Doc# OMA-DRM-2008-0056R02-CR_A2A_Update_to_Move_Operation.doc[image: image2.jpg]"sOMaQa

Open Mobile Alliance

Change Request

Doc# OMA-DRM-2008-0056R02-CR_A2A_Update_to_Move_Operation.doc
Change Request

Change Request

	Title:
	A2A Update to Move Operation
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	DRM

	Doc to Change:
	OMA-TS-SCE_A2A-V1_0_0-20080201-D.doc

	Submission Date:
	20 Feb 2008

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Aram Perez, Qualcomm, aramp@qualcomm.com

	Replaces:
	CR-0056

1 Reason for Change

The certificate chain of the RI (or LRM) has to be delivered and validated. If the Rights Object stateful, the StateInformation has to be checked that it is consistent with the Rights Object.

R01: Added information about state information consistency and checks about the type of LRM.
R02: Changes SourceCertificateChain to just CertificateChain to make this CR consistent with CR0065.
2 Impact on Backward Compatibility

None.

3 Impact on Other Specifications

None.

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

Qualcomm recommends that the DRM group approve this CR.

6 Detailed Change Proposal

Change 1: Change section 9.7 as follows:

The Put RO operation is used by the DRM Requestor to Move (put) a Rights Object to a DRM Agent. This operation MUST take place using a SAC. This operation MUST NOT be performed if the DRM Requestor’s certificate does not have an extKeyUsage extension with oma-kp-sceDrmAgent key purpose set or the DRM Agent’s certificate does not have an extKeyUsage extension with oma-kp-sceDrmAgent key purpose set (see section Error! Reference source not found.). The following figure illustrates the Put RO operation.

[image: image1.png]BRequestor

A

DRM

Agent
I I
. PutRoRequest '
: >
I I
! PutRoResponse !
| |
I

Figure 1: Put RO Operation
In order for this operation to take place, the following MUST be performed:

1. The DRM Requestor checks if the Rights Object has the <move> permission and any constraints. If the Rights Object cannot be Moved, the Put RO operation is terminated.

2. The DRM Requestor marks the Rights Object being Moved as unusable. If the Rights Object is stateful and just a portion of the Rights Object is being Moved (Partial Rights, see section Error! Reference source not found.), then that portion being Moved is marked as usuable.

3. The DRM Requestor generates a PutRoRequest with the information for the Rights Object (or portion) being Moved to the DRM Agent.

4. The DRM Requestor sends the PutRoRequest to the DRM Agent, applying the replay protection mechanism described in section Error! Reference source not found..

5. The DRM Agent processes the request as follows:

a. It processes the request for replay as described in section Error! Reference source not found..

b. It validates the fields of the PutRoRequest. If any field is invalid, it sets PutRoResponse.Status to InvalidField and proceeds to step 6.

c. It verifies the signature on the Rights Object, including the SourceCertificateChain field. If any of the verifications fails, it sets PutRoResponse.Status to InvalidRightsObject and proceeds to step 6.
d. It checks that the Rights Object has the <move> permission. If it does not, it sets PutRoResponse.Status to InvalidRightsObject and proceeds to step 6.
e. If the Rights Object is stateful, it validates that the StateInformation is consistent with the original state in the Rights Object (see section 5.5). If any state is invalid, it sets PutRoResponse.Status to InvalidRightsObject and proceeds to step 6.
f. It checks whether the Rights Object was created by an LRM. If it was created by an LRM and the LRM’s certificate only has the localRightsManagerDomain extended key purpose (see [SCE-LRM], Appendix C.1), it sets PutRoResponse.Status to InvalidRightsObject and proceeds to step 6.
g. It checks if it has enough room to install the Rights Object. If it does not, it sets PutRoResponse.Status to NotEnoughSpace and proceeds to step 6.

h. It installs the Rights Object per [OMADRMV2] except that the replay cache is not considered.

i. It sets PutRoResponse.Status to Success.
6. The DRM Agent sends the PutRoResponse to the DRM Requestor, applying the replay protection mechanism described in section Error! Reference source not found..

7. The DRM Requestor processes the response as follows:

a. It processes the response for replay as described in section Error! Reference source not found..

b. If PutRoResponse.Status is not Success, it determines if it can restart the Put RO operation at step 3. If it does not restart the operation, it marks the Rights Object (or portion) as usable and terminates the Put RO operation.

c. If deletes the Rights Object (or portion) that was Moved.

d. At this point the Put RO operation has successfully completed.

9.7.1 PutRoRequest

A PutRoRequest is sent as a protected request and its body is defined as follows:

Body(){
 sourceTimeStampPresent
 1
bslbf
 stateInfoPresent
1
bslbf
 rfu
6
bslbf
 RoAlias()
 DomainAlias()
 SourceAlias()
 SourceId()
 if(sourceTimeStampPresent){
 SourceTimeStamp()
 }
 RightsObjectContainer()
 if(stateInfoPresent){
 StateInformation()
 }
 CertificateChain()
 EncryptedRek()
}

RoAlias(){
 String80()
}

DomainAlias(){
 String80()
}

RiAlias(){
 String80()
}

RiId(){
 EntityId()
}

RiTimeStamp(){
 year
14
uimsbf

 month
4
uimsbf

 day
5
uimsbf

 hour
5
uimsbf

 minute
6
uimsbf

 second
6
uimsbf

}

EncryptedRek(){
 EncryptedData()
}

The fields are defined as follows:

· sourceTimeStampPresent – this is a boolean field, that if true, indicates that the sourceTimeStamp field is present.

· stateInfoPresent – this is a boolean field, that if true, indicates that the StateInformation field is present.

· rfu – this is a 6 bit field that is reserved for future use. When sending the request, MUST be set to 0. When processing this field, its value MUST be ignored.
· RoAlias – this field contains an optional alias for the Rights Object. It is of type String80 which is defined in section Error! Reference source not found..

· DomainAlias – this field contains an optional alias for the domain if the Rights Object is a domain Rights Object. It is of type String80 which is defined in section Error! Reference source not found..

· SourceAlias – this field contains an optional alias for the Rights Issuer or LRM that created the original Rights Object. It is of type String80 which is defined in section Error! Reference source not found..

· SourceId – this field contains the identity of the Rights Issuer or LRM that created the original Rights Object. It is of type EntityId which is defined in section Error! Reference source not found..

· RightsObjectContainer – this field contains a Rights Object as defined in section Error! Reference source not found..

· StateInformation – this field, if present, contains the current state information for the Rights Object being Moved. This field is defined in section Error! Reference source not found..

· year – this field contains the year – 2000 of the timestamp. Range is 0 – 16383, corresponding to the years 2000 – 18,383.

· month – this field contains the month of the timestamp, with 0 representing January. Range is 0 – 11.

· day – this field contains the day – 1 of the month of the timestamp. Range is 0 – 30.

· hour – this field contains the hour of the timestamp. Range is 0 – 23.

· minute – this field contains the minute of the timestamp. Range is 0 – 59.

· second – this field contains the seconds of the timestamp. Range is 0 – 59.

· CertificateChain – this field contains the certificate chain for the Rights Issuer or LRM that created the original Rights Object. This field is defined in section xxx
.
· EncryptedRek – this field contains the encrypted REK for the Rights Object. The REK is encrypted using the negociated algorithm. The field is of type EncryptedData which is defined in section Error! Reference source not found..

9.7.2 PutRoResponse

A PutRoResponse is sent as a protected response. The following table lists the valid Status values for this response.

Table 1: PutRoResponse Status Values
	Status Values

	Success

	InvalidField

	InvalidRightsObject

	NotEnoughSpace

A PutRoResponse does not have a body.

Change 2: Add a new section 5.5 as follows:

5.5 State Information Consistency

A Stateful Rights Object (or portions of) may be Moved, Adhoc Shared or Lent to another Device. The recipient Device MUST check that the current StateInformation that is transferred is consistent with the actual Rights Object. This consistency check means the following:

· For the <interval> constraint, the date-time field in the StateInformation structure MUST be all zeros or the specified date MUST be less than the current DRM Time plus the <interval> value.
· For the <count> and <timed-count> constraint, the remainingCount field in the StateInformation structure MUST be less than the corresponding <count> or <timed-count> value.
· For the <accumulated> constraint, the accumulatedTime field in the StateInformation structure MUST be less than the <accumulated> value.

�Editor to put in correct reference.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 5)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20080101-I]

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 5)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20080101-I]

