters is only a matter of parsing the BLOB as prescribed by the advertised format. If a RulesetID is used, then the explanation is similar to 1.a.i.1, if a RulesetID cannot be used, the explanation is similar to 2.a.i.1. It is also conceptually possible that a non-advertised BLOB format (a random BLOB) may be supported by particular PEEM implementation (in this sense acting as an expert system to identify the input/output context, without following a prescribed format – however, once the parsing is completed the following steps would be similar; this is true for irrespective of language used).

2. PEEM would pass the identified values for identified attributes to the identified policy. If the attributes match the variables in the policy, the policy variables are set to the values in the input attribute list, the policy is evaluated and the results are returned via the attributes identified as output variables. If the attribute list does not match to the policy variables list, and the policy cannot be evaluated or cannot be predictable because of the mismatch (this is an optimization detail outside the scope of discussion) an error is returned to indicate an invalid list of attributes.

ii. Policy expression language used is “WS-BPEL with extensions”

1. Assuming that the BLOB profile matches a profile made available by the PEEM implementation for this case, the identification of the parameters is only a matter of parsing the BLOB as prescribed by the advertised format. If a RulesetID is used, then the explanation is similar to 1.a.i.1, if a RulesetID cannot be used, the explanation is similar to 2.a.i.1. It is also conceptually possible that a non-advertised BLOB format (a random BLOB) may be supported by particular PEEM implementation (in this sense acting as an expert system to identify the input/output context, without following a prescribed format – however, once the parsing is completed the following steps would be similar; this is true for irrespective of language used).

2. Similar to explanation for 1.a.ii.2 or 2.a.ii.2.

iii. Policy expression language is some other language

1. We have already explored what happens if the language (or supporting informational model) supports or does not support the notion of an identified ruleset. Any language used to express policies needs to have a means of passing input/output data, and we explained how such data in the attribute-value pairs list would be used. Based on the explanations provided, any language in which policies may be expressed can identify the appropriate policy and use input/output data to evaluate the policy and return a decision. See explanation 3.a.i for how input/output context can be identified, and 1.a.i.2 for the following steps.

b. PEEM implementation does not support the BLOBProfile

i. The PEEM implementation would have to return an error value that is indicative of the fact that this IOProfile is not supported; it may provide additional information to indicate which profiles are supported. It is generally assumed that the supported IOProfiles would have been made available to the E-requesters before or at PEEM deployment time.

Notice that all cases (based on proposed IOProfiles) can successfully be handled by any language and any implementation, with the only requirements being that:

· The language and PEEM implementation supports a way to identify a set of applicable rules (this is already a requirement in the PEEM RD)

· The language needs to support a way to use input/output parameters (this is already a requirement in PEEM RD)

· The PEEM implementation needs to support a way to communicate input/output parameters to the policy (this is already a requirement in PEEM).

The conclusion is that regardless of the formatting of the PEM-1 interface, there is a complete decoupling between the specific format of the interface and the choice of language, informational model, PEEM implementation – and therefore specification of the PEM-1 interface should progress without any dependencies on the language.

Note: The same applies to the PEM-2 interface, where actually the situation is quite simpler.

Addressing specific comments received in OMA-ARC-2006-0005
Attached are a number of questions/comments received via OMA-ARC-2006-2005-PEM1_specification_discussion.

Answers are provided in bold.

3.1.1 Profiles

We are unclear on the actual implications of introducing such profiles and the interoperability and implementation implications:

· What happens when policies and profile do not match?

· Answer: as explained, all what is needed is a way to extract input/output parameters from the profile and to feed them into the policy. There may be implementations that are broader (support ANY profile and can handle mismatches between input/output parameters and the parameters needed by the policy, and others that may be more limited (support only a subset, or only 1 profile and/or not be able to handle imperfections between the type/number of input/parameters and the policy parameters.

· What happens when requester uses the wrong profile?

· Answer: see response to first question in this section. As explained in the scenarios explored, in case a particular implementation cannot support a particular profile, it will return an error stating so, and possibly provide an indication or a pointer to what profiles it supports.
· How is migration from solution using one profile to another profile ascertained?

· Answer: see response to first question in this section. Assuming we understood correctly the question, if a solution supports all profiles, this is not an issue. If a solution adds support for new profiles, these would be made available to the E-requesters (how is outside scope of PEEM).
· What are the implications for PEEM enabler implementation vendors?

· Answer: see response to previous questions in this section.
· What are the implications for PEEM Policy expression language tool vendors?

· Answer: none, as long as PEEM implementation and the language(s) it supports for policy writing and evaluation and execution support a mechanism of passing input/output context from/to PEM-1 to/from the policy. We are not aware of any model in which I/O parameters should not or cannot be passed – but should there be a model in which passing input/output context to the policy is NOT at all needed, such a model needs to be understood/explored, and a different set of answers may apply. The simplest way to explain the IOProfile is that all it is needed to handle ANY such profile, regardless of profile, is a simple parser.
· What are the implications on PEM-2?

· Answer: assuming the question is wrt implications of the PEM-1 I/O profile on the PEM-2 interface, the answer is NONE. Notice that we have explored both cases in which a policy is pre-provisioned with a set of rules to constitute an identifiable “ruleset”, as well as the case where this is not necessary. So PEM-2 does not need to change because of a particular profile supported or not in PEM-1. In order to support the notion of pre-provisioned set of rules, which is a valid possible implementation, and in order to be able to later on edit such a policy, the PEM-2 will support a RulesetID parameter, similar to the PEM-1 interface proposal. Any number of conceivalble PEEM implementations are supported: when a RulesetID is presented, it will be used; when such parameter is not presented, it will be up to PEEM implementation to either provide a default one, or not – depending on the specific needs of the PEEM implementation in order to support its (known) PEM-1 profiles.
We are concerned that profiles introduce significant challenges.

Answer: we have addressed all concerns raised.
3.1.2 Implied link to and dependencies on the PEEM policy expression language

The parameter descriptions provided in OMA-ARC-2005-0418R01-PEEM-TS-PEM-1-interface-format explicitly mentions rulesets and assumptions on the execution model of the policy language processing (e.g. identication of rule set to use, notion of RuleSetId, …).

We believe that this is problematic until the issues related to PEEM policy expression language are resolved:

· If none is specified such assumptions are problematic. The interface should not restrict to particular forms.

· If one language or model is defined, the interface must be consistent with the selection.

At this stage until this is addressed, the terminology should not imply rule set, not particular syntax / representation nor execution models.

Also, we do expect that the parameters format, name space etc passed through the interface may have dependency on the PEEM policy expression language (e.g. how name space are constructed, …)

Answer to statements in this section:

We have shown in exploring all possible scenarios why there is no relationship between the interface and the language and it does not raise any particular issues; we have also addressed specific questions. In particular, we have also shown what the notion of ruleset means, and how RulesetID may be used or ignored, depending on the particular implementation. Whether we like it or not, rules will be grouped (different words could be used here – e.g. “selected”, “identified”, etc) together when multiple rules may apply to a request. There is only 2 ways to group rules together – namely they are pre-grouped together at provisioning time (policy management – regardless whether it is done via PEM-2 or otherwise) or they are grouped at run-time. In order to support the first, we need to provide for a RulesetID.

The use of “namespace” issue raised is interesting and worth exploring further. Note that Table 1 points to this issue as well – there may be a need to support “reserved keywords” (namespace issue), or ordered declared variables. But this is an existing issue no matter what interface we adopt, and no matter what language we adopt - and therefore may need to be addressed regardless of the IOProfiles. If we don’t define a language specification, it is more of an implementation issue than a specification issue: it is expected that, for a particular language used by the PEEM implementation, a particular use of namespace may be imposed, which may in turn affect how specific parameters can or cannot be named. If we do define a language specification, and we do define specific named parameters (e.g. for S, R, O, E) then we would may need to define “reserved keywords” for those variables, or just define variables that carry that meaning and have a way to match them to the input variables (e.g. by order, or other mechanisms). Any such constraints would be used in writing the policy, and would be made available to the E-requesters, via mechanisms outside the PEEM specifications scope. In other words, we do not think that we need to specify such a namespace as part of PEEM PEM-1 specification. However, we may find that we need to further explore how such a namespace may fit into the overall PEEM specifications framework. Therefore, we agree that if ARC WG believes this needs to be resolved as part of the PEEM i/f specifications framework, this needs to be further discussed.

3.1.3 Implied usage model

We are concerned also that the parameters proposed in OMA-ARC-2005-0418R01-PEEM-TS-PEM-1-interface-format imply assumptions on the usage model.

Notions of subject for example as defined in the proposal seem tightly linked to a PDP-PEP model. We have raised in other contributions that callable mode for PEEM is broader than PDP-PEP.

Answer to statements in this section:

It was shown walking through the different possible scenarios that regardless of interface format, and of PEEM language, and of PEEM implementation – all the situations are supported, and that E-requesters only makes assumptions about output context, when input context is provided. Any interface that we know makes such assumptions – namely that certain output is expected (not the specific value, but how many values in type of values may be obtained for a specific input context. Furthermore, by supporting the completely free-format BLOBType, even that assumption can be removed. There is no usage model assumption being made by the E-requester with respect to the PEEM usage model whatsoever.

It is not obvious what is meant by the comment “notion of subject for example as defined in the proposal seem tightly linked to a PDP-PEP model”, since the notion of “subject” did not originate in the IETF PEP-PDP model. A clearer comment may be needed in order to provide an answer. That said, the general statements that can be made are:

· The proposal supports situations that need to be supported. In particular, the IETF PEP-PDP model is mapped into PEEM AD, and support for it in the PEM-1 interface should be available.

· The proposal is extensible to include any other needed profiles that may be recommended for specific situations, either in this phase or in a future phase – and specific contributions with such recommendations are strongly solicited and encouraged.
3.1.4 Challenges with the specification of the parameters

The proposed specification implies specification of subject and resource ID.

We submit that these are very complex tasks that have not been resolved today:

· There are no universal identification mechanisms. Some candidates may of course exist (e.g. URI, MAC, USIM, Digital Certificates, …) for physical resources and subject.

· Will any service provider use a same standard identification scheme.

· Can it be TCP/IP based?

If we do not further specify these parameters, the specification does not specify much more than if we had picked a BLOB and at the price of being unnecessarily restrictive.

If we do, the PEEM TS specification will evolve into a tremendous task to specify universal identifiers formats.

Answer to statements in this section:

The intent is to specify the SROE meta-parameters to the “depth” it makes sense, and no further. It is possible that in PEEM specification for this release we would stop at this level of meta-parameters. It is also possible that we would go further for some (e.g. for “subject”) – as far as we together agree makes sense to go. It is also possible that we would open the extensions of these meta-parameters to other OMA WGs (and/or other forums) to specify. There is value in specifying even a little more than nothing: it is at least the value of jumpstarting a framework that will evolve, the value of creating a direction and a discipline Over time, those meta-parameters will go deeper and will become de-facto standards, at which point we can include them in a future specification release. It should be obvious that any standard will be only as good as the extent to which it is being used. A profile that will not be used, may be removed in a future release. We remain of the opinion that specifying a BLOB as the sole way to convey parameters has no value as a specification, since the industry could already do it without any specification (no specification is equivalent with a BLOB specification). In our view, the BLOB support is there to circumvent any sub-optimization in using the other profiles; once a better profile is proven via the BLOB it will make it into a de-facto or de-jure profile for PEEM.

3.1.5 Passing policy within PEM-1

The proposal does not include the possibility to pass a policy or reference to policy can be passed with the request.

Answer to statements in this section:

Not true. The passing of a reference to a policy is clearly supported via the RulesetID. We are not supportive of passing of “policy text” since it creates operational issues that should be avoided. We are also not supportive of the referenced policy to be first “seen” when its referenced is passed via PEM-1 (we believe the policy has to be provisioned via the PEM-2 interface prior to it being referenced). That said, note that we have not and do not intent to prevent a PEEM implementation that supports a reference (via RulesetID) that may be to a policy that has not been pre-provisioned via PEM-1. It would be, in our opinion, a poor implementation not recommended to operators (for security and other operational complexity reasons), but there is nothing in the specification proposal we submitted that would prevent such an implementation (this is an implementation issue, and outside the scope of the specification). Also note that we have not and do not intend to prevent a PEEM implementation that may support the “policy text” to be passed in lieu of the RulesetID. A PEEM implementation may exist that supports passing of the policy text via that profile. It would be, in our opinion, a poor implementation not recommended to operators (for security, performance and other operational complexity reasons, but there is nothing in the specification proposal we submitted that would prevent such an implementation (this is an implementation issue, and outside the scope of the specification). .
3.1.6 Error/status codes

The proposal does not propose a model to standardize status or error code.

Answer to statements in this section:

This is a good suggestion. While we have not said so explicitly in our initial 418, any of the IOProfiles can use one or more of the output parameters as a way to convey status or error code. We acknowledge this comment, and have made some changes in 418R02 to indicate such use of the output parameters. We have indeed not proposed yet a specific way to standardize, or what goes into the interface return code vs. what goes into output variables that may convey additional error status information. That said, it was well explained and understood that contribution 418 was the first contribution submitted for the PEM-1 interface format, and therefore the expectation was set that it is only setting an approach that needs to further be developed. We therefore encourage submission of additional contributions from any company to enhance the initial proposal, on this topic and any others that 418 may not have sufficiently addressed.

Addressing specific remaining comments received in OMA-ARC-2006-0012
Attached are a number of questions/comments received via OMA-ARC-2006-2012-Comments OMA-ARC-2005-0418R02. As said in the reason for contribution, many of the comments in 0012 were cause by the use in 418R02 of the definition for Ruleset, which was interfering with on-going discussions about PEEM definitions. That definition was removed in 418R03, and all appropriate places where “evaluation” was used where rephrased to “evaluation and execution”. However, there are additional comments in 0012 that need to be addressed. In our view, the remaining comments that were not addressed by that change are those in the section 3.2 of contribution 0012.

3.2 Dependencies of PEM-1 on PEL execution model / language

3.2.1 Examples of dependencies based on the definition of ruleset

Assuming that the basic construct for the combination of rules is a ruleset is a significant dependency on the language, e.g.:

· The language has such a construct

· The construct has a specific execution model

· Policy topologies are restricted to the types discussed section Error! Reference source not found.
Answer to statements in this section:

There is NO dependency between PEM-1 and PEL execution model/language. In particular:

The language may or may not have such a construct. Since we have explained that the RulesetID can be ignored, if the PEEM policy implementation has a different way to identify the applicable set of rules at run-time, there is no imposition on the language to have such a construct.

The construct, if existing, does not have any specific execution model. We have corrected all places that could have implied that first every rule is evaluated, and that was not the intent anyway. We make no assumption as per whether rules are first evaluated, then executed, or whether they are evaluated and executed one by one, or in any different way possible. We are only asserting that in any given instance, there is a set of applicable rules. Even that makes no assumption as per the word applicable – all it means is “the rules that will be evaluated and executed in that specific instance”. That could be the total existing set of rules, or a subset – whatever the case may be, and it is irrelevant to the requester, hence to the PEM-1 interface, since they DO NOT KNOW this fact, NEITHER DO THEY CARE how many rules exist, or in what topology, or what the execution model is. A requester cares about the output they would have to understand and act upon.

There is no restriction on policy topology – as said before. According to PEEM AD, a policy is made up of policy rules. PEM-1 profiles proposal makes no assumption about how these rules are organized, or how they are to be evaluated and executed.
3.2.2 Examples of dependencies derived from the introduction of ruleset ID in PEM-1

Additional issues come from the notion of ruleset ID mandatory for the profiles that use it (RulesetProfile and SROEProfile).

Based on the definition above, how can combination of rule set be possible?

For example, we do not believe that the approach and definition fit XACML ruleset when multiple ruleset are involved with a ruleset combination algorithm? Similarly, considering the incomplete proposal made in OMA-ARC-2005-0408-PEEM-TS-Policy-expression-language-details, we would like to understand what it means for example:

· To be a collection of rules that operate as a whole to satisfy a specific policy evaluation request, when multiple data structure are declared as ruleset data types in a programming language as apparently proposed and supported by OMA-ARC-2005-0408-PEEM-TS-Policy-expression-language-details?

· What happens when one of the ruleset data structures is not identified, while multiple ruleset data structures are declared?

· What happens in general when multiple ruleset data structures are declared?

· What does it mean to have a ruleset data structure identified when multiple ruleset data structures are declared?

· …

It seems that the notion of declaring a ruleset identifier as a mandatory element is in fact implying also that only one ruleset data structure can be declared! This is again a significant restriction.

Answer to statements in this section:

In order to fully address these comments, we may need to understand and agree about what is meant by “combination or rule set”, and possibly also some other terms used for the first time.

Assuming we are talking about pre-provisioned rulesets (pre-provisioned sets of rules placed in different files/documents), then any such combination is supported. If a combination of such rulesets is something that is needed to support a particular request, then such a combination could also be pre-provisioned and assigned an identifier. Let’s assume though that such a combination of rulesets has not been pre-provisioned, yet, for some reason that escapes us, is needed in the process. What RulesetID would be supplied ? The point is, that this is also irrelevant. If the requester indicates a RulesetID, then a PEEM implementation, depending on its own use of language and execution model, would:

a) either identify such a pre-provisioned ruleset and use it in its evaluation and execution process, because it supports pre-provisioned and identifiable rulesets (note that a better designed implementation could also detect conflicts between the indicated ruleset by RulesetID, and the input context provided, and either have one override the other, or return an error) OR
b) ignore it, because it does not support pre-provisioned rulesets, and instead use the input context to determine the applicable set of rules (which in this case will match the “combination of rulesets desired” OR

c) the requester has not provided a RulesetID at all, although requested, in which case a better designed implementation would do like in b), and a simpler implementation would return an error

If the requester does not need to indicate a RulesetID, then the combination of rulesets would have to be detected based on input context solely.

In any case, all cases are covered. Indeed, there will be PEEM implementations that are better designed than other – but I think that is true for any product. Not all products are equipped to support all options of a specification.

Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

Recommendation

The recommendation is to:

1. analyze the explanations and the answers to the comments/questions received and agree that there is no reason for concern that IOProfiles cannot be developed in the absence of a decision for the policy expression language and/or a behavioural/execution model, since there is no dependency to a specific policy expression language or specific behavioural/execution model.

2. agree that the specification of the PEM-1 interface using the multiple profile support approach does not impose or favour a particular PEEM implementation or a particular language implementation.

.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 15)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20050101-I]

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Page 13 (of 15)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20050101-I]

