Doc# OMA-DLDRM-2004-0193R04-Encoding-Ambiguity-in-KDF.doc[image: image1.jpg]"sOMaQa

Open Mobile Alliance

Submitted to OMA DLDRM WG
Submission Date: 14 October 2004

Doc# OMA-DLDRM-2004-0193R04-Encoding-Ambiguity-in-KDF.doc
Submitted to OMA DLDRM WG
Submission Date: 14 October 2004

Change Request

	Title:
	Encoding Ambiguity in KDF
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	BAC DLDRM

	Doc to Change:
	OMA-DRM-DRM-V2_0-20040716-C

	Submission Date:
	14 Oct 2004

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Jihyun Kim, Samsung Electronics, jihyuny.kim@samsung.com

	Replaces:
	n/a

1 Reason for Change

In Section 7, we should consider the encoding ambiguity problem regarding the conversion of an integer to an octet string and vice versa. This encoding ambiguity has been covered by the normative reference [IETF-KEM] which is not valid anymore.
For example, the sender generates a value Z as a statistically uniform random integer and passes it to the KDF function. However, KDF treats the value Z as an octet string of arbitrary length in section 7.1.2. In other words, the value Z is of type integer, but treated as an octet string. This could be problematic because the value of an octet string Z will depend on how the recipient converts the integer to an octet string.
Therefore, we should clarify the encoding ambiguity in converting a non-negative integer to an octet string. This encoding ambiguity appears in the value Z which is generated by the sender and C1 which is the result of an RSA transform.
1) The value Z

The sender generates a value Z as an integer and passes it to the KDF function. However, KDF treats the value Z as an octet string. This could be problematic because the value of an octet string Z will depend on how the value Z is converted to an octet string, i.e. the encoding rule. This encoding ambiguity could lead the sender and the recipient into having different KEKs depending on the encoding rule.
2) C1
The result of the RSA transform C1 is a non-negative integer and then it is concatenated with C2 as an octet string. This could be problematic because the result of converting a non-negative integer to an octet string is different depending on the encoding rule. It means that the output C which is transmitted to the recipient could be different depending on the encoding rule.
Therefore, we need to specify how the integer value Z is converted into an octet string. One possibility is to define INT2OCT (Integer to Octet String Primitive) which converts a non-negative integer into an octet string. However, we should also consider the ambiguity relating to leading zeros, meaning that how many 0s would be attached in front of the converted octet string. (For example, 0x01 for SHA-1 and 0x0001 for SHA-1 would output different values.)
I suggest using I2OSP from PKCS #1 – RSA Cryptography Standard. The definition is as followings:

	X = I2OSP (x, xLen)

Input: x nonnegative integer to be converted

xLen intended length of the resulting octet string

Output: X corresponding octet string of length xLen
Error: “integer too large”

As you see with the definition of I2OSP, we can specify the intended length of the converted octet string. I2OSP could resolve not only the encoding ambiguity but also the leading zeros ambiguity.

In addition, we need to specify how an octet string is converted into an integer value, the inverted functionality compared to I2OSP. After receiving C, the recipient’s DRM Agent splits it into C1 and C2 and decrypts C1 using its private key and yielding Z. And then using Z, the recipient’s Device can derive KEK. At this moment, the value of yielded Z could vary depending on the rule how an octet string is converted into an integer value. It means that the recipient could have different KEK depending on the rule of converting the octet string to an integer value. Therefore, we should specify the inverted functionality compared to I2OSP so that the recipient could get the intended integer value Z.
We can use OS2IP defined in PKCS #1 – RSA Cryptography Standard. That has the inverted functionality compared to I2OSP. You can see the definition of OS2IP below:

	x = OS2IP (X)

Input: X octet string to be converted

Output: x corresponding nonnegative integer

2 Impact on Backward Compatibility
None
3 Impact on Other Specifications

None
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

It is recommended that the DLDRM WG clarifies this encoding ambiguity and agrees this CR outlined below and that changes are incorporated into the current DRM Specification V2.0.
6 Detailed Change Proposal

To resolve the encoding ambiguity, I suggest the following addition:
2.
References

2.1
Normative References
(Omitted)

	[HTTP]
	RFC 2616. Hypertext Transfer Protocol – HTTP/1.1. J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee. June 1999. http://www.ietf.org/rfc/rfc2616.txt

	
	

	[IOPPROC]
	"OMA Interoperability Policy and Process", Version 1.1, Open Mobile Alliance(tm), OMA-IOP-Process-V1_1, http://www.openmobilealliance.org/

(Omitted)

	[OCSP-MP]
	OMA Online Certificate Status Protocol (profile of [OCSP]) V 1.0, http://www.openmobilealliance.org/

	[PKCS #1]
	PKCS #1 v2.1: RSA Cryptography Standard

ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1.pdf

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”. S. Bradner. March 1997.
http://www.ietf.org/rfc/rfc2119.txt

(Omitted)

7. Key Management

7.1 Cryptographic Components

7.1.1 RSAES-KEM-KWS

RSA-KEM-KWS is an asymmetric encryption scheme defined in [X9.44] and based on the "generic hybrid cipher" in [ISO/IEC 18033]. In this scheme, the sender uses the recipient's public key to securely transfer symmetric-key material to the recipient. Specifically, given the recipient's public RSA key P, consisting of a modulus m and a public exponent e, the sender generates a value Z as a statistically uniform random integer in the interval [0,…,m-1]. The value Z is then converted to a key-encryption key KEK as follows:

KEK = KDF(I2OSP(Z, mLen), NULL, kekLen)

where KDF is defined below, I2OSP converts a nonnegative integer to an octet string of a specified length and is defined in [PKCS #1], mLen is the length of the modulus m in octets, NULL is the empty string, and kekLen shall be set to the desired length of KEK (in octets).
Given KEK, a key-wrapping scheme WRAP and the symmetric key material K to be transported, the sender wraps K to get ciphertext C2:

C2 = WRAP(KEK, K)

After this, the sender encrypts Z using the recipient's public RSA key P to yield C1:

c1 = RSA.ENCRYPT(P,Z) = Ze mod m
C1 = I2OSP(c1, mLen)
The scheme output is C = C1 | C2 which is transmitted to the recipient. The decryption operation follows straightforwardly: the recipient recovers Z from C1 using the recipient’s private key, converts Z to KEK, and then unwraps C2 to recover K.

7.1.2 KDF

KDF is equivalent to the key derivation function KDF2 defined in [X9.44] (and KDF in [X9.42], [X9.63]). It is defined as a simple key derivation function based on a hash function. For the purposes of this specification, the hash function shall be SHA-1.

KDF takes three parameters: the shared secret value Z: an octet string of (essentially) arbitrary length, otherInfo: other information for key derivation, an octet string of (essentially) arbitrary length (may be the empty string), and kLen: intended length in octets of the keying material. kLen shall be an integer, at most (232 – 1)hLen where hLen is the length of the hash function output in octets. The output from KDF is the key material K, an octet string of length kLen. The operation of KDF is as follows:

1) Let T be the empty string.

2) For counter from 1 to (kLen / hLen (, do the following:

Let D = 4-byte, unsigned big-endian representation of counter

Let T = T || Hash (Z || D || otherInfo).

3) Output the first kLen octets of T as the derived key K.

7.1.3 AES-WRAP

AES-WRAP is the symmetric-key wrapping scheme based on AES and defined in [AES-WRAP]. It takes as input a key-encryption key KEK and key material K to be wrapped. The scheme outputs the result C of the wrapping operation:

C = AES-WRAP(KEK, K)

7.2 Key Transport Mechanisms

7.2.1 Distributing KMAC and KREK under a Device Public Key

This section applies when protecting a Rights Object for a Device.

KMAC and KREK are each 128-bit long keys generated randomly by the sender. KREK ("Rights Object Encryption Key") is the wrapping key for the content-encryption key KCEK in Rights Objects. KMAC is used for key confirmation of the message carrying KREK.

The asymmetric encryption scheme RSAES-KEM-KWS shall be used with the AES-WRAP symmetric-key wrapping scheme to securely transmit KMAC and KREK to a recipient Device using the Device's RSA public key. An independent random value Z as described in Section 7.1.1 shall be chosen for each encryption operation. For the AES-WRAP scheme, KMAC and KREK are concatenated to form K, i.e.:

KEK = KDF(I2OSP(Z, mLen), NULL, kekLen)
C2 = AES-WRAP(KEK, KMAC | KREK)
C1 = I2OSP(RSA.ENCRYPT(PubKeyDevice, Z), mLen)

C = C1 | C2
where kekLen shall be set to 16 (128 bits) and mLen is the length of the modulus of the Device’s RSA public key in octets. In this way, AES-WRAP is used to wrap 256 bits of key data (KMAC | KREK) with a 128-bit key-encryption key (KEK).

After receiving C, the DRM Agent splits it into C1 and C2 and decrypts C1 using its private key (consisting of a private exponent d and the modulus m), yielding Z:

C1 | C2 = C
c1 = OS2IP(C1, mLen)
Z = RSA.DECRYPT(PrivKeyDevice, c1) = c1d mod m
where OS2IP converts an octet string to a nonnegative integer and is defined in [PKCS #1].
Using Z, the Device can derive KEK, and from KEK unwrap C2 to yield KMAC and KREK.:

KEK = KDF(I2OSP(Z, mLen), NULL, kekLen)

KMAC | KREK = AES-UNWRAP(KEK, C2)
The following URI shall be used to identify this key transport scheme in <xenc:EncryptionMethod> elements:

http://www.rsasecurity.com/rsalabs/pkcs/schemas/pkcs-1#rsaes-kem-kdf2-kw-aes128
7.2.2 Distributing KD and KMAC under a Device Public Key

This section applies when provisioning a Device with a Domain key, KD.
KD is the symmetric key-wrapping key used when protecting KREK and KMAC in a Rights Object issued to a Domain D. KD is a 128-bit long AES key generated randomly by the sender and shall be unique for each Domain D. KMAC is used for key confirmation of the message carrying KD.

In this case, exactly the same procedure as in the previous section shall be used, the only difference being the replacement of KREK with KD.

7.2.3 Distributing KMAC and KREK under a Domain Key KD

This section applies when protecting a Rights Object for a Domain.

The key-wrapping scheme AES-WRAP SHALL be used. KEK in AES-WRAP SHALL be set to KD and K to the concatenation of KMAC and KREK, i.e.:

C = AES-WRAP(KD, KMAC | KREK)

After receiving C, the DRM Agent decrypts C using KD:
KMAC | KREK = AES-UNWRAP(KD, C)

The following URI shall be used to identify this key transport scheme in <xenc:EncryptionMethod> elements:

http://www.w3.org/2001/04/xmlenc#kw-aes128

� Example: If counter = 946, D will be 00 00 03 b2

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 6)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20040917]

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Page 6 (of 6)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20040917]

