Doc# OMA-BCAST-2006-1104R02-CR_SG_Delivery_revised.doc[image: image6.jpg]"sOMaQa

Open Mobile Alliance

Change Request

Doc# OMA-BCAST-2006-1104R02-CR_SG_Delivery_revised.doc
Change Request

Change Request

	Title:
	Revising the section on Service Guide delivery
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	BAC-BCAST

	Doc to Change:
	OMA-TS-BCAST_ServiceGuide-V1_0_0-20061129-D

	Submission Date:
	21 Dec 2006

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Toni Paila, Nokia, toni.paila@nokia.com
Topi Pohjolainen, Nokia, topi.pohjolainen@nokia.com

	Replaces:
	n/a

1 Reason for Change

This CR addresses the following follow-up review comment:

The section on Service Guide delivery is messy. Sections are not in logical order and the contents of the sections are not aligned. Further, in many cases the specification text is not clear. For example, section 5.4.1.3 is unclear and mixes normative text and informative text. In addition to major restructuring, several clarifications are needed.
This CR provides a resolution to this comment.
R01: As agreed in Singapore.
R02: Minor correction to location of versionIdLength in SGDD as agreed in San Francisco.
2 Impact on Backward Compatibility

None.
3 Impact on Other Specifications

None.
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

This CR is presented to BCAST for agreement.
6 Detailed Change Proposal

Change 1: Section 5.4 revised
5.4
Service Guide Delivery

[This CR takes into account changes in 567R02, 928R09 and 1064R01]
Instantiated Service Guide consists of the Service Guide XML fragments and the session description information fragments described in the previous sections. Each fragment is designed to be uniquelly identifiable in the Service Guide making it possible to treate the Service Guide as a set of these fragments. This naturally makes it possible for the network to divide the set further into subsets each containing only some of the fragments in the set but not necessarily all of them. The network can deliver the Service Guide using these subsets each subset independent of the other instead of placing the full set to the transport as one atomic unit. This arrangement enables the network to isolate the changes on the delivery layer when only some of the fragments in the Service Guide are altered. In such a case the terminals that have already received the full set of fragments at least once, can utilise the isolation of the changes by receiving only that subset of fragments that contains the changes.

The delivery of the Service Guide can be provided by two means

· over the interactive channel the terminal requesting some or all of the fragments of the Service Guide explicitly or

· over the broadcast channel the terminals polling the fragments.

While both mechanisms have their unique characteristics the mechanisms essentially share the data structures used to manage the organization of the fragments on the transport layer. These data structures are the ‘Service Guide Delivery Descriptor’ and the ‘Service Guide Delivery Unit’ short-handed SGDD and SGDU respectively. The latter is the structure that the network uses to encapsulate fragment subsets for the transport layer and it is purely transport independent. The former, the SGDD, on the other hand is partially transport dependent. The SGDD both describes service level information about the Service Guide as well how each of the Service Guide fragment is available for the terminal in the transport layer.

The following sections are organised to address transport layer independent mechanisms and definitions first followed by the transport level dependent sections.
5.4.1
Encapsulating and identifying fragments

As discussed before, each of the Service Guide fragments be it an XML fragment or session description is assigned an identifier for distinguishing any two fragments from each other. These identifiers are called fragment identifiers and they are represented with URIs. This identification scheme naturally makes the fragments not only unique in the scope of a single Service Guide but in fact over all the Service Guides.

In the transport frames, however, one prefers the use of integer based identification schemes over string based identification schemes. This is achieved by assigning for each fragment in addition to the fragment identifier a transport identifier. In the transport layer the fragments are addressed using the transport identifiers the transport layer also providing the binding between these two types of identifiers.

While the specififcs of the common data structures SGDD and SGDU are discussed in the later sections, the strong dependency between the two structures imposed by the transport identifiers is defined first.
5.4.1.1
Fragment identifier versus transport identifier
[This was formerly section “5.4.2.2. Service Guide Fragment ID Mapping for Transport”]
As discussed before any two Service Guide fragments can be distuinguished by their fragment identifiers. The way these identifiers are represented depends on the type of the fragment:

· In case of XML fragments the identifier can be found in the fragment itself as top level attribute ‘id’ and

· in case of session description the identifier is introduced in the SGDU carrying the fragment using the field ‘fragmentID’.

The transport identifiers used in the transport layer to identify fragments are given in the ‘fragmentTransportID’ fields of the SGDUs carrying the corresponding fragments. The binding between the fragment identifier and the transport identifier is provided using the SGDD where each fragment is declared using an XML element ‘Fragment’. This element gives both the fragment identifier and the transport identifier for the fragment providing explicit binding between the two. I n order for the binding to be unambiguous the network SHALL ensure the following:

· During the whole lifetime of a Service Guide fragment the ‘id’ attribute of the fragment is always bind to the same ‘fragmentTransportID’ value.

· For each Service Guide entry point (see section 6.1.1), the binding between ‘fragmeeentTransportID’ and ‘id’ attribute is one-to-one.

The terminal SHALL comply with the following rules on maintaining the binding between fragment identifiers and transport identifiers in the terminal:

· If a terminal has received a Service Guide Delivery Descriptor (SGDD), the terminal SHALL record the binding between the ‘fragmentTransportID’ fields and the corresponding ‘fragmentID’ fields of the ‘Fragment’ element in that descriptor.

· If a terminal has not encountered the binding for a particular ‘fragmentTransportID’ in the SGDD, the terminal SHALL decode the corresponding fragment delivered in the SGDU, associate the decoded fragment identifier with the ‘fragmentTransportID’ in the SGDU header and record that binding.

· A terminal SHALL NOT use any recorded ‘fragmentID’-to-‘fragmentTransportID’ binding after the fragment expires.

5.4.1.2
Resolving fragment references

[This was formerly section 5.4.2.3]
Some Service Guide fragments have a capability to refer to other Service Guide fragments. This is achieved by including a reference element to the referring fragment. The element is named ‘<fragment name>IdRef’ and its value is of type ‘anyURI’ – this value contains the identifier of the referred fragment. The terminal can obtain the referenced fragment in two ways either receiving it over broadcast channel or retrieving it over interactive channel.

· When receiving the referred fragment over broadcast channel the ‘id’ attribute of the referred fragment is resolved to ‘transportID’ and consequently to ‘fragmentTransportID’ within the SGDU as specified in section 5.4.1.

· When retrieving the referred fragment over interactive channel, the delivery method as specified in section 5.4.3.2 (the case when a fragment is requested using the individual fragment ID) is used. In this context, the referred fragment id is used as a value in a name-value pair of attribute "fragmentID" in the outgoing interactive request message.

All the terminals SHALL support receiving the referred fragment(s) over broadcast channel, while all terminals able to access the interaction channel SHALL support requesting and receiving the referred fragment(s) over the interaction channel also.
5.4.1.3
Service Guide fragment encapsulation

[This was formerly section 5.4.4.]
In order to deliver the fragments from the network to the terminals the network needs to be able to place the fragments into the underlying transport frames. The network is provided with means of delivering more than one fragment as a atomic unit at the time but on the other hand the network is not restricted to deliver al the fragments at one go either. For the terminals to correctly receive and process any collection of fragments as one delivery unit the network SHALL comply with the following:
· The Service Guide Delivery Unit structure as defined in Table X1 SHALL be used for encapsulating Service Guide fragments for transport.
· The field ‘fragmentTransportID’ SHALL be assigned with the ‘transportID’ values as defined in section 5.4.1.1 to identify each of the fragments carried in the Service Guide Delivery Unit.
· When encapsulating the fragments into the Service Guide Delivery Unit, the mapping defined in section 5.4.1.1 SHALL be used.
· In case the SGDUs are listed in any FDT Instances the corresponding ‘Content-Type’ attributes SHALL be set to “application/vnd.oma.bcast.sgdu” to describe that the transport object contains an SGDU.

Using the ‘fragmentTransportID’ and ‘fragmentVersion’ fields the terminal can quickly infer whether the associated fragment in the SGDU has changed.

	Data Field Name
	Data Type

	Service_Guide_Delivery_Unit {
	

	
Unit_Header {
	

	

extension_offset
	uimsbf32

	

Reserved
	16 bits

	

n_o_service_guide_fragments
	uimsbf24

	

for(i=0; i< n_o_service_guide_fragments; i++) {
	

	

fragmentTransportID[i]
	uimsbf32

	

fragmentVersion[i]
	uimsbf32

	

offset[i]
	uimsbf32

	

}
	

	
}
	

	
Unit_Payload {
	

	

for(i=0; i< n_o_service_guide_fragments; i++) {
	

	

fragmentEncoding[i]
	uimsbf8

	

service_guide_fragment_container[i] {
	

	

if(fragmentEncoding[i]=0) {
	

	

fragmentType
	uimsbf8

	

XMLFragment
	bitstring

	

}
	

	

else if(fragmentEncoding[i]=1) {
	

	

validFrom
	Bitstring

	

validTo
	Bitstring

	

fragmentID
	Bitstring

	

SDPfragment
	Bitstring

	

}
	

	

else if(fragmentEncoding[i]=2) {
	

	

validFrom
	Bitstring

	

validTo
	Bitstring

	

fragmentID
	Bitstring

	

USDfragment
	Bitstring

	

}
	

	

else if(fragmentEncoding[i]=3) {
	

	

validFrom
	Bitstring

	

validTo
	Bitstring

	

fragmentID
	Bitstring

	

ADPfragment
	Bitstring

	

}
	

	

}
	

	

}
	

	
}
	

	
if(extension_offset>0) {
	

	

extension_type
	uimsbf8

	

next_extension_offset
	uimsbf32

	

Reserved
	bitstring

	
}
	

	}
	

Table X1, Service Guide Delivery Unit structure

	uimsbfN
	Unsigned Nbit Integer, most significant bit first

	bitstring
	Array of bits

Table X2, Mnemonics used in Table X1

	extension_offset
	Offset in bytes from the start of the Unit_Payload to the start of the first extension. Set to 0 if there is no extension present.

	n_o_service_guide_fragments
	Number of service_guide_fragments encapsulated in this specific Delivery Unit.

	offset[i]
	Offset in bytes from the start of the Unit_Payload to the start of the fragment_encoding field associated to the corresponding service_guide_fragment[i] in the Unit_Payload. The offset list is sorted in ascending order.

	fragmentTransportID[i]
	Signals the identifier of the service_guide_fragment[i] which is defined for transport (see 5.4.2.2)

	fragmentVersion[i]
	Signals the version of service_guide_fragment[i].

Note: The scope of the fragmentVersion is limited to this transport session. The value of fragmentVersion can turn over from 2^32-1 to 0.

	fragmentEncoding[i]
	Signals the encoding of a Service Guide fragment, with the following values:

0 – XML encoded OMA BCAST Service Guide fragment

1 – SDP fragment

2 – MBMS User Service Description as specified in [26.346] (see 5.1.2.4, SessionDescriptionReference)

3 – XML encoded Associated Delivery Procedure as specified in [BCAST10-Distribution] section 5.3.4.
4-127 – reserved for future BCAST extensions

128-255 – available for proprietary extensions

	fragmentType[i]
	This field signals the type of an XML encoded BCAST Service Guide fragment, with the following values:

0 – unspecified

1 – Service Fragment

2 – Content Fragment

3 – Schedule Fragment

4 – Access Fragment

5 – PurchaseItem Fragment

6 – PurchaseData Fragment
7– PurchaseChannel Fragment
8 – PreviewData Fragment

9 – InteractivityData Fragment

10-127 – reserved for BCAST extensions

128-255 – available for proprietary extensions

	fragmentID
	Null-terminated string containing the fragment ID of an SDP or MBMS USD or Associated Delivery Procedure fragment as referenced from an Access fragment via SessionDescriptionReference.
Note: for an XML encoded OMA BCAST Service Guide fragment, this information is contained in the fragment itself.

	validFrom
	Null-terminated string containing the string representation of the validFrom value of an SDP or MBMS USD or Associated Delivery Procedure fragment. This field MAY be empty i.e. contain only the termination character when no value is given.
Note: for an XML encoded OMA BCAST Service Guide fragment, this information is contained in the fragment itself.

	validTo
	Null-terminated string containing the string representation of the the validTo value of an SDP or MBMS USD or Associated Delivery Procedure Description fragment. This field MAY be empty i.e. contain only the termination character when no value is given.
Note: for an XML encoded OMA BCAST Service Guide fragment, this information is contained in the fragment itself.

	XMLfragment
	String containing the actual XML data of the encapsulated service guide fragment, without termination character.

	SDPfragment
	String containing the actual SDP data, without termination character.

	USDfragment
	String containing the actual MBMS USD data, without termination character.

	ADPfragment
	String containing the actual XML data of the encapsulated Associated Delivery Procedure fragment, without termination character.

	extension_type
	Signals the type of the extension.

0-127 – reserved for BCAST extensions

128-255 – available for proprietary extensions

	next_extension_offset
	Offset in bytes from the start of the current extension to the start of the next extension. Set to 0 if there is no next extension.

Table X3, Semantics for Table X1
5.4.1.4
Compression of Service Guide Delivery Units
[This was formerly section 5.4.3.]
The network is provided with means of reducing the size of the SGDUs being delivered to terminals by compressing SGDUs. For the algorithms and their respective signalling there are the following rules and constraints:

· the network MAY compress the SGDUs with the GZIP algorithm,

· terminals SHALL support both plain SGDUs and GZIP compressed SGDUs,

· in the case of broadcast delivery of SGDUs, the network SHALL signal GZIP compression of every SGDU using the ‘encoding’ attribute of the SGDD and

· in case the SGDUs are listed in any FDT Instances the corresponding ‘Content-Encoding’ attributes SHALL be set to “gzip” also.

5.4.1.5
Service Guide Delivery Descriptor

Recall that all the fragments of the Service Guide are not necessarily placed into one and single SGDU but rather into multiple SGDUs. Even though the details of the exact delivery mechanisms are discussed in the later section, one needs to take one fundamental difference between the broadcast and interactive delivery into account here. This is the stragegy used to divide the set of Service Guide fragments into transport layer subsets (each carried by its own SGDUs). In the broadcast case the division is fixed at a certain point of time and the division shared by the network and receiving terminals. In the interactive case there is no fixed division, the network simply provides one subset per request the subset contents being defined by the request.

 In the broadcast case the division of fragments into separate transport frames (SGDUs) requires signalling of the details of the division, basicly the SGDUs being used, how the SGDUs can be accessed on the transport and a map telling which fragment can be found in which SGDU. This transport layout signalling is provided by the network using the aforementioned SGDDs, Service Guide Delivery Descriptors, the signalling clearly representing transport dependent part of the information in the SGDDs.

Even though the details of the fixed division of the fragments into SGDUs are not applicable on the interactive delivery case, both the terminals performing the interactive or the broadcast retrieval of the Service Guide, however, rely on the SGDDs to provide exhaustive list of the fragments in the Service Guide.

In addition to dividing the Service Guide fragments into subsets for the transport layer, the network can also divide the fragments into subsets on the service layer independent on the transport layer division. This latter type of division of the Service Guide in the application layer is called grouping of the Service Guide and it is also signalled in the SGDDs. This concept, however, depends on application layer constructs and it is discussed in its own section.

Next section describes in more detail the transport dependent uses of the SGDD.

5.4.1.5.1
Transport dependencies
[Note: this section was formerly 5.4.2.]
Similarly as in the case of the network using more than one SGDU frame for delivering the Service Guide fragments, the network can also use multiple SGDDs for declaring the exhaustive list of the fragments in the Service Guide. In such a case it is easy to see that in order for the terminals to be aware of all the Service Guide fragments, the terminals need to be aware of all the SGDDs the network uses.
For the broadcast delivery of the SGDDs, the network SHALL therefore place all the SGDDs representing a Service Guide into one and only one delivery session. This session is called the Service Guide Announcement Channel.The network SHALL also make sure that the SGDDs declare all fragments that are delivered over the broadcast channel.
As mentioned before for interactive delivery of the service guide, the main role of the SGDD is to declare all fragments that describe one or more services. The information about division of the fragments into SGDUs in this case is not essential, since all fragments are retrieved interactively and individually for each terminal, and thus a fixed division into SGDUs does not exist. However, the grouping in the service layer can be used to provide information about fragments belonging to the same service. The SGDD MAY declare fragments that are delivered over the interaction channel, but it SHALL at least declare a set of fragments that allow interactive retrieval of the complete SG. For example, the SGDD could declare only service fragments. The terminal could then interactively retrieve fragments related to specific selected services, using the request mechanism described in section 5.4.1.

5.4.1.5.2
Service Guide Delivery Descriptor

The following structure SHALL be used for declaring availability, metadata and grouping of the fragments of Service Guide, and for broadcast delivery of the SG to point to the actual delivery channel and the delivery unit where the declared fragments are to be delivered. The terminal SHALL support the Service Guide Delivery Descriptor syntax as defined by XML Schema in [BCAST10-XMLSchema-SGDD]. For delivery, the Service Guide Delivery Descriptor SHALL be instantiated as the XML Schema instance.
	Name
	T
y
p
e
	C
a
t
e
g
o
r
y
	C
a
r
d
i
n
a
l
i
t
y
	Description
	Data Type

	ServiceGuideDeliveryDescriptor
	E
	
	
	The Service Guide Delivery Descriptor

Contains the following attributes:

BSDAid

id

version
versionIDLength
Contains the following sub-element:

NotificationReception
DescriptorEntry
	

	BSDAid
	A
	NM/TM
	1
	Identifier of the BSD/A system which performs the aggregation, generation, and delivery of one or more service guides
	anyURI

	id
	A
	NM/TM
	1
	Unique identifier of the SGDD within one specific SG
	anyURI

	version
	A
	NM/TM
	1
	Version of SGDD
	unsignedInt

	versionIDLength
	A
	NO/

TO
	0..1
	Indicates the number of least significant bits representing the version ID in the TOI, when Split TOI is used. If this element is omitted, the terminal assumes Split-TOI is not used.
	unsignedLong

	NotificationReception
	E1
	NM/TM
	1
	Reception information for general Notification Messages.

In case of delivery over Broadcast channel, port is MANDATORY in both Network and Terminal because a designated UDP port SHALL be used to deliver the Notification Message through an on-going session or the designated session while address is optionally used for the delivery of Notification Messages through the designated multicast or broadcast session.
In case of delivery over Interaction channel, requestURL specify address information for subscribing notification, pollURL specify address information for polling notification.
Contains the following attribute:

port

address

requestURL

pollURL
	

	port
	A
	NM/TM
	0..1
	General Notification Message delivery UDP destination port number; delivery over Broadcast Channel.
	unsignedInt

	address
	A
	NM/TM
	0..1
	General Notification Message delivery IP multicast address; delivery over Broadcast Channel.
	string

	requestURL
	A
	NM/TM
	0..1
	URL through which the terminal can subscribe to general Notification Messages; delivery over Interaction Channel.
	anyURI

	pollURL
	A
	NM/TM
	0..1
	URL through which the terminal can poll general Notification Messages over Interaction Channel.
	anyURI

	DescriptorEntry
	E1
	NM/
TM
	1..N
	An entry in the Service Guide Delivery Descriptor.

Contains the following sub-elements:

GroupingCriteria,

Transport,

AlternativeAccessURL,

ServiceGuideDeliveryUnit

	

	GroupingCriteria
	E2
	NM/
TM
	0..1
	Specifies the criteria for grouping Service Guide fragments in this Service Guide DescriptorEntry.

If several criteria for grouping are present at the same time, all those grouping criteria apply to the set of Service Guide fragments in this Service Guide DescriptorEntry.

Please note the same fragment may be declared in multiple DescriptorEntry of the same SGDD in case this fragment can meet multiple grouping criteria.
Contains the following sub-elements:

TimeGroupingCriteria

GenreGroupingCriteria

BSMSelector
ServiceCriteria
	

	TimeGroupingCriteria
	E3
	NM/
TM
	0..1
	Specifies the period of time this DescriptorEntry describes. (For example: declares a certain subgroup of valid Service Guide fragments for next 2 hours). This field expressed as the first 32bits integer part of NTP time stamps.

Contains the following attributes:

startTime,

endTime
	

	startTime
	A
	NM/
TM
	1
	Start of the time period this DescriptorEntry declares fragments for. This field SHALL be expressed as the first 32bits integer part of NTP time stamps.

(Note: this is different than fragment validity time)
	unsignedInt

	endTime
	A
	NM/
TM
	1
	End of the time period this DescriptorEntry declares fragments for. This field SHALL be expressed as the first 32bits integer part of NTP time stamps.

(Note: this is different than fragment validity time)
	unsignedInt

	GenreGroupingCriteria
	E3
	NM/
TM
	0..1
	Specifies the classification of the services/content associated with the fragments in this Service Guide Delivery Unit (e.g. comedy, action, drama)

	String

	BSMSelector
	E3
	NM/

TM
	0..N
	Specifies the BSM associated with the fragments in this Service Guide Delivery Unit

Allows a terminal to determine whether the SGDU’s in this SGDD DescriptorEntry – among the SGDU’s that are announced in various DescriptorEntries in various SGDD’s – is associated with the terminal’s affiliated BSM(s). The terminal’s affiliated BSM(s) are represented within terminal as Management Objects with identifier ‘<X>/ BSMFilterCode’.

In case the terminal is has with one or more ‘<X>/bsmFilterCodesBSMFilterCode’ entries, for the interpretation of the BSMSelector within the SGDD the following SHALL apply:
· If the BSMFilterCode present in this element matches to any of the ‘<X>/BSMFilterCode’ entries within the terminal, the terminal is able to process, render, interpret and handle the fragments without restrictions.

· If the BSMFilterCode present in this element does not match to any of the ‘<X>/BSMFilterCode’ entries within the terminal, the terminal can render, interpret and handle the fragments according to RoamingRules associated with this BSMSelector (identified by the attribute “Id”). In case the terminal does not have these RoamingRules the terminal SHALL NOT render the fragments to the user. The terminal MAY acquire the rules by sending a RoamingRuleRequest to address indicated by attribute “RoamingRuleRequestAddress”.

In case the terminal has no ‘<X>/BSMFilterCode’ entries, for the interpretation of the BSMSelector within the SGDD the following SHALL apply:

· The terminal can render, interpret and handle the fragments according to RoamingRules associated with this BSMSelector (identified by the attribute “Id”). In case the terminal does not have these RoamingRules the terminal SHALL NOT render the fragments to the user. The terminal MAY acquire the rules by sending a RoamingRuleRequest to address indicated by attribute “RoamingRuleRequestAddress”,
Note: RoamingRuleRequest message, RoamingRules and associated roaming methods are specified in [BCAST10-Services].
contains the following attribute:

 id

 roamingRuleRequestAddress

contains the following sub-elements:

BSMFilterCode

Name
	

	id
	A
	NM/TM
	1
	Identifier of the BSMSelector, unique within the network
	anyURI

	roamingRuleRequestAddress
	A
	NO/TM
	0..1
	Address to which the terminals can send the RoamingRuleRequests to request RoamingRules associated with this BSMSelector (identified with the “Id” attribute).
	anyURI

	BSMFilterCode
	E4
	NM/TM
	0..1
	The code that specifies this BSMSelector.

Contains the following attribute:

Type
	string

	type
	A
	NM/

TM
	1
	The type of bsmFilterCode.

1 – BSMCode (Smart Card Code)

This is used if the determination is made based on the country and operator code in the (U)SIM/(R-)UIM/CSIM
2 – BSMCode (Non Smart Card Code):

This is used if the determination is made based on the country and operator code in the terminal

Other values are reserved.
	unsignedByte

	mobile
Country
Code
	A
	NO/
TM
	0..1
	Mobile Country Code (3 digits) as specified by [3GPP TS 22.022].

Applicable only when “type” == 1
	integer

	mobile
Network
Code
	A
	NO/
TM
	0..1
	Mobile Network Code (2 digits) as specified by [3GPP TS 22.022].

Applicable only when “type” == 1
	integer

	network
SubsetCode
	A
	NO/
TM
	0..1
	Network Subset Code (2 digits) as specified by [3GPP TS 22.022].

Applicable only when “type” == 1
	integer

	network
SubsetCodeRangeStart
	A
	NO/TM
	0..1
	Instead of providing an explicit code in attribute ‘networkSubsetCode’, the network MAY instead provide a continuous range of codes.

In such a case the network SHALL

· provide the smallest code for the terminal to accept in this attribute,
· the greatest code in the attribute ‘networkSubsetCodeRangeEnd’ and

· SHALL not instantiate attribute ‘network
SubsetCode’.

The terminal SHALL interpret all the code values between the smallest and the greatest code as values to be accepted.
Applicable only when “type” == 1
	integer

	network
SubsetCodeRangeEnd
	A
	NO/TM
	0..1
	This attribute signals the end of the range of Network Subset Codes as specified above.

Applicable only when “type” == 1
	integer

	service
Provider
Code
	A
	NO/TM
	0..1
	Service Provider Code as specified by [3GPP TS 22.022].

Applicable only when “type” == 1
	byte

	corporateCode
	A
	NO/TM
	0..1
	Corporate Code as specified by [3GPP TS 22.022].

Applicable only when “type” == 1
	byte

	nonSmartCardCode
	A
	NO/TM
	0..1
	Value of BSMFilterCode when “type” == 2
	string

	Name
	E4
	NM/TM
	1..N
	Provides a user readable name for the BSM_Selector, possibly in multiple languages.

The language is expressed using built-in XML attribute xml:lang with this element..

This attribute can be used to provide information to the user so he can select the BSMSelector the terminal has to use.
	string

	ServiceCriteria
	E3
	NM/TM
	0..1
	Allows to group fragments by service. The value of this field is the fragmentId of the Service fragment related to that service.
	anyURI

	Transport
	E2
	NM/
TM
	0..1
	The pointer to the transport session delivering the Service Guide fragments within Service Guide Delivery Units announced in this DescriptorEntry.

Contains the following attributes:

ipAddress,

port,

srcIpAddress,

transmissionSessionID
	

	ipAddress
	A
	NM/
TM
	1
	Destination IP address of the target delivery session
	string

	port
	A
	NM/
TM
	1
	Destination port of target delivery session
	unsignedShort

	srcIpAddress
	A
	NM/
TM
	0..1
	Source IP address of the delivery session
	string

	transmissionSessionID
	A
	NM/
TM
	1
	This is the Transmission Session Identifier (TSI) of the session at ALC/LCT level
	unsignedShort

	AlternativeAccessURL
	E2
	NM/
TM
	0..N
	Alternative URL for retrieving the Service Guide delivery units via the interaction channel

Note: this sub-element is typically present in the case of interactive delivery of the SG
	anyURI

	ServiceGuideDeliveryUnit
	E2
	NM/
TM
	1..N
	A group of fragments.

Contains the following attributes:

transportObjectID,

versionIDLength,

validFrom,

validTo

Contains the following sub-element:

Fragment

	

	transportObjectID
	A
	NM/
TM
	0..1
	The transport object ID of the Service Guide Delivery Unit carrying the declared fragments within this group.
	unsignedInt

	versionIDLength
	A
	NO/
TO
	0..1
	Indicates the number of least significant bits representing the version ID in the transportObjectID, when Split TOI is used. If this element is omitted, the terminal assumes Split-TOI is not used.
	unsignedLong

	validFrom
	A
	NM/
TM
	0..1
	The first moment of time this group of Service Guide fragments is valid. This field expressed as the first 32bits integer part of NTP time stamps.
Note: If this attribute is not present, “validFrom” attribute MUST be present in the “Fragment” sub-element.
	unsignedInt

	validTo
	A
	NM/
TM
	0..1
	The last moment of time this group of Service Guide fragments is valid. This field expressed as the first 32bits integer part of NTP time stamps.
Note: If this attribute is not present, “validTo” attribute MUST be present in the “Fragment” sub-element.
	unsignedInt

	Fragment
	E3
	NM/
TM
	1..N
	Declaration of Service Guide fragment. If the fragment is available over the broadcast channel it MUST be present here. If the fragment is available over the interaction channel it MAY be present here.
Contains the following attributes:

transportID,

id,

version,

validFrom,

validTo
fragmentEncoding,

fragmentType
	

	transportID
	A
	NM/
TM
	0..1
	The identifier of the announced Service Guide fragment to be used in the Service Guide Delivery Unit header.

Note: if the SG is delivered over the broadcast channel only, this element MUST be present
	unsignedInt

	id
	A
	NM/
TM
	1
	The identifier of the announced Service Guide fragment.
	anyURI

	version
	A
	NM/
TM
	1
	The version of the announced Service Guide fragment.

Note: The scope of the version is limited to the given transport session. The value of version turn over from 2^32-1 to 0.
	unsignedInt

	validFrom
	A
	NM/
TM
	0..1
	The first moment when this fragment is valid. If not given, the validity is assumed to have started at some time in the past. This field expressed as the first 32bits integer part of NTP time stamps.
Note: If this attribute is present and “validFrom” attribute of “ServiceGuideDeliveryUnit” is also present, the value of this attribute overrides the value of “ServiceGuideDeliveryUnit” attribute “validFrom”.
	unsignedInt

	validTo
	A
	NM/
TM
	0..1
	The last moment when this fragment is valid. If not given, the validity is assumed to end in undefined time in the future. This field expressed as the first 32bits integer part of NTP time stamps.
Note: If this attribute is present and “validTo” attribute of “ServiceGuideDeliveryUnit” is also present, the value of this attribute overrides the value of “ServiceGuideDeliveryUnit” attribute “validTo”.
	unsignedInt

	fragmentEncoding
	A
	NM/TM
	0..1
	Signals the encoding of a Service Guide fragment, with the following values:

0 – XML encoded OMA BCAST Service Guide fragment

1 – SDP fragment

2 – MBMS User Service Description as specified in [26.346] (see 5.1.2.4, SessionDescriptionReference)

3 – XML encoded Associated Delivery Procedure as specified in [BCAST10-Distribution] section 5.3.4.

4-127 – reserved for future BCAST extensions

128-255 – available for proprietary extensions
	unsignedInt

	fragmentType
	A
	NM/TM
	0..1
	This field signals the type of an XML encoded BCAST Service Guide fragment, with the following values:

0 – unspecified

1 – Service Fragment

2 – Content Fragment

3 – Schedule Fragment

4 – Access Fragment

5 – PurchaseItem Fragment

6 – PurchaseData Fragment

7– PurchaseChannel Fragment

8 – PreviewData Fragment

9 – InteractivityData Fragment

10-127 – reserved for BCAST extensions

128-255 – available for proprietary extensions
	unsignedInt

	<proprietary elements/attributes >
	E1 or lower
	NO/
TO
	0..N
	Any number of proprietary or application-specific elements or attribtues that are not defined in this specification.
	

5.4.1.5.3 Grouping of Service Guide

One can divide the set of fragments comprising a Service Guide into subsets. These subsets, also referred to as groups, are formed by first selecting a criterion (or possibly criteria). Examples of a criterion are intervals of time, BSM codes and identifiers of Service fragments. Once a criterion is selected, each subset (or group) to be formed is assigned a value from the domain of the criterion. The contents of each subset are then determined by comparing the value of the criterion represented by the subset to each of the fragments of the Service Guide. If and only if the values of the subset and the fragment match, the fragment is placed into the subset

For example, one could have a subset representing all the fragments representing the contents of the SG today from 10 a.m. to 12 a.m. In such a case the grouping criteria is an interval of time, the value represented by the subset is the interval from 10 o’clock to 12 o’clock and any fragment representing the contents of the Service Guide within that time frame belongs to the subset.

The network MAY

· use multiple grouping criteria simultaneously,

· form overlapping (i.e. mutually non-exclusive) subsets (or groups) and

· place the declaration(s) of the subsets or even a single subset into multiple SGDDs.

But the network SHALL NOT

· place a fragment into a subset if the fragment contains a reference to a fragment not present in the same subset.

This restriction introduces the constraint of consistency on the Service Guide subsets (or groups). A Service Guide subset is consistent when no fragment from that subset references any fragment that is not in the said subset. If and only if all the subsets formed by the network comply with this rule, is the Service Guide considered consistent.

5.4.2
Delivery over the Broadcast Channel
7.1.1.1
Over the Broadcast Channel, interface SG-5, the Service Guide is delivered using broadcast file delivery sessions. The network places the fragments of the Service Guide into one or more SGDUs and constructs one or more SGDDs to represent the contents of the Service Guide as well as the division of the fragments into the SGDUs. The SGDD(s) and the SGDU(s) are placed into file delivery session(s) to be transported as transport objects, TOs. While the SGDUs can be transported using one or more file delivery sessions, the SGDDs are provided using only of the sessions, namely the Service Guide Announcement Channel as defined in section 5.4.1.5.1.
The network SHALL use FLUTE [RFC 3926] as the protocol for broadcast delivery of the Service Guide and the network SHALL provide FDT Instances in the Service Guide Announcement Channel and the network MAY provide FDT Instances in the other sessions carrying the Service Guide.
The following enhancements apply for the case when the file information is conveyed in the Service Guide or in a file delivery table:

· SG-D in BSD/A MAY apply the "Compact No-Code FEC scheme" [RFC 3695] (FEC Encoding ID 0, also known as "Null-FEC").

· SG-D in BSD/A MAY utilize the split-TOI scheme as specified in section 5.4.2.1.3 in conjunction with FLUTE, for signalling the identifier and version of any transported object (e.g. the Service Guide Delivery Unit or Service Guide Delivery Descriptor).

· SG-D in BSD/A MAY utilize the scheme as specified in section 5.4.2.1.3 in conjunction with FLUTE, for signalling the identifier and version of the Service Guide Delivery Unit.
In order for the terminals to distuinguish the SGDDs and SGDUs from other transport objects the network SHALL set the ‘Content-Type’ attribute of the ‘File’ element in the FDT Instances

· to “application/vnd.oma.bcast.sgdd+xml” for SGDDs and

· to “application/vnd.oma.bcast.sgdu” for SGDUs.

As there is no signalling whether the network uses FDT Instances in the Service Guide delivery sessions other than the Service Guide Announcement Channel, the terminal

· SHALL assume that the Transport Object Identifier, TOI, zero is reserved for the FDT Instances.

· And the network SHALL not use the TOI zero for any types of files than FDT Instance.

The network SHALL signal the Forward Error Correction, FEC, parameters for the transport objects in the Service Guide delivery sessions using one of the mechanisms defined in FLUTE [RFC 3926] and the terminal SHALL support all these mechanisms.

·
·

5.4.2.1
Signaling Changes in the Service Guide over Broadcast Channel
In the following, the way of signaling changes in Service Guide fragments is specified. The changes in the Service Guide are signaled through the change in the transmitted SGDUs which consequently cause a change in the transmitted SGDDs. Observing these changes, the terminal SHALL be able to determine the change. However, this specification does not specify the normative terminal behavior for this. Informative examples for four cases of localizing changes and achieving their discovery are outlined in section 5.5.

5.4.2.1.1
Signalling Addition of a New SGDU

Upon addition of a newn SGDU to be delivered on the Service Guide Delivery Channel, a new TOI is allocated for the delivery of the SGDU.

· If FLUTE is used on the Service Guide Delivery Channel, the allocated TOI SHALL be introduced in the FDT associated with Service Guide Delivery Channel.

· If ALC is used on the Service Guide Delivery Channel, it is assumed that the Terminal detects the change of TOI by observing the session.

Further, the allocated TOI SHALL be introduced in the SGDD on the Service Guide Announcement Channel. Consequently, the TOI of SGDD itself SHALL change. This SHALL be indicated through introducing the new TOI of the SGDD in the FDT associated with Service Guide Announcement Channel. While using FLUTE, the filenames associated with each Service Guide Delivery Descriptor withinto the FDT SHALL be set so that the terminal can use the FDT information to identify the transported Service Guide Delivery Descriptor, and its version.
· The “Content-Location” attribute of the “File” element within the FDT is used for this purpose. The Service Guide Delivery Descriptor is identified by its SGDDid (see section 5.4.2.2), which SHALL be used as a unique URI for the “Content-Location” attribute.

· The version change of the Service Guide Delivery Descriptor is signalled based on the TOI and FDT Instance ID as specified in section 5.2.3 in [BCAST10-Distribution].
In addition, if Split-TOI scheme is used, the network MAY signal version relation between a removed SGDD and a newly inserted SGDD by allocating the TOI for the newly inserted SGDD, i.e. by taking the Most Significant Bits of the removed SGDD’s TOI and changing only the Least Significant Bits of the TOI.

5.4.2.1.2
Signalling Change in SGDUs
Upon change in SGDUs one or more SGDUs are inserted to or removed from the Service Guide Delivery Channel. The TOIs corresponding to the removed SGDUs SHALL be disassociated with the SGDDs which the SGDUs wherewere associated with before, and The TOIs corresponding to the inserted SGDUs SHALL be signaled according to chapter 5.4.1.2.1.
· In addition, if Split-TOI scheme is used, the network MAY signal version relation between a removed SGDU and a newly inserted SGDU by allocating the TOI for the newly inserted SGDU, i.e. taking the Most Significant Bits of the removed SGDU’s TOI and changing only the Least Significant Bits of the TOI.

· In addition, if Split-TOI scheme is used, the network MAY signal version relation between a removed SGDD and a newly inserted SGDD by allocating the TOI for the newly inserted SGDD by, i.e. taking the Most Significant Bits of the removed SGDD’s TOI and changing only the Least Significant Bits of the TOI.

5.4.2.1.3
Split-TOI scheme

To provide a mechanism for terminals to track Service Guide Fragment updates when the Service Guide is delivered over broadcast channel using ALC, this section specifies a method to use the TOI of a transported object to indicate the identifier of the transported SGDU and its version, so that terminals can track the changes of a given object without parsing its Unit_Header.
The LCT TOI field is 32*O + 16*H bits in length where the Transport Object Identifier flag (O) length is 2 bits and the Half-word flag (H) length is 1 bit. The maximal length of the TOI is therefore 112 bits (i.e. 14 bytes).
When a version identifier is assigned to a transported object through the LCT header, the TOI field is split into two parts: the first part (Most Significant Bits) is allocated to the identification of SGDU/SGDD, the second part (Less Significant Bits) is allocated to the version of the identified SGDU/SGDD (e.g. SGDU Version). The terminal can track SGDU/SGDD updates based on the changes in the version part of the TOI.

The receiver detects whether the TOI is split or not through in-band signalling as specified in section 5.4.2.2.

The network MAY utilize the Split-TOI scheme for signalling the identifier and version of transported object, and terminals MAY be able to interpret the split TOI field in ALC header.

5.4.3
Delivery over the Interaction Channel

If a terminal has access to the Interaction Channel, then it SHALL support one or more mechanisms for accessing the Service Guide over Interaction Channel as defined by the provisions of this section.

The following gives a brief overview on the ways of requesting Service Guide over the Interaction Channel in the light of use cases enabled:

· Terminal can request Service Guide fragments by their identifiers. This requires that the terminal knows the identifiers of the fragments prior to request. Consequently, the terminal can use this request to update the version of the fragments it already has or to retrieve fragments declared in the Service Guide Delivery Descriptor it had acquired earlier.

· Terminal can request Service Guide Delivery Descriptors by their identifiers. This requires that the terminal knows the identifiers of the Service Guide Delivery Descriptors prior to request. Consequently, the terminal can use this request to update the version of the Service Guide Delivery Descriptors.

· Terminal can specify within the request whether it wants responses as SGDDs or SGDUs. This way the terminal can either get the declarations of fragments, the fragments itself or both.

· Terminal can request Service Guide Delivery Descriptors by using the grouping criteria present in Service Guide Delivery Descriptors as request criteria. This way the terminal can request all Service Guide Delivery Descriptors fulfilling the given criteria. If the terminal also requested to have the fragments, it will receive the fragments that are available over Interaction Channel.

· Terminal can request Service Guide fragments by using the attributes / elements present in Service Guide fragments as request criteria. This way the terminal can request all Service Guide fragments fulfilling the given criteria. If the terminal also requested to have the SGDDs, it will receive the SGDDs that declare the fragments.

· Terminal can request Service Guide fragments and/or Service Guide Delivery Descriptors without any specific criteria or identifiers. This way terminal can request “any” view of Service Guide and let network to decide which set to provide to terminal.

· Terminal can request all Service Guide fragments and/or Service Guide Delivery Descriptors. This way terminal can request the widest possible view to Service Guide.

5.4.3.1
Rules applicable to all requests

When requesting either Service Guide fragments or Service Guide Delivery Descriptors over Interaction Channel, the terminal and network SHALL comply with the following rules:

· The terminal SHALL originate requests. The network SHALL respond to requests.

· The request SHALL be made using ‘POST’ method of HTTP/1.1

· The parameters associated with the request SHALL be communicated as name-value -pairs following the conventions defined in section 17.13 of [HTML4.01] for submitting HTML form data by the ‘POST’ method using the "application/x-www-form-urlencoded" encoding type. More specifically, once encoded as "application/x-www-form-urlencoded", the parameters to be passed from terminal to system SHALL be communicated in the ‘message-body’ of HTTP/1.1 ‘Request’ message as defined in section 5 of [RFC 2616].

· Within a single request, the terminal MAY include multiple name-value pairs. As defined by [HTML4.01] these name-value pairs SHALL be delimited by an ‘&’.

· Within the request, the terminal MAY specify the requested format of response.

· When the terminal requests only Service Guide Delivery Descriptors the ‘message-body’ of HTTP/1.1 request SHALL be prefixed with “type=sgdd”.

· When the terminal requests only Service Guide Delivery Units the ‘message-body’ of HTTP/1.1 request SHALL be prefixed with “type=sgdu”

· When the terminal requests Service Guide Delivery Descriptors and all Service Guide fragments declared within the Service Guide Delivery Descriptors that are available over Interaction Channel, the ‘message-body’ of HTTP/1.1 request SHALL be prefixed with “type=sgdd+sgdu”.

· The response to the request SHALL be HTTP/1.1 response with status ‘200 OK’. Depending on the content of response, the following options are possible and SHALL be supported by terminal and the network:

· If the content of the response is a single Service Guide Delivery Unit:

· the ‘message-body’ of HTTP/1.1 ‘Response’ SHALL contain ‘Content-Type’ field that SHALL be set to “application/vnd.oma.bcast.sgdu” and

· the Service Guide Delivery Unit SHALL be encapsulated in the ‘message-body’ following the ‘Content-Type’ declaration according to rules on HTTP/1.1

· If the content of the response is a single Service Guide Delivery Descriptor:

· the ‘message-body’ of HTTP/1.1 ‘Response’ SHALL contain ‘Content-Type’ field that SHALL be set to “application/vnd.oma.bcast.sgdd” and

· the Service Guide Delivery Descriptor SHALL be encapsulated in the ‘message-body’ following the ‘Content-Type’ declaration according to rules on HTTP/1.1

· If the content of the response consists of multiple Service Guide Delivery Units, multiple Service Guide Delivery Descriptors or a combination of Service Guide Delivery Units and Service Guide Delivery Descriptors:

· the ‘message-body’ of HTTP/1.1 ‘Response’ SHALL contain ‘Content-Type’ field that SHALL be set to “multipart/mixed” and

· the associated payload structure SHALL comply with provisions of [RFC 2046], so that each part of “multipart/mixed” SHALL be set to either “application/vnd.oma.bcast.sgdd” if the part represents an SGDD, or, “application/vnd.oma.bcast.sgdu” if the part represents an SGDU.

5.4.3.2
Unspecific request for retrieving service guide over Interaction Channel

If the terminal supports unspecific request for retrieving service guide over Interaction Channel, the terminal SHALL request Service Guide fragments and Service Guide Delivery Descriptors over the Interaction Channel as follows:

· When terminal requests Service Provider’s default view to Service Guide, the ‘message-body’ of HTTP/1.1 request message SHALL contain no data.

· The ‘Request-URI’ of HTTP POST request SHALL be set to the Service Guide entry point address (URL).
· The response of the request MAY contain Service Guide Delivery Descriptors, Service Guide Delivery Units or both.

5.4.3.3
Requests for specific Service Guide Delivery Descriptors

If the terminal supports requests for specific Service Guide Delivery Descriptors, the terminal SHALL request specific Service Guide Delivery Descriptors over the Interaction Channel as follows:

· When terminal requests individual Service Guide Delivery Descriptors by their identifiers, the ‘message-body’ of HTTP/1.1 request message SHALL contain name-value pair, using "sgddID" as the key and the attribute ‘id’ of the requested fragment as the value .

· When terminal requests Service Guide Delivery Descriptors with criteria other than SGDD identifier, the ‘message-body’ of HTTP/1.1 request message SHALL contain name-value pairs, using <key> as the key representing the criteria and the <value> as the value from the domain of the criteria. Furthermore, terminal SHALL support the following assignments for the <key> and <value> fields:

· <key>
:
“tgc-start”
<value>
:
Attribute ‘startTime’ associated with element ‘TimeGroupingCriteria’ used within SGDD
Meaning
:
Terminal requests SGDD grouped with ‘TimeGroupingCriteria’, whose ‘startTime’ equals

to <value>.
Note
:
This <key> SHALL be used if and only if <key> “tgc-end” is used.

· <key>
:
“tgc-end”
<value>
:
Attribute ‘endTime’ associated with element ‘TimeGroupingCriteria’ used within SGDD
Meaning
:
Terminal requests SGDD grouped with ‘TimeGroupingCriteria’, whose ‘endTime’ equals

to <value>.
Note
:
This <key> SHALL be used if and only if <key> “tgc-end” is used.

· <key>
:
“ggc”
<value>
:
Value of element ‘GenreGroupingCriteria’ used within SGDD.
Meaning
:
Terminal requests SGDD grouped with ‘GenreGroupingCriteria’, whose value equals

to <value>.

· <key>
:
“srvc”
<value>
:
Value of element ‘ServiceCriteria’ used within SGDD.
Meaning
:
Terminal requests SGDD grouped with ‘ServiceCriteria’, whose value equals to <value>.

· <key>
:
“bsms”
<value>
:
Value of element ‘BSMSelector’ used within SGDD. The value is given as the following

structure:

If ‘type’ equals “1”:

“1+”<mobileCountryCode>”+”< mobileNetworkCode>”+”<networkSubsetCode>”+”

<networkSubsetCodeRangeStart>”+”< networkSubsetCodeRangeEnd >”+”

<serviceProviderCode>”+”<corporateCode>”

If ‘type’ equals “2”:

“2+”<nonSmartCardCode>

Meaning
:
Terminal requests SGDD grouped with ‘BSMSelector’, whose value equals to <value>.

· <key>
:
“complete”
<value>
:
“true”
Meaning
:
Terminal requests a complete set of SGDDs.

· <key>
:
“user”
<value>
:
User id.
Meaning
:
Terminal requests a set of SGDDs personalized to the user associated with user

identification of <value>.

· The ‘Request-URI’ of HTTP POST request SHALL be set to the Service Guide entry point address (URL).
· The response of the request MAY contain Service Guide Delivery Descriptors, Service Guide Delivery Units or both.

5.4.3.4
Requests for specific Service Guide fragments

If the terminal supports requests for specific Service Guide fragments, the terminal SHALL request specific Service Guide fragments over the Interaction Channel as follows:

· When terminal requests individual Service Guide fragments by their identifiers, the ‘message-body’ of HTTP/1.1 request message SHALL contain name-value pair, using "fragmentID" as the key and the attribute ‘id’ of the requested fragment as the value.

· When terminal requests Service Guide fragments associated to an SGDD, the ‘message-body’ of HTTP/1.1 request message SHALL contain name-value pair, using "sgddID" as the key and the attribute ‘id’ of the SGDD as the value.

· When terminal requests Service Guide fragments with criteria other than the fragment identifier or SGDD identifier, the ‘message-body’ of HTTP/1.1 request message SHALL contain name-value pairs, using <key> as the key representing the criteria and the <value> as the value from the domain of the criteria. These name-value pairs SHALL be delimited by a ‘&’. Furthermore, terminal SHALL support the following assignments for the <key> and <value> fields:

· <key>
:
“globalServiceID”
<value>
:
Attribute ‘globalServiceId’ used within ‘Service’ fragment
Meaning
:
Terminal requests Service Guide fragment associated with ‘Service’ fragments

having ‘globalServiceId’ equal to <value>.

· <key>
:
“globalContentID”
<value>
:
Attribute ‘globalContentId’ used within ‘Content’ fragment
Meaning
:
Terminal requests Service Guide fragment associated with ‘Content’ fragments

having ‘globalContentId’ equal to <value>.

· <key>
:
“validFrom”
<value>
:
Attribute ‘validFrom’ used within Service Guide fragments
Meaning
:
Terminal requests Service Guide fragments whose attribute ‘validFrom’ is greater or equal to the

<value>

· <key>
:
“validTo”
<value>
:
Attribute ‘validTo’ used within Service Guide fragments
Meaning
:
Terminal requests Service Guide fragments whose attribute ‘validTo’ is less or equal to the

<value>

· <key>
:
“contentType”
<value>
:
Attribute ‘contentType’ used within ‘Content’ fragment
Meaning
:
Terminal requests Service Guide fragments associated with ‘Content’ fragments having

‘contentType’ equal to <value>.

· <key>
:
“serviceType”
<value>
:
Attribute ‘serviceType’ used within ‘Service’ fragment
Meaning
:
Terminal requests Service Guide fragments associated with ‘Service’ fragments having

‘serviceType’ equal to <value>.

· <key>
:
“genre”
<value>
:
Element ‘genre’ used within Service Guide fragments
Meaning
:
Terminal requests Service Guide fragments and fragments associated to them whose element

‘genre’ equal to <value>.

· <key>
:
“fragmentEncoding”
<value>
:
Possible values listed in Table X3 under ‘fragmentEncoding’.
Meaning
:
Terminal requests Service Guide fragments that are encoded with encoding scheme defined

by <value>.

· <key>
:
“fragmentType”
<value>
:
Possible values listed in Table X3 under ‘fragmentType’.
Meaning
:
Terminal requests Service Guide fragments of that are of type <value>.

· <key>
:
“all”
<value>
:
“true”
Meaning
:
Terminal requests all available Service Guide fragments.

· The following applies for the selection of the target for the request:
· Upon the terminal requesting an individual Service Guide fragment by its identifier the terminal does this as follows: In case the terminal had acquired an SGDD that declared the fragment in question and the element ‘AlternativeAccessURL’, the ‘Request-URI’ of HTTP POST request SHALL be set to ‘AlternativeAccessURL’.

· In any other case, the ‘Request-URI’ of HTTP POST request SHALL be set to the Service Guide entry point address (URL)
· In the response the requested Service Guide fragments SHALL be encapsulated in a SGDU as defined in section 5.4.1.3.

Change 2: Section 5.5 revised (formerly section 5.4.5)
5.5
Service Guide Update and Management

[Note: this was formerly section 5.4.5. It was raised one level higher]
Over time, as services, content and schedules come and go, the metadata associated with Service Guide changes. The terminal needs to be able identify the changes and to manage the updates of Service Guide and associated metadata accordingly. There are two ways the terminal SHALL support: 1) update and management of Service Guide over broadcast; and; 2) update and management of Service Guide over interaction. These ways differ in the specification of delivery method. However, in both of the cases the metadata management is done finally on the level of Service Guide fragments. Hence, the terminal SHALL be able to determine the identification, version and validity of each Service Guide fragment using the respective fields in the Service Guide fragment itself. Further, the terminal SHALL be able to interpret the following cases:

· Fragment to be processed has fragment id that has not been previously received. This means that the terminal has received a new piece of metadata.

· Fragment to be processed has same fragment id and same version than has been previously received. This means that no change is implied. The metadata that was already received is still valid.

· Fragment to be processed has same fragment id but higher version than has been previously received. This means that the metadata related to the fragment in question needs to be updated. If validFrom attribute of the new fragment is not present or indicates some time in past, the terminal SHALL replace the previous metadata with the newly received metadata immediately. If validFrom attribute of the new fragment is present and indicates some time in future, the terminal SHALL store the new fragment and keep using the existing one until the new one gets valid.

· Fragment to be processed has same fragment id but lower version than has been previously received. This means that the previously received metadata related to the fragment in question is more recent than the meatadata in the fragment that was just received. Terminal SHALL discard the new fragment.

· The terminal SHALL handle the possible wrap-around of the version.

Further, overall validity of a Service Guide fragment MAY be expressed with optional attributes “validFrom” and “validTo”. The terminal SHALL support the interpretation of these attributes in determining whether a given Service Guide fragment is valid on a given moment of time: If the current time is within the time span defined by “validFrom” and “validTo” the terminal SHALL consider the metadata valid.

If the set of fragments belonging to the Service Guide are announced using the mechanism defined in section 5.4.1.1, then the terminal MAY assume from the absence of any fragment in the updated version of the SGDDs that the validity of the fragment has ended.
5.5.1
Service Guide Update and Management using the Broadcast Channel
Over the broadcast channel the transmitted Service Guide can be large and consist of several delivery sessions carrying several parts of the Service Guide. Thus, as the total size of Service Guide may be large – both in terms of data amount per fragment as well as in terms of fragments – it is useful to localize the changes to parts of Service Guide. This allows a terminal to identify as narrow changes as possible. Further it allows the terminal to receive the updates and manage data only for the relevant part(s) of Service Guide.

On the other hand, assuming that the terminal has received the Service Guide or a part of Service Guide, the structure of the Service Guide makes it possible for the terminal to determine quickly whether there is relevant information available in the Service Guide, which the terminal does not possess yet. Since the content of the Service Guide may and do change over time, and one aims to minimize the time needed by the terminals to update their view of the Service Guide, one wants to have a mechanism for declaring the contents of the Service Guide without forcing the terminal to traverse through the entire set of fragments of the Service Guide.

The methods for localized changes and their discovery, and, for determining the well-defined subsets of the Service Guide are specified in the following sections.

5.5.1.1
Localized changes and their discovery (Informative)

The flow of changes and how they propagate in the Service Guide is illustrated in the Figure 3a-3d below. This way even the smallest changes in the Service Guide (i.e. change in individual fragments) can be accurately pointed out.

[image: image1.emf]Change in the FDT that is used in the

Service Guide Announcement Channel:

Change in the SGDD that is delivered on

Service Guide Announcement Channel:

SG-C notices that the set of available TOIs

on the Service Guide Announcement

Channel has changed

OR

Change in the SGDU that is delivered on

Service Guide Delivery Channel:

TOI of SGDD changes

TransportObjectIdof SGDU changes

Version increments for Fragment X.

Fragment X encapsulated in SGDU.

Fragment X,

version Y

Fragment X,

version Y+1

TOI of SGDD changes

When ALC is used as

delivery method for SGDD,

and Split-TOI scheme is not used

in delivery of SGDDsand SGDUs

When FLUTE is used as

delivery method for SGDD,

And Split-TOI scheme is not used

In delivery of SGDDsand SGDUs

*) Find the ALC packet transporting SGDU with

TOI equal changed TOI of changed SGDU.

*)

Figure 3a: SG fragment change and its propagation on the different levels of Service Guide, when Split-TOI is not used neither for SGDU nor for SGDD

(Note: when FLUTE is used as the delivery of SGDUs, the FDT of the seesion carrying the SGDUs is also updated when TOI of the SGDU is changed.)
This flowchart in Figure 3a assumes that Split-TOI scheme is not used in the delivery of SGDDs/SGDUs. Here, the change of Fragment X version Y to Fragment X version Y+1 causes a change in the respective SGDU, whose TOI changes on the Service Guide Delivery Channel. Consequently, it causes the declaration of the SGDU in the respective SGDD to change. Further, as the SGDD changes, so does its Transport Object Identifier on the Service Guide Announcement Channel. Finally the SG-C notices this change either observing a changing set of available TOIs on the Service Guide Announcement Channel or through observing the change in the FDT table available on the Service Guide Announcement Channel. Correspondingly, if the original corresponding fragment was of interest to the terminal, it will store and parse the associated SGDU. However, if that original fragment was not of interest to the SG-C, then the fragment version update would similarly be of no interest, and the SG-C will disregard the associated SGDU.

[image: image2.emf]Change in the FDT that is used in the

Service Guide Announcement Channel,

Version portion of the TOI of a

SGDD has changed:

SG-C notices that the Version portion

of the TOI of a SGDD has changed

on the Service Guide Announcement channel

OR

Change in the SGDU that is delivered on

Service Guide Delivery Channel:

TOI of SGDD changes

Version increments for Fragment X.

Fragment X encapsulated in SGDU.

Fragment X,

version Y

Fragment X,

version Y+1

TOI of SGDD changes

When ALC is used as

delivery method for SGDD,

Split-TOI scheme is used in

delivery of SGDUsand SGDDs, and terminal

supports Split-TOI

When FLUTE is used as

delivery method for SGDD,

Split-TOI scheme is used in

delivery of SGDUsand SGDDs, and terminal

supports Split-TOI

*) Find the ALC packet transporting SGDU with

TOI equal changed TOI of changed SGDU.

*)

Change in the SGDD that is delivered on

Service Guide Announcement Channel:

SGDU identifier portion of the TOI of

corresponding SGDU is unchanged ->

indicating SGDU Version is changed **)

**) If the SG-C is not interested in the corresponding

SF fragment, it will not need to parse the SGDU

Figure 3b: Fragment version change and its detection at ALC packet header level of SGDU/SGDD delivery, when Split-TOI is used

The flowchart in Figure 3b assumes that Split-TOI scheme is used in the delivery of SGDUs/SGDDs. Here, the change of Fragment X version Y to Fragment X version Y+1 causes a change in the respective SGDU, whose Version portion of the TOI is changed on the Service Guide Delivery Channel. Consequently, it causes the declaration of the SGDU in the respective SGDD to change. Further, as the SGDD changes, so does its Transport Object Identifier on the Service Guide Announcement Channel, and particularly the Version portion of the TOI. The SG-C notices this change either observing a change of the Version portion of the TOI on the Service Guide Announcement Channel or through observing the change in the FDT table available on the Service Guide Announcement Channel. In addition, the SG-C is able to detect the indicated SG fragment change as a version update. Correspondingly, if the original corresponding fragment was of interest to the terminal, it will store and parse the associated SGDU. However, if that original fragment was not of interest to the SG-C, then the fragment version update would similarly be of no interest, and the SG-C will disregard the associated SGDU.

[image: image3.emf]Change in the FDT that is used in the

Service Guide Announcement Channel,

Version portion of the TOI of a

SGDD has changed ***)

SG-C notices that the Version portion

of the TOI of a SGDD has changed

on the Service Guide Announcement

Channel ***)

OR

Change in the SGDU that is delivered on

Service Guide Delivery Channel:

TOI of SGDD changes

New Fragment Z (version M).

Fragment X encapsulated in SGDU.

Fragment Z,

version M

TOI of SGDD changes

When ALC is used as

delivery method for SGDD,

Split-TOI scheme is used in

delivery of SGDUsand SGDDS, and terminal

supports Split-TOI

When FLUTE is used as

delivery method for SGDD,

Split-TOI scheme is used in

delivery of SGDUsand SGDDs,

and terminal supports Split-TOI

*) Find the ALC packet transporting SGDU with

TOI equal changed TOI of changed SGDU.

*)

Presence of brand new

SG Fragment Z

Change in the SGDD that is delivered on

Service Guide Announcement Channel:

SGDU Version portion of

TransportObjectID

of corresponding SGDU is changed or a

new SGDU ID is created **)

**) SG-C recognizes presence of new SG fragment,

and must parse the associated SGDU.

***) In most of cases, a new ESG fragment will not involve a creation of a new

SGDD ID, however it's not forbidden

Figure 3c: New fragment introduced and its detection at ALC packet header level of SGDU delivery, when Split-TOI is used
The flowchart in Figure 3c assumes that Split-TOI scheme is used in the delivery of SGDUs. Here, the presence of a brand new SG fragment Z causes a change in the respective SGDU, whose Version portion of the TOI is changed on the Service Guide Delivery Channel, or causes a new SGDU identifier portion to be created. Consequently, it causes the declaration of the SGDU in the respective SGDD to change. Further, as the SGDD changes, so does its Transport Object Identifier on the Service Guide Announcement Channel, and particularly the Version portion of the TOI. The SG-C notices this change either observing a change of the Version portion of the SGDD's TOI on the Service Guide Announcement Channel or through observing the change in the FDT table available on the Service Guide Announcement Channel. Correspondingly, to find out about this new fragment, the SG-C will store and parse the associated SGDU.

[image: image4.emf]Change in the FDT that is used in the

Service Guide Announcement Channel:

SG-C notices that the set of available TOIs

on the Service Guide Announcement

Channel has changed

OR

Change in the SGDU that is delivered on

Service Guide Delivery Channel:

TOI of SGDD changes

New Fragment Z (version M).

Fragment X encapsulated in SGDU.

Fragment Z,

version M

TOI of SGDD changes

When ALC is used as

delivery method for SGDD,

and Split-TOI scheme is not used in

delivery of SGDUs and SGDDs

When FLUTE is used as

delivery method for SGDD,

and Split-TOI scheme is not used in

delivery of SGDUs and SGDDs

*) Find the ALC packet transporting SGDU with

TOI equal changed TOI of changed SGDU.

*)

Presence of brand new

SG Fragment Z

Change in the SGDD that is delivered on

Service Guide Announcement Channel:

**) SG-C recognizes presence of new SG fragment,

and must parse the associated SGDU.

TransportObjectId of SGDU changes

Figure 3d: New fragment introduced and its propagation on the different levels of Service Guide, when Split-TOI is not used

This flowchart in Figure 3d assumes that Split-TOI scheme is not used in the delivery of SGDDs/SGDUs. Here, the presence of a brand new SG fragment Z causes a change in the respective SGDU, whose Object identifier portion of the TOI is changed on the Service Guide Delivery Channel. Consequently, it causes the declaration of the SGDU in the respective SGDD to change. Further, as the SGDD changes, so does its Transport Object Identifier on the Service Guide Announcement Channel. Finally the SG-C notices this change either observing a changing set of available TOIs on the Service Guide Announcement Channel or through observing the change in the FDT table available on the Service Guide Announcement Channel. As the SG-C in the terminal notices the change in either of these ways, following the chain of propagation allows the SG-C to accurately locate the changed parts of the Service Guide and only to focus on receiving those.
5.5.1.2
Enabling Terminal to determine Service Guide completeness

At each given time, the terminal is proposed a set of SGDD over the Service Guide Announcement Channel, in the form of Transport Objects.

In addition to the construction rules defined in the previous section, in order for the terminal to determine it is receiving a consistent set of the Service Guide, the following signalling in the FLUTE FDT is specified. A new attribute "FullFDT" is added to the "FDT-Instance" element of the FDT. This attribute signals a complete description of all the Transport Objects that are currently scheduled for transmission in the corresponding FLUTE session.

The XML syntax of the "FullFDT" attribute is the following:

<attribute name="FullFDT" type="boolean" use="optional" default="false" />

When the “FullFDT” attribute is set to true in the FDT instance of a given FLUTE session, this means that all the Transport Objects that are scheduled in the said FLUTE session are described. When the “FullFDT” attribute is left to false, the terminal cannot make any assumptions about the description. To enable SG-C in the terminal to determine any subset of a Service Guide the SG-D SHALL comply with the following rules:
· In the context of the FLUTE session providing the Service Guide Announcement Channel, the “FullFDT” attribute SHALL always be set to true.

· The set of fragments declared by the SGDDs SHALL be exhaustive, i.e., each fragment in the SG has to be declared at least in one SGDD
In addition, should several FDT instances be available at the same time, the terminal SHALL only consider the FDT Instance with the highest value of the FDT Instance ID taking into account the possible wrap around of the FDT Instance ID.

5.5.1.3
Terminal behaviour determining the Service Guide completeness (Informative)

The following state diagram Figure 4 below defines the deduction algorithm for Service Guide completeness when FLUTE is used for SGDD delivery. In principle, the exhaustive listing of fragments makes it possible to determine precisely the fragments that are needed and their location in the Service Guide delivery.

Explanation of variables used in the algorithm:

LD
Set of SGDDs representing a subset of Service Guide. [Editor: The diagram needs to be updated.]
LP
Previously stored set of SGDDs.

LR
Set of SGDDs to be received.

FR
Set of fragments to be received

FD
Set of fragments to be deleted

CR
Set of SGDUs delivering the fragments in FR
[image: image5.emf]Terminal

Service Guide

storage empty

Terminal Service

Guide storage

contains data

SG reception

criteria set

Ready for SGDD

processing

Receive

FDT* on a SG

announcement

channel carrying

SGDDs

Set L

D

of SGDDs

belonging to the well-

defined subset of SG

Compare set L

D

to the previously

stored set L

P

.

Determined the set of

SGDDs L

R

 = L

D

/L

P

to be received

Receive the set L

R

of SGDDs

Determine using L

R

and

terminal storage the set F

R

of fragments to be

received and the set F

D

fragments to be deleted

Receive the

set C

R

of SGDUs

delivering the

fragments in F

R

Reconcile terminal

storage based on the

received information

SGDU

missing/

timeout

*Note: FDT must be complete, i.e., it has

to declare all the SGDDs on this channel.

Figure 4: Algorithm for determining a subset of Service Guide

5.5.2
Service Guide update and management using the Interaction Channel

The Service Guide update and management over the Interaction Channel is enabled in two ways: In a terminal-based way and in a system-based way. The terminal-based way and system-based way can be applied mutually complementing each other.

In the terminal-based way the terminal keeps the state of version and validity of acquired Service Guide fragments and Service Guide Delivery Descriptors. Based on that information and the information available via Service Guide Delivery Descriptors possibly made available over Broadcast Channel the terminal detects the changes and reacquires the necessary fragments. The terminal can also poll for changes by trying to reacquire the already acquired Service Guide fragments and/or SGDDs over the Interaction Channel and deduce the changes that way. The delivery of Service Guide over Interactive Channel is normatively specified in section 5.4.3

In the system-based way the terminal requests the system to keep the terminal updated upon changes on the requested Service Guide fragments and/or on Service Guide Delivery Descriptors. If the terminal supports OMA PUSH the terminal SHALL support the system-based way of update and management using the Interaction Channel as follows:

· Upon terminal requesting Service Guide Delivery Descriptors or Service Guide fragments through means as specified in section 5.4.3., the ‘message-body’ of HTTP/1.1 request SHALL be suffixed with string “&keep-updated=true” meaning that terminal requests the system to keep the terminal updated on changes to requested Service Guide Delivery Descriptors or Service Guide fragments.

· Upon changes or updates to the Service Guide fragments and/or Service Guide Delivery Descriptors for which the terminal has requested system to keep the terminal updated the following happens. The system SHALL the send the updated Service Guide fragments and/or Service Guide Delivery Descriptors to the terminal using OMA PUSH.

· For Service Guide fragments, the MIME type “application/vnd.oma.bcast.sgdu” SHALL be used to identify that the PUSH message carries an SGDU containing the fragments.

· For Service Guide Delivery Descriptor, the MIME type “application/vnd.oma.bcast.sgdd” SHALL be used to identify that the PUSH message carries an SGDD. Each SGDD will be delivered as a separate PUSH message.

5.5.3
Service Guide Update and Management Cases for Hybrid
Broadcast/Interactive Scenario (Informative)

When Service Guide is delivered both over Broadcast Channel and over Interactive Channel, three cases for Service Guide update and management can be envisioned:

· The SG consists of two parts, one being distributed over broadcast (typically a “basic” SG consisting of SGDDs and possibly “basic” fragments, which may for example declare the available services), and one being distributed over interaction channel (the “supplementary” fragments, describing e.g. programs and further details of the services). In this case, the broadcasted parts are updated and managed as described in previous sections. If a “supplementary” fragment changes, the version of the “basic” fragment(s) that are used to retrieve the “supplementary” fragments is increased. If a terminal observes that a “basic” fragment changes, it assumes that the corresponding “supplementary” fragments may have changed. The Terminal can in this case re-acquire those fragments.

· The SG is completely distributed over the interaction channel only. In this case, the SGDDs may contain information announcing notifications (see section 7.1.1.1.), and the BCAST notification function (section 7.) can be used to announce changed SGDDs and.or fragments from server to Terminal. Alternatively, the Terminal can request SGDDs and/or fragments interactively, and determine changes by comparison with the stored SG information.
The SG is completely broadcasted, and the same version of the SG is also alternatively available over the interaction channel. In this case, the Terminal can use the broadcasted SG to detect changes or updates in the SG, as described in previous sections. Alternatively, the Terminal can request SGDDs and/or fragments interactively, and determine changes by comparison with the stored SG information. Alternatively, the BCAST notification function (section 7.) can be used to announce changed SGDDs and.or fragments from server to Terminal.
·
Change 3: Chapter 6 revised
6.
Discovery of Service Guide

6.1
Service Guide Transmitted over Broadcast Channel

The service guide discovery mechanisms that are specified in this section relate to the discovery of a Service Guide that is distributed over Broadcast Channel (i.e. they do not relate to Service Guides that are not using the Broadcast Channel). In this case, the Terminal will need to know how to find and access the broadcast IP flows that carry the broadcast Service Guide.

6.1.1
Service Guide Discovery over Broadcast Channel

The entry point to a Service Guide on a Broadcast Channel SHALL be defined as an entry point to a FLUTE session carrying Service Guide Announcement Information and originating from Service Guide Generation Function and Service Guide Distribution Function (over interface SG-5) or directly from the underlying Broadcast Delivery System.The entry point to a Service Guide Announcement Channel MAY either be a FLUTE session only carrying SGDDs, or a FLUTE session carrying both SGDUs and SGDDs.

The entry point information SHALL consist of:

· (Optionally) IP Source Address

· Fixed Destination Multicast IPAddress: 224.0.23.165 for IPv4 or FF0X:0:0:0:0:0:0:132 for IPv6

· Fixed Destination Port: 4090
· (Optionally) URI of the SessionDescription fragment which describes the FLUTE session(s) that carry the Service Guide or SGDDs

· The terminal SHALL assume that there is at most one FLUTE session per entry point. The value of the Transport Session Identifier to be used for this session is not specified here; any valid value MAY be used.
· The number of ALC/LCT channels in the FLUTE session for Service Guide announcement is fixed to 1.

The above is the minimum set of information needed to initialise the reception of a FLUTE session carrying the Service Guide.

There MAY be mutiple entry points corresponding to multiple Service Guides Announcement Channels on a single Broadcast Channel.

The existence of an entry point to Service Guide delivery over the Broadcast Channel MAY be signalled using signalling native to each Broadcast Distribution System. Thus, to discover the Service Guide on the Broadcast Channel the Terminal SHALL expect the BDS to convey the above information through BDS specific signalling. The detailed guidelines for such signalling in specific Broadcast Distribution Systems are given in the BDS Adaptation Specifications (See [BCAST10-DVBH-IPDC-Adaptation], [BCAST10-MBMS-Adaptation], [BCAST10-BCMCS-Adaptation]).

6.1.2
Service Guide Discovery over Interaction Channel

The entry point to a Service Guide on an Interaction Channel SHALL be the URL of an SessionDescription fragment which describes the file distribution session(s) that carry the Service Guide. These file distribution sessions originate from a Service Guide server implementing Service Guide Generation Function (over interface SG-4) or Service Guide Distribution Function (over interface SG-6). The entry point MAY be either fixed, or provisioned to the terminal (e.g. through Device Management), or provided out-of-band (e.g. a public or private web site).

Within a single BDS, there MAY be a different Service Guide generated for different service coverage areas, requiring a different entry point for each particular service coverage area. It is not in scope of this specification to define how the device learns about the applicable URL.

6.2
Service Guide Transmitted over Interaction Channel
The service guide discovery mechanisms that are specified in this section relate to the discovery of a Service Guide that is to be distributed over Interaction Channel. The Terminal needs to get some discovery information, and sends the request to acquire Service Guide.

The entry point to Service Guide acquisition over Interaction Channel SHALL be a URL which indicates the location of Service Guide. Example of such URL is (http://provider.com/serviceguide) .This is the address that the SG-C in the Terminal accesses in order to get Service Guide data over Interaction Channel as specified in section 5.4.3. There are several possible ways terminal can get the entry point information. The Terminal SHALL support the following two means: the entry point information is provided using the ‘AlternativeAccessURL’ element of SGDD; and; the entry point information is provisioned to the Terminal via Terminal Provisioning function. For the latter case the terminal SHALL support OMA BCAST Management Object parameter ‘/<X>/SGServerAddress/’as specified in [BCAST10-Services]. Further the entry point information MAY be fixed in the Terminal or provided out-of-band by the means not specified in this specification (such as WAP PUSH, SMS, MMS, Web page, user input, etc).

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 33)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20060101-I]

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 33 (of 33)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20060101-I]

_1226314893.ppt

Change in the FDT that is used in the

Service Guide Announcement Channel,

Version portion of the TOI of a

SGDD has changed:

SG-C notices that the Version portion

 of the TOI of a SGDD has changed

 on the Service Guide Announcement channel

OR

Change in the SGDU that is delivered on

Service Guide Delivery Channel:

TOI of SGDD changes

Version increments for Fragment X.

Fragment X encapsulated in SGDU.

Fragment X,

version Y

Fragment X,

version Y+1

TOI of SGDD changes

*)

When ALC is used as

delivery method for SGDD,

Split-TOI scheme is used in

delivery of SGDUs and SGDDs, and terminal

supports Split-TOI

When FLUTE is used as

delivery method for SGDD,

Split-TOI scheme is used in

delivery of SGDUs and SGDDs, and terminal

supports Split-TOI

*) Find the ALC packet transporting SGDU with

 TOI equal changed TOI of changed SGDU.

Change in the SGDD that is delivered on

Service Guide Announcement Channel:

SGDU identifier portion of the TOI of corresponding SGDU is unchanged -> indicating SGDU Version is changed **)

**) If the SG-C is not interested in the corresponding

 SF fragment, it will not need to parse the SGDU

_1226315045.ppt

Change in the FDT that is used in the

Service Guide Announcement Channel,

Version portion of the TOI of a

SGDD has changed ***)

SG-C notices that the Version portion

of the TOI of a SGDD has changed

on the Service Guide Announcement

Channel ***)

OR

Change in the SGDU that is delivered on

Service Guide Delivery Channel:

TOI of SGDD changes

New Fragment Z (version M).

Fragment X encapsulated in SGDU.

TOI of SGDD changes

*)

Presence of brand new

SG Fragment Z

SGDU Version portion of TransportObjectID

of corresponding SGDU is changed or a new SGDU ID is created **)

**) SG-C recognizes presence of new SG fragment,

 and must parse the associated SGDU.

***) In most of cases, a new ESG fragment will not involve a creation of a new SGDD ID, however it's not forbidden

Fragment Z,

version M

When ALC is used as

delivery method for SGDD,

Split-TOI scheme is used in

delivery of SGDUs and SGDDS, and terminal

supports Split-TOI

When FLUTE is used as

delivery method for SGDD,

Split-TOI scheme is used in

delivery of SGDUs and SGDDs,

 and terminal supports Split-TOI

*) Find the ALC packet transporting SGDU with

 TOI equal changed TOI of changed SGDU.

Change in the SGDD that is delivered on

Service Guide Announcement Channel:

_1226314821.ppt

Change in the FDT that is used in the

Service Guide Announcement Channel:

Change in the SGDD that is delivered on

Service Guide Announcement Channel:

SG-C notices that the set of available TOIs

on the Service Guide Announcement

Channel has changed

OR

Change in the SGDU that is delivered on

Service Guide Delivery Channel:

TOI of SGDD changes

TransportObjectId of SGDU changes

Version increments for Fragment X.

Fragment X encapsulated in SGDU.

Fragment X,

version Y

Fragment X,

version Y+1

TOI of SGDD changes

When FLUTE is used as

delivery method for SGDD,

And Split-TOI scheme is not used

In delivery of SGDDs and SGDUs

*) Find the ALC packet transporting SGDU with

 TOI equal changed TOI of changed SGDU.

*)

When ALC is used as

delivery method for SGDD,

and Split-TOI scheme is not used

in delivery of SGDDs and SGDUs

