Doc# [image: image1.jpg]
Change Request

Doc#
Change Request

Change Request

	Title:
	Clerical corrections to XBS
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	OMA BCAST 1.0

	Doc to Change:
	OMA-TS-DRM_XBS-V1_0-20091212-A.doc

	Submission Date:
	23 March 2008

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Ciara Byrne, SafeNet, Ciara.Byrne@nl.safenet –inc.com

	Replaces:
	n/a

1 Reason for Change

This CR makes a number of clerical changes to the XBS specification to correct errors. The following issues are covered:
- 7.2.2.2.1: Bad reference to UDF in 6.1.3.2.2. Reference should be to 5.1

- C.11.1: Length with NILL value (111b) should be specified in Table 52. The value of "111" is described as "reserved for future use", while table 55 mentions it as "NILL".

- Table 26: In the token delivery response message syntax, the end of the MAC protected part is signalled twice. The CR removes the first instance.
2 Impact on Backward Compatibility

none

3 Impact on Other Specifications

none

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

The group is asked to accept the new text as clerical changes.

6 Detailed Change Proposal

Change 1: Bad reference to 6.1.3.2.2
7.2.2.2 device_registration_response() Message

7.2.2.2.1 Description

Using the 1-pass PDR protocol the RI SHALL send a device_registration_response() message with the registration data to the device as specified below:

Table 5: device_registration_response message description

	device_registration_response()

	Parameter name
	(M)andatory / (O)ptional
	remark

	message_tag
	M
	global, not encrypted

	protocol_version
	M
	global, not encrypted

	sign_bcros_flag
	O
	global, not encrypted

	longform_udn()
	M
	global, not encrypted

	status
	M
	device specific, not encrypted

	certificate_version
	M
	global, not encrypted

	ri_certificate_counter
	M
	global, not encrypted

	c_length
	M
	global, not encrypted

	ri_certificate
	M
	global, not encrypted

	ocsp_response_counter
	M
	global, not encrypted

	r_length
	M
	global, not encrypted

	ocsp_response
	M
	global, not encrypted

	local_time_offset_flag
	M
	device specific, not encrypted

	time_stamp_flag
	M
	device specific, not encrypted

	subscriber_group_type
	M
	device specific, not encrypted

	signature_type_flag
	M
	global, not encrypted

	shortform_udn_flag
	M
	device specific, not encrypted

	surplus_block_flag
	M
	device specific, not encrypted

	keyset_block_length
	M
	device specific, not encrypted

	unique_group_key
	O
	device specific, encrypted

	subscriber_group_key
	O
	device specific, encrypted

	unique_device_key
	O
	device specific, encrypted

	unique_device_filter
	M
	device specific, encrypted

	flexible_device_data
	O
	device specific, encrypted

	ri_authentication_key
	M
	device specific, encrypted

	token_delivery_key
	O
	device specific, encrypted

	broadcast_domain_key
	O
	device specific, encrypted

	shortform_domain_id
	O
	device specific, encrypted

	drm_time
	M
	device specific, not encrypted

	local_time_offset
	O
	device specific, not encrypted

	registration_timestamp_start
	O
	device specific, not encrypted

	registration_timestamp_end
	O
	device specific, not encrypted

	shortform_udn
	O
	device specific, not encrypted

	signature_block
	M
	device specific, not encrypted

message_tag: this parameter identifies the type of the message. Refer to Section C.13 for the value of the message_tag.

protocol_version: this parameter indicates the protocol_version of this message. See Section 7.1 for more details.

sign_bcros_flag: this (OPTIONAL) flag is turned ON if the BCROs will be signed. If this flag is present, the reserved_for_use flag is reduced to 3 bits.

longform_udn(): the long form of the UDN. Refer to Section 7.2.1.2.1 for details.

status: the status parameter SHALL indicate one of the values explained in the following table. The device SHALL ignore messages with other error values.

Table 6: Status values

	Status value
	Meaning

	Success
	The registration request was executed successfully and the RI completed all data. The device SHALL process the message.

	UnknownError
	The RI encountered an unknown error after receiving the registration request. The device MAY put forward a subsequent registration request to the RI (context).

	NotSupported
	The RI does not support the registration request.

	AccessDenied
	The RI decided that the device will not be granted access to the service and stops the registration. The RI will stop listening to future registration requests of this device. The device is forced to refrain from future registration and SHALL suppress broadcast and/or mixed-mode registration requests to the particular RI (context).

	NotFound
	The RI decided that the device could not be found (offline UDN and/or UaProf). The device MAY put forward a subsequent registration request to the RI (context).

	MalformedRequest
	The RI decided that the registration request was malformed and will force the device to execute a (re)-registration at once. The device SHALL enter (re)registration mode.

Note: refer to Section 0 for the value of the error codes.

certificate_version: a numerical representation of the version of the RI certificate. See Section 7.1.2 for more details.
ri_certificate_counter: this parameter indicates the depth of the RI certificate chain. See Section 7.1.2 for more details.
c_length: this parameter indicates the length in bytes of the ri_certificate.

ri_certificate(): this parameter SHALL be present. See Section 7.1.2 for more details.
The Device MAY store RI certificate verification data indicating that an RI certificate chain has been verified. The purpose of this is to avoid repeated verification of the same certificate chain. The RI certificate verification data stored in this way SHALL uniquely identify the RI certificate and SHALL be integrity protected. The Device SHOULD check if the RI certificate chain received in this parameter corresponds to the stored certificate verification data for this RI. If so, the Device does not need to verify the RI certificate chain again, otherwise the Device SHALL verify the RI certificate chain.
If an RI certificate is received that is not in the stored certificate verification data for this RI, and if the Device can determine (in the case of Broadcast Devices that support DRM Time) that the expiry time of the received RI certificate is later than the RI Context for this RI, and the certificate status of the RI certificate as indicated in the OCSP response is good (see [OCSP-MP]), then the Device SHALL verify the complete chain and SHOULD replace the stored RI certificate verification data with the received RI certificate data and set the RI context expiry time to that of the received RI certificate expiry time.
However, if the Device does store RI certificate verification data in this way it SHALL store the expiry period of the RI’s certificate (as indicated by the notAfter field within the certificate) and SHALL compare the Device’s current DRM Time with the stored RI certificate expiry time whenever verifying the signature on signed messages from the RI. If the Device’s current DRM Time is after the stored RI certificate expiry time then the Device SHALL abandon processing the RI message and SHALL initiate the registration protocol.

ocsp_response_counter: This parameter indicates the depth of the OCSP response chain. See Section 7.1.2 for more details.r_length: this parameter indicates the length in bytes of the ocsp_response.

ocsp_response(): this parameter, when present, SHALL be a complete set of valid OCSP responses for the RI's certificate chain. See Section 7.1.2 for more details. If no OCSP response is present in the device_registration_response() message, then the Device SHALL abort the registration protocol.

local_time_offset_flag: binary flag to signal presence of the local_time_offset parameter. See Section 7.1.2 for more details.

time_stamp_flag: binary flag to signal presence of both parameter registration_timestamp_start and registration_timestamp_end. See Section 7.1.2 for more details.

subscriber_group_type: This field indicates whether the Device is assigned to a Fixed Subscriber Group of size 256 or 512 Devices, or to a Flexible Subscriber Group. See Table 7 for more details.

Table 7: The meaning of subscriber_group_type

	subscriber_group_type
	Value (h)
	remark

	data absent
	0x0
	will signal absence of keyset_block e.g. on error status to save bandwidth.

	reserved for future use
	0x1-0x7
	not used in this version of the specification

	set of 8 SGKs
	0x8
	indicates a Fixed Subscriber Group size of 256 Devices

	set of 9 SGKs
	0x9
	indicates a Fixed Subscriber Group size of 512 Devices

	reserved for future use
	0xA-0xE
	not used in this version of the specification

	flexible group size, set of FSGKs
	0xF
	indicates a Flexible Subscriber Group size

signature_type_flag: a flag to signal type of signature algorithm used. See Section 7.1.2 for more details.
short_udn_flag: binary flag to signal presence of the shortform_udn field.

	short_udn_flag
	Value (h)
	remark

	data absent
	0x0
	

	data present
	0x1
	

surplus_block_flag: Binary flag to signal the presence of the surplus_block field.

	surplus_block_flag
	Value (h)
	remark

	data absent
	0x0
	

	data present
	0x1
	

keyset_block_length: this parameter indicates the length in bits of the total keyset_block. That is the part in the sessionkey_block() plus the optional second part from the surplus_block().
unique_group_key: an symmetric AES encryption key to address a unique group. This key is also known as UGK. The key length SHALL be 128 bit.

Note: This key is wrapped into the keyset_block. (Refer to 7.2.2.2.3).

subscriber_group_key: a set of AES symmetric encryption keys used for the deduction of the zero message Subscriber Group key (DEK), which is needed to decrypt the SEK and/or PEK. These keys are also known as Subscriber Group Keys (SGKs). The key length SHALL be 128 bit.

Note: this field is only present in the case of assignment of the Device to a fixed Subscriber Group of size 256 or 512 Devices. It is then wrapped into the keyset_block. (Refer to 7.2.2.2.3).

flexible_subscriber_group_key: a set of AES symmetric encryption keys used for the deduction of the zero message Subscriber Group key (DEK), which is needed to decrypt the SEK and/or PEK. These keys are also known as Flexibe Subscriber Group Keys (FSGKs). The key length SHALL be 128 bit.

Note: this field is only used in the case that a device is assigned to a Flexible Subscriber Group. When the field is present, it is wrapped into the keyset_block.(Refer to 7.2.2.2.3).

unique_device_key: An AES symmetric key to address a unique device. This key is also known as UDK. The key length SHALL be 128 bit.

Note: This key is wrapped into the keyset_block. (Refer to 7.2.2.2.3).

unique_device_filter: This 40-bit address is used as a unique identifier of the device for a specific RI (each RI has its own address space). The Unique Device Filter is also known as UDF. This address is wrapped into the keyset_block. (Refer to 5.1).

In case of Fixed Suscriber Group addressing, the following applies. In the case of a group size of 256 devices, the first 32 bits contain the fixed_group_address field, whilst the last 8 bits contain the fixed_position_in_group field. In the case of 512 devices, the first 31 bits contain the fixed_group_address field whilst the last 9 bits contain the fixed_position_in_group field.

In the case of Flexible Subscriber Group addressing, this field contains a 40-bit unique address.

Note: An RI can decide to use both Flexible Subscriber Groups and Fixed Subscriber Groups. In this case the RI has to take care that the Group Address of a Fixed Subscriber Group does not equal the first 31 or 32 bits of a UDF of a device in a Flexible Subscriber Group. To ensure this it is recommended that if the RI supports both Subcriber Group types, the MSB of the UDF indicates whether the Device is assigned to a Flexible Subscriber Group or to a Fixed Subscriber Group.

flexible_group_address: the address of the Subscriber Group in the case that the Device was assigned to a Flexible Subscriber Group.

Note: this field is only present in the case that the device is assigned to a Flexible Subscriber Group. It is then wrapped in the flexible_device_data structure in the keyset_block. (Refer to 7.2.2.2.3 and C.11).

flexible_position_in_group: the position of the Device in its Flexible Subscriber Group.

Note: this field is only present in the case that the device is assigned to a Flexible Subscriber Group. It is then wrapped in the flexible_device_data structure in the keyset_block. (Refer to 7.2.2.2.3 and C.11).

flexible_group_size_indicator: this 5-bit field indicates the size of the Flexible Subscriber Group. When flexible_group_size_indicator contains a value k, the Subscriber Group has a size of 2k devices.

Note: this field is only present in the case that the device is assigned to a Flexible Subscriber Group. It is then wrapped in the flexible_device_data structure in the keyset_block (Refer to 7.2.2.2.3 and C.11).

ri_authentication_key: an AES symmetric key to verify MACs on BCRO and KSM messages. This key is also known as RIAK. The key length SHALL be 128 bit.

Note: This key is wrapped into the keyset_block. (Refer to 7.2.2.2.3).

token_delivery_key: this is the Token Delivery Key (TDK), which is used in Section 7.6.4.
Note: This key is wrapped into the keyset_block (Refer to 7.2.2.2.3).
broadcast_domain_key: an AES symmetric key to address a broadcast domain. This key is also known as BDK. The key length SHALL be 128 bit.

Note: This key is wrapped into the keyset_block. (Refer to 7.2.2.2.3).
longform_domain_id(): this parameter is also known as the Longform Broadcast Domain Filter (LBDF). Please refer to Section C.11.2 for the definition. The longform_domain_id() is used for mixed-mode operation. Note: This address is wrapped into the keyset_block. (Refer to 7.2.2.2.3).
shortform_domain_id: this parameter is also known as the Shortform Broadcast Domain Filter (SBDF). Please refer to 7.2.2.2.3. An addressing scheme used to filter messages like BCROs. The shortform_domain_id is used for broadcast mode of operation.

Note: This address is wrapped into the keyset_block. (Refer to 7.2.2.2.3).
drm_time: this parameter defines the time in Universal Time Coordinated (UTC). See Section 7.1.2 for more details.
local_time_offset: this parameter indicates the local time offset from the (UTC) drm_time as explained in Annex C.8.2.

registration_timestamp_start: indicates from what time onwards the registration data is valid. This is an extra mechanism above the expiration date of the RI certificate. (Note: please note that this parameter can also be used against replay attacks.)

registration_timestamp_end: indicates from what time onwards the registration data is expires. This is an extra mechanism above the expiration date of the RI certificate. (Note: please note that this parameter can also be used against replay attacks.)

shortform_udn: this parameter allows the RI to give an own defined short number identifying the device. This number can be used as a shorter alternative to the UDN during offline notifications. The shortform_udn is coded in BCD format.

signature_block: the signature SHALL enable a single source authenticity check on the message. See Section 7.1.2 for more details.

Change 2: Add NILL value to Table 52
Table 52: Defined length values

	(key)length prescriber
	Length (b)
	remark

	128 bit AES
	000
	

	192 bit AES
	001
	

	256 bit AES
	010
	

	5 byte Eurocrypt
	011
	

	6 byte
	100
	SBDF

	reserved for future use
	101-110
	not used in this version of the specification

	NILL value
	111
	Used in TAA_descriptor as the actual length is specified by the clarifier

Change 3: Remove duplicate Mac end comment in Table 26
Table 26: Token delivery response message syntax

	fields
	length
	type

	token_delivery_response(){
	
	

	
/* MAC protected part starts here */

/* signature protected part starts here */
	
	

	
message_tag
	8
	bslbf

	
protocol_version
	4
	bslbf

	
message_length
	12
	uimsbf

	
group_size_flag
	1
	bslbf

	
sign_token_delivery_flag
	1
	bslbf

	
reserved for future use
	2
	bslbf

	
address_mode
	3
	uimsbf

	
one
	1
	bslbf

	
udf
	40
	uimsbf

	
rights_issuer_id()
	160
	bslbf

	
status
	8
	bslbf

	
message_seq_number
	4
	bslbf

	
flags {
	
	

	

response_flag
	1
	bslbf

	

token_reporting_flag
	1
	bslbf

	

earliest_reporting_time_flag
	1
	bslbf

	

latest_reporting_time_flag
	1
	bslbf

	

token_quantity_flag
	1
	bslbf

	

signature_type_flag
	1
	bslbf

	

reserved for future use
	6
	bslbf

	
}
	
	

	
token_delivery_response_id
	96
	bslbf

	
if(token_reporting_flag == 0x1) {
	
	

	

latest_token_consumption_time
	40
	mjdutc

	

if (earliest_reporting_time_flag == 0x1) {
	
	

	

earliest_reporting_time
	40
	mjdutc

	

}
	
	

	

if (latest_reporting_time_flag == 0x1) {
	
	

	

latest_reporting_time
	40
	mjdutc

	

}
	
	

	
}
	
	

	
/* encrypted part starts here
	
	

	
if(token_quantity_flag == 1){
	
	

	

encrypted_token_quantity
	32
	bslbf

	
}
	
	

	
encrypted_report_authentication_key
	128
	bslbf

	
/* encrypted part ends here */

/* signature protected part ends here */
	
	

	
	
	

	
if(sign_token_delivery_flag == 1) {
	
	

	

if(signature_type_flag == 0x0) {
	
	

	

signature_block
	1024
	bslbf

	

} else if(signature_type_flag == 0x1) {
	
	

	

signature_block
	2048
	bslbf

	

} else if(signature_type_flag == 0x2) {
	
	

	

signature_block
	4096
	bslbf

	

}
	
	

	
}
	
	

	
/* MAC protected part ends here */
	
	

	
MAC
	96
	bslbf

	}
	
	

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 8)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20060101-I]

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 8)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20060101-I]

