Doc# OMA-DRM-2008-0165R01-CR_SCE_GEN_TS_Proposed_Changes_to_Section_6.doc[image: image1.jpg]
Change Request

Doc# OMA-DRM-2008-0165R01-CR_SCE_GEN_TS_Proposed_Changes_to_Section_6.doc
Change Request

Change Request

	Title:
	State Information
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	DRM WG

	Doc to Change:
	OMA-TS-SCE_GEN-V0_5-20080314-D

	Submission Date:
	14 Apr 2008

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Yi Cheng, Ericsson, yi.cheng@ericsson.com

	Replaces:
	n/a

1 Reason for Change

This CR proposes some changes to section 6 of the GEN TS to resolve comments GEN011, 012, 014 – 017.
2 Impact on Backward Compatibility

n/a
3 Impact on Other Specifications

n/a
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

DRM WG agrees this CR and incorporates into the specification.
6 Detailed Change Proposal

Change 1:
Modify section 6 as follows

6 Generic Registration Protocol

All SCE protocols suites specify a registration protocol. This section specifies registration related generic data types and processing that is referred to in the other SCE specifications.
6.6 RegistrationTrigger

A RegistrationTrigger is delivered to a Requestor to initiate a 4-pass Registration Protocol. The message MUST be a <drmTrigger> element as specified in [GEN], section 5.6 and MUST be formatted as specified in xxx.

	element / attribute
	usage
	value

	type
	M
	Specified by specific protocol suite

	version
	M
	Specified by specific protocol suite

	proxy
	O
	Default, as specified in [Gen], section xyz

	resID
	M
	Default, as specified in [Gen], section xyz

	reqURL
	M
	Default, as specified in [Gen], section xyz

	nonce
	O
	Default, as specified in [Gen], section xyz

	signature
	O
	Default, as specified in [Gen], section xyz

	encKey
	O
	Default, as specified in [Gen], section xyz

Table 1: dmpRegistrationTrigger message elements

The processing of the RegistrationTrigger is default, as specified in section xxx, except for the handling of the <resID> element. The purpose of the RegsitrationTrigger is to trigger the registration protocol, which will establish the Responder Context for the Responder. The Responder Context for the Responder will therefore typically not yet exist. Upon receipt of a RegistrationTrigger, the Requestor MUST create a Responder Context for the Responder and store the <resID> and its own <reqID> with it.

6.7 HelloRequest

A HelloRequest message is sent from a Requestor to a Responder as the first message in a 4-pass registration protocol of a given protocols suite. The message is an element of type gen:Request, in which the elements are present:

	element / attribute
	usage
	Value

	reqID
	M
	Default, as specified in [GEN], section xyz

	resID
	M
	Default, as specified in [GEN], section xyz

	reqInfo
	M
	Specified below

Table 2: HelloRequest message elements

The HelloRequest message MUST contain a <reqInfo> element which MUST contain an <helloReqInfo> element as defined in section 6.2.1

6.7.1 <helloReqInfo> element

<element name="helloReqInfo" type="gen:HelloReqInfo"></element>

<complexType name="HelloReqInfo">

<sequence>

<element name="version" type="gen:Version"/>

<element name="supportedAlgorithms" type="SetOfAlgorithms" minOccurs="0"/>

</sequence>

</complexType>

<simpleType name="Version">

 <restriction base="string">

 <pattern value="\d{1,2}\.\d{1,3}"/>

 </restriction>

</simpleType>

<complexType name="SetOfAlgorithms">

<sequence minOccurs="0" maxOccurs="unbounded">

<element name="selectedAlgorithm" type="anyURI"/>

</sequence>

</complexType>

The <version> element is a <major.minor> representation of the protocol suite version number supported by the Requestor. Unless otherwise specified with the specific registration protocol, for this version of the SCE Enabler, its value SHALL be “1.0”

The <supportedAlgorithms> element identifies the algorithms that are supported by the Requestor. Algorithms are identified using common URIs. The following algorithms and associated URIs MUST be supported by all implementations:

Hash algorithms:

SHA-1: http://www.w3.org/2000/09/xmldsig#sha1
MAC algorithms:

HMAC-SHA-1: http://www.w3.org/2000/09/xmldsig#hmac-sha1
Signature algorithms:

RSA-PSS-Default: http://www.rsasecurity.com/rsalabs/pkcs/schemas/pkcs-1#rsa-pss-default
Key transport algorithms:

RSAES-KEM-KDF2-KW-AES128:

http://www.rsasecurity.com/rsalabs/pkcs/schemas/pkcs-1#rsaes-kem-kdf2-kw-aes128
Key wrapping algorithms:

AES-WRAP: http://www.w3.org/2001/04/xmlenc#kw-aes128
Canonicalisation algorithms:

Exclusive Canonicalisation: http://www.w3.org/2001/10/xml-exc-c14n#

SHA-1 is defined in [SHA-1]. HMAC-SHA-1 is defined in [HMAC]. RSA-PSS-Default is RSASSA-PSS with all parameters having default values (see [PKCS-1] Appendix C). AES-WRAP is defined in [AES-WRAP]. RSA-KEM-KDF2-KW-AES128 is defined in Section 7, Key Management. Exclusive Canonicalisation is defined in [XC14N], its use is further explained in Section 5.4 of this document.

Use of other algorithm URIs is optional. Since all implementation must support the algorithms above, they need not be sent. Only URIs for algorithms not in this list needs to be sent in a HelloRequest message.

6.8 HelloResponse

A HelloResponse message is sent from a Responder to Requester as the second message in a 4-pass registration protocol of a given protocols suite. The message is an element of type gen:Response, in which if the HelloRequest was successful the following elements are present:

	element / attribute
	usage
	value

	status
	M
	Default, as specified in [GEN], section xyz

	sessionID
	M
	Default, as specified in [GEN], section xyz

	errorMessage
	O
	Default, as specified in [GEN], section xyz

	errorRedirectURL
	O
	Default, as specified in [GEN], section xyz

	reqID
	M
	Default, as specified in [GEN], section xyz

	resID
	M
	Default, as specified in [GEN], section xyz

	nonce
	M
	Default, as specified in [GEN], section xyz

	rspInfo
	M
	Specified below

Table 3: HelloResponse message elements

The HelloResponse message MUST contain an <rspInfo> element which MUST contain an <helloResInfo> element as defined in section 6.3.1

6.8.1 <helloResInfo> element

<element name="helloResInfo" type="gen:HelloResInfo"></element>

complexType name="HelloResInfo">

<sequence>

<element name="selectedVersion" type="gen:Version"/>

<element name="selectedAlgorithms" type="SetOfAlgorithms" minOccurs="0"/>

<element name="trustedAuthorities" type="gen:KeyIdentifiers" minOccurs="0"/>

<element name="serverInfo" type="base64Binary" minOccurs="0"/>

<element name="deviceDetails" minOccurs="0"/>

</sequence>

</complexType>

Selected Version is the selected protocol version. The selected version will be min (Requester suggested version, highest version supported by Responder). This information is part of the Responder Context.

Selected Algorithms specifies the cryptographic algorithms (hash algorithm, signature algorithm, MAC algorithm and key transport algorithm) to use in subsequent interactions. If the Requestor indicated support of only mandatory algorithms (i.e. left out the <supportedAlgorithms> element), or the Responder only supports the mandatory algorithms, then the Responder need not send this field. Otherwise, the Responder MUST provide this parameter and MUST identify one algorithm of each type. This information is part of the Responder context.

Trusted Device Authorities is a list of Device trust anchors recognised by the Responder. This parameter is optional. The parameter is not sent if the Responder already has the Requester certificate or otherwise is able to verify a signature made by the Requester. If the parameter is present but empty, it indicates that the Requester is free to choose any Requester certificate to authenticate itself. Otherwise the Requester MUST choose a certificate chaining back to one of the recognised trust anchors. Trust anchors are identified in the same manner as Requesters and Responders.

Server Info contains server-specific information that the Requestor must return unmodified, in the RegistrationRequest. The Requester must not attempt to interpret the value of this parameter. Requesters MUST support the Server Info element being of length 512 bytes and MAY support Server Info elements of length greater than 512 bytes. Responders SHOULD keep Server Info length to 512 bytes or less.
Device Details, if present, is used by the Responder to indicate to the Requestor that the Requestor needs to provide detailed information about the Device (manufacturer, model and version) in the RegistrationRequest message that follows. When present, the <deviceDetails> element SHALL be empty (i.e. <deviceDetails/>).
6.9 RegistrationRequest

A RegistrationRequest message is sent from a Requestor to a Responder as the third message in a 4-pass registration protocol of a given protocols suite. The message is an element of type gen:Request, in which the elements are present:

	element / attribute
	usage
	value

	sessionID
	M
	Default, as specified in [GEN], section xyz

	reqID
	M
	Default, as specified in [GEN], section xyz

	resID
	M
	Default, as specified in [GEN], section xyz

	nonce
	M
	Default, as specified in [GEN], section xyz

	time
	M
	Default, as specified in [GEN], section xyz

	certificateChain
	O
	Default, as specified in [GEN], section xyz

	reqInfo
	M
	Specified below

	signature
	M
	Specified below

Table 4: RegistrationRequest message elements

The RegistrationRequest message MUST contain a <reqInfo> element which MUST contain an <regReqInfo> element as defined in section 6.4.1

Signature is a signature on data sent so far in the protocol. The signature is made using the Requestor's private key on the two previous messages (HelloRequest, HelloResponse) and the current message (besides the Signature element itself). The signature method is as follows:

The previous messages and the current one except the Signature element are canonicalised according to Section 5.4.

The three messages are concatenated in their chronological order, starting with the HelloRequest message. The resulting data d is considered as input to the signature operation. The signature is calculated on d in accordance with the rules of the negotiated signature scheme.

The Registration Responder MUST verify the signature on the RegistrationRequest message.

6.9.1 <regReqInfo> element

<element name="regReqInfo" type="gen:RegReqInfo"></element>

<complexType name="RegReqInfo">

<sequence>

<element name="trustedAuthorities" type="roap:KeyIdentifiers" minOccurs="0"/>

<element name="serverInfo" type="base64Binary" minOccurs="0"/>

<element name="deviceDetails" type="gen:DeviceDetails" minOccurs="0"/>

</sequence>

</complexType>

<complexType name="DeviceDetails">

 <sequence minOccurs=”0”>

<element name="manufacturer" type="roap:String64"/>

<element name="model" type="roap:String64"/>

<element name="version" type="roap:String64"/>

 </sequence>

</complexType>
Trusted Authorities is a list of Responder trust anchors recognised by the Requestor. If the parameter is empty, it indicates that the Responder is free to choose any certificate. Trust anchors are identified in the same way as Requestors and Responders.

Server Info: As discussed above, this parameter will only be present if a Server Info parameter was present in the preceding HelloResponse message. In that case, the Server Info parameter MUST be present and MUST be identical to the Server Info parameter received in the preceding HelloResponse message.

Device Details: This parameter defines three fields: manufacturer, model and version. The manufacturer field identifies the Device’ manufacturer, the model field identifies the Device's model and the version field identifies the Device's version as defined by its manufacturer. The <deviceDetails> element, with device details, MUST be sent by a Requestor that receives an empty <deviceDetails> element in a HelloResponse message.

6.10 RegistrationResponse

A RegistrationResponse message is sent from a Responder to a Requestor as the last message in a 4-pass registration protocol of a given protocols suite. The message is an element of type gen:Response, in which if the RegistrationRequest was successful the following elements are present:

	element / attribute
	usage
	value

	status
	M
	Default, as specified in [GEN], section xyz

	sessionID
	M
	Default, as specified in [GEN], section xyz

	errorMessage
	O
	Default, as specified in [GEN], section xyz

	errorRedirectURL
	O
	Default, as specified in [GEN], section xyz

	reqID
	M
	Default, as specified in [GEN], section xyz

	resID
	M
	Default, as specified in [GEN], section xyz

	nonce
	M
	Default, as specified in [GEN], section xyz

	certificateChain
	O
	Default, as specified in [GEN], section xyz

	ocspResponse
	O
	Default, as specified in [GEN], section xyz

	rspInfo
	M
	Specified below

	signature
	M
	Specified below

Table 5: RegistrationResponse message elements

The RegistrationResponse message MUST contain an <rspInfo> element which MUST contain an <regResInfo> element as defined in section 6.5.1
Signature is a signature on data sent in the protocol. The signature is made using the Responder's private key on the previous message (RegistrationRequest) and the current message (besides the Signature element itself). The signature method is as follows:

The previous message as received (that is, including the Signature element) and the current one except the Signature element is canonicalised according to Section 5.4.

The two messages are concatenated in their chronological order, starting with the RegistrationRequest message. The resulting data d is considered as input to the signature operation. The signature is calculated on d in accordance with the rules of the negotiated signature scheme

The Requestor MUST verify this signature. A Requestor MUST NOT accept the Registration protocol as successful unless the signature verifies, the Responder certificate chain has been successfully verified, and the OCSP response indicates that the Responder certificate status is good. If the registration failed the Requester MUST NOT store the Responder Context for this Responder, otherwise the Requester SHOULD store the Responder Context for this Responder.

6.10.1 <regResInfo> element

<element name="resReqInfo" type="gen:ResReqInfo"></element>

<complexType name="ResReqInfo">

<sequence>

<element name="resURL" type="anyURI"/>

<element name="domainNameWhitelist" type="gen : DomainNameWhiteList "/>

</sequence>

</complexType>

<complexType name="DomainNameWhiteList">

 <sequence maxOccurs="5">

 <element name="dn" type="roap:String80"/>

 </sequence>

</complexType>

resURL: if the RegistrationRequest message was successful (Status=Success) then the resURL parameter indicates the Responder URL that SHOULD be stored in the Responder Context. This URL can be used by the Requestor in later interactions with the Responder to send requests. Section xxx defines the rules for Responder URL selection. The value of the parameter MUST be a URL according to [RFC2396], and MUST be an absolute identifier.

domainNameWhitelist: This extension allows an Responder to specify a list of fully qualified domain names (as defined in [RFC 2396]) that are to be regarded as trusted (for example for the purposes of Silent and Preview headers). The Requestor MUST store the domain names in the Responder Context for this Responder. The Requestor MUST treat each domain name received in the Domain Name Whitelist as if it were a fully qualified domain name that had been extracted from an Responder URL according to the conditions defined in section xxx of this document. The Requestor MUST be capable of storing a minimum of 5 fully qualified domain names for each Responder Context supported on the Requestor.

The stored Responder Context SHALL at a minimum contain: reqID, resURL, resID, Selected Version, Selected Algorithms, a Certificate Caching indication if the Responder has stored the Requestor certificate or not , and a reference to the DRM Time for the trust model of the Responder. The Responder Context MAY also contain Responder certificate validation data, OCSP responder key and the current set of OCSP responses. The Responder Context SHALL also contain an Responder Context Expiry Time, which is defined to be the responder certificate expiry time. If the registration process has started with a Registration Trigger that contained the <resAlias> element, the Responder Context SHALL also contain the resAlias. For Unconnected Devices that do not support DRM Time, the Responder Context is infinite i.e., it does not have an expiry time. If the Responder Context has expired, the Requestor MUST NOT execute any other protocol than the 4-pass Registration protocol with this Responder, and upon detection of Responder Context expiry the Requestor SHOULD initiate the Registration protocol using the URL as defined by the selection mechanism in section xxx. The Requestor SHALL have at most one Responder Context with each Responder. An existing Responder Context SHALL be replaced with a newly established Responder Context after successful re-registration with the same Responder.

Note that any cached OCSP responses have their own validity period, which normally will be much shorter than the validity period of the Responder Context. Per [OCSP-MP], if an OCSP response does not have the nextUpdate present, then the Requester MUST not cache the OCSP response.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2007 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 8)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20070101-I]

© 2007 Open Mobile Alliance Ltd. All Rights Reserved.
Page 5 (of 8)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20070101-I]

