OMA-TS-REST_NetAPI_Push-V1_0-20120220-D
Page 52 V(64)

	[image: image1.jpg]«“+OMa

Open Mobile Alliance

	

	RESTful Network API for OMA Push

	Draft Version 1.0 – 20 Feb 2012

	Open Mobile Alliance

	OMA-TS-REST_NetAPI_Push-V1_0-20120220-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2012 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

3Contents

4Figures

5Tables

61.
Scope

72.
References

72.1
Normative References

82.2
Informative References

93.
Terminology and Conventions

93.1
Conventions

93.2
Definitions

93.3
Abbreviations

114.
Introduction

114.1
Version 1.0

125.
Push API definition

145.1
Resources Summary

145.1.1
Base URI

175.2
Data Types

175.2.1
XML Namespaces

175.2.2
Structures

245.2.3
Enumerations

265.2.4
Values of the Link “rel” attribute

265.3
Sequence Diagrams

265.3.1
Push message submission and status query

275.3.2
Push message submission and result notification

285.3.3
Push message submission and replacement using same pushId

295.3.4
Push message submission and replacement using new pushId

315.3.5
Push message submission and cancellation

325.3.6
Push message submission and partial cancellation

335.3.7
Query client capabilities

346.
Detailed specification of the resources

346.1
Resource: Push messages

346.1.1
Request URI variables

346.1.2
Response Codes and Error Handling

346.1.3
GET

346.1.4
POST

346.1.5
PUT

376.1.6
DELETE

386.2
Resource: Push message delivery status

386.2.1
Request URI variables

396.2.2
Response Codes and Error Handling

396.2.3
GET

416.2.4
POST

416.2.5
PUT

416.2.6
DELETE

416.3
Resource: Partial Push message cancellation

416.3.1
Request URI variables

426.3.2
Response Codes and Error Handling

426.3.3
GET

426.3.4
POST

436.3.5
PUT

436.3.6
DELETE

446.4
Resource: Query client capabilities

446.4.1
Request URI variables

446.4.2
Response Codes and Error Handling

446.4.3
GET

466.4.4
POST

466.4.5
PUT

466.4.6
DELETE

466.5
Resource: PI notification about Push message delivery status

466.5.1
Request URI variables

476.5.2
Response Codes and Error Handling

476.5.3
GET

476.5.4
PUT

476.5.5
POST

486.5.6
DELETE

497.
PAP status code mapping to HTTP status codes

51Appendix A.
Change History (Informative)

51A.1
Approved Version History

51A.2
Draft/Candidate Version 1.0 History

53Appendix B.
Static Conformance Requirements (Normative)

53B.1
SCR for REST.Push Server

53B.1.1
SCR for REST.Push.PushMessage Server

53B.1.2
SCR for REST.Push.StatusQuery Server

53B.1.3
SCR for REST.Push.PartialCancellation Server

53B.1.4
SCR for REST.Push.CapQuery Server

54B.1.5
SCR for REST.Push.ResultNotification Server

55Appendix C.
JSON examples (Informative)

55C.1
Creation of a new Push message (section 6.1.5.1)

56C.2
Replacement of an existing Push message (section 6.1.5.2)

57C.3
Syntax error (section 6.1.5.3)

58C.4
Cancellation of a Push message (section 6.1.6.1)

58C.5
Retrieval of the status of a Push message (section 6.2.3.1)

59C.6
Retrieval of the status of a Push message for a dedicated address (section 6.2.3.2)

60C.7
Request with invalid pushId (section 6.2.3.3)

60C.8
Successful partial cancellation (section 6.3.4.1)

61C.9
Unsuccessful partial cancellation (section 6.3.4.2)

62C.10
Successful capability query (section 6.4.3.1)

63C.11
Request with invalid client address (section 6.4.3.2)

63C.12
PI notification about the outcome of a Push message (section 6.5.5.1)

Figures

14Figure 1 Resource structure defined by this specification

27Figure 2: Push message submission and status check

28Figure 3: Push message submission and result notification

29Figure 4: Push message submission and replacement using same pushId

30Figure 5: Push message submission and replacement using new pushId

31Figure 6: Push message submission and cancellation

32Figure 7: Push message submission and partial cancellation

33Figure 8: Query client capabilities by Push Initiator

Tables

15Table 1 Overview of Resources for Creating, Status Query, and Cancellation of Push Messages

15Table 2 Overview of Resources for Delivery Status Notifications

16Table 3 Overview of Resources for Client Capability Query

17Table 4 Type: push-message-type

18Table 5 Type: push-response-type

18Table 6 Type: address-type

19Table 7 Type: quality-of-service-type

19Table 8 Type: progress-note-type

20Table 9 Type: response-result-type

20Table 10 Type: cancel-message-type

20Table 11 Type: cancel-response-type

21Table 12 Type: cancel-result-type

21Table 13 Type: statusquery-response-type

21Table 14 Type: statusquery-result-type

22Table 15 Type: resultnotification-message-type

23Table 16 Type: resultnotification-response-type

23Table 17 Type: ccq-response-type

24Table 18 Type: badmessage-response-type

24Table 19 Enumeration: priority-type

24Table 20 Enumeration: delivery-method-type

25Table 21 Enumeration: replace-method-type

25Table 22 Type: network-type

25Table 23 Type: bearer-type

34Table 24 Push messages request URI variables

38Table 25 Push message delivery status request URI variables

39Table 26 Push message status request URI variables

41Table 27 Partial Push message cancellation request URI variables

44Table 28 Client Capability Query request URI variables

49Table 29 PAP Status Codes Mapped to HTTP Status Codes

1. Scope

This specification defines a RESTful API using HTTP protocol bindings, based upon the OMA Push Access Protocol (PAP). The RESTful Network API for Push is based upon PAP as defined in the OMA Push [Push2.3] enabler release.

2. References

2.1 Normative References

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC2387]
	"The MIME Multipart/Related Content-type", E. Levinson, August 1998, URL: http://www.ietf.org/rfc/rfc2387.txt

	[RFC2396]
	“Uniform Resource Identifiers (URI): Generic Syntax”, T. Berners-Lee et al. August 1998. URL: http://www.ietf.org/rfc/rfc2396.txt

	[RFC2616]
	“Hypertext Transfer Protocol -- HTTP/1.1”, R. Fielding et. al, January 1999, URL:http://www.ietf.org/rfc/rfc2616.txt

	[RFC3986]
	“Uniform Resource Identifier (URI): Generic Syntax”, R. Fielding et. al, January 2005, URL:http://www.ietf.org/rfc/rfc3986.txt

	[RFC4627]
	“The application/json Media Type for JavaScript Object Notation (JSON)”, D. Crockford, July 2006, URL:http://www.ietf.org/rfc/rfc4627.txt

	[SCRRULES]
	“SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-SCR_Rules_and_Procedures, URL:http://www.openmobilealliance.org/

	[XMLSchema1]
	W3C Recommendation, XML Schema Part 1: Structures Second Edition, URL: http://www.w3.org/TR/xmlschema-1/

	[XMLSchema2]
	W3C Recommendation, XML Schema Part 2: Datatypes Second Edition, URL: http://www.w3.org/TR/xmlschema-2/

	[PPGService]
	"Push Proxy Gateway Service Specification". Open Mobile Alliance™. OMA-TS-PPGService-V2_3. URL:http://www.openmobilealliance.org/

	[PAP]
	"Push Access Protocol Specification". Open Mobile Alliance™. OMA-WAP-TS-PAP-V2_3 URL:http://www.openmobilealliance.org/

	[REST_TS_Common]
	“Common definitions for OMA RESTful Network APIs”, Open Mobile Alliance™, OMA-TS-REST_NetAPI_Common-V1_0, URL:http://www.openmobilealliance.org/

	[SUP_Common]
	"XML schema for Common definitions for RESTful Network APIs". Open Mobile Alliance™. OMA-SUP-XSD_rest_netapi_common-V1_0. URL: http://www.openmobilealliance.org/

	[SUP_NetAPI_Push]
	"XML schema for the RESTful Network API for OMA Push - Push Access Protocol". Open Mobile Alliance™. OMA-SUP-XSD_rest_push-V1_0. URL: http://www.openmobilealliance.org/

	[WDP]
	"Wireless Datagram Protocol". WAP Forum™, WAP-259-WDP. URL: http://www.openmobilealliance.org/

2.2 Informative References

	 [OMADICT]
	“Dictionary for OMA Specifications”, Version 2.8, Open Mobile Alliance™,
OMA-ORG-Dictionary-V2_8, URL:http://www.openmobilealliance.org/

	[EMN]
	"Email Notification" Version 1.0. OMA-Push-EMN-V1_0, Open Mobile Alliance(.
URL: http://www.openmobilealliance.org/

	[EMNEnabler]
	"Enabler Release Definition Email Notification" Version 1.0. OMA-ERELD-EMN-V1_0, Open Mobile Alliance(. URL: http://www.openmobilealliance.org/

	[OMNA]
	"OMA Naming Authority". Open Mobile Alliance(.
URL: http://www.openmobilealliance.org/OMNA.aspx

	[PushArch]
	"Push Architectural Overview". Open Mobile Alliance(. OMA-AD-Push-V2_3 URL:http://www.openmobilealliance.org/

	[Push2.3]
	“Enabler Release Definition for Push Version 2.3”, Open Mobile Alliance(. OMA-ERELD-Push-V2_3. URL: http://www.openmobilealliance.org/

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

	Application
	Use definition from [PAP].

	Base URI
	An HTTP URI as described in [RFC2616] which specifies REST resources relating to a service of the RESTful Network API for OMA Push.

	Client
	Use definition from [PAP].

	Domain
	Use definition from [OMADICT].

	Enabler
	Use definition from [OMADICT].

	Push Initiator
	Use definition from [PAP].

	Push Proxy Gateway
	Use definition from [PAP].

	Resource
	Use definition from [RFC2616].

	QoS (Quality of Service)
	Use definition from [OMADICT].

	Uniform Resource Identifier
	Use definition from [OMADICT].

3.3
Abbreviations

	API
	Application Programming Interface

	AS
	Application Server

	CDMA
	Code Division Multiple Access

	GSM
	Global System for Mobile Telecommunication

	HTTP
	HyperText Transfer Protocol

	JSON
	JavaScript Object Notation

	LTE
	Long Term Evolution

	MIME
	Multipurpose Internet Mail Extensions

	OMA
	Open Mobile Alliance

	PAP
	Push Access Protocol

	PI
	Push Initiator

	PPG
	Push Proxy Gateway

	REST
	REpresentational State Transfer

	SCR
	Static Conformance Requirements

	SIP
	Session Initiation Protocol

	SMS
	Short Message Service

	TS
	Technical Specification

	UE
	User Equipment

	UMTS
	Universal system for Mobile Telecommunication

	URI
	Uniform Resource Identifier

	URL
	Uniform Resource Locator

	WAP
	Wireless Application Protocol

	WiMAX
	Worldwide Interoperability for Microwave Access

	WLAN
	Wireless Local Area Network

	WWAN
	Wireless Wide Area Network

	WP
	White Paper

	XML
	eXtensible Markup Language

	XSD
	XML Schema Definition

4. Introduction

The Technical Specification of the RESTful Network API for OMA Push contains HTTP protocol bindings for the OMA Push Access Protocol [PAP], using the REST architectural style. The binding has been designed in a way that maximizes PAP re-use, at the same time applying RESTful principles as much as possible under the premise of re-use.

The specification provides resource definitions, the HTTP verbs applicable for each of these resources, and the element data structures, as well as support material including flow diagrams and examples using the various supported message body formats. The goal of the RESTful Network API for OMA Push is to provide a simple, easy to use, uniform interface between a Push Initiator, and Push Proxy Gateway; whether the PI is realized on a UE, or an AS.

4.1 Version 1.0

Version 1.0 of this specification supports the following operations.

The Push Initiator (PI) is able to initiate the following operations to the Push Proxy Gateway (PPG):

· Push Submission

· Push Submission with Replace

· Push Cancellation

· Status Query

· Client Capabilities Query

The PPG is able to initiate the following message to the PI:

· Result Notification

5. Push API definition

This section is organized to support a comprehensive understanding of the Push API design. It specifies the entire domain of the Push Network API, including:

· all resources

· data structures

· methods permitted on the specified resources.

The following aspects are based upon the definitions in [REST_TS_Common]:

· Error handling: per “5.2 Unsupported Formats”

· Naming conventions: per “5.3 Authoring Style”, with the exception that the names of XML elements and attributes originating from [PAP] are used in their original spelling

· Content type negotiation: per section “5.4 Content type negotiation” in case both JSON and XML are supported, however the statement “e” regarding the format of notifications does not apply.

· Resource creation: per “5.5 Resource creation”

· JSON message body formatting: per “5.6 JSON encoding in HTTP Requests/Responses”

The remainder of this document is structured as follows:

Section 5 begins with a table listing all PushREST API resources, the corresponding resource URIs and data structures Supported HTTP verbs are as defined in section 5.1 “Resources Summary”. In addition, for each supported PushREST resource/verb combination, the table lists the equivalent PAP operation (i.e. where applicable). What follows are the data structures (section 5.2). A sample of typical use cases utilizing flow diagrams are defined in section 5.3 “Sequence Diagrams”, described as high level flow diagrams.

Section 6 contains the detailed specification for each of the resources. Each subsection defines the resource, the request URI variables that are common for all HTTP commands, the possible HTTP response codes, and the supported HTTP verbs. For each supported HTTP verb, a description of the functionality is provided, along with an example of a request and an example of a response. For each unsupported HTTP verb, the returned HTTP error status is specified, as well as what should be returned in the Allow header.

All examples in section 6 use XML as the format for the message body. JSON examples are provided in Appendix C. Appendix B provides the Static Conformance Requirements (SCR).

Note that the Push Network API re-uses the data structures from the Push Access Protocol [PAP] as far as possible, and provides a mapping from the PAP operations to the RESTful style which minimizes the need for additional storage of status information. Note further that the “push-id” attribute from PAP is included as “pushId” in the resource URL, rather than in the data structures.
Note further that PAP wraps every data structure with a “<pap>” XML element that is not used in the Push Network API, because it is seen easier for the developers to directly access the data structures representing the individual REST resources. As a consequence of omitting the wrapper, also the “product-name” attribute from PAP is not supported in the Push Network API. This attribute was introduced in the early stages of PAP to fix interoperability glitches between implementations; however, it is no longer needed in today’s mature standardized environment.
Reserved characters in URL variables (parts of a URL denoted below by a name in curly brackets) MUST be percent-encoded according to [RFC3986]. Note that this always applies, no matter whether the URL is used as a Request URL or inside the representation of a resource (such as in “resourceURL” and “link” elements).
For requests and responses that have a body, the following applies: the PPG SHALL support XML and MAY support JSON as encoding formats of the parameters in the body. In case the PPG supports both formats:

· In the response body, it SHALL return either JSON or XML encoded parameters in the response body, according to the result of the content type negotiation as specified in [REST_TS_Common].
· In notifications to the PI, the PPG SHALL use either XML or JSON encoding, depending on which format the PI has used in the related request that created the subscription.

5.1 Resources Summary

This section summarizes all the resources used by the Push API.
The "apiVersion" URL variable SHALL have the value "v1" to indicate that the API corresponds to this version of the specification. See [REST_NetAPI_Common] which specifies the semantics of this variable.

The figure below illustrates the resource structure defined by this specification. Note that those nodes in the resource tree which have associated HTTP methods defined in this specification are depicted by solid boxes.
 SHAPE * MERGEFORMAT

Figure 1 Resource structure defined by this specification

5.1.1 Base URI

The Push Network API SHALL utilize the following Base URI – “http://{serverRoot}/push/{apiVersion}” whereby:

· serverRoot – a part of an HTTP URI as specified in [RFC2616] Section “Uniform Resource Identifiers” which identifies a Push API service (an authority – (host and port) plus optional base path), as assigned by the Push API service provider; and

· apiVersion – a constant string which specifies a Push API version, in this version set to “v1”, which supports the features of the PAP interface as of [Push2.3].

Note: adding support for the Push Network API does neither impact nor require support for the PAP interface (either Push 2.3 or earlier versions) by either PI or PPG. The Push Network API is a new, supplemental method of accessing the same services available in Push 2.3 or earlier versions of the OMA Push enabler.

The following tables give a detailed overview of the resources defined in this specification, the data type of their representation and the allowed HTTP methods. The “PAP” row indicates the PAP equivalent operation.

Purpose: Sending Push Message, replacing Push Message, obtaining the delivery status, and cancelling the message

Table 1 Overview of Resources for Creating, Status Query, and Cancellation of Push Messages

	Resource
	URL
Base URL:

http://{serverRoot}/push/{apiVersion}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Push messages
	/{initiatorAddress}/pushMessages/{pushId}
	push-message
(used in MIME multipart body for PUT request)

push-response
(used in PUT response)

cancel-response
(used DELETE response)

	no
	Create new Push message, or replace a Push message
	no
	Cancel the whole Push message

	
	
	
	
	PAP: push-message
	
	PAP: cancel-message

	Push message status
	/{initiatorAddress}/pushMessages/{pushId}/status

	statusquery-response
(used in GET response)

	Query the status of the Push message
	no
	no
	no

	
	
	
	PAP: statusquery-message
	
	
	

	Partial Push message cancellation

	/{initiatorAddress}/pushMessages/{pushId}/cancel

	cancel-message
(used in POST request)

cancel-response
(used in POST response)
	no

	no
	Cancel the Push message for some addresses
	no

	
	
	
	
	
	PAP: cancel-message
	

Purpose: Callback notifications for Push Message delivery status
Table 2 Overview of Resources for Delivery Status Notifications

	Resource
	URL
<specified by the PI>
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	PI notification about Push message delivery status
	<specified by the PI when Push message is created or updated>
	resultnotification-response
	no
	no
	Notify PI of Push message result
	no

	
	
	
	
	
	PAP: resultnotification-response
	

Purpose: Query client capabilities

Table 3 Overview of Resources for Client Capability Query

	Resource
	URL
Base URL:

http://{serverRoot}//push{apiVersion}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Client capabilities
	/clientCapabilities/{address}
	ccq-response (used in GET response)
	Query client capabilities
	no
	no
	no

	
	
	
	PAP: ccq-message
	
	
	

5.2 Data Types

5.2.1 XML Namespaces
The namespace for the data types in the Push Network API is:

urn:oma:xml:rest:netapi:push:1

The 'xsd' namespace is used in the present document to refer to the XML Schema data types defined in XML Schema [XMLSchema1, XMLSchema2]. The 'common' namespace is used in the present document to refer to the data types defined in [REST_TS_Common] and [SUP_Common]. The use of the names 'xsd' and ‘common’ is not semantically significant.

The XML schema for the data structures defined in the section below are given in [SUP_NetAPI_Push].

5.2.2 Structures

The subsections of this section define the data structures used in the Push Network API.

Some of the structures can be instantiated as so-called root elements.

5.2.2.1 Type: push-message-type

This data type represents the control entity of a Push message. It is inherited from [PAP].

Note that the following attributes from [PAP] are not instantiated in the Push Network API:
· “push-id”, as it is part of the resourceURL

Further note that replace-push-id from PAP maps in the Push Network API to a URL pointing to the resource representing the original push message.
Table 4 Type: push-message-type

	Element/Attribute
	Type
	XML
	Optional
	Description

	address
	address-type [1..unbounded]
	E
	No
	Target address(es).

	quality-of-service
	quality-of-service-type
	E
	Yes
	Delivery qualities desired by the PI.

	replace-push-message
	xsd:anyURI
	A
	Yes
	This attribute contains a URL pointing to the resource which represents the Push message to be replaced. It has the same purpose as the replace-push-id attribute defined in [PAP].

	replace-method
	xsd:string
	A
	Yes
	See [PAP].

	deliver-before-timestamp
	xsd:datetime
	A
	Yes
	See [PAP].

	deliver-after-timestamp
	xsd:datetime
	A
	Yes
	See [PAP].

	source-reference
	xsd:string
	A
	Yes
	See [PAP].

	ppg-notify-requested-to
	xsd:anyURI
	A
	Yes
	See [PAP].

The entity body format of resultnotification messages (see section 5.2.2.12) related to this push message SHALL be the same as the entity body format of the related push-response message, i.e. either application/xml or application/json.

	progress-notes-requested
	xsd:boolean
	A
	Yes
	See [PAP].

The format of the Push message entity in a PUT request is a MIME multipart/related [RFC2387] compound object that includes the control entity which is an XML element named “push-message” of type “push-message-type”, the content to be pushed, and an OPTIONAL capabilities entity [PAP].
5.2.2.2 Type: push-response-type

This data type represents the response of creating or updating a Push message. It is inherited from [PAP].

Note that the following attributes from [PAP] are not instantiated in the Push Network API:

· “push-id”, as it is part of the resourceURL

Table 5 Type: push-response-type

	Element/Attribute
	Type
	XML
	Optional
	Description

	progress-note
	progress-note-type [0..unbounded]
	E
	Yes
	See [PAP].

	response-result
	response-result-type
	E
	No
	See [PAP].

	resourceURL
	xsd:anyURI
	E
	No
	Link to the resource representing the Push message.

	sender-address
	xsd:string
	A
	Yes
	This OPTIONAL field contains the same data as the resourceURL and is included here for backwards-compatibility reasons. Implementations MAY therefore omit it.

See also [PAP].

	sender-name
	xsd:string
	A
	Yes
	See [PAP].

	reply-time
	xsd:datetime
	A
	Yes
	See [PAP].

An XML root element named “push-response” of type “push-response-type” is allowed in response bodies.

5.2.2.3 Type: address-type
This data type represents an address. Its structure is inherited from [PAP].

Table 6 Type: address-type

	Element/Attribute
	Type
	XML
	Optional
	Description

	address-value
	xsd:string
	A
	No
	The target device address for use by the PPG, formatted per [PPGService].

5.2.2.4 Type: quality-of-service-type
This data type represents a set of quality-of-service parameters. Its structure is inherited from [PAP].

Table 7 Type: quality-of-service-type

	Element/Attribute
	Type
	XML
	Optional
	Description

	priority
	priority-type
	A
	Yes
	See [PAP].

	delivery-method
	delivery-method-type
	A
	Yes
	See [PAP].

	network
	network-type
	A
	Yes
	Adapted from [PAP].

The value MAY be one of the values defined by the network-type enumeration, or unspecified values for other network types as possibly supported in the future.

Omitting this attribute in a request from the PI to the PPG means that the PPG can freely choose the network.

	network-required
	xsd:boolean
	A
	Yes
	See [PAP].

	bearer
	bearer-type
	A
	Yes
	Adapted from [PAP].

The value MAY be one of the values defined by the bearer-type enumeration, or unspecified values for other bearer types as possibly supported in the future.

Omitting this attribute in a request from the PI to the PPG means that the PPG can freely choose the bearer.

	bearer-required
	xsd:boolean
	A
	Yes
	See [PAP].

5.2.2.5 Type: progress-note-type

This type defines a progress note parameters. Its structure is inherited from [PAP].

Table 8 Type: progress-note-type

	Element/Attribute
	Type
	XML
	Optional
	Description

	stage
	xsd:string
	A
	No
	See [PAP].

	note
	xsd:string
	A
	Yes
	See [PAP].

	time
	xsd:dateTime
	A
	Yes
	See [PAP].

5.2.2.6 Type: response-result-type

This type defines a response result. Its structure is inherited from [PAP].

Table 9 Type: response-result-type

	Element/Attribute
	Type
	XML
	Optional
	Description

	code
	xsd:string
	A
	No
	See [PAP].

	desc
	xsd:string
	A
	Yes
	See [PAP].

5.2.2.7 Type: cancel-message-type

This data type represents the parameters to be submitted to cancel a Push message. It is inherited from [PAP].
Note that the following attributes from [PAP] are not instantiated in the Push Network API:

· “push-id”, as it is part of the resourceURL.

Table 10 Type: cancel-message-type

	Element/Attribute
	Type
	XML
	Optional
	Description

	address
	address-type [0..unbounded]
	E
	Yes
	See [PAP]. Omitting this element implies cancelling the Push message for all addresses.

An XML root element named “cancel-message” of type “cancel-message-type” is allowed in HTTP request entity bodies.

5.2.2.8 Type: cancel-response-type

This data type represents the response of cancelling a Push message. It is inherited from [PAP].
Note that the following attributes from [PAP] are not instantiated in the Push Network API:

· “push-id”, as it is part of the resourceURL

Table 11 Type: cancel-response-type

	Element/Attribute
	Type
	XML
	Optional
	Description

	cancel-result
	cancel-result-type [1..unbounded]
	E
	No
	See [PAP].

	resourceURL
	xsd:anyURI
	E
	No
	Link to the resource representing the Push message that has been cancelled.

An XML root element named “cancel-response” of type “cancel-response-type” is allowed in response bodies.

5.2.2.9 Type: cancel-result-type

This data type represents the result of cancelling a Push message for a set of addresses. Its structure is inherited from [PAP].

Table 12 Type: cancel-result-type

	Element/Attribute
	Type
	XML
	Optional
	Description

	address
	address-type [0..unbounded]
	E
	Yes
	See [PAP]. Omitting this element implies all addresses of this particular Push message.

	code
	xsd:string
	A
	No
	See [PAP].

	desc
	xsd:string
	A
	Yes
	See [PAP].

5.2.2.10 Type: statusquery-response-type

This data type represents the current status of a Push message. It is inherited from [PAP].
Note that the following attributes from [PAP] are not instantiated in the Push Network API:

· “push-id”, as it is part of the resourceURL

Table 13 Type: statusquery-response-type

	Element/Attribute
	Type
	XML
	Optional
	Description

	statusquery-result
	statusquery-result-type [1..unbounded]
	E
	No
	See [PAP].

	resourceURL
	xsd:anyURI
	E
	No
	Link to the resource representing the status of the Push message.

An XML root element named “statusquery-response” of type “statusquery-response-type” is allowed in response bodies.

5.2.2.11 Type: statusquery-result-type

This data type represents the current status of a Push message for a set of addresses. Its structure is inherited from [PAP].

Table 14 Type: statusquery-result-type

	Element/Attribute
	Type
	XML
	Optional
	Description

	address
	address-type [0..unbounded]
	E
	Yes
	See [PAP]. Omitting this element implies all addresses of this particular Push message.

	quality-of-service
	quality-of-service-type
	E
	Yes
	See [PAP].

	event-time
	xsd:dateTime
	A
	Yes
	See [PAP].

	message-state
	State
	A
	No
	See [PAP].

	code
	xsd:string
	A
	No
	See [PAP].

	desc
	xsd:string
	A
	Yes
	See [PAP].

5.2.2.12 Type: resultnotification-message-type

This data type is used in notifications from the PPG to the PI to specify the outcome of a submitted message for a specific recipient after the final result is known. It is inherited from [PAP].
Note that the following attributes from [PAP] are not instantiated in the Push Network API:

· “push-id”, as it is part of the resource URL in the link element.

Table 15 Type: resultnotification-message-type

	Element/Attribute
	Type
	XML
	Optional
	Description

	address
	address-type
	E
	No
	See [PAP].

	link
	common:Link
	E
	No
	Link to the Push message resource to which the notification relates. See [REST_TS_Common]. Valid values for the “rel” attribute are defined in section 5.2.4.

	quality-of-service
	quality-of-service-type
	E
	Yes
	See [PAP].

	successful-recipients
	address-type
	E
	Yes
	See [PAP]. Introduced in PAP 2.3.

	unsuccessful-recipients
	address-type
	E
	Yes
	See [PAP]. Introduced in PAP 2.3.

	sender-address
	xsd:string
	A
	Yes
	This OPTIONAL field contains the same data as the href attribute of the link element and is included here for backwards-compatibility reasons. Implementations MAY therefore omit it.

See also [PAP].

	sender-name
	xsd:string
	A
	Yes
	See [PAP].

	received-time
	xsd:dateTime
	A
	Yes
	See [PAP].

	event-time
	xsd:dateTime
	A
	Yes
	See [PAP].

	message-state
	State
	A
	No
	See [PAP].

	code
	xsd:string
	A
	No
	See [PAP].

	desc
	xsd:string
	A
	Yes
	See [PAP].

An XML root element named “resultnotification-message” of type “resultnotification-message-type” is allowed in notification HTTP request entity bodies.
A PI needs to be prepared that not all PPGs support the elements introduced in PAP 2.3, and therefore SHOULD NOT rely on them.
If the “delivery-method” attribute was set to "confirmed-with-response" in the corresponding Push message's “quality-of-service” element, and the PPG received content from the terminal, the “resultnotification-message” and the content are sent together in a multipart/related entity body. Otherwise, the “resultnotification-message” is sent as a plain application/xml entity body.

5.2.2.13 Type: resultnotification-response-type

This data type is used in responses sent by the PI to the PPG to acknowledge a notification. It is inherited from [PAP].
Note that the following items from [PAP] are not instantiated in the Push Network API:

· “push-id” attribute, needed in PAP (together with “address” below) to correlate the resultnotification-response to the corresponding resultnotification-message
· “address” element, needed in PAP (together with “push-id” above) to correlate the resultnotification-response to the corresponding resultnotification-message
Correlating a resultnotification-response to the corresponding resultnotification-message is not needed in the Push Network API, because the resultnotification-response structure is returned immediately in the HTTP response to the resultnotification-message.

Table 16 Type: resultnotification-response-type

	Element/Attribute
	Type
	XML
	Optional
	Description

	code
	xsd:string
	A
	No
	See [PAP].

	desc
	xsd:string
	A
	Yes
	See [PAP].

An XML root element named “resultnotification-response” of type “resultnotification-response-type” is allowed in notification HTTP response entity bodies.

5.2.2.14 Type: ccq-response-type

This data type is used in response messages from the PPG to the PI to a client capabilities query for a specified device. It is inherited from [PAP].
Note that the following attributes from [PAP] are not instantiated in the Push Network API:

· “query-id”, because it is only used for correlating request and response which is not needed in the Push Network API.

Table 17 Type: ccq-response-type

	Element/Attribute
	Type
	XML
	Optional
	Description

	address
	address-type
	E
	No
	See [PAP].

	resourceURL
	xsd:anyURI
	E
	No
	Link to the resource representing the client’s address.

	code
	xsd:string
	A
	No
	See [PAP].

	desc
	xsd:string
	A
	Yes
	See [PAP].

An XML root element named “ccq-response” of type “ccq-response-type” is allowed in response bodies

5.2.2.15 Type: badmessage-response-type

This data type is used in the response sent by the PPG to PI to notify that the messages are unrecognisable or that are of a protocol version that is not supported. It is inherited from [PAP].

Table 18 Type: badmessage-response-type

	Element/Attribute
	Type
	XML
	Optional
	Description

	code
	xsd:string
	A
	No
	See [PAP].

	desc
	xsd:string
	A
	Yes
	See [PAP].

	bad-message-fragment
	xsd:string
	A
	Yes
	See [PAP].

An XML root element named “badmessage-response” of type “badmessage-response-type” is allowed in response bodies.

5.2.3 Enumerations

The subsections of this section define the enumerations used in the Push Network API.

5.2.3.1 Enumeration: priority-type

This enumeration defines priority values. Its content is inherited from [PAP].

Table 19 Enumeration: priority-type

	Enumeration
	Description

	High
	See [PAP].

	Medium
	See [PAP].

	Low
	See [PAP].

5.2.3.2 Enumeration: delivery-method-type

This enumeration defines delivery types. Its content is inherited from [PAP].

Table 20 Enumeration: delivery-method-type

	Enumeration
	Description

	Confirmed
	See [PAP].

	preferconfirmed
	See [PAP].

	confirmed-with-response
	See [PAP]. Introduced in PAP 2.1.

	oneshot
	See [PAP]. Introduced in PAP 2.1.

	unconfirmed
	See [PAP].

	notspecified
	See [PAP].

A PI needs to be prepared that not all PPGs support the values introduced in PAP 2.1, and can respond with an error message in that case.

5.2.3.3 Enumeration: replace-method-type

This enumeration defines replace methods. Its content is inherited from [PAP].

Table 21 Enumeration: replace-method-type

	Enumeration
	Description

	pending-only
	See [PAP].

	all
	See [PAP].

5.2.3.4 Enumeration: network-type

This enumeration defines network types. Some basic values are inherited from [WDP] which is referenced from [PAP]. However, as the list of network values in [WDP] is outdated, this specification provides a simplified set that covers today’s market realities. Further values from [WDP] MAY be supported by implementations.

Table 22 Type: network-type

	Enumeration
	Description

	WWAN
	Wireless Wide Area Network, subsuming multiple technologies such as e.g. GSM, CDMA, UMTS, LTE, WiMAX. The actual network technology is chosen by the PPG.

	GSM
	Legacy value from [WDP] to represent GSM networks.

	IS-95 CDMA
	Legacy value from [WDP] to represent CDMA networks.

	WLAN
	Wireless Local Area Network

5.2.3.5 Enumeration: bearer-type

This enumeration defines bearer types. Some basic values are inherited from [WDP] which is referenced from [PAP]. However, as the list of bearer values in [WDP] is outdated, this specification provides a simplified set that covers today’s market realities. Further values from [WDP] MAY be supported by implementations.

Table 23 Type: bearer-type

	Enumeration
	Description

	SMS
	Push over SMS (from [WDP])

	CBS
	Push over Cell Broadcast

	IP
	Push over Internet Protocol

	SIP
	Push over SIP

	MBMS
	Multipoint Push over MBMS

	BCAST
	Multipoint Push over OMA BCAST

5.2.4 Values of the Link “rel” attribute

The “rel” attribute of the link element (see [REST_TS_Common]) is a free string set by the server implementation, to indicate a relationship between the current resource and an external resource. The following are possible strings, indicating resources that are defined in this specification which the “link” element can point to (list is non-exhaustive, and can be extended):

· push-message

These values indicate the kind of resource that the link points to.

5.3 Sequence Diagrams

This section summarizes various sequence flows for various use cases of the Push Network API.

5.3.1 Push message submission and status query
The figure below shows a scenario for submitting a push message and check for delivery status.

The used resources are:

· To submit a push message, create a new resource using the PUT method
http://{serverRoot}/push/{apiVersion}/{initiatorAddress}/pushMessages/{pushId}

· To get the delivery status of the message, read the resource

http://{serverRoot}/push/{apiVersion}/{initiatorAddress}/pushMessages/{pushId}/status

[image: image3.png]Application Server
(Push Initiator) (Push Proxy Gateway)

1) PUT resource URL for pushid (Push Message)

Create Push Message
resource for pushid.

2) 201 Created (Push Response: accepted, with created resource URL)

Time passes, and PI
needs to know status
of the message.

3) GET resourceURLstatus

4) 200 OK (Status Query Response: with current delivery status)

Application Server
(Push Initiator) (Push Proxy Gateway)

www.websequencediagrams.com

Figure 2: Push message submission and status check

1. As Push Initiator, an Application requests Push message delivery using PUT for a new resource identified by the initiatorAddress and pushId.

2. The PPG creates the new resource, and confirms Push message acceptance for the pushId.

3. The application requests the delivery status of the Push message created earlier, using GET to the resource URL created earlier.

4. The PPG responds with the delivery status for the Push message.

5.3.2 Push message submission and result notification

The figure below shows a scenario for submitting a push message with request for result notification, and later receiving the notification.

The used resources are:

· To submit a push message, create a new resource using the PUT method

http://{serverRoot}/push/{apiVersion}/{initiatorAddress}/pushMessages/{pushId}

[image: image4.png]Application Server
(Push Initiator) (Push Proxy Gateway)

1) PUT resource URL for pushid (Push Message: with notification URL)

Create Push Message
resource for pushid.

2) 201 Created (Push Response: accepted, with created resource URL)

Message is delivered.

3) POST notification URL (Result Notification: OK)

4) 200 OK (Result Notification Response)

Application Server
(Push Initiator) (Push Proxy Gateway)

www.websequencediagrams.com

Figure 3: Push message submission and result notification

1. As Push Initiator, an application requests Push message delivery using PUT for a new resource URL uniquely identified by the initiatorAddress and pushId, and includes a result notification URL indicating that the application wants to be explicitly informed of the Push Message delivery result.

2. The PPG creates the new resource, and confirms Push Message acceptance for the pushId.

3. The PPG completes delivery of the Push message, and sends a result notification to the notification URL indicating that the message was successfully delivered, and further details as applicable (e.g. to which target addresses the delivery was successful).

4. The PI responds with a result notification response confirming receipt of the notification.

5.3.3 Push message submission and replacement using same pushId

The figure below shows a scenario for submitting a push message, and later replacing the push message with another message using the same pushId, prior to delivery completion of the original message.

The used resources are:

· To submit a push message, create a new resource using the PUT method

http://{serverRoot}/push/{apiVersion}/{initiatorAddress}/pushMessages/{pushId}
· To replace a push message using the same pushId, replace the earlier created resource using the PUT method

http://{serverRoot}/push/{apiVersion}/{initiatorAddress}/pushMessages/{pushId}

[image: image5.png]Application Server
(Push Initiator) (Push Proxy Gateway)

1) PUT resource URL for pushid (Push Message)

2) 201 Created (Push Response: accepted, with created resource URL)

Create Pusl|
resource for pushid.

Pl decides to replace
the message for target
addresses to which it has
not been delivered, using
the same pushid.

3) PUT resource URL for pushid (Push Message: with the
same resource URL as replaced message,
for pending target addresses only)

2) 200 OK (Push Response: accepted, with created resource URL)

h Message

Cancel delivery for pending target
addresses as possible. Send Result
Notification if requested by PI for
earlier Push Message (see other flow).
Create new Push Mes
pushid, for the pendi

ssage resource for
ng target addresses.

Application Server
(Push Initiator) (Push Proxy Gateway)

www.websequencediagrams.com

Figure 4: Push message submission and replacement using same pushId

1. As Push Initiator, an application requests Push message delivery using PUT for a new resource URL uniquely identified by the initiatorAddress and pushId.

2. The PPG creates the new resource, and confirms Push Message acceptance for the pushId.

3. The PI decides to replace the earlier Push Message for all recipients for which delivery has not been completed, and requests Push message replacement using PUT for the same resource URL earlier created for the pushId, and identifying the earlier Push Message resource URL as the message to be replaced.

4. The PPG cancels delivery of the earlier Push Message for all pending target addresses, if possible, and sends a Result Notification if requested by the PI for the earlier Push Message (see section 5.3.2). The PPG replaces the Push Message resource for the pushId with a new Push Message for the pending target addresses only, and confirms acceptance of Push Message replacement for the pushId.

5.3.4 Push message submission and replacement using new pushId

The figure below shows a scenario for submitting a push message, and later replacing the push message with another message with a different pushId, prior to delivery completion of the original message.

The used resources are:

· To submit a Push Message, create a new resource using the PUT method

http://{serverRoot}/push/{apiVersion}/{initiatorAddress}/pushMessages/{pushId1}
· To replace a Push Message with a new Push Message using a new pushId, create a new resource using the PUT method

http://{serverRoot}/push/{apiVersion}/{initiatorAddress}/pushMessages/{pushId2}

[image: image6.png]Application
(Push Initiator)

1) PUT resource URL for pushid (Push Message)

Server
(Push Proxy Gateway)

2) 201 Created (Push Response: accepted, with created resource URL)

Create Push Message
resource for pushid.

Pl decides to replace
the message for target

addresses to which it has
not been delivered, using
anew pushid.

3) PUT resource URL for new pushid (Push Message: with the
resource URL for the message to be replaced,

for all target addresses)

2) 201 Created (Push Response: accepted, with created resource URL)

Cancel delivery for pending target
addresses as possible. Send Result
Notification if requested by PI for
earlier Push Message (see other flow).
Create new Push Message resource for
pushid, for all target addresses.

Application
(Push Initiator)

Server
(Push Proxy Gateway)

www.websequencediagrams.com

Figure 5: Push message submission and replacement using new pushId

1. As Push Initiator, an application requests Push message delivery using PUT for a new resource URL uniquely identified by the initiatorAddress and pushId.

2. The PPG creates the new resource, and confirms Push Message acceptance for the pushId.

3. The PI decides to replace the earlier Push Message for all recipients, and requests Push message replacement using PUT for a new resource URL uniquely identified by the initiatorAddress and the new pushId. The body of the request contains reference that identifies the earlier Push Message resource URL as the message to be replaced.

4. The PPG cancels delivery of the earlier Push Message for all pending target addresses, if possible, and sends a Result Notification if requested by the PI for the earlier Push Message (see section 5.3.2). The PPG creates a new Push Message resource for the new pushId, for all of the target addresses, and confirms acceptance of Push Message replacement for the new pushId.

5.3.5 Push message submission and cancellation

The figure below shows a scenario for submitting a push message and later cancelling it.

The used resources are:

· To submit a push message, create a new resource using the PUT method

http://{serverRoot}/push/{apiVersion}/{initiatorAddress}/pushMessages/{pushId}
· To cancel the message, delete the resource using the DELETE method

http://{serverRoot}/push/{apiVersion}/{initiatorAddress}/pushMessages/{pushId}
[image: image7.png]Application Server
(Push Initiator) (Push Proxy Gateway)

1) PUT resource URL for pushid (Push Message)

Create Push Message
resource for pushid.

2) 201 Created (Push Response: accepted, with created resource URL)

Time passes, and the PI
decides to cancel the message.

3) DELETE resourceURL

Cancel delivery for pending target
addresses as possible. Send Result
Notification if requested by PI for
earlier Push Message (see other flow).

4) 200 OK (Cancel Response: OK)

Application Server
(Push Initiator) (Push Proxy Gateway)

www.websequencediagrams.com

Figure 6: Push message submission and cancellation

1. As Push Initiator, an application requests Push message delivery using PUT for a new resource URL uniquely identified by the initiatorAddress and pushId.

2. The PPG creates the new resource, and confirms Push Message acceptance for the pushId.

3. After some time, the application decides to cancel the Push Message created earlier, using DELETE to the resource URL created earlier.

4. The PPG cancels delivery of the earlier Push Message if possible for all pending target addresses and sends a Result Notification if requested by the PI for the earlier Push Message (see section 5.3.2). The PPG responds with confirmation of the Push Message cancellation.

5.3.6 Push message submission and partial cancellation

The figure below shows a scenario for submitting a push message and later cancelling it for some target addresses.

The used resources are:

· To submit a push message, create a new resource using the PUT method

http://{serverRoot}/push/{apiVersion}/{initiatorAddress}/pushMessages/{pushId}
· To cancel the message for some target addresses, send a Cancel Message request using the POST method

http://{serverRoot}/push/{apiVersion}/{initiatorAddress}/pushMessages/{pushId}/cancel

[image: image8.png]Application
(Push Initiator)

1) PUT resource URL for pushid (Push Message)

Server
(Push Proxy Gateway)

2) 201 Created (Push Response: accepted, with created resource URL)

Create Push Message
resource for pushid.

Time passes, and the PI

decides to cancel the message

for some target addresesses.

3) POST resourceURL/cancel (Cancel Message:

ith target addresses)

Cancel delivery for the indicate target
addresses if pending, as possible. Send
Result Notification if requested by I for
earlier Push Message (see other flow).

4) 200 OK (Cancel Response: OK)

Application
(Push Initiator)

Server
(Push Proxy Gateway)

www.websequencediagrams.com

Figure 7: Push message submission and partial cancellation

1. As Push Initiator, an application requests Push message delivery using PUT for a new resource URL uniquely identified by the initiatorAddress and pushId.

2. The PPG creates the new resource, and confirms Push Message acceptance for the pushId.

3. After some time, the application decides to cancel the Push Message created earlier for some target addresses only. The application sends a Cancel Message request using POST to the resource URL created earlier, indicating the set of addresses for which message delivery should be cancelled.

4. The PPG cancels delivery of the earlier Push Message if possible for all of the indicated target addresses for which delivery is still pending, and sends a Result Notification if requested by the PI for the earlier Push Message (see section 5.3.2). The PPG responds with confirmation of the Push Message cancellation for the indicated target addresses.

5.3.7 Query client capabilities

This figure below shows a scenario for querying the Push client capabilities information for a target address.

The used resources are:
· To obtain the client capabilities, send a Client Capability Query request to the resource URL.

http://{serverRoot}/push/{apiVersion}/clientCapabilities/{address}

[image: image9.png]Application Server
(Push Initiator) (Push Proxy Gateway)

1) GET client capability resource URL

2) 200 OK (Client Capability Query Response)

Application Server
(Push Initiator) (Push Proxy Gateway)

www.websequencediagrams.com

Figure 8: Query client capabilities by Push Initiator
1. The Push Initiator queries the capabilities of the client identified by an address, using GET.

2. The PPG responds with the capabilities of the client.

6. Detailed specification of the resources

6.1 Resource: Push messages
The resource used is:

http://{serverRoot}/push/{apiVersion}/{initiatorAddress}/pushMessages/{pushId}
This resource represents a Push message which can be created, replaced, and cancelled.
6.1.1 Request URI variables

The following request URI variables are common for all HTTP commands for this resource:

Table 24 Push messages request URI variables

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Example: ppg.example.com/ExampleAPI

	apiVersion
	version of the Push Network API PI wants to use. The value of this variable is defined in section 5.1.

	initiatorAddress
	Unique string identifying the PI, as prior arranged between the PI and PPG via unspecified methods. MUST be URI-encoded if necessary per [RFC2396].

	pushId
	PI-assigned unique identifier (within the initiatorAddress scope) for the Push message. MUST be URI-encoded if necessary per [RFC2396].

6.1.2 Response Codes and Error Handling
For HTTP response codes, see [REST_TS_Common].
For status codes, see [PAP].

For a mapping between both, see section 7.
6.1.3 GET

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: PUT, DELETE’ field in the response as per section 14.7 of [RFC 2616].

6.1.4 POST

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: PUT, DELETE’ field in the response as per section 14.7 of [RFC 2616].

6.1.5 PUT

This operation is used for Push message initiation and Push message replacement. If no resource exists at the URL against which the PUT method is invoked, a new Push message is initiated, addressed by that URL. If a resource already exists at the URL against which the PUT method is invoked, this Push message is replaced by the one passed in the entity body of the PUT request.

The HTTP return code reflects whether a new resource has been created (201 Created) or an existing resource has been replaced (200 OK).

Messages will remain on the server as described by [PPGService] unless cancelled by executing the DELETE command (see next section).

6.1.5.1 Example 1: Creation of a new Push message
(Informative)

6.1.5.1.1 Request

	PUT /ExampleAPI/push/v1/pi1.example.com/pushMessages/id123 HTTP/1.1
Host: ppg.example.com

Content-Type: multipart/related; boundary=xj987hc; type="application/xml"
Accept: application/xml

Content-Length: nnnn

--xj987hc

Content-Type: application/xml

<?xml version="1.0" encoding="UTF-8"?>

<push-message xmlns="urn:oma:xml:rest:netapi:push:1"

 deliver-before-timestamp="2010-11-08T18:13:51.0Z"

 source-reference="source-reference1"

 ppg-notify-requested-to="http://pi1.example.com/Push/notify123"

 progress-notes-requested="true">

 <address address-value="wappush=bob/type=user@ppg.example.com"/>

 <address address-value="wappush=mary/type=user@ppg.example.com"/>

 <address address-value="wappush=alice/type=user@ppg.example.com"/>

 <quality-of-service priority="medium"/>

</push-message>

--xj987hc

Content-Type: text/plain

Text Message Goes Here.
--xj987hc--

6.1.5.1.2 Response

	HTTP/1.1 201 Created

Date: Mon, 08 Nov 2010 18:14:03 GMT

Content-Type: application/xml

Location: http://ppg.example.com/ExampleAPI/push/v1/pi1.example.com/pushMessages/id123
Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<push-response xmlns="urn:oma:xml:rest:netapi:push:1"

 sender-address="http://ppg.example.com/ExampleAPI/push/v1/pi1.example.com/pushMessages/id123"
 sender-name="Push Gateway" reply-time="2010-11-08T18:13:51.0Z">

 <progress-note stage="stage1" note="note1" time="2010-11-08T18:13:51.0Z"/>

 <response-result code="1001" desc="The request has been accepted for processing"/>

 <resourceURL>http://ppg.example.com/ExampleAPI/push/v1/pi1.example.com/pushMessages/id123</resourceURL>

</push-response>

6.1.5.2 Example 2: Replacement of an existing Push message
(Informative)

6.1.5.2.1 Request

	PUT /ExampleAPI/push/v1/pi1.example.com/pushMessages/id123 HTTP/1.1
Host: ppg.example.com

Content-Type: multipart/related; boundary=xj987hc; type="application/xml"

Accept: application/xml

Content-Length: nnnn

--xj987hc

Content-Type: application/xml

<?xml version="1.0" encoding="UTF-8"?>

<push-message xmlns="urn:oma:xml:rest:netapi:push:1"

 replace-push-message="http://ppg.example.com/ExampleAPI/push/v1/pi1.example.com/pushMessages/id123"
 replace-method="all"
 deliver-before-timestamp="2010-11-08T18:13:51.0Z"

 source-reference="source-reference1"

 ppg-notify-requested-to="http://pi1.example.com/Push/notify123"

 progress-notes-requested="true">

 <address address-value="wappush=bob/type=user@ppg.example.com"/>

 <address address-value="wappush=mary/type=user@ppg.example.com"/>

 <address address-value="wappush=alice/type=user@ppg.example.com"/>

 <quality-of-service priority="medium"/>

</push-message>

--xj987hc

Content-Type: text/plain

Text Message Goes Here.
--xj987hc--

6.1.5.2.2 Response

	HTTP/1.1 200 OK

Date: Mon, 08 Nov 2010 18:14:03 GMT

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<push-response xmlns="urn:oma:xml:rest:netapi:push:1"

 sender-address="http://ppg.example.com/ExampleAPI/push/v1/pi1.example.com/pushMessages/id123"
 sender-name="Push Gateway" reply-time="2010-11-08T18:13:51.0Z">

 <progress-note stage="stage1" note="note1" time="2010-11-08T18:13:51.0Z"/>

 <response-result code="1001" desc="The request has been accepted for processing"/>

 <resourceURL>http://ppg.example.com/ExampleAPI/push/v1/pi1.example.com/pushMessages/id123</resourceURL>

</push-response>

6.1.5.3 Example 3: Syntax error
(Informative)

The example passes the invalid value “some” in “replace-method”. Note that the XML instance below is not valid w.r.t. the Push Network API XML schema [SUP_NetAPI_Push]. A badmessage-response is generated as response.

6.1.5.3.1 Request

	PUT /ExampleAPI/push/v1/pi1.example.com/pushMessages/id123 HTTP/1.1
Host: ppg.example.com

Content-Type: multipart/related; boundary=xj987hc; type="application/xml"

Accept: application/xml

Content-Length: nnnn

--xj987hc

Content-Type: application/xml

<?xml version="1.0" encoding="UTF-8"?>

<push-message xmlns="urn:oma:xml:rest:netapi:push:1"

 replace-push-message="http://ppg.example.com/ExampleAPI/push/v1/pi1.example.com/pushMessages/id123"
 replace-method="some"

 deliver-before-timestamp="2010-11-08T18:13:51.0Z"

 source-reference="source-reference1"

 ppg-notify-requested-to="http://pi1.example.com/Push/notify123"

 progress-notes-requested="true">

 <address address-value="wappush=bob/type=user@ppg.example.com"/>

 <address address-value="wappush=mary/type=user@ppg.example.com"/>

 <address address-value="wappush=alice/type=user@ppg.example.com"/>

 <quality-of-service priority="medium"/>

</push-message>

--xj987hc

Content-Type: text/plain

Text Message Goes Here.
--xj987hc--

6.1.5.3.2 Response

	HTTP/1.1 400 Bad Request

Date: Mon, 08 Nov 2010 18:14:03 GMT

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<badmessage-response

 code="2000"

 desc="Syntax error: XML Syntax violated. Attribute (replace-method) with value (some) must have a value from the list (pending-only, all)"/>

6.1.6 DELETE

This operation is used for the cancellation of a whole Push message.

Note that an alternative way exists that allows partial cancellation, as described in section 6.3.
6.1.6.1 Example 1: Cancellation of a Push message
(Informative)

6.1.6.1.1 Request

	DELETE /ExampleAPI/push/v1/pi1.example.com/pushMessages/id123 HTTP/1.1
Host: ppg.example.com

Accept: application/xml

6.1.6.1.2 Response

	HTTP/1.1 200 OK

Date: Mon, 08 Nov 2010 18:14:09 GMT

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<cancel-response xmlns="urn:oma:xml:rest:netapi:push:1">

 <cancel-result code="1000" desc="OK"/>

 <resourceURL>http://ppg.example.com/ExampleAPI/push/v1/pi1.example.com/pushMessages/id123</resourceURL>

</cancel-response>

6.2 Resource: Push message delivery status

The resource used is:

http://{serverRoot}/push/{apiVersion}/{initiatorAddress}/requests/{pushId}/status
This resource is for retrieving the status of a Push message.

6.2.1 Request URI variables

The following request URI variables are common for all HTTP commands for this resource:

Table 25 Push message delivery status request URI variables

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Example: ppg.example.com/ExampleAPI

	apiVersion
	version of the Push Network API PI wants to use. The value of this variable is defined in section 5.1.

	initiatorAddress
	Unique string identifying the PI, as prior arranged between the PI and PPG via unspecified methods. MUST be URI-encoded if necessary per [RFC2396].

	pushId
	PI-assigned unique identifier (within the initiatorAddress scope) for the Push message. MUST be URI-encoded if necessary per [RFC2396].

6.2.2 Response Codes and Error Handling

For HTTP response codes, see [REST_TS_Common].
For status codes, see [PAP].

For a mapping between both, see section 7.

6.2.3 GET

This operation is used for retrieving the status of a Push message.

Request URL parameters are:

Table 26 Push message status request URI variables

	Name
	Type/value
	Optional
	Description

	address
	xsd:string

[0..unbounded]
	Yes
	If given, this parameter defines the addresses for which the status is queried. If omitted, the query applies to all addresses of that particular Push message.

MUST be URI-encoded per [RFC2396] if necessary .

6.2.3.1 Example 1: Retrieval of the status of a Push message
(Informative)

6.2.3.1.1 Request

	GET /ExampleAPI/push/v1/pi1.example.com/pushMessages/id123/status HTTP/1.1
Host: ppg.example.com

Accept: application/xml

6.2.3.1.2 Response

	HTTP/1.1 200 OK
Date: Date: Mon, 08 Nov 2010 18:17:59 GMT

Content-Type: application/xml
Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<statusquery-response xmlns="urn:oma:xml:rest:netapi:push:1">
 <statusquery-result event-time="2010-11-08T18:14:51.0Z" message-state="delivered" code="1000" desc="OK">

 <address address-value="wappush=bob/type=user@ppg.example.com"/>

 <quality-of-service priority="medium"/>

 </statusquery-result>

 <statusquery-result event-time="2010-11-08T18:14:51.0Z" message-state="pending" code="1001" desc="Accepted">

 <address address-value="wappush=mary/type=user@ppg.example.com"/>

 <quality-of-service priority="medium"/>

 </statusquery-result>

 <statusquery-result event-time="2010-11-08T18:14:51.0Z" message-state="rejected" code="2002" desc="Address Error">

 <address address-value="wappush=alice/type=user@ppg.example.com"/>

 <quality-of-service priority="medium"/>

 </statusquery-result>

 <resourceURL>http://ppg.example.com/ExampleAPI/push/v1/pi1.example.com/pushMessages/id123</resourceURL>

</statusquery-response>

6.2.3.2 Example 2: Retrieval of the status of a Push message for a dedicated address
(Informative)

6.2.3.2.1 Request

	GET /ExampleAPI/push/v1/pi1.example.com/pushMessages/id123/status?address=wappush%3D12345%2Ftype%3Duser1%40ppg%2Eexample%2Ecom HTTP/1.1
Host: ppg.example.com

Accept: application/xml

6.2.3.2.2 Response

	HTTP/1.1 200 OK
Date: Mon, 08 Nov 2010 18:17:59 GMT
Content-Type: application/xml
Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<statusquery-response xmlns="urn:oma:xml:rest:netapi:push:1">
 <statusquery-result event-time="2010-11-08T18:14:51.0Z" message-state="delivered" code="1000" desc="OK">

 <address address-value="wappush=bob/type=user@ppg.example.com"/>

 <quality-of-service priority="medium"/>

 </statusquery-result>

 <resourceURL>http://ppg.example.com/ExampleAPI/push/v1/pi1.example.com/pushMessages/id123</resourceURL>

</statusquery-response>

6.2.3.3 Example 3: Request with invalid pushId
(Informative)

6.2.3.3.1 Request

	GET /ExampleAPI/push/v1/pi1.example.com/pushMessages/id123/status HTTP/1.1
Host: ppg.example.com

Accept: application/xml

6.2.3.3.2 Response

	HTTP/1.1 404 Not Found
Date: Mon, 08 Nov 2010 18:17:59 GMT
Content-Type: application/xml
Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<statusquery-response xmlns="urn:oma:xml:rest:netapi:push:1">
 <statusquery-result code="2004" desc="Push ID Not Found" message-state="undeliverable"/>

 <resourceURL>http://ppg.example.com/ExampleAPI/push/v1/pi1.example.com/pushMessages/id123</resourceURL>

</statusquery-response>

6.2.4 POST

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].

6.2.5 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].

6.2.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].

6.3 Resource: Partial Push message cancellation

The resource used is:

http://{serverRoot}/push/{apiVersion}/{initiatorAddress}/pushMessages/{pushId}/cancel
This resource is used for partially cancelling a Push message.

6.3.1 Request URI variables

The following request URI variables are common for all HTTP commands for this resource:

Table 27 Partial Push message cancellation request URI variables

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Example: ppg.example.com/ExampleAPI

	apiVersion
	version of the Push Network API PI wants to use. The value of this variable is defined in section 5.1.

	initiatorAddress
	Unique string identifying the PI, as prior arranged between the PI and PPG via unspecified methods. MUST be URI-encoded per [RFC2396] if necessary.

	pushId
	PI-assigned unique identifier (within the initiatorAddress scope) for the Push message. MUST be URI-encoded per [RFC2396] if necessary.

6.3.2 Response Codes and Error Handling

For HTTP response codes, see [REST_TS_Common].
For status codes, see [PAP].

For a mapping between both, see section 7.

6.3.3 GET

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.3.4 POST

This operation is used to partially cancel a Push message, i.e. to cancel it for some addresses. The list if the addresses to which the cancellation applies is specified in the entity body of the POST request.

6.3.4.1 Examples 1: Successful partial cancellation
(Informative)

6.3.4.1.1 Request

	POST /ExampleAPI/push/v1/pi1.example.com/pushMessages/id123/cancel HTTP/1.1
Host: ppg.example.com

Content-Type: application/xml

Accept: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<cancel-message xmlns="urn:oma:xml:rest:netapi:push:1">

 <address address-value="wappush=bob/type=user@ppg.example.com"/>

</cancel-message>

6.3.4.1.2 Response

	HTTP/1.1 200 OK

Date: Mon, 08 Nov 2010 18:14:59 GMT

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<cancel-response xmlns="urn:oma:xml:rest:netapi:push:1">

 <cancel-result code="1000" desc="OK">

 <address address-value="wappush=bob/type=user@ppg.example.com"/>

 </cancel-result>

 <resourceURL>http://ppg.example.com/ExampleAPI/push/v1/pi1.example.com/pushMessages/id123</resourceURL>

</cancel-response>

6.3.4.2 Example 2: Unsuccessful partial cancellation
(Informative)

6.3.4.2.1 Request

	POST /ExampleAPI/push/v1/pi1.example.com/pushMessages/id123/cancel HTTP/1.1
Host: ppg.example.com

Content-Type: application/xml

Accept: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<cancel-message xmlns="urn:oma:xml:rest:netapi:push:1">

 <address address-value="wappush=bob/type=user@ppg.example.com"/>

</cancel-message>

6.3.4.2.2 Response

	HTTP/1.1 403 Forbidden

Date: Mon, 08 Nov 2010 18:14:59 GMT

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<cancel-response xmlns="urn:oma:xml:rest:netapi:push:1">

 <cancel-result code="2008" desc="Cancellation not possible">

 <address address-value="wappush=bob/type=user@ppg.example.com"/>

 </cancel-result>

 <resourceURL>http://ppg.example.com/ExampleAPI/push/v1/pi1.example.com/pushMessages/id123</resourceURL>

</cancel-response>

Note: In this case, the HTTP error code can not be “404 Not Found”, as the underlying Push message resource exists, however the cancellation fails. Therefore, the error code chosen is “403 Forbidden”, which indicates according to [RFC2616] that “the server understood the request, but is refusing to fulfill it. […] If […] the server wishes to make public why the request has not been fulfilled, it SHOULD describe the reason for the refusal in the entity.”

6.3.5 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.3.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.4 Resource: Query client capabilities

The resource used is:

http://{serverRoot}/push/{apiVersion}/clientCapabilities/{address}?appId={appId}
This resource is for retrieving the capabilities of a Push client.

6.4.1 Request URI variables

The following request URI variables are common for all HTTP commands for this resource:

Table 28 Client Capability Query request URI variables

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Example: ppg.example.com/ExampleAPI

	apiVersion
	version of the Push Network API PI wants to use. The value of this variable is defined in section 5.1.

	address
	Client address whose capabilities are being queried. MUST be URI-encoded per [RFC2396] if necessary.

	appId
	This parameter contains the app-id attribute as defined by [PAP].
MUST be URI-encoded if necessary per [RFC2396].

Note that the “query-id” attribute from [PAP] is not instantiated because it is only used for correlating request and response which is not needed in the Push Network API.

6.4.2 Response Codes and Error Handling

For HTTP response codes, see [REST_TS_Common].
For status codes, see [PAP].

For a mapping between both, see section 7.

6.4.3 GET

This operation is used the capabilities of a Push client.

6.4.3.1 Examples 1: Successful capability query
(Informative)

6.4.3.1.1 Request

	GET /ExampleAPI/push/v1/clientCapabilities/wappush%3Dbob%2Ftype%3Duser%40ppg.example.com?appId=urn%3Ax-wap-application%3Awml.ua HTTP/1.1
Host: ppg.example.com

Accept: application/xml

6.4.3.1.2 Response

	HTTP/1.1 200 OK
Date: Date: Mon, 08 Nov 2010 18:17:59 GMT

Content-Type: multipart/related; boundary=xj987hc; type="application/xml"

Content-Length: nnnn

--xj987hc

Content-Type: application/xml

<?xml version="1.0" encoding="UTF-8"?>

<ccq-response xmlns="urn:oma:xml:rest:netapi:push:1" code="1000" desc="OK">
 <address address-value="wappush=bob/type=user@ppg.example.com"/>
<resourceURL>http://ppg.example.com/ExampleAPI/push/v1/clientCapabilities/wappush%3Dbob%2Ftype%3Duser%40ppg.example.com?appId=urn%3Ax-wap-application%3Awml.ua
 </resourceURL>
</ccq-response>

--xj987hc

 Content-Type: application/xml

<?xml version="1.0"?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:prf="http://www.wapforum.org/profiles/UAPROF/ccppschema-20010430#">

 <!--WAP Browser vendor site: Default description of WAP properties-->

 <rdf:Description ID="MyDeviceProfile">

 <prf:component>

 <rdf:Description ID="WAPProfile">

 <rdf:type resource="http://www.wapforum.org/profiles/UAPROF/ccppschema-20010430#WapCharacteristics"/>

 <prf:WapVersion>2.0</prf:WapVersion>

 <prf:WmlDeckSize>1400</prf:WmlDeckSize>

 <prf:WapDeviceClass>A</prf:WapDeviceClass>

 <prf:WmlVersion>

 <rdf:Bag>

 <rdf:li>2.0</rdf:li>

 </rdf:Bag>

 </prf:WmlVersion>

 </rdf:Description>

 </prf:component>

 <prf:component>

 <rdf:Description ID=":PushProfile">

 <rdf:type resource="http://www.wapforum.org/profiles/UAPROF/ccppschema-20010430#PushCharacteristics"/>

 <prf:Push-Accept>

 <rdf:Bag>

 <rdf:li>text/vnd.wap.si</rdf:li>

 <rdf:li>application/vnd.wap.sic</rdf:li>

 </rdf:Bag>

 </prf:Push-Accept>

 <prf:Push-Accept-Language>

 <rdf:Bag>

 <rdf:li>en</rdf:li>

 </rdf:Bag>

 </prf:Push-Accept-Language>

 </rdf:Description>

 </prf:component>

 </rdf:Description>

</rdf:RDF>

--xj987hc--

6.4.3.2 Example 2: Request with invalid client address
(Informative)

6.4.3.2.1 Request

	GET /ExampleAPI/push/v1/clientCapabilities/foobar?appId=urn%3Ax-wap-application%3Awml.ua HTTP/1.1
Host: ppg.example.com

Accept: application/xml

6.4.3.2.2 Response

	HTTP/1.1 404 Not Found
Date: Mon, 08 Nov 2010 18:17:59 GMT
Content-Type: application/xml
Content-Length: nnnn

<?xml version="1.0"?>

<ccq-response xmlns="urn:oma:xml:rest:netapi:push:1"

 code="2003" desc="Address not found"> <address address-value="foobar"/>
<resourceURL>http://ppg.example.com/ExampleAPI/push/v1/clientCapabilities/foobar?appId=urn%3Ax-wap-application%3Awml.ua </resourceURL>
</ccq-response>

6.4.4 POST

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].

6.4.5 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].

6.4.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].

6.5 Resource: PI notification about Push message delivery status

This resource is a client provided callback URL for notification about Push message delivery. The URL is provided by the PI to the PPG when a Push message is created or replaced. The Push Network API does not make any assumption about the structure of this URL.

6.5.1 Request URI variables

Client-provided if any.

6.5.2 Response Codes and Error Handling

For HTTP response codes, see [REST_TS_Common].
For status codes, see [PAP].

For a mapping between both, see section 7.

6.5.3 GET

Method not allowed by the resource. The returned HTTP error status is 405. The server SHOULD also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.5.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server SHOULD also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.5.5 POST

This operation is used by the PPG to send a notification about the outcome of a submitted message for a specific recipient after the final result is known, in case the PI has requested to receive such notifications when creating or replacing a Push message.
The client MUST respond with a resultnotification-response instance in the entity body of the HTTP response.

6.5.5.1 Example: PI notification about the outcome of a Push message
(Informative)

6.5.5.1.1 Request

	POST /Push/notify123 HTTP/1.1

Accept: application/xml

Content-Type: application/xml

Content-Length: nnnn

Host: pi1.example.com

<?xml version="1.0"?>

<resultnotification-message xmlns="urn:oma:xml:rest:netapi:push:1"

 sender-address="http://ppg.example.com/ExampleAPI/push/v1/pi1.example.com/pushMessages/id123"

 sender-name="Push Gateway"

 received-time="2010-11-08T18:13:51.0Z" event-time="2010-11-08T18:14:12.0Z"

 message-state="delivered"

 code="1000" desc="OK">

 <address address-value="wappush=12345/type=user1@ppg.example.com"/>

 <link href="http://ppg.example.com/ExampleAPI/push/v1/pi1.example.com/pushMessages/id123" rel="push-message"/>

 <quality-of-service priority="medium"/>

</resultnotification-message>

6.5.5.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnnn

Date: Mon, 08 Nov 2010 18:14:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<resultnotification-response xmlns="urn:oma:xml:rest:netapi:push:1"

 code="1000" desc="OK"/>

6.5.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server SHOULD also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

7. PAP status code mapping to HTTP status codes

As noted in [PAP], “When using HTTP as a tunnel for PAP, the HTTP response codes are used only for HTTP layer conditions. All codes in PAP are conveyed through XML documents. When a PAP message has been accepted by the PPG or Push Initiator, the HTTP response code 202 is returned, even if the PAP message doesn't parse or is not well formed. Information on these failure conditions is returned in the response contained in the XML document.”

In contrast, being a PAP binding to HTTP in the RESTful architectural style, the Push Network API relies upon HTTP status codes to express resource request status. The following table is adapted from [PAP], and extended with the applicable HTTP status code for the PAP response code. The HTTP status code mapping is intended to be aligned with the definitions in [RFC2616].
The table below lists the currently defined status codes and their meanings, and the HTTP status code to be provided.

Table 29 PAP Status Codes Mapped to HTTP Status Codes

	
	
	

	push-response
	cancel-response
	statusquery-response
	ccq-response
	badmessage-response

	PAP Status Code
	Description
	Interpretation
	
	
	
	
	

	1000
	OK
	The request succeeded.
	
	200
	200
	200
	

	1001
	Accepted for Processing
	The request has been accepted for processing.
	201 (new)

200 (replaced)
	
	
	
	

	2000
	Bad Request
	Not understood due to malformed syntax.
	400
	400
	400
	400
	400

	2001
	Forbidden
	The request was refused.
	403
	403
	403
	403
	

	2002
	Address Error
	The client specified was not recognised.
	400
	400
	400
	400
	

	2003
	Address Not Found
	The address specified was not found.
	
	404
	404
	
	

	2004
	Push ID Not Found
	The Push ID specified was not found.
	404
	404
	404
	
	

	2005
	Capabilities Mismatch
	The capabilities assumed by the PI were not acceptable for the client specified.
	403
	
	
	
	

	2006
	Required Capabilities Not Supported
	The input is in a form not supported by the client.
	403
	
	
	
	

	2007
	Duplicate Push ID
	The Push ID supplied is not unique within the PPG.
	403 (occurs if replace not supported by PPG)
	
	
	
	

	2008
	 Cancellation not possible
	 The Push ID specified was found, but cancellation is not possible
	403
	403
	
	
	

	3000
	Internal Server Error
	Server could not fulfil request due to internal error.
	500
	500
	500
	500
	

	3001
	Not Implemented
	Server does not support the requested operation.
	
	500
	500
	500
	

	3002
	Version not Supported
	The server refuses to support the protocol version indicated.
	
	
	
	
	500

	3003
	Not Possible
	Action not possible because message is no longer available.
	
	410
	410
	
	

	3004
	Capability Matching not Supported
	The PPG does not support client capability information provided in a push message.
	500
	
	
	
	

	3005
	Multiple Addresses Not Supported
	The PPG does not support an operation that specified multiple recipients.
	500
	500
	500
	
	

	3006
	Transformation Failure
	The PPG was unable to perform a transformation on the message.
	500
	
	500
	
	

	3007
	Specified Delivery Method Not Possible
	The PPG could not perform the confirmed or unconfirmed delivery specified.
	500
	
	500
	
	

	3008
	Capabilities Not Available
	Client capabilities for the specified client are not available.
	
	
	
	404
	

	3009
	Required Network Not Available
	The network requested is not available.
	403
	
	403
	
	

	3010
	Required Bearer Not Available
	The bearer requested is not available.
	403
	
	403
	
	

	3011
	Replacement Not Supported
	The PPG does not support the replace operation
	500
	
	
	
	

	3012
	One-shot Not Supported
	The PPG or the bearer does not support one-shot delivery.
	500
	
	
	
	

	4000
	Service Failure
	The service failed. The client may re-attempt the operation.
	
	
	500
	
	

	4001
	Service Unavailable
	The server is busy.
	
	
	503
	
	

	5xxx
	Mobile Client Aborted
	The mobile client aborted the operation.
	
	
	500
	
	

Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

A.2 Draft/Candidate Version 1.0 History

	Document Identifier
	Date
	Sections
	Description

	Draft Versions:

OMA-TS-PushREST-V1_0
	10 Aug 2010
	All
	Baseline TS, as agreed in OMA-CD-PUSH-2010-0018R01-INP_PushREST_TS_Baseline

	
	4 Oct 2010
	3.2, 4, 4.1, 5
	Per agreed CRs:

OMA-CD-PUSH-2010-0022R02-CR_PushREST_V1_0_TS_MinorUpdates

OMA-CD-PUSH-2010-0023R01-CR_PushREST_V1_0_TS_BaseURI

	
	12 Oct 2010
	2.1, 2.2, 5, 5.1.1, 5.3, 5.4.1, 5.5.1, 5.6.1
	Per agreed CRs:

OMA-CD-PUSH-2010-0028R01-CR_PushREST_TS_SeqFlow

OMA-CD-PUSH-2010-0029R01-CR_PushREST_edits_for_comments

	
	15 Nov 2010
	5.1, 5.4, D.1
	Per agreed CR:

OMA-CD-PUSH-2010-0027-CR_PushREST_HTTP_PUT_for_Push_Message_creation

	
	19 Nov 2010
	All
	Per agreed CR:

OMA-CD-PUSH-2010-0036R02-CR_Adding_PushREST_Notifications;

OMA-CD-PUSH-2010-0038R01-CR_PushREST_TS_SeqFlow_CCQ;

OMA-CD-PUSH-2010-0041-CR_updates_from_34R02_discussion_in_Seoul.

	
	24 Nov 2010
	5.1
	Editorial Update to Figure 1

	
	06 Dec 2010
	All
	Per agreed CR:

OMA-CD-PUSH-2010-0043R01-CR_PushREST_handling_CCQ,_Bad_Message.doc

	
	23 Dec 2010
	5.2.1
	Per agreed CR:

OMA-CD-PUSH-2010-0044-CR_Replace_Push_Id_solution

	
	21 Jan 2011
	All
	Per agreed CR:
OMA-CD-PUSH-2010-0046-CR_InitiatorAddress_and_Editorials;

OMA-CD-PUSH-2011-0001R02-CR_PushREST_JSON.

	
	09 Feb 2011
	All
	Per agreed CR:
OMA-CD-PUSH-2011-0003R02-CR_PushREST_SCR_Table;

OMA-CD-PUSH-2011-0005R01-CR_PushREST_backward_compatibility_note;

OMA-CD-PUSH-2011-0006R01-CR_PushREST_flows;

OMA-CD-PUSH-2011-0007R01-CR_PushREST_status_codes;

OMA-CD-PUSH-2011-0008R01-CR_Empty_Appendix_C;

OMA-CD-PUSH-2011-0009-CR_Fixing_Allow;

OMA-CD-PUSH-2011-0010R01-CR_PushREST_addressing_PAP_version_differences;

	
	10 Feb 2011
	5
	Per agreed CR:
OMA-CD-PUSH-2011-0011R01-CR_PushREST_Dataformats.

	
	14 Feb 2011
	5
	Updated flows per notes in OMA-CD-PUSH-2011-0006R01-CR_PushREST_flows

	
	15 Mar 2011
	All
	Per agreed CR:
OMA-CD-PUSH-2011-0014R01-CR_PushREST_CONRR_editorials.doc

	
	05 May 2011
	All
	Per agreed CR:
OMA-CD-PUSH-2011-0030R01-CR_PushREST_B017_real_world_examples;

OMA-CD-PUSH-2011-0028R01-CR_PushREST_B012_resourceURL;

OMA-CD-PUSH-2011-0032-CR_PushREST_Message_formats;
OMA-CD-PUSH-2011-0035-CR_PushREST_resultnotification_with_additional_content;

OMA-CD-PUSH-2011-0037-CR_PushREST_link;_

OMA-CD-PUSH-2011-0039-CR_PushREST_productName_note;

OMA-CD-PUSH-2011-0044-CR_PushREST_productName_note;

OMA-CD-PUSH-2011-0045R01-CR_Badmessage_example;

OMA-CD-PUSH-2011-0047-CR_PushREST_Bearer_Types.

	Draft Version:

OMA-TS-REST_NetAPI_Push-V1_0
	28 May 2011
	Many
	Adapted to new template and OMA Network APi governance per agreed CR:

OMA-CD-PUSH-2011-0040-CR_PushREST_new_template_TS

	
	30 May 2011
	5.1.1
	Changed Tables 1, 2 and 3 pages orientation from landscape to portrait.

	
	14 Jun 2011
	All
	Per agreed CR:
OMA-CD-PUSH-2011-0049-CR_ApiVersion_Alignment_with_ARC_resolution_closing_B006;

OMA-CD-PUSH-2011-0050-CR_Example_Closing_B019.

	
	17 Jun 2011
	5
	Per agreed CR:
OMA-CD-PUSH-2011-0051-CR_PushREST_small_change_TS.

	
	27 Jun 2011
	All
	Per agreed CR:
OMA-CD-PUSH-2011-0053-CR_PushREST_fixing_XML_validation_errors.doc

	Candidate Version:

OMA-TS-REST_NetAPI_Push-V1_0
	12 Jul 2011
	All
	Status changed to Candidate by TP:

 OMA-TP-2011-0242-INP_PushREST_V1_0_ERP_for_Candidate_Approval
Clerical cleanup

	Draft Version:

OMA-TS-REST_NetAPI_Push-V1_0
	20 Feb 2012
	All
	Incorporated agreed CR:
OMA-CD-PUSH-2012-0001R02-CR_PushREST_implement_new_version_convention

	
	
	
	

Appendix B. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [SCRRULES].
B.1 SCR for REST.Push Server

	Item
	Function
	Reference
	Requirement

	REST-PUSH-SUPPORT-S-001-M
	Support for PushREST API
	5
	

	REST-PUSH-SUPPORT-S-002-M
	Support for the XML request & response format
	5
	

	REST-PUSH-SUPPORT-S-003-O
	Support for the JSON request & response format
	5, Appendix C
	

B.1.1 SCR for REST.Push.PushMessage Server

	Item
	Function
	Reference
	Requirement

	REST-PUSH-MSG-S-001-M
	Support for Push messages
	6.1
	

	REST-PUSH-MSG-S-002-M
	Submit a new Push message - PUT
	6.1.5
	

	REST-PUSH-MSG-S-003-M
	Replace an existing Push message –PUT
	6.1.5
	

	REST-PUSH-MSG-S-004-O
	Cancel a Push message - DELETE
	6.1.6
	

B.1.2 SCR for REST.Push.StatusQuery Server

	Item
	Function
	Reference
	Requirement

	REST-PUSH-SQ-S-001-O
	Support for retrieval of a Push message delivery status
	6.2
	REST-PUSH-SQ-S-002-O

	REST-PUSH-SQ-S-002-O
	Query a Push message delivery status – GET
	6.2.3
	

B.1.3 SCR for REST.Push.PartialCancellation Server

	Item
	Function
	Reference
	Requirement

	REST-PUSH-PC-S-001-O
	Support for partially cancellation of a Push message
	6.3
	REST-PUSH-PC-S-002-O

	REST-PUSH-PC-S-002-O
	Partially cancel a Push message -POST
	6.3.4
	

B.1.4 SCR for REST.Push.CapQuery Server

	Item
	Function
	Reference
	Requirement

	REST-PUSH-CQ-S-001-O
	Support for retrieving the capabilities of a Push client
	6.4
	REST-PUSH-CQ-S-002-O

	REST-PUSH-CQ-S-002-O
	Query the capabilities of a Push client - GET
	6.4.3
	

B.1.5 SCR for REST.Push.ResultNotification Server

	Item
	Function
	Reference
	Requirement

	REST-PUSH-RN-S-001-M
	Support for notification about the outcome of a Push message
	6.5
	

	REST-PUSH-RN-S-002-M
	Send notification about the outcome of a Push message -POST
	6.5.5
	

Appendix C. JSON examples
(Informative)

JSON (JavaScript Object Notation) is a lightweight, text-based, language-independent data interchange format. It provides a simple means to represent basic name-value pairs, arrays and objects. JSON is relatively trivial to parse and evaluate using standard JavaScript libraries, and hence is suited for REST invocations from browsers or other processors with JavaScript engines. Further information on JSON can be found at [RFC4627].

The following examples show the request or response for various operations using a JSON binding. The examples follow the XML to JSON serialization rules in [REST_TS_Common]. A JSON response can be obtained by following the content negotiation guidelines section of [REST_TS_Common].

For full details on the operations themselves please refer to the section number indicated.

C.1 Creation of a new Push message (section 6.1.5.1)

Request:

	PUT /ExampleAPI/push/v1/pi1.example.com/pushMessages/id123 HTTP/1.1
Host: ppg.example.com

Content-Type: multipart/related; boundary=xj987hc; type="application/json"
Accept: application/json

Content-Length: nnnn

--xj987hc

Content-Type: application/json

{"push-message": {

 "address": [

 {"address-value": "wappush=bob/type=user@ppg.example.com"},

 {"address-value": "wappush=mary/type=user@ppg.example.com"},

 {"address-value": "wappush=alice/type=user@ppg.example.com"}

],

 "deliver-before-timestamp": "2010-11-08T18:13:51.0Z",

 "ppg-notify-requested-to": "http://pi1.example.com/Push/notify123",

 "progress-notes-requested": "true",

 "quality-of-service": {"priority": "medium"},

 "source-reference": "source-reference1"

}}
--xj987hc

Content-Type: text/plain

Text Message Goes Here.
--xj987hc--

Response:

	HTTP/1.1 201 Created

Date: Mon, 08 Nov 2010 18:14:03 GMT

Content-Type: application/json
Location: http://ppg.example.com/ExampleAPI/push/v1/pi1.example.com/pushMessages/id123
Content-Length: nnnn

{"push-response": {

 "progress-note": {

 "note": "note1",

 "stage": "stage1",

 "time": "2010-11-08T18:13:51.0Z"

 },

 "reply-time": "2010-11-08T18:13:51.0Z",

 "resourceURL": "http://ppg.example.com/ExampleAPI/push/v1/pi1.example.com/pushMessages/id123",

 "response-result": {

 "code": "1001",

 "desc": "The request has been accepted for processing"

 },

 "sender-address": "http://ppg.example.com/ExampleAPI/push/v1/pi1.example.com/pushMessages/id123",

 "sender-name": "Push Gateway"

}}

C.2 Replacement of an existing Push message (section 6.1.5.2)

Request:

	PUT /ExampleAPI/push/v1/pi1.example.com/pushMessages/id123 HTTP/1.1
Host: ppg.example.com

Content-Type: multipart/related; boundary=xj987hc; type="application/json"

Accept: application/json
Content-Length: nnnn

--xj987hc

Content-Type: application/json

{"push-message": {

 "address": [

 {"address-value": "wappush=bob/type=user@ppg.example.com"},

 {"address-value": "wappush=mary/type=user@ppg.example.com"},

 {"address-value": "wappush=alice/type=user@ppg.example.com"}

],

 "deliver-before-timestamp": "2010-11-08T18:13:51.0Z",

 "ppg-notify-requested-to": "http://pi1.example.com/Push/notify123",

 "progress-notes-requested": "true",

 "quality-of-service": {"priority": "medium"},

 "replace-method": "all",

 "replace-push-message": "http://ppg.example.com/ExampleAPI/push/v1/pi1.example.com/pushMessages/id123",

 "source-reference": "source-reference1"

}}
--xj987hc

Content-Type: text/plain

Text Message Goes Here.
--xj987hc--

Response:

	HTTP/1.1 200 OK

Date: Mon, 08 Nov 2010 18:14:03 GMT

Content-Type: application/json
Content-Length: nnnn

{"push-response": {

 "progress-note": {

 "note": "note1",

 "stage": "stage1",

 "time": "2010-11-08T18:13:51.0Z"

 },

 "reply-time": "2010-11-08T18:13:51.0Z",

 "resourceURL": "http://ppg.example.com/ExampleAPI/push/v1/pi1.example.com/pushMessages/id123",

 "response-result": {

 "code": "1001",

 "desc": "The request has been accepted for processing"

 },

 "sender-address": "http://ppg.example.com/ExampleAPI/push/v1/pi1.example.com/pushMessages/id123",

 "sender-name": "Push Gateway"

}}

C.3 Syntax error (section 6.1.5.3)

Request:

	PUT /ExampleAPI/push/v1/pi1.example.com/pushMessages/id123 HTTP/1.1
Host: ppg.example.com

Content-Type: multipart/related; boundary=xj987hc; type="application/json"

Accept: application/json

Content-Length: nnnn

--xj987hc

Content-Type: application/json

{"push-message": {

 "address": [

 {"address-value": "wappush=bob/type=user@ppg.example.com"},

 {"address-value": "wappush=mary/type=user@ppg.example.com"},

 {"address-value": "wappush=alice/type=user@ppg.example.com"}

],

 "deliver-before-timestamp": "2010-11-08T18:13:51.0Z",

 "ppg-notify-requested-to": "http://pi1.example.com/Push/notify123",

 "progress-notes-requested": "true",

 "quality-of-service": {"priority": "medium"},

 "replace-method": "some",

 "replace-push-message": "http://ppg.example.com/ExampleAPI/push/v1/pi1.example.com/pushMessages/id123",

 "source-reference": "source-reference1"

}}

--xj987hc

Content-Type: text/plain

Text Message Goes Here.
--xj987hc--

Response:

	HTTP/1.1 400 Bad Request

Date: Mon, 08 Nov 2010 18:14:03 GMT

Content-Type: application/json
Content-Length: nnnn

{"badmessage-response": {

 "code": "2000",

 "desc": "Syntax error: XML Syntax violated. Attribute (replace-method) with value (some) must have a value from the list (pending-only, all)"

}}

C.4 Cancellation of a Push message (section 6.1.6.1)

Request:

	DELETE /ExampleAPI/push/v1/pi1.example.com/pushMessages/id123 HTTP/1.1
Host: ppg.example.com

Accept: application/json

Response:

	HTTP/1.1 200 OK

Date: Mon, 08 Nov 2010 18:14:09 GMT

Content-Type: application/json

Content-Length: nnnn

{"cancel-response": {

 "cancel-result": {

 "code": "1000",

 "desc": "OK"

 },

 "resourceURL": "http://ppg.example.com/ExampleAPI/push/v1/pi1.example.com/pushMessages/id123"

}}

C.5 Retrieval of the status of a Push message (section 6.2.3.1)

Request:

	GET /ExampleAPI/push/v1/pi1.example.com/pushMessages/id123/status HTTP/1.1
Host: ppg.example.com

Accept: application/json

Response:

	HTTP/1.1 200 OK
Date: Date: Mon, 08 Nov 2010 18:17:59 GMT

Content-Type: application/json
Content-Length: nnnn

{"statusquery-response": {

 "resourceURL": "http://ppg.example.com/ExampleAPI/push/v1/pi1.example.com/pushMessages/id123",

 "statusquery-result": [

 {

 "address": {"address-value": "wappush=bob/type=user@ppg.example.com"},

 "code": "1000",

 "desc": "OK",

 "event-time": "2010-11-08T18:14:51.0Z",

 "message-state": "delivered",

 "quality-of-service": {"priority": "medium"}

 },

 {

 "address": {"address-value": "wappush=mary/type=user@ppg.example.com"},

 "code": "1001",

 "desc": "Accepted",

 "event-time": "2010-11-08T18:14:51.0Z",

 "message-state": "pending",

 "quality-of-service": {"priority": "medium"}

 },

 {

 "address": {"address-value": "wappush=alice/type=user@ppg.example.com"},

 "code": "2002",

 "desc": "Address Error",

 "event-time": "2010-11-08T18:14:51.0Z",

 "message-state": "rejected",

 "quality-of-service": {"priority": "medium"}

 }

]

}}

C.6 Retrieval of the status of a Push message for a dedicated address (section 6.2.3.2)

Request:

	GET /ExampleAPI/push/v1/pi1.example.com/pushMessages/id123/status?address= wappush%3D12345%2Ftype%3Duser1%40ppg%2Eexample%2Ecom HTTP/1.1
Host: ppg.example.com

Accept: application/json

Response:

	HTTP/1.1 200 OK
Date: Mon, 08 Nov 2010 18:17:59 GMT
Content-Type: application/json
Content-Length: nnnn

{"statusquery-response": {

 "resourceURL": "http://ppg.example.com/ExampleAPI/push/v1/pi1.example.com/pushMessages/id123",

 "statusquery-result": {

 "address": {"address-value": "wappush=bob/type=user@ppg.example.com"},

 "code": "1000",

 "desc": "OK",

 "event-time": "2010-11-08T18:14:51.0Z",

 "message-state": "delivered",

 "quality-of-service": {"priority": "medium"}

 }

}}

C.7 Request with invalid pushId (section 6.2.3.3)

Request:

	GET /ExampleAPI/push/v1/pi1.example.com/pushMessages/id123/status HTTP/1.1
Host: ppg.example.com

Accept: application/json

Response:

	HTTP/1.1 404 Not Found
Date: Mon, 08 Nov 2010 18:17:59 GMT
Content-Type: application/json
Content-Length: nnnn
{"statusquery-response": {

 "resourceURL": "http://ppg.example.com/ExampleAPI/push/v1/pi1.example.com/pushMessages/id123",

 "statusquery-result": {

 "code": "2004",

 "desc": "Push ID Not Found",

 "message-state": "undeliverable"

 }

}}

C.8 Successful partial cancellation (section 6.3.4.1)

Request:

	POST /ExampleAPI/push/v1/pi1.example.com/pushMessages/id123/cancel HTTP/1.1
Host: ppg.example.com

Content-Type: application/json

Accept: application/json

Content-Length: nnnn

{"cancel-message": {"address": {"address-value": "wappush=bob/type=user@ppg.example.com"}}}

Response:

	HTTP/1.1 200 OK

Date: Mon, 08 Nov 2010 18:14:59 GMT

Content-Type: application/json

Content-Length: nnnn

{"cancel-response": {

 "cancel-result": {

 "address": {"address-value": "wappush=bob/type=user@ppg.example.com"},

 "code": "1000",

 "desc": "OK"

 },

 "resourceURL": "http://ppg.example.com/ExampleAPI/push/v1/pi1.example.com/pushMessages/id123"

}}

C.9 Unsuccessful partial cancellation (section 6.3.4.2)

Request:

	POST /ExampleAPI/push/v1/pi1.example.com/pushMessages/id123/cancel HTTP/1.1
Host: ppg.example.com

Content-Type: application/json

Accept: application/json

Content-Length: nnnn

{"cancel-message": {"address": {"address-value": "wappush=bob/type=user@ppg.example.com"}}}

Response:

	HTTP/1.1 403 Forbidden

Date: Mon, 08 Nov 2010 18:14:59 GMT

Content-Type: application/json
Content-Length: nnnn

{"cancel-response": {

 "cancel-result": {

 "address": {"address-value": "wappush=bob/type=user@ppg.example.com"},

 "code": "2008",

 "desc": "Cancellation not possible"

 },

 "resourceURL": "http://ppg.example.com/ExampleAPI/push/v1/pi1.example.com/pushMessages/id123"

}}

C.10 Successful capability query (section 6.4.3.1)

Request:

	GET /ExampleAPI/push/v1/clientCapabilities/wappush%3Dbob%2Ftype%3Duser%40ppg.example.com?appId=urn%3Ax-wap-application%3Awml.ua HTTP/1.1
Host: ppg.example.com

Accept: application/json

Response:

	HTTP/1.1 200 OK
Date: Date: Mon, 08 Nov 2010 18:17:59 GMT

Content-Type: multipart/related; boundary=xj987hc; type="application/json"

Content-Length: nnnn

--xj987hc

Content-Type: application/json

{"ccq-response": {

 "address": {"address-value": "wappush=bob/type=user@ppg.example.com"},

 "code": "1000",

"desc": "OK"
"resourceURL": "http://ppg.example.com/ExampleAPI/push/v1/clientCapabilities/wappush%3Dbob%2Ftype%3Duser%40ppg.example.com?appId=urn%3Ax-wap-application%3Awml.ua"
}}
--xj987hc

 Content-Type: application/xml

<?xml version="1.0"?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:prf="http://www.wapforum.org/profiles/UAPROF/ccppschema-20010430#">

 <!--WAP Browser vendor site: Default description of WAP properties-->

 <rdf:Description ID="MyDeviceProfile">

 <prf:component>

 <rdf:Description ID="WAPProfile">

 <rdf:type resource="http://www.wapforum.org/profiles/UAPROF/ccppschema-20010430#WapCharacteristics"/>

 <prf:WapVersion>2.0</prf:WapVersion>

 <prf:WmlDeckSize>1400</prf:WmlDeckSize>

 <prf:WapDeviceClass>A</prf:WapDeviceClass>

 <prf:WmlVersion>

 <rdf:Bag>

 <rdf:li>2.0</rdf:li>

 </rdf:Bag>

 </prf:WmlVersion>

 </rdf:Description>

 </prf:component>

 <prf:component>

 <rdf:Description ID=":PushProfile">

 <rdf:type resource="http://www.wapforum.org/profiles/UAPROF/ccppschema-20010430#PushCharacteristics"/>

 <prf:Push-Accept>

 <rdf:Bag>

 <rdf:li>text/vnd.wap.si</rdf:li>

 <rdf:li>application/vnd.wap.sic</rdf:li>

 </rdf:Bag>

 </prf:Push-Accept>

 <prf:Push-Accept-Language>

 <rdf:Bag>

 <rdf:li>en</rdf:li>

 </rdf:Bag>

 </prf:Push-Accept-Language>

 </rdf:Description>

 </prf:component>

 </rdf:Description>

</rdf:RDF>

--xj987hc--

C.11 Request with invalid client address (section 6.4.3.2)

Request:

	GET /ExampleAPI/push/v1/clientCapabilities/foobar?appId=urn%3Ax-wap-application%3Awml.ua HTTP/1.1

Host: ppg.example.com

Accept: application/json

Response:

	HTTP/1.1 404 Not Found
Date: Mon, 08 Nov 2010 18:17:59 GMT
Content-Type: application/json
Content-Length: nnnn

{"ccq-response": {

 "address": {"address-value": "foobar"},

 "code": "2003",

"desc": "Address not found"
"resourceURL": "http://ppg.example.com/ExampleAPI/push/v1/clientCapabilities/foobar?appId=urn%3Ax-wap-application%3Awml.ua"
}}

C.12 PI notification about the outcome of a Push message (section 6.5.5.1)

Request:

	POST /Push/notify123 HTTP/1.1

Accept: application/json
Content-Type: application/json
Content-Length: nnnn

Host: pi1.example.com

{"resultnotification-message": {

 "address": {"address-value": "wappush=12345/type=user1@ppg.example.com"},

 "code": "1000",

 "desc": "OK",

 "event-time": "2010-11-08T18:14:12.0Z",

 "link": {"href": "http://ppg.example.com/ExampleAPI/push/v1/pi1.example.com/pushMessages/id123"}, "rel": "push-message"},
 "message-state": "delivered",

 "quality-of-service": {"priority": "medium"},

 "received-time": "2010-11-08T18:13:51.0Z",

 "sender-address": "http://ppg.example.com/ExampleAPI/push/v1/pi1.example.com/pushMessages/id123",

 "sender-name": "Push Gateway"

}}

Response:

	HTTP/1.1 200 OK

Content-Type: application/json

Content-Length: nnnn

Date: Mon, 08 Nov 2010 18:14:59 GMT

{"resultnotification-response": {

 "code": "1000",

 "desc": "OK"

}}

//{serverRoot}/push/{apiVersion}/

/{initiatorAddress}

/pushMessages

/{pushId}

/status

/{address}

/cancel

/clientCapabilities

(2012 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20120101-I]
(2012 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20120101-I]

