OMA-DLDRM-2005-0100-Broadcast-Extensions-Device-Registration

Change Request

OMA-DLDRM-2005-0100-Broadcast-Extensions-Device-Registration [image: image4.jpg]"sOMaQa

Open Mobile Alliance

Change Request

Change Request

	Title:
	Broadcast extensions device registration
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	OMA DLDRM

	Doc to Change:
	OMA-DRM-XBS-20050317-D

	Submission Date:
	4th April 2005

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Robert Lukassen, Philips, robert.lukassen@philips.com

	Replaces:
	n/a

1 Reason for Change

This is a contribution that is part of the Broadcast Extensions for OMA DRM. It defines an extension for the <roap:RegistrationResponse> message to carry all the necessary key materials to allow subscriber group addressing over de broadcast interface and to receive broadcast rights objects.

2 Impact on Backward Compatibility

n/a

3 Impact on Other Specifications

The extensions proposed by this Change Request do not influence other standards directly.

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

To examine the proposed change request and discuss it in the Singapore meeting. It is recommended that the group considers taking this CR as basis for further work, and to include the text in the Broadcast Extensions draft specification.

6 Detailed Change Proposal

5.1.3 On-line Registration

A broadcast enabled device may register using the ROAP protocol, either directly in case it is a connected device, or via a connected device that acts as a proxy.

Extensions to the ROAP are required to allow transfer of all subscriber group key material and the authentication key for broadcast rights objects.

5.1.3.1 Registration Request

Rights issuers can derive from the device capabilities in the device certificate the modes of operation supported by the registering device. From this information it should be possible to determine whether to include the extensions (defined in the next section) in the registration response or not. To avoid possible confusion, an extension is defined for the <roap:RegistrationRequest> to allows a rights issuer to determine directly whether or not to include the broadcast extensions in <roap:RegistrationResponse>.

Extensions: The following extensions are defined for the ROAP-RegistrationRequest message in addition to the extensions already defined.

· Broadcast Registration Request: This extension allows a device to indicate to a broadcast enabled Rights Issuer to use the broadcast extensions in the registration response.

The following schema fragment defines the Broadcast Registration extension to the ROAP schema:

<complexType name="roap:BroadcastRegistrationRequest">

 <complexContent>

 <extension base="roap:Extension">

 </extension>

 </complexContent>

</complexType>

When included in a <roap:RegistrationRequest>, this extension MUST be marked as critical.

5.1.3.2 Registration Response

A Rights Issuer that receives a <roap:RegistrationRequest> including the <roap:BroadcastRegistrationRequest> extension and that does not support the broadcast extensions MUST abort the registration procedure and respond accordingly. A Rights Issuer that does support broadcast extensions MUST respond with a <roap:RegistrationRequest> including the following defined <roap:BroadcastRegistration> extension.

Extensions: The following extensions are defined for the ROAP-RegistrationResponse message in addition to the extensions already defined.

· Broadcast Registration: This extension allows an RI to securely transfer broadcast group key material and addressing information as well as the authentication key to use to verify authenticity of broadcast rights objects.

The following schema fragment defines the Broadcast Registration extension to the ROAP schema:

<complexType name=”roap:SubscriberGroupKey”>

 <complexContent>

 <extension base=”ds:KeyInfo”/>

 <attribute name=”node” type=”hexBinary”/>

 </complexContent>

</complexType>

<simpleType name=”roap:ShortUniqueDeviceNumber”>

 <restriction base=”string”>

 <pattern value=”\d{8}”

 </restriction>

</simpleType>

<complexType name="roap:SubscriberGroupRegistration">

 <complexContent>

 <sequence>

 <element name=”subscriberGroupAddress” type=”roap:SubscriberGroupIdentifier”/>

 <element name=”uniqueGroupKey” type=”ds:KeyInfo”/>

 <element name=”uniqueDeviceKey” type=”ds:KeyInfo” minOccurs=”0”/>

 <element name=”subscriberGroupKey” type=”roap:SubscriberGroupKey” minOccurs=”0” maxOccurs=”unbounded”/>

 <element name=”shortUniqueDeviceNumber” type=”roap:ShortUniqueDeviceNumber”/>

 </sequence>

 </complexContent>

</complexType>

<complexType name="roap:BroadcastRegistration">

 <complexContent>

 <extension base="roap:Extension">

 <sequence>

 <element name=”subscriberGroupregistration” type=”roap:SubscriberGroupRegistration” minOccurs=”0”/>

 <element name=”rightsIssuerAuthenticationKey” type=”ds:KeyInfo” minOccurs=”0”/>

 <element name="encKey" type="xenc:EncryptedKeyType"/>
 </sequence>

 </extension>

 </complexContent>

</complexType>

Subscriber Group Registration

The optional <subscriberGroupRegistration> element holds all information regarding the subscriber group feature: subscriber group address, device position and key material.

The <subscriberGroupAddress> element MUST contain the subscriber group base address and the device position. It SHALL NOT contain an access mask.

The <uniqueGroupKey> element holds an <xenc:EncryptedKey> element. This MUST hold a <ds:KeyInfo> element, an empty <xenc:EncryptionMethod> element and an <xenc:CipherData> element. The <ds:KeyInfo> element MUST contains a <ds:RetrievalMethod> element of which the URI attribute references the key used to encrypt the subscriber group’s unique group key (UGK). The <xenc:EncryptedKey> element MUST also hold an empty <xenc:EncryptionMethod> element of which the Algorithm attribute identified the algorithm used to protect the UGK. This algorithm MUST be AES-128 Key Wrap, and the value of the Algorithm attribute MUST be “http://www.w3.org/2001/04/xmlenc#kw-aes128”. The <xenc:CipherData> element contains the <xenc:CipherValue> element that holds the base64 encoded value of the encrypted UGK.

The optional <uniqueDeviceKey> element holds an <xenc:EncryptedKey> element. This MUST hold a <ds:KeyInfo> element, an empty <xenc:EncryptionMethod> element and an <xenc:CipherData> element. The <ds:KeyInfo> element MUST contains a <ds:RetrievalMethod> element of which the URI attribute references the key used to encrypt the subscriber group’s unique device key (UDK). The <xenc:EncryptedKey> element MUST also hold an empty <xenc:EncryptionMethod> element of which the Algorithm attribute identified the algorithm used to protect the UDK. This algorithm MUST be AES-128 Key Wrap, and the value of the Algorithm attribute MUST be “http://www.w3.org/2001/04/xmlenc#kw-aes128”. The <xenc:CipherData> element contains the <xenc:CipherValue> element that holds the base64 encoded value of the encrypted UDK.

The optional <subscriberGroupKey> elements each hold one key associated with the binary tree of key nodes from the subscriber group. Each <subscriberGroupKey> is of type <roap:DerivationKey> which extends the <ds:KeyInfo> type with a single node attribute. The value of the node attribute is the hexBinary encoded node number of the node associated with the derivation key contained by the <subscriberGroupKey> element. Each <subscriberGroupKey> element MUST hold a <ds:KeyInfo> element, an empty <xenc:EncryptionMethod> element and an <xenc:CipherData> element. The <ds:KeyInfo> element MUST contains a <ds:RetrievalMethod> element of which the URI attribute references the key used to encrypt the subscriber group’s node key of node i (NKi). The <xenc:EncryptedKey> element MUST also hold an empty <xenc:EncryptionMethod> element of which the Algorithm attribute identified the algorithm used to protect the NKi. This algorithm MUST be AES-128 Key Wrap, and the value of the Algorithm attribute MUST be “http://www.w3.org/2001/04/xmlenc#kw-aes128”. The <xenc:CipherData> element contains the <xenc:CipherValue> element that holds the base64 encoded value of the encrypted NKi.

The device MUST check the consistency relations between the node keys and its subscriber position as defined by the broadcast extension.

The <shortDeviceUniqueNumber> MUST be included in the RI Context, and MAY be used at a later moment to receive binary push (re)registration messages over the broadcast interface.

Authentication Key

The <rightsIssuerAuthenticationKey> holds an <xenc:EncryptedKey> element. This MUST hold a <ds:KeyInfo> element, an empty <xenc:EncryptionMethod> element and an <xenc:CipherData> element. The <ds:KeyInfo> element MUST contains a <ds:RetrievalMethod> element of which the URI attribute references the key used to encrypt the rights issuer’s authentication key (RIAK). The <xenc:EncryptedKey> element MUST also hold an empty <xenc:EncryptionMethod> element of which the Algorithm attribute identified the algorithm used to protect the RIAK. This algorithm MUST be AES-128 Key Wrap, and the value of the Algorithm attribute MUST be “http://www.w3.org/2001/04/xmlenc#kw-aes128”. The <xenc:CipherData> element contains the <xenc:CipherValue> element that holds the base64 encoded value of the encrypted RIAK.

The <encKey> element is of type xenc:EncryptedKeyType from [XMLEnc]. It consists of a wrapped broadcast registration encryption key, KBRK. The Id attribute of this element SHALL be present and SHALL have the same value as the value of the URI attribute of the <ds:RetrievalMethod> element in any <ds:KeyInfo> elements inside the subscriber group registration extension. The <ds:KeyInfo> child element of the <encKey> element SHALL identify the wrapping key. The child of the <ds:KeyInfo> element SHALL be of type roap:X509SPKIHash, identifying a particular DRM Agent's public key through the (SHA-1) hash of the DER-encoded subjectPublicKeyInfo value in its certificate.

7.2.3 Subscriber Group Identifier

To identify a subscriber group, a subscriber group subset or a subscriber group unique device, a new identifier type is required. The following schema defines the roap:SubscriberGroupIdentifier identifier:

<complexType name="SubscriberGroupIdentifier">

 <sequence>

 <element name="subscriberGroupBase" type="base64Binary"/>

 <choice minOccurs="0"/>

 <element name="subscriberAccessMask" type="base64Binary"/>

 <element name="subscriberPosition" type="base64Binary"/>

 </sequence>

</complexType>

If the <subscriberAccessMask> and the <subcriberPosition> element are not included in the roap:SubscriberGroupIdentifier, then the content of the <subscriberGroupBase> identifies the whole subscriber group. If the <subscriberAccessMask> is present, then the <subscriberGroupBase> identifies the group, and the mask value identifies which devices in that group are addressed. If the <subscriberPosition> is present, then the single device with the corresponding number in the group is addressed.

7.3 Confidentiality of Message Content

7.3.1 Introduction
If the subscriber group addressing is cryptographically secure, then it can be used very effectively to distribute a rights object to such a subset, where the content encryption keys in the rights object are protected with the distinct key associated with that particular subset. All devices in the subset can determine this key, and hence can decrypt the content encryption keys in the rights object. All other devices in the group cannot, and therefore cannot access the protected content.

7.3.2 Exponential Scheme

As there are 2n subsets of a group of n devices, a very inefficient way of implementing this scheme is to generate 2n distinct keys. Each device would be provided with the keys associated with all the subsets that include that device.

	Group size
	Number of subsets
	Number of keys per device

	1
	2
	1

	2
	4
	2

	4
	16
	8

	8
	256
	128

	16
	65536
	32768

	32
	4294967296
	2147483648

This is for all practical purposes completely unusable.

7.3.3 Linear Scheme

An easy optimisation of the grossly impractical scheme is to generate an exclusion key unique per device part of the group. Each device is given all exclusion keys, except its own exclusion key. For any subset of the group that is to be allowed to access content, one can define the complement subset. If all the exclusion keys of the devices in the complement subset are used in a key derivation function, then only those devices in the complement subset cannot compute all the key material required: they lack the key associated with themselves.

[image: image1.wmf]

d1

d2

d3

d4

d5

d6

d7

d8

Device exclusion keys

Encryption key for subset {d1,d2,d6}

xor

xor

xor

xor

Figure 5 Derivation of an encryption key associated with a subset of the group

The figure shows the derivation of an encryption key for the subset {d1, d2, d6}. The derivation function used here is the bitwise XOR. Each of the devices from the complement subset {d3, d4, d5, d7, d8} will find that its key is used in this derivation. Consequently neither of the devices from the complement subset can compute the encryption key. For example, device d4 cannot compute the required:

d3 XOR d4 XOR d5 XOR d7 XOR d8

because it only knows d1, d2, d3, d5, d6, d7 and d8.

The size of the key material to be distributed now scales linear with the size of the group. This is a big improvement over the exponential scaling of the naïve approach.

	Group size
	Number of subsets
	Number of keys per device

	1
	2
	0

	2
	4
	1

	4
	16
	3

	8
	256
	7

	16
	65536
	15

	32
	4294967296
	31

	64
	1.84 x 1019
	63

	128
	3.40 x 1038
	127

	256
	1.16 x 1077
	255

	512
	1.34 x 10154
	511

	1024
	1.80 x 10308
	1023

This is a great improvement, and can make the scheme already practical for modest group sizes.

7.3.4 Logarithmic Scheme

In [Broadcast Encryption, Advances in Cryptology - CRYPTO ’93 Proceedings, Lecture Notes in Computer Science, Vol. 773, 1994, pp. 480–491, A. Fiat, M. Noar] the authors provide a scheme of hierarchical key derivations. Under this scheme, each device is provided key material that allows on-demand computing of the keys associated with all other devices in the group, except itself. The following picture shows schematically how this operates:

[image: image2.wmf]

d1

d2

d3

d4

d5

d6

d7

d8

Key derivation function ‘Left’

Key derivation function ‘Right’

Figure 6 Fiat-Naor key derivation scheme

The figure shows the application of two similar, but different, key derivation algorithms. From a single key, two child keys can be derived using these two distinct functions. A tree hierarchy of keys can thus be formed. The complete tree is determined completely by the two key derivation functions and the single root key.

This scheme allows an efficient version of the linear scheme. Instead of distributing all keys (except its own) to a device, now only a few keys from the tree need to be distributed to each device. It can be shown that instead of n-1 keys, now it is sufficient to distribute log2n keys to each device.

	Group size

(n devices)
	Total number of keys in the group

	Number of keys per device

	
	Linear scheme

n x (n-1)
	Logarithmic scheme

n x log2n
	Linear scheme

(n-1)
	Logarithmic scheme

log2n

	1
	0
	0
	0
	0

	2
	2
	2
	1
	1

	4
	12
	8
	3
	2

	8
	56
	24
	7
	3

	16
	240
	64
	15
	4

	32
	992
	160
	31
	5

	64
	4032
	384
	63
	6

	128
	16256
	896
	127
	7

	256
	65280
	2048
	255
	8

	512
	261632
	4608
	511
	9

	1024
	1047552
	10240
	1023
	10

	…
	
	
	
	

	1048576
	1.10 x 1012
	20971520
	1048575
	20

A practical limit to the subscriber group size is given by the need to communicate which subset of the group is selected to access particular content. This is typically done with a bitvector, indicating which devices are included in the subset. For each communication to a specific subset, such a bitvector of n bits length must be added in order for the devices to determine the used encryption key.

It must be noted that if the subset of devices allowed to access content is the whole group, then the derivation of the content encryption key fails, because there is no device key at all to include in the key derivation algorithm. To address this issue, one can provide all devices with one additional key special key, to be used when the whole group is addressed.

7.3.5 Subscriber Group Key Material
Each subscriber group has a single unique group key that is used to protect the confidentiality of sensitive broadcast information when the subscriber group is addressed as a whole. This unique group key (UGK) is transferred to each device in the subscriber group upon registration with the rights issuer. The UGK is shared between all devices in the same subscriber group.
Each device in a subscriber group also has a unique device key that is used to protect the confidentiality of sensitive broadcast information when device addressing is used (subscriber group address and subscriber position), This unique device key (UDK) is transferred to the device upon registration with the rights issuer.

Each device in a subscriber group also has a set of node keys NKi that is used to compute a derived key (DK) to protect the confidentiality of sensitive broadcast information when device addressing is used (subscriber group address and subscriber position), This set of node keys is transferred to the device upon registration with the rights issuer.

Each node key NKi is associated with a node number. The nodes from the subscriber group key derivation tree are sequentially numbered in a breadth-first manner, starting from the root node with number 0.

[image: image3.wmf]

0

13

14

6

7

8

4

9

11

5

12

1

3

2

10

i

2i+1

2i+2

Figure 1 Subscriber Group Node (and Node Key) Numbering
Each device gets a set of node keys such that it can apply the key derivation functions ‘left’ and ‘right’ to compute the node keys of all leaf nodes, except of the leaf node that is associated with its own position. The relation between subscriber position and associated leaf node number is:

leaf node number = subscriber position + subscriber group size – 1
Each node in the subscriber group key tree can be associated also with a depth in the tree. The root node has depth 0, its child nodes 1 and 2 have depth 1. In general, the child nodes of a node with depth d have depth d+1. With this defined, the set of node keys has the following property: all nodes associated with the node keys given to a device have different depth, and the root node is not part of this set.
7.3.6 Consistency
For any device position, it is easy to derive the node numbers of the key nodes for which the keys must be included in the set of node keys for that device.
If sibling(node) yields the unique node that has the same parent as node, parent(node) yields the parent node of node, and key(node) yields the key associated with node, then the following algorithm yields all the nodes of which the key must be included in the device’s set of derivation keys:

KeySet = (
while node (root

node := sibling (node)

KeySet := KeySet (key(node)

node := parent(node)

end
With this algorithm it is easy to check the consistency of the key set and the subscriber position given to a device.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 8)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20050101-I]

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Page 5 (of 8)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20050101-I]

_1172405627.doc

d1

d2

d4

d3

d8

d7

d6

d5

Encryption key for subset {d1,d2,d6}

Device exclusion keys

xor

xor

xor

xor

_1174129499.doc

10

4

9

8

7

3

1

0

5

11

12

2

6

13

14

i

2i+1

2i+2

_1171259802.doc

d1

d2

d4

d3

d8

d7

d6

d5

Key derivation function ‘Right’

Key derivation function ‘Left’

