Doc# OMA-ARC-2006-0353R02-PEEM_PEL_TS_datatypes_for_consideration.doc[image: image1.jpg]"sOMaQa

Open Mobile Alliance

Input Contribution

Doc# OMA-ARC-2006-0353R02-PEEM_PEL_TS_datatypes_for_consideration.doc
Input Contribution

Input Contribution

	Title:
	PEEM PEL TS datatypes for consideration
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	ARC

	Submission Date:
	18 Oct 2006

	Source:
	Michael Brenner, Lucent Technologies

mrbrenner@lucent.com

	Attachments:
	n/a
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	Replaces:
	n/a

1 Reason for Contribution

This contribution proposes content for PEEM Policy Expressions Language TS. R01 adds minor fixes.
2 Summary of Contribution

Background

ARC has agreed and documented in the PEL TS that any PEL needs to support variables. This is expressed in several section (some quoted here) and the TS asks for a section to be added to describe data types.

Section 5.1: Set X of constructs

<snip>

A policy expression language must satisfy the following requirements:

· Is composed of CONDITION and ACTION as part of a rule.

· Support policy, rule and ruleset

· Support variables (types and scope)
· Support function call

<snip>
Section 5.2.1 : Ruleset

<snip>

A ruleset is characterized by the following:

1. a name

a. the name serves as a means to manage a ruleset, separately from other rulesets. The name is assigned when a ruleset is created, and is used when the ruleset is viewed, modified, or deleted. A ruleset name may also be passed by a requester, to specify a policy that will be used in the evaluation.

2. an optional set of variables. Variables will be described as a language construct in a separate section.

a. the variables shall have global validity across all the rules in the ruleset. They include:

i. variables that may be assigned values as a result of input variables passed through an evaluation request (input variables)

ii. variables that may be assigned values as a result of the evaluation (output variables)
iii. variables that are used to store intermediate results, that may be used in the rules evaluation process across the entire ruleset, and then get discarded at the end of the policy evaluation(intermediate, or internal, variables)
……

In conclusion, the ruleset construct is a container for a set of rules, and variables on which the set of rules operate.

Variables are typed, and will be described in a separate section.

<snip>
The contribution proposes an initial set of data types to be considered for support in PEL..The set of data types proposed here is based on an analysis of data types for different programming language (provided here). A separate analysis will be provided of the data types supported by the PEM-1 protocols that we currently consider (Diameter and SOAP/XML). Based on the 2 analysis, conclusions can be drawn with respect to what PEL really should support. The set of data types initially agreed may be extended later with additional data types as needed, as long as such types (if used for input and/or output variables) can be supported by the PEM-1 protocols. The proposal does not address variable scope and it will have to be addressed through a different contribution.

3 Detailed Proposal

Appendix X: Analysis of data types in several programming languages

This is a high-level analysis of data types supported in C, C++, Java – as typical programming languages that use variables.

X.1 C and C++ language

There are some differences between C and C++ data types, but basically C++ inherited all C data types, and added some more, so they are described here together.

C and C++ share the following basic (or fundamental) data types:

	Data Type
	Description

	void
	Associated with no data type. It specifies an empty set of values and is used as the type returned by functions that generate no value. Not terribly important, other than for consistency of the definition of functions.

	int
	integer

	float
	Floating-point number

	double
	Double precision floating-point number

	char
	character

Several of these types can be modified using signed, unsigned, short, and long. When one of these type modifiers is used by itself, a data type of int is assumed. A complete list of possible data types follows:

	Data Type
	Description

	void
	Associated with no data type. It specifies an empty set of values and is used as the type returned by functions that generate no value.

	int
	4 byte signed: -2147483648 to 2147483647

	unsigned int
	4 byte unsigned integer, 0 to 4294967295

	signed int
	4 byte signed integer, -2147483648 to 2147483647

	short int
	2 bytes signed integer, -32768 to 32767

	unsigned short int
	2 byte unsigned integer, 0 to 65535

	signed short int
	2 byte signed Integer, -32768 to 32767

	long int
	8 byte signed integer, −9,223,372,036,854,775,808 to +9,223,372,036,854,775,807

	unsigned long int
	8 byte unsigned integer, 0 to +18,446,744,073,709,551,615

	signed long int
	8 byte signed integer, −9,223,372,036,854,775,808 to +9,223,372,036,854,775,807

	float
	Floating-point number, 3.4e +/- 38 (7 digits)

	double
	Double precision floating-point number, 1.7e +/- 308 (15 digits)

	long double
	Double precision floating-point number, 1.7e +/- 308 (15 digits)

	char
	Character, 1 byte, signed: -128 to 127

	unsigned char
	unsigned character, 0 to 255

	signed char
	signed character, -128 to 127

In addition, C/C++ language has a “unique” data type called enum (enumeration) which only can have integral values (associated with each enumeration is a set of named constants). Enumerations behave like integers.

In addition to basic data types, modifiers and the “unique” type enum, C/C++ support derived types:

	Data Type (derived)
	Description

	array
	Arrays (lists) of objects of a given type (e.g. arrays if integers, or characters, or floats).

	functions
	A type that returns object of a given type.

	pointers
	A complex type that contains a sequence of objects of different types.

	structures
	A complex type that contains a sequence of variables, possibly of different types. together.

	unions
	Similar to struct, but capable of containing any one of the objects of various types (can be seen as an overlaid set of structures)

Then there’s also the notion of the integral type wchar_t, defined in the standard header <stddef.h>. This data type is added in C++. Also worth noting is that bool (Boolean) is not a data type in C (it is achieved by using constants with values 0 for FALSE, and 1 for TRUE), but is added as a basic data type in C++.

It is worth noting that string is not a data type in C/C++, but is in fact an array of characters. For convenience, we take the license to state that there is support for strings in C/C++, although it is not quite as a data type.

And there is a type called reference in C++ that does not have any equivalent in C.

To summarize, here is the table that includes all the supported data types (either through a data type definition as part of the language, or through some mechanism that allows to support in practice such a data type).

	C/C++ “Supported” Data Types
	Description

	void
	Associated with no data type. It specifies an empty set of values and is used as the type returned by functions that generate no value.

	int
	4 byte signed: -2147483648 to 2147483647

	unsigned int
	4 byte unsigned integer, 0 to 4294967295

	signed int
	4 byte signed integer, -2147483648 to 2147483647

	short int
	2 bytes signed integer, -32768 to 32767

	unsigned short int
	2 byte unsigned integer, 0 to 65535

	signed short int
	2 byte signed Integer, -32768 to 32767

	long int
	8 byte signed integer, −9,223,372,036,854,775,808 to +9,223,372,036,854,775,807

	unsigned long int
	8 byte unsigned integer, 0 to +18,446,744,073,709,551,615

	signed long int
	8 byte signed integer, −9,223,372,036,854,775,808 to +9,223,372,036,854,775,807

	float
	Floating-point number, 3.4e +/- 38 (7 digits)

	double
	Double precision floating-point number, 1.7e +/- 308 (15 digits)

	long double
	Double precision floating-point number, 1.7e +/- 308 (15 digits)

	char
	Character, 1 byte, signed: -128 to 127

	unsigned char
	unsigned character, 0 to 255

	signed char
	signed character, -128 to 127

	enum(eration)
	Enumeration, a unique type that has integral values; associated with each enumeration is a set of named constants. Enumerations behave like integers.

	array
	Arrays (lists) of objects of a given type (e.g. arrays if integers, or characters, or floats).

	function(s)
	A type that returns object of a given type.

	pointer(s)
	

	struct(ures)
	A complex type that contains a sequence of objects of different types.

	union(s)
	Similar to struct, but capable of containing any one of the objects of various types (can be seen as an overlaid set of structures)

	string
	A sequence (array) of characters. In some implementations, the sequence is leading with the length in the 1st character, and a null character as the last character in the sequence. The length of a string usually represents the number of bytes preceding the null character and is always less than the actual size of the string (in other words it is the number of characters in the payload, including the length character itself). In general - it depends on the particular implementation of the language.

	wchar_t
	2 byte Wide character, capable of representing Unicode

	bool
	A type that can only take the values TRUE or FALSE

	reference
	An alternative name for an object (uses character &, as in int& thisObject = newObj; now both thisObject and newObj refer to the same integer).

C/C++ languages also supports type qualifiers. Type qualifiers include

const (e.g. char constant), and volatile (this is only used for compiler optimizations). Const can be an integer, character, floating point, string, or enumeration.

Finally, C/C++ support a “facility” to called typedef for creating new data type names.

X.2 Java language

Java has the concept of primitive types (similar to the C/C++ basic or fundamental data types). Java primitive types are:

	Java Supported Data Types
	Description

	boolean
	

	char
	character

	byte
	

	short
	

	int
	

	long
	

	float
	Floating-point number

	double
	

	void
	Associated with no data type

Any other data types are created in Java using the “class” mechanism, which supports the creation of a new type of object. For example, arrays are a “first-class” type in Java. String is a class, struct (or record) is a class, union can be a class (but not recommended to use). Enumerated types were initially simulated in Java, but are now supported in the latest revision of Java. Java claims not to have pointers (being a dangerous construct), but in fact every object identifier in Java, except for primitives, is a pointer. The exception is, you cannot perform arithmetic operations on them (as you may in C/C++). Therefore, one could say that Java supports “handles” instead of “pointers”. There is no “reference” data type in Java, but all Java types except scalar primitive types are reference types. Functions do not exist in Java, but instead “static methods” (class methods) are used.

Java has no support for unsigned type modifier, but it addresses this on a case-by-case basis (e.g. dependent on the operators involved, using conversion routines, etc).

Java’s char(acter) is a 16 bit character to support “Unicode” (the equivalent of wchar_t in C/C++). There is equivalent in Java for the 8-bit C/C++ char, this could however be done using the Java byte type. There is no support in Java for long double. The "long double" type has always been problematic its size ranges from 80 bits to 128 bits. Can be addressed only through conversion routines.

Aside as a shorthand, the concept of typedefs does not exist in Java, but can be encapsulated in a class scope to provide a generic type; they function as assignments in template meta-programming.

To summarize, most if not all of the C/C++ “supported” data types can also be supported in Java. There are of course other facilities in C++ and Java, since the “class” mechanism allows additional extensions that are not possible in C.

X.3 Common data types supported in programming languages

The analysis concludes that the following data types can be supported in most programming languages, and therefore are the initial source of consideration for PEL data types.

	C/C++/Java “Supported” Data Types
	Description
	Comments

	void
	Associated with no data type. It specifies an empty set of values and is used as the type returned by functions that generate no value.
	Supported as a basic type in C/C++/Java

	int
	4 byte signed: -2147483648 to 2147483647
	Supported as a basic type in C/C++ and as a primitive type in Java.

	unsigned int
	4 byte unsigned integer, 0 to 4294967295
	Supported as a modified basic type in C/C++. Not supported in Java as a type, but there are other mechanisms to support it on a case-by-case basis.

	signed int
	4 byte signed integer, -2147483648 to 2147483647
	Supported as a modified basic type in C/C++ and as equivalent to int basic type in Java.

	short int
	2 bytes signed integer, -32768 to 32767
	Supported as a modified basic type in C/C++ and as a primitive type in Java.

	unsigned short int
	2 byte unsigned integer, 0 to 65535
	Supported as a modified basic type in C/C++. Not supported in Java as a type, but there are other mechanisms to support it on a case-by-case basis.

	signed short int
	2 byte signed Integer, -32768 to 32767
	Supported as a modified basic type in C/C++ and as equivalent to short int primitive type in Java.

	long int
	8 byte signed integer, −9,223,372,036,854,775,808 to +9,223,372,036,854,775,807
	Supported as a modified basic type in C/C++ and as a primitive type in Java.

	unsigned long int
	8 byte unsigned integer, 0 to +18,446,744,073,709,551,615
	Supported as a modified basic type in C/C++. Not supported in Java as a type, but there are other mechanisms to support it on a case-by-case basis.

	signed long int
	8 byte signed integer, −9,223,372,036,854,775,808 to +9,223,372,036,854,775,807
	Supported as a modified basic type in C/C++ and as equivalent to long int primitive type in Java.

	float
	Floating-point number, 3.4e +/- 38 (7 digits)
	Supported as a basic type in C/C++ and as a primitive type in Java.

	double
	Double precision floating-point number, 1.7e +/- 308 (15 digits)
	Supported as a basic type in C/C++ and as a primitivetype in Java.

	long double
	Double precision floating-point number, 1.7e +/- 308 (15 digits)
	Supported as a modified basic type in C/C++ and only through conversions in Java.

	char
	Character, 1 byte, signed: -128 to 127
	Supported in C/C++ as a basic data type; supported as byte in Java

	unsigned char
	unsigned character, 0 to 255
	Supported in C/C++ as a modified basic data type; supported in Java through different methods, on a case-by-case basis

	signed char
	signed character, -128 to 127
	Supported in C/C++ as a modified basic data type; supported as the equivalent of primitive type byte in Java

	enum
	Enumeration, a unique type that has integral values; associated with each enumeration is a set of named constants. Enumerations behave like integers.
	Supported in C/C++ as derived data types, supported as a class in Java.

	array
	Arrays (lists) of objects of a given type (e.g. arrays if integers, or characters, or floats).
	In C it is a derived data type, in C++ it’s a class, in Java it’s a class.

	function
	A type that returns object of a given type.
	Supported in C/C++ as derived data types. Supported in Java as “static methods” (class methods).

	struct
	A complex type that contains a sequence of objects of different types.
	In C it is a derived data type, in C++ it’s a class, in Java it’s a class.

	union
	Similar to struct, but capable of containing any one of the objects of various types (can be seen as an overlaid set of structures)
	In C it is a derived data type, in C++ it’s a class, in Java it’s a class.

	string
	A sequence (array) of characters. In some implementations, the sequence is leading with the length in the 1st character, and a null character as the last character in the sequence. The length of a string usually represents the number of bytes preceding the null character and is always less than the actual size of the string (in other words it is the number of characters in the payload, including the length character itself). In general - it depends on the particular implementation of the language.
	In C/C++, string is not a data type, it simply is an “array of characters” (defined as char [n]). In order to use as a true string (and manipulate it using string libraries, the 1st character shall contain the length of the string, and the last character shall be “null”). Since typically variable strengths need to be supported, string variables are usually declared to be pointers to characters (e.g. char *someString).

In Java, String is achieved through a Class.

	wchar_t
	2 byte Wide character, capable of representing Unicode
	In C, wchar_t is supported it by defining it as an integral type in <stddef.h>

In C++, wchar_t is a basic type.

In Java wchar_t equivalent is the Java char primitive type.

	bool
	A type that can only take the values TRUE or FALSE
	In C, Boolean is supported via declared TRUE and FALSE constant in any program that needs such use.

In C++ bool is a basic data type.

In Java Boolean is a primitive data type.

However, such a list needs to be checked against data types that the protocol bindings selected for PEM-1 can support (Diameter and SOAP/XML). Furthermore, PEL has to start simple, and evolve into something much more complex only if needed, based on true data (policies written using PEL). The following section presents the subset of the identified data types in programming languages, that is likely sufficient for PEL.
Editor’s note: I eliminated “reference” and “pointer” as data types to consider – since there are different ways to implement them; we can re-consider later.
X.3 Conclusion: data types needed for PEL
The PEL data types do not have to reach the complexity of the data types needed in full-blown programming language, since PEL is supposed to be a very specialized language for policy only – not a general programming language. PEL data types aredictated by the type of variables that PEL is likley to use in policies. Some data types supported in many programming languages are very unlikely to ever be needed in PEL, hence there is no need to over-burden PEL with data types that may never be used.

Furthermore, we have documented in an appendix all possible data types, hence, if need be and a policy may need additional data types, those could be easier added later when needed, rather than including the, now when the need is unknown. The data types that we initially include in PEL be are basic data types, and some more complex tpes that are likley to be encountered in writing policies. With those we can later on derive others, if needed.The following data types need to be supported in the Policy Expression Language:

There is no real need for PEL data types to reach the complexity of the data types needed in full-blown programming language, since PEL is supposed to be a very specialized language for policy only – not a general programming language. PEL data types are dictated by the type of variables that PEL is likely to use in policies. Some data types supported in many programming languages are very unlikely to ever be needed in PEL, hence there is no need to over-burden PEL with data types that may never be used. Of course, analysis needs to be conducted for the Diameter and XML bindings and assess whether there may be a real need to support data types that those protocols support, and may not be included in the data types that are in a basic data types set, typical for programming languages. That said, limiting the set of all data types supported in programming languages to a subset, will reduce the need to define a number of derived data types in Diameter AVPs, or XML data tpyes, or other binding that may still be added – at a time when there is no certainty that such data types will ever be needed.

The data types that are initially included in PEL need to be those that are basic data types, and some more complex types that are likely to be encountered in writing policies. With those data types in place, others can be easily derived later, if needed. The following data types SHALL be supported in the Policy Expression Language:

	PEL Data Types
	Description

	int
	4 byte signed: -2147483648 to 2147483647

	float
	Floating-point number, 3.4e +/- 38 (7 digits)

	char
	Character, 1 byte, signed: -128 to 127

	array
	Arrays (lists) of objects of a given type (e.g. arrays if integers, or characters, or floats).

	function
	A type that returns object of a given type.

	struct
	A complex type that contains a sequence of objects of different types.

	string
	A sequence (array) of characters. In some implementations, the sequence is leading with the length in the 1st character, and a null character as the last character in the sequence. The length of a string usually represents the number of bytes preceding the null character and is always less than the actual size of the string (in other words it is the number of characters in the payload, including the length character itself). In general - it depends on the particular implementation of the language.

	bool
	A type that can only take the values TRUE or FALSE

A typedef construct to facilitate creating additional derived data types is also something that could be considered at a later stage, if policies require the use of such derived data types.
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

We recommend to take this analysis in consideration when deciding on the data types to be supported by PEL, and to include this analysis in an Appendix in the PEL TS.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 9)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20060101-I]

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 7 (of 9)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20060101-I]

