Doc# OMA-BCAST-2005-0674R01-CR-TS-SevCnt-SRTP-Rollover-Counter-Synchronization.doc[image: image1.jpg]"sOMaQa

Open Mobile Alliance

Change Request
Doc# OMA-BCAST-2005-0674R01-CR-TS-SevCnt-SRTP-Rollover-Counter-Synchronization.doc
Change Request

Change Request

	Title:
	SRTP Rollover Counter Synchronization
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	BAC-BCAST

	Doc to Change:
	OMA-TS-BCAST_SvcCntProtection (latest version)

	Submission Date:
	02 February 2006

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Hosame Abu-Amara, Motorola, Hosame.Abu-Amara@motorola.com
Alexander Medvinsky, Motorola, smedvinsky@motorola.com

	Replaces:
	n/a

1 Reason for Change

The SRTP rollover counter (ROC) keeps track of sequence number roll-overs for each individual RTP flow. The ROC varies per RTP flow and there is no guarantee that ROC values of two separate RTP flows (for the same service) will not increment within less than the lower bound of a crypto period. ROC-triggered traffic key changes can violate this lower bound and this cannot be prevented, since the Service and Content Protection technical specification cannot control the timing of RTP sequence number wrap-arounds. Because TKM cannot be inserted into an exact place in the data stream, the ROC value may really be off by one and might result in a "glitch" with a few bad packets. Furthermore, since SRTP authentication is optional, a receiver will likely not know when it lost ROC synchronization, particularly for a receiver that is just tuning into a service.

This proposed solution has been accepted by DVB and included in the DVB-CBMS specifications. There is also another solution being proposed in OMA BCAST for this same problem. The other solution is described in CR738 and below is the comparison of the two solutions:

	Issue
	CR674
	CR738

	Use in Other Standards
	Used by DVB.

This solution was presented to the co-authors of CR738 and rejected in the context of 3GPP discussions. However, since Motorola has not been able to regularly participate in MBMS discussions – this solution was never presented to the whole MBMS group and compared against what 3GPP has adopted.
	Used by 3GPP. While 3GPP2 solution has some functional similarities, it is a different solution and is not compatible with 3GPP.

	Dependence on IETF
	STKM is not currently standardized through the IETF. MIKEY messages would need to be updated. However, MIKEY already supports carriage of ROC values and this change would not contradict the direction of the IETF. 3GPP requires other changes to the MIKEY RFC which are currently defined in an IETF draft.
	The 3GPP solution has been submitted to the IETF as an individual submission draft. It has not yet been approved as a working group item on the standards track.

This introduces a new concept to the IETF where an authentication tag can be variable-length and where one out of R packets has the ROC value included inside the authentication tag. The original intent of an authentication tag is to provide message integrity.

	Re-Use of existing SRTP implementations.
	Can use a standard IETF-based off-the-shelf SRTP implementation.
	Cannot utilize existing off-the-shelf SRTP implementations, since this solution changes the use and meaning of the authentication tag field.

	A device temporarily leaves a broadcast session, e.g., while out of coverage.
	When back in coverage, the device has to wait for another STKM or MIKEY message before decrypting content. Traffic keys in any case have to be repeated often to allow for reasonable service acquisition times.
	When back in coverage, the device has to wait for the next SRTP packet that has the ROC value inside the authentication tag.

	Bandwidth overhead.
	Mostly due to 4-byte ROC values carried in STKM or MIKEY messages. There is one ROC value per component stream.
	Due to ROC values that are carried in one out of R SRTP packets.

	Is the solution mandatory or only required in some cases?
	Mandatory so that it is always possible for receivers to join a broadcast session. STKMs and MIKEY messages carrying Trafic Keys must always include ROC values.
	Proposed as optional. In some cases receivers will be unable to join a broadcat session in progress.

Broadcast services such as subscription or PPV TV would rarely restart an RTP session. Receivers have to be signalled when an RTP session is restarted to avoid problems with the sequence number checking. Therefore the need to join a session in-progress is very likely.

	Complexity of the solution
	Proposed solution provides 13 lines of pseudo-code.
	SRTP implementation has to be modified to support 2 new authentication transforms that occasionally carry an ROC value.

It is unclear which solution is more complex and would be highly dependent on an implementation.

2 Impact on Backward Compatibility

None.

3 Impact on Other Specifications

None.

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

It is recommended that BCAST agrees the changes shown below for inclusion into the affected TS.
6 Detailed Change Proposal

5.1.2.2.4.1. Traffic Key Message (TKM)

Each TKM SHALL be encapsulated in exactly 1 UDP packet.

In order to keep access times low for devices that start accessing a service, a TKM SHALL be transmitted periodically.
The TKM SHALL be transported over the same network stack as the media streams that are protected with the traffic keys contained in the TKM. The TKM stream MAY be transported in an own session, e.g., an RTP session.
	Key_Stream_Message_Description
	Length
	Type

	key_stream_message() {
	
	

	
selectors_and_flags {
	
	

	

protocol_version
	4
	uimsbf

	

reserved_for_future_use
	2
	bslbf

	

protection_after_reception
	2
	uimsbf

	

traffic_protection_protocol
	3
	uimsbf

	

traffic_authentication_flag
	1
	uimsbf

	

next_traffic_key_flag
	1
	uimsbf

	

timestamp_flag
	1
	uimsbf

	

programme_flag
	1
	uimsbf

	

service_flag
	1
	uimsbf

	
}
	
	

	
if (traffic_protection_protocol == TKM_ALGO_IPSEC) {
	
	

	

security_parameter_index
	32
	uimsbf

	
}
	
	

	
if (traffic_protection_protocol == TKM_ALGO_SRTP) {
	
	

	 master_key_index_length
	8
	uimsbf

	

master_key_index
	8*length
	uimsbf

	

number_of_media_flows
	8
	uimsbf

	

for (i = 0; i < number_of_media_flows; i++) {
	
	

	

synchronization_source
	32
	uimsbf

	

rollover_counter
	32
	uimsbf

	

}
	
	

	 for (i = 0; i < number_of_media_flows; i++) {
	
	

	 rtp_seq_high
	1
	uimsbf

	 }
	
	

	 padding
	See below
	bslbf

	
}
	
	

	
if (traffic_protection_protocol == TKM_ALGO_AUENCRYP) {
	
	

	

key_indicator_length
	8
	uimsbf

	

key_indicator
	<8*key_indicator_length>
	bit string

	

if (next_traffic_key_flag == TKM_FLAG_TRUE) {
	
	

	

key_indicator
	<8*key_indicator_length>
	bit string

	

}
	
	

	
if (traffic_protection_protocol == TKM_ALGO_DCF) {
	
	

	

key_identifier_length
	8
	uimsbf

	

key_identifer
	<8*key_identifier_length>
	bit string

	

}
	
	

	
	
	

	
}
	
	

	
encrypted_traffic_key_material_length
	8
	uimsbf

	
encrypted_traffic_key_material
	8*length
	bslbf

	
if (next_traffic_key_flag == TKM_FLAG_TRUE) {
	
	

	

next_encrypted_traffic_key_material
	8*length
	bslbf

	
}
	
	

	
reserved_for_future_use
	4
	bslbf

	
traffic_key_lifetime
	4
	uimsbf

	
if (timestamp_flag == TKM_FLAG_TRUE) {
	
	

	

Timestamp
	40
	mjdutc

	
}
	
	

	
if (programme_flag == TKM_FLAG_TRUE) {
	
	

	

programme_selectors_and_flags {
	
	

	

reserved_for_future_use
	6
	bslbf

	

access_criteria_flag
	1
	uimsbf

	

permissions_flag
	1
	uimsbf

	

}
	
	

	

if (access_criteria_flag == TKM_FLAG_TRUE) {
	
	

	

reserved_for_future_use
	8
	bslbf

	

number_of_access_criteria_descriptors
	8
	uimsbf

	

access_criteria_descriptor_loop() {
	
	

	

access_criteria_descriptor()
	
	

	

}
	
	

	

}
	
	

	

if (permissions_flag == TKM_FLAG_TRUE) {
	
	

	

permissions_category
	8
	uimsbf

	

}
	
	

	

if (service_flag == TKM_FLAG_TRUE) {
	
	

	

encrypted_PEK
	128
	bslbf

	

}
	
	

	

programme_CID_extension
	32
	uimsbf

	

programme_MAC
	96
	bslbf

	
}
	
	

	
if (service_flag == TKM_FLAG_TRUE) {
	
	

	

service_CID_extension
	32
	uimsbf

	

service_MAC
	96
	bslbf

	
}
	
	

	}
	
	

…
synchronization_source – identifies an RTP media flow to which the associated roll-over counter applies.

rollover_counter – signals the current roll-over counter (ROC) of the RTP media flow identified by synchronization source, at the time that this TKM was created.

The roll-over counter is an extension of the sequence number contained in the SRTP packet. It can be different for each SRTP-protected media flow, even if the same traffic key message is used. Therefore, to allow terminals instant service access, the current value of the roll-over counter for each media flow is signalled in the TKM.

rtp_seq_high – highest bit value of the RTP sequence number of the RTP media flow identified by the synchronization source, at the time that this TKM was created. The following algorithm (derived from SRTP RFC 3711 Appendix A) SHALL be used by a terminal to determine the correct value of the rollover counter based on the rollover_counter and rtp_seq_high parameters in the TKM.

In this algorithm, SEQ is the sequence number in a received RTP packet, SEQ(14) and SEQ(15) are the 14th and 15th bits of that sequence number, ROC is the rollover_counter parameter obtained from the TKM and v is the actual rollover counter that terminal should be using for this packet in this particular media flow:

 if (rtp_seq_high == 0)

 if (SEQ(15) == 1 && SEQ(14) == 1)

 set v to (ROC-1) mod 2^32

 else

 set v to ROC

 endif

 else

 if (SEQ(15) == 0 && SEQ(14) == 0)

 set v to (ROC+1) mod 2^32

 else

 set v to ROC

 endif

 endif
This algorithm is based on the assumption that it is impossible that the receiver skips 214 (16,384) or more RTP packets between the time it receives the TKM and the time that it tries to decrypt a corresponding RTP packet. An explanation of this algorithm is provided in the following table:

	rtp_seq_high
	SEQ(14) and SEQ(15)
	Scenario Description

	0
	1
	Current RTP packet is close to wrap-around point. TKM was generated when sequence number was small. With the above assumption, this secenario is only possible if TKM was generated just after this RTP packet but was received first due to incidental packet reordering in an unreliable transport. And also the wrap around point occurred between the generation of the TKM and this RTP packet. For this RTP packet use ROC-1 as the current rollover counter.

	0
	Either SEQ(14) or SEQ(15) is 0
	Both the current RTP packet and TKM were generated when the sequence number was small. ROC value can be taken as is from the TKM message.

	1
	0
	Current RTP packet is after the wrap-around point with a small sequence number. Because rtp_seq_high is 1, TKM is assumed to have been generated before the wrap-around. The wrap-around must have occurred after the TKM was generated but before this RTP packet was sent out. For this packet use ROC+1 as the current rollover counter.

	1
	Either SEQ(14) or SEQ(15) is 1
	Both the current RTP packet and TKM were generated before the next wrap-around point. ROC value can be taken as is from the TKM message.

This algorithm SHALL be utilized only when the device needs to first establish SRTP synchronization (e.g., when first tuning to a service). A device that is already tuned to a particular channel SHALL locally keep track of the ROC values and increment them when the RTP sequence number wraps around (this is an SRTP requirement).

padding – the previous parameter rtp_seq_high is a 1-bit value that is repeated for each media flow. In order to maintain byte alignment, this padding is added to make the length of all of the rtp_seq_high bits plus this padding a multiple of 8 bits:

Length(padding) = Ceiling(number_of_media_flows / 8) * 8 - number_of_media_flows

Each bit in this padding field SHALL be 0.

key_indicator_length – indicates the length in bytes of the key_indicator.

key_indicator – value of the KeyIndicator used to identify the TEK key transported in the traffic key stream message. This is used to identify the particular TEK key needed to decrypt AUs (as indicated in the OMADRMAUheader).
key_identifier_length – indicates the length in bytes of the key_identifier.

key_identifier – value of the identifier used to identify the TEK key transported in the traffic key stream message. This is used to identify the particular TEK key needed to decrypt DCF encoded files.

encrypted_traffic_key_material_length – is the length in bytes of the encrypted traffic key material.

The length of the traffic key material depends on the encryption and authentication algorithm, and is obtained by adding the respective key sizes. Encryption MAY require the clear-text key material to be padded.

encrypted_traffic_key_material – is the key material currently used for encryption and optional authentication of the traffic, encrypted using AES-128-CBC, with fixed IV 0, and with 0 padding in the last block, if needed.

If <programme_flag> == TKM_FLAG_TRUE, the traffic key material is encrypted with the programme encryption key (PEK).

If <programme_flag> == TKM_FLAG_FALSE and <service_flag> == TKM_FLAG_TRUE, the traffic key material is encrypted with the service encryption key (SEK).

After decryption (and discarding any padding), the traffic encryption key (TEK) and the traffic authentication key (TAK) are obtained in a way that depends on the protocol used for traffic protection:

1.) IPsec:
If no traffic authentication is used, the TEK is identical to the decrypted traffic key material (16 bytes).
If traffic authentication is used, TEK and traffic authentication seed (TAS) are obtained by splitting the decrypted traffic key material into two parts, where the TEK is identical to the first 16 bytes, and the TAS is identical to the second 16 bytes. The TAK (20 bytes) is derived from the TAS, as described in Section ‎5.1.2.2.4.3.

2.) SRTP:
The master key is identical to the decrypted traffic key material and SHALL always be a 16-byte AES key as required by SRTP. SRTP specifies how to derive session encryption and authentication keys from the master key using a derivation function based on AES in counter mode.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 6)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20050101-I]

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Page 6 (of 6)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20050101-I]

