Doc# OMA-ARC-2006-0136R01-PEL_constructs[image: image1.jpg]
Input Contribution

Doc# OMA-ARC-2006-0136R01-PEL_constructs
Input Contribution

Input Contribution

	Title:
	PEL constructs for PEEM Policy Expression Language
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	ARC

	Submission Date:
	17 Apr 2006

	Source:
	Stéphane H. Maes, Oracle
+1-203-300-7786
stephane.maes@oracle.com

	Attachments:
	N/A
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	Replaces:
	N/A

1 Reason for Contribution

Following next steps discussed after presentation of OMA-ARC-2006-0105-PEL_constructs_and_progress_proposal and according to the decision in Paris to compile input proposals for PEL construct, this contribution proposes a set of constructs for PEL.
2 Summary of Contribution

This contribution proposes two sets of constructs for PEL. The first set is motivated by the approach and discussion presented in OMA-ARC-2006-0105-PEL_constructs_and_progress_proposal and the second set is motivated by approaches based on workflows and business processes.
As a TS baseline is still to be generated, the input is not presented as a CR but rather as an input contribution.

3 Detailed Proposal

Proposed input to section 5.
5.x PEL Constructs for a PEL abstract language
A PEL language able to model simultaneously rule sets, flow and business process and generic programming language approaches to express policies MUST support:
Editor’s note: This bullet and the list is to be expanded in details

· Data types and data structures / objects and ways to define operations that can be applied to them

· Constants, variable data types and ways to define operations that can be applied to them
· I/O objects and functions

· Particular cases of above dedicated to I/O support

· Logical, mathematical functions:
· Particular case of oparations that can be applied on data structures

· Program flows (e.g. if then else, case of, goto, for loop etc…)
· A pre-built rule set construct with:

· Rules that consist of:

· Conditions expressed with the language above

· Actions expressed with the language above that are executed if the conditions are satisfied

· A (few) pre-set or a programmable rule combination algorithm(s) that can then be expressed with the language above
Editor’s note: The pre-set rule combination algorithm(s) are to be detailed as are the way to program it. Examples of such aspects are provided by XACML (without the programmability).

· A set of flow constructs that includes

· A pre-set or a programmable rule set combination algorithm (s) that can then be expressed with the language above

Editor’s note: The pre-set rule set combination algorithm(s) are to be detailed as are the way to program it. Examples of such aspects are provided by XACML (without the programmability).

· Explicit flow constructs, e.g:

Editor’s note: The constructs under this bullet are to be explained in details, with a detailed abstract model / framework. Any conflict / overlap with three categories (especially between flow constructs and the base programming language constructs) above are to be addressed. The list is inspired from BPEL, but this does not mean using BPEL syntax or semantics. Nomenclature of the constructs may be updated as suitable for the work.
· <receive>: Do a blocking wait for a matching message to arrive
· <reply>: send a message in reply to a message that was received through a <receive>.

· <invoke> : initiate a one-way or request-response operation offered by another resource
· <assign>: update the values of variables with new data

· <throw>: generates a fault from inside the policy evaluation or evaluation and enforcement
· <terminate>: exit the policy evaluation or evaluation and enforcement
· <wait>: allows you to wait for a given time period or until a certain time has passed

· <empty>: insert a "no-op" instruction into a the policy evaluation or evaluation and enforcement
· <sequence>: define a collection of activities to be performed sequentially in lexical order

· <switch>: select exactly one branch of activity from a set of choices

· <while>: indicate that an activity is to be repeated until a certain success criteria has been met

· <pick>: block and wait for a suitable message to arrive or for a time-out alarm to go off, perform the associated activity

· <flow>: specify one or more activities to be performed concurrently

· <scope>: define a nested activity with its own associated variables, fault handlers, and compensation handler

· <compensate>: used to invoke functions to reverse previous operations (on all completed child scopes in default order)
· <compensatescope>: used to invoke functions to reverse previous operations (on one completed child).
· <rethrow>: Forward a fault from inside a fault handler

· <validate>: Validate format for input or output data

· <extend>: Wrapper to extensions that would be introduced in the language by introducing a new name space. Extensions are defined within the <extend> </extend> boundaries and not understood by a normal PEEM engine.
· <while>: Contained activity is repeated while a predicate holds

· <repeatuntil>: Contained activity is repeated until a predicate holds

· <foreach>: Contained activity is performed sequentially or in parallel, controlled by a specified counter variable

· <if-else>: Select exactly one branch of activity from a set of choices

· A formalism to express OMA specific rules, e.g.(non exhaustive):

· Security statements (e.g. Authentication, authorization, GPM, confidentiality (selective), integrity, …)

· Charging statements

· Logging statements

· Privacy statements

· Preference statements

· Content screening statements

· Content categorization statement

· …

5.x PEL Constructs for a workflow or business process based PEL

A PEL language that expresses policies as workflows and business process MUST support:

Editor’s note: This bullet and the list is to be expanded in details

· Data types and data structures / objects and ways to define operations that can be applied to them

· Constants, variable data types and ways to define operations that can be applied to them

· I/O objects and functions

· Particular cases of above dedicated to I/O support

· Logical, mathematical functions:

· Particular case of operations that can be applied on data structures

· A set of flow constructs that includes

· Explicit flow constructs, e.g:

Editor’s note: The constructs under this bullet are to be explained in details, with a detailed abstract model / framework. Any conflict / overlap with three categories (especially between flow constructs and the base programming language constructs) above are to be addressed. The list is inspired from BPEL, but this does not mean using BPEL syntax or semantics. Nomenclature of the constructs may be updated as suitable for the work.

· <receive>: Do a blocking wait for a matching message to arrive
· <reply>: send a message in reply to a message that was received through a <receive>.

· <invoke> : initiate a one-way or request-response operation offered by another resource
· <assign>: update the values of variables with new data

· <throw>: generates a fault from inside the policy evaluation or evaluation and enforcement
· <terminate>: exit the policy evaluation or evaluation and enforcement
· <wait>: allows you to wait for a given time period or until a certain time has passed

· <empty>: insert a "no-op" instruction into a the policy evaluation or evaluation and enforcement
· <sequence>: define a collection of activities to be performed sequentially in lexical order

· <switch>: select exactly one branch of activity from a set of choices

· <while>: indicate that an activity is to be repeated until a certain success criteria has been met

· <pick>: block and wait for a suitable message to arrive or for a time-out alarm to go off, perform the associated activity

· <flow>: specify one or more activities to be performed concurrently

· <scope>: define a nested activity with its own associated variables, fault handlers, and compensation handler

· <compensate>: used to invoke functions to reverse previous operations (on all completed child scopes in default order)

· <compensatescope>: used to invoke functions to reverse previous operations (on one completed child).
· <rethrow>: Forward a fault from inside a fault handler

· <validate>: Validate format for input or output data

· <extend>: Wrapper to extensions that would be introduced in the language by introducing a new name space. Extensions are defined within the <extend> </extend> boundaries and not understood by a normal PEEM engine.

· <while>: Contained activity is repeated while a predicate holds

· <repeatuntil>: Contained activity is repeated until a predicate holds

· <foreach>: Contained activity is performed sequentially or in parallel, controlled by a specified counter variable

· <if-else>: Select exactly one branch of activity from a set of choices

· A formalism to express OMA specific rules, e.g.(non exhaustive):

· Security statements (e.g. Authentication, authorization, GPM, confidentiality (selective), integrity, …)

· Charging statements

· Logging statements

· Privacy statements

· Preference statements

· Content screening statements

· Content categorization statement

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendations
We recommend that the ARC WG agrees to add this text as a section of the upcoming PEEM PEL TES.
Until a decision is taken between the different approaches or options to combine, the TS should capture constructs and categorize them under the policy expression approach that they support.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 5)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20050101-I]

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 5)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20050101-I]

