Doc# OMA-Template-ChangeRequest-20080101-I.doc[image: image2.jpg]
Change Request

Doc# OMA-Template-ChangeRequest-20080101-I.doc[image: image3.png]
Change Request

Change Request

	Title:
	Bug fix concerning copy permission loss
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	OMA-DRM

	Doc to Change:
	OMA-TS-SCE_A2A-V1_0-20081209-C

	Submission Date:
	12 December 2008

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Bert Greevenbosch, Fraunhofer IIS, bert.greevenbosch@iis.fraunhofer.de
Mercè Serra, Fraunhofer IIS, merce.serra@iis.fraunhofer.de

	Replaces:
	n/a

1 Reason for Change

When performing a Copy Operation, the DRM Agent (i.e. the target Agent) loses the <copy> permission. However, when it does a subsequent Move, it cannot signalise that the <copy> permission was lost. This CR proposes to adjust the PermissionState() and ConstraintState() fields, to allow the signalling of the <copy> permission loss. In accordance, the Move RO transaction and Copy RO operation are adjusted.
2 Impact on Backward Compatibility

None
3 Impact on Other Specifications

None
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

The DRM WG is recommended to agree the CR after SCE reaches Candidate status.
6 Detailed Change Proposal

8.21 State Information

StateInformation holds the state information of Rights to be Moved from a DRM Requester to a DRM Agent, i.e. the Rights that become available to the DRM Agent after the Move. It may represent the current remaining Rights on the DRM Requester (in case of a full Move), or it may be a subset of the remaining Rights (in case of a Partial Move). It is defined as follows:

StateInformation(){
 // Length of StateInfo

 length
16
uimsbf

 StateInfo() //Defined below

}

StateInfo(){

 nbrOfAssetIDs
8
uimsbf

 for(i = 0; i < nbrOfAssetIDs; i++){ //<asset> elements
 AssetID() //Defined in section 8.18
 }

 nbrOfPermissions
8
uimsbf

 for(i = 0; i < nbrOfPermissions; i++){ //<permission> elements
 PermissionState() //Defined below

 }

}

PermissionState() {

 constraintPresent
1
bslbf

 assetPresent
1
bslbf

 playPresent
1
bslbf

 displayPresent
1
bslbf

 executePresent
1
bslbf

 printPresent
1
bslbf

 exportPresent
1
bslbf

 movePresent
1
bslbf
 copyPresent
1
bslbf
 // for future extension: all zeros now

 rfu
7
bslbf
 if(constraintPresent){

 ConstraintState() //Defined below

 }

 if(assetPresent){

 AssetID() //Defined in section 8.18
 }

 if(playPresent){

 ConstraintState() //Defined below

 }

 if(displayPresent){

 ConstraintState() //Defined below

 }

 if(executePresent){

 ConstraintState() //Defined below

 }

 if(printPresent){

 ConstraintState() //Defined below

 }

 if(exportPresent){

 ConstraintState() //Defined below

 }

 if(movePresent){

 ConstraintState() //Defined below

 }
 if(copyPresent){

 ConstraintState() //Defined below

 }
}

ConstraintState() {

 countPresent
1
bslbf

 timedCountPresent
1
bslbf

 intervalPresent
1
bslbf

 accumulatedPresent
1
bslbf
 permissionLost
1
bslbf
 rfu
3
bslbf

 if(countPresent){

// For <count>

 remainingCount
32
uimsbf

 }

 if(timedCountPresent){
// For <timed-count>

 remainingCount
32
uimsbf

 }

 if(intervalPresent){

//For <interval>

 // YYYY-MM-DDThh:mm:ssZ [ISO8601]

 // All zeros if the asset has NOT been rendered

 for(i = 0; i < 20; i++) {

 char

8
uimsbf

 }

 }

 if(accumulatedPresent){
//For <accumulated>

 accumulatedTime
32
uimsbf //upto 2^32 seconds

 }

}

The fields are defined as follows:

· length – this field contains the length of the StateInfo structure in a 16 bit unsigned integer.

· nbrOfAssetIDs – this field contains the number of AssetIDs in an 8 bit unsigned integer.

· AssetID – this field contains one Asset ID and is defined in section 8.18.

· nbrOfPermissions – this field contains the number of PermissionStates in an 8 bit unsigned integer.
· constraintPresent – this is a boolean field, that if true, indicates that a ConstraintState field is present that is applicable to all permissions in the Rights Object.
· assetPresent – this is a boolean field, that if true, indicates that an AssetID field is present.
· playPresent – this is a boolean field, that if true, indicates that a ConstraintState field is present that is applicable to the <play> permission.
· displayPresent – this is a boolean field, that if true, indicates that a ConstraintState field is present that is applicable to the <display> permission.
· executePresent – this is a boolean field, that if true, indicates that a ConstraintState field is present that is applicable to the <execute> permission.
· printPresent – this is a boolean field, that if true, indicates that a ConstraintState field is present that is applicable to the <print> permission.
· exportPresent – this is a boolean field, that if true, indicates that a ConstraintState field is present that is applicable to the <export> permission.
· movePresent – this is a boolean field, that if true, indicates that a ConstraintState field is present that is applicable to the <move> permission.
· copyPresent – this is a boolean field, that if true, indicates that a ConstraintState field is present that is applicable to the <copy> permission.
· rfu – this field is reserved for future use. It MUST be set to all zeros.
· ConstraintState – this field contains constraint and state information. It is defined below.
· countPresent – this a boolean field, that if true, indicates that a remainingCount field is present that is applicable to the <count> constraint.
· timedCountPresent – this a boolean field, that if true, indicates that a remainingCount field (a 20 byte string) is present that is applicable to the <timed-count> constraint.
· intervalPresent – this a boolean field, that if true, indicates that a 20 character string is present that is applicable to the <interval> constraint.
· accumulatedPresent – this a boolean field, that if true, indicates that a accumulatedTime field is present that is applicable to the <accumulated> constraint.
· permissionLost – this boolean field, if true, indicates that the associated permission is lost and cannot be exercised.
· remainingCount – this field contains the remaining count value for a <count> constrain as a 32 bit unsigned integer.
· char – this field contains one ASCII character of a 20 character string that represents an end date after which the permission SHALL NOT be granted. The format of the string is “YYYY-MM-DDThh:mm:ssZ” as specified in [ISO8601].
· accumulatedTime – this field contains the accumulated time value, in seconds, for an <accumulated> constraint as a 32 bit unsigned integer.
9.7 Move RO Transaction

The Move RO transaction is used by the DRM Requester to Move a Rights Object (RO) with a <move> permission to a DRM Agent. This transaction MUST take place using a SAC. This transaction MUST NOT be performed if the DRM Requester’s certificate does not have an extKeyUsage extension with oma-kp-sceDrmAgent key purpose set or the DRM Agent’s certificate does not have an extKeyUsage extension with oma-kp-sceDrmAgent key purpose set (see section A.1). The following figure illustrates the Move RO transaction.

Figure 8: Move RO Transaction
In order for this transaction to take place, the following MUST be performed:

1. The DRM Requester performs the following:

a. It checks if the RO has the <move> permission. The “allowPartial” attribute MUST be “true” if a Partial Move is to be performed. If the <move> permission is not present, the Move RO transaction is terminated. Otherwise, the following is performed:

i. If there is a <system> constraint, then it checks the <context> child element(s) of the <system> constraint. If no <context> child element identifies the SCE protocol, then the Move RO transaction is terminated.
ii. If there is a <count> constraint, then it checks the current count value in the state information of the RO. If the current move count is 0, then the Move RO transaction terminated. Otherwise, the DRM Requester decrements the current move count value in the state information of the RO.

b. It checks the entity type that created the RO. If the RO was created by an RI, the DRM Requester proceeds to step 1.c. Otherwise, the following is performed:

i. If the LRM’s certificate does not have the localRightsManagerDevice extended key purpose (see [SCE-LRM]), then the RO MUST have a <userDomain> constraint. If the constraint is not present, the Move RO transaction is terminated.
ii. If the LRM’s certificate has the localRightsManagerDevice extended key purpose, the RO MUST be a Device RO. If it is not a Device RO, the Move RO transaction is terminated.
c. It checks if the RO has a <userDomain> constraint. If the constraint is present, the DRM Requester checks its User Domain Authorization (see [SCE-DOM]). If the User Domain Authorization is expired, the Move RO transaction is terminated.

d. It marks the RO being Moved as unusable. If the RO is stateful and just a portion of the RO is being Moved (Partial Rights, see section 5.3), then that portion being Moved is marked as unsuable.

e. It generates a random moveHandle and creates a Move context with the moveHandle, the REK of the RO being Moved, and the DRM Agent ID.
2. The DRM Requester generates a MoveRoRequest with the information for the RO (or portion) being Moved or Copied to the DRM Agent and MoveRoHandle (from step 1.d). If the RO has a <copy> permission, but the <copy> permission was lost (see also section 9.8
, point 4.o.
), the DRM Requester MUST signalise this to the DRM Agent by including a ConstraintState() field for the <copy> permission in the MoveRoRequest, with the permissionLost field set to true.
3. The DRM Requester sends the MoveRoRequest to the DRM Agent, applying the replay protection mechanism described in section 7.3.

4. The DRM Agent processes the request as follows:

a. It processes the request for replay as described in section 7.3.

b. It verifies the integrity of the request. If the integrity check fails, it sets MoveRoResponse.Status to IntegrityVerificationFailed and proceeds to step 5.

c. It validates the fields of the MoveRoRequest. If any field is invalid, it sets MoveRoResponse.Status to InvalidField and proceeds to step 5.

d. It verifies the signature on the RO, including the SourceCertificateChain field. If any of the verifications fails, it sets MoveRoResponse.Status to InvalidRightsObject and proceeds to step 5.

e. It checks that the RO has the <move> permission. If it does not, it sets MoveRoResponse.Status to InvalidRightsObject and proceeds to step 5.

f. If the RO is stateful, it validates that the StateInformation is consistent with the original state in the RO (see section 5.5). If any state is invalid, it sets MoveRoResponse.Status to InvalidRightsObject and proceeds to step 5.

g. It checks the entity that created the RO. If the RO was created by an RI, the DRM Requester proceeds to step 4.i.

h. If the LRM’s certificate only has the localRightsManagerDomain extended key purpose (see [SCE-LRM], then the RO MUST have a <userDomain> constraint. If the constraint is not present, the DRM Agent sets MoveRoResponse.Status to InvalidRightsObject and proceeds to step 5.

i. It checks whether the RO has a <userDomain> constraint. If not, the DRM Agent proceeds to step 4.j. Otherwise, the DRM Agent performs the following checks:

i. It checks whether the RO has a <copy> permission. If not, the DRM Agent proceeds to step 4.i.iii.

ii. It checks if it has a current record (whether installed or waiting to be installed) of an RO with the same ROID. If the duplicate RO exists, the DRM Agent sets MoveRoResponse.Status to DuplicateRightsObject and proceeds to step 5.
iii. It checks if an LRM created the RO. If an LRM created the RO, the DRM Agent checks if the LRM’s certificate has the localRightsManagerDomain extended key purpose. If the certificate does not, the DRM Agent sets MoveRoResponse.Status to InvalidRightsObject and proceeds to step 5.
iv. It validates the UserDomainAuthorization for the DRM Requester. If the validation fails, the DRM Agent sets MoveRoResponse.Status to InvalidRightsObject and proceeds to step 5. Validation MUST include the following:

a. Verifying the signature

b. User Domain Authorization is not expired

c. Entity ID of User Domain Authorization matches ID of DRM Requester
v. It checks that the User Domain Authorization of the <party> element of the RO corresponds to the RI/LRM that signed the <rights> element. If <party> element does not, the DRM Agent sets MoveRoResponse.Status to InvalidRightsObject and proceeds to step 5.
vi. It checks that the User Domain baseID of the <userDomainID> element within the User Domain Authorization in the <party> element of the RO is the same as the User Domain baseID of the <userDomainID> element within the UserDomainAuthorization field. If not, the DRM Agent sets MoveRoResponse.Status to InvalidRightsObject and proceeds to step 5.
vii. It checks that the User Domain generation of the UserDomainAuthorization field is greater than or equal to the User Domain generation of the User Domain Authorization in the <party> element of the RO. If not, the DRM Agent sets MoveRoResponse.Status to InvalidRightsObject and proceeds to step 5.

viii. If the DRM Agent is already a member of the User Domain, it checks that the User Domain generation of the UserDomainAuthorization field is greater than or equal to the User Domain generation of the User Domain Authorization in the <party> element of the RO. If not, the DRM Agent sets MoveRoResponse.Status to LowUserDomainGeneration and proceeds to step 5.
j. It checks if it has enough room to install the RO. If it does not, it sets MoveRoResponse.Status to NotEnoughSpace and proceeds to step 5.

k. It saves MoveRoHandle and associates MoveRoHandle with the RO (which must be installed yet).

l. It sets MoveRoResponse.Status to Success.
5. The DRM Agent sends the MoveRoResponse to the DRM Requester, applying the replay protection mechanism described in section 7.3.

6. The DRM Requester processes the response as follows:

a. It processes the response for replay as described in section 7.3.

b. If the integrity verification of the response fails or MoveRoResponse.Status is not Success, it determines if it can restart the Move RO transaction at step 2. If it does not restart the transaction, the DRM Requester performs the following:

i. It marks the RO (or portion) as usable.

ii. If the <move> permission had a <count> constraint, it increments the current move counter of the state information.
iii. It terminates the Move RO transaction.

c. It deletes the RO (or portion) that was Moved (but still keeps the corresponding Move context). Note: if the RO being Moved has been backed up, the Backed Up RO MUST NOT be restored.

7. The DRM Requester generates a MoveRekRequest with the data from the Move context.

8. The DRM Requester sends the MoveRekRequest to the DRM Agent, applying the replay protection mechanism described in section 7.3.

9. The DRM Agent processes the request as follows:

a. It processes the request for replay as described in section 7.3.

b. It validates the fields of the MoveRekRequest. If any field is invalid, it sets MoveRoResponse.Status to InvalidField and proceeds to step 10.
c. It verifies the integrity of the request. If the integrity check fails, it sets MoveRekResponse.Status to IntegrityVerificationFailed and proceeds to step 10.

d. It checks if it has an RO that corresponds to the moveHandle. If it does not have a corresponding RO, it set MoveRekResponse.Status to UnknownHandle and continues with step 10.

e. It decrypts MoveRekRequest.Body.EncryptedMoveRoHandleAndRek. Note: if the RO is a User Domain RO with a <userDomain> constraint, and the DRM Agent is not yet a member of the User Domain (i.e. it does not have the UDK), the DRM Agent MUST join the User Domain to receive a copy of the UDK in order to fully decrypt the REK.

f. It checks whether the RO has a <contextRequired> constraint element. If not, it proceeds to step 9.h.

g. It tags the RO that corresponds to the MoveRoHandle as ‘pending RI/LRM Context verification’, and proceeds to step 9.i.

h. It marks the RO that corresponds to the MoveRoHandle as usable.

i. It sets MoveRekResponse.Status to Success.

10. The DRM Agent sends the MoveRekResponse to the DRM Requester, applying the replay protection mechanism described in section 7.3.

11. If the RO that corresponds to the MoveRoHandle has been tagged as ‘pending RI/LRM Context verification’, upon successful verification of an active/current Context with the RI or LRM that generated the <signature> element of the RO, the DRM Agent removes the tag and marks the RO as usable. If the RO has a ‘pending RI/LRM Context verification’ tag, the DRM Agent MUST NOT grant any permissions other than <move>.
12. The DRM Requester processes the response as follows:

a. It processes the response for replay as described in section 7.3.
b. It verifies the integrity of the response. If the integrity check failed, the DRM Requester determines if it can restart the Move RO transaction at step 2 or step 7. If it does not restart the transaction, the DRM Requester MUST leave the RO marked as unusable and terminate the Move RO transaction.
c. If MoveRekResponse.Status is not Success, it determines if it can restart the Move RO transaction at step 2 or step 7. If it does not restart the transaction, the DRM Requester performs the following:

i. It marks the RO (or portion) as usable.

ii. If the <move> permission had a <count> constraint, it increments the current move counter of the state information.
iii. It terminates the Move RO transaction.

d. It removes the cached corresponding Move context.

d. At this point the Move RO transaction has successfully completed.
9.8 Copy RO Operation

The Copy RO operation is only used by a DRM Requester to Copy a <userDomain>-constrained Rights Object (RO) with a <copy> permission to a DRM Agent. This operation MUST take place using a SAC. This operation MUST NOT be performed if the DRM Requester’s certificate does not have an extKeyUsage extension with oma-kp-sceDrmAgent key purpose set or the DRM Agent’s certificate does not have an extKeyUsage extension with oma-kp-sceDrmAgent key purpose set (see section A.1). The following figure illustrates the Copy RO operation.

[image: image1.png]
Figure 9: Copy RO Operation
In order for this operation to take place, the following MUST be performed:

1. The DRM Requester performs the following:

a. It checks if the RO has the <copy> permission, and that the <copy> permission was not lost. If the <copy> permission is not present or the <copy> permission was lost, the Copy RO operation is terminated. Otherwise, the following is performed:

i. If there is a <system> constraint, the DRM Requester checks the <context> child element(s) of the <system> constraint. If no <context> child element identifies the SCE protocol, the Copy RO operation is terminated.
ii. If there is a <count> constraint, then it checks the current count value in the state information of the RO. If the current copy count is 0, the DRM Requester terminates the Copy RO operation. Otherwise, it decrements the current copy count value in the state information of the RO. However, when the state information is sent in the CopyRoRequest, the current copy count MUST be set to zero

b. It checks the entity type that created the RO. If an RI created the RO, the DRM Requester proceeds to step 1.d.

c. If the LRM’s certificate does not have the localRightsManagerDomain extended key purpose (see [SCE-LRM]), the Copy RO operation is terminated.
d. It checks its User Domain Authorization ([SCE-DOM]). If the User Domain Authorization is expired, the Copy RO operation is terminated.

e. It checks if the RO contains a <userDomain> constraint. If there is no <userDomain> constraint, it terminates the Copy RO operation.
2. The DRM Requester generates a CopyRoRequest with the information for the RO being Copied to the DRM Agent.

3. The DRM Requester sends the CopyRoRequest to the DRM Agent, applying the replay protection mechanism described in section 7.3.

4. The DRM Agent processes the request as follows:

a. It processes the request for replay as described in section 7.3.

b. It verifies the integrity of the request. If the integrity check fails, the DRM Agent sets CopyRoResponse.Status to IntegrityVerificationFailed and proceeds to step 5.

c. It validates the fields of the CopyRoRequest. If any field is invalid, the DRM Agent sets CopyRoResponse.Status to InvalidField and proceeds to step 5.

d. It verifies the signature on the RO, including the SourceCertificateChain field. If any of the verifications fails, the DRM Agent sets CopyRoResponse.Status to InvalidRightsObject and proceeds to step 5.

e. It checks if it has a current record (whether installed or waiting to be installed) of an RO with the same ROID. If the duplicate RO exists, the DRM Agent sets CopyRoResponse.Status to DuplicateRightsObject and proceeds to step 5.
f. It checks that the RO has the <copy> permission. If it does not, the DRM Agent sets CopyRoResponse.Status to InvalidRightsObject and proceeds to step 5.

g. It checks the entity that created the RO. If the RO was created by an RI, the DRM Requester proceeds to step 4.h.

h. If the LRM’s certificate does not have the localRightsManagerDomain extended key purpose (see [SCE-LRM]), the DRM Agent sets CopyRoResponse.Status to InvalidRightsObject and proceeds to step 5.

i. It checks if the RO has a <userDomain> constraint. If the constraint is not present, the DRM Agent sets CopyROResponse.Status to InvalidRightsObject and proceeds to step 5.
j. It validates the UserDomainAuthorization for the DRM Requester. If the validation fails, the DRM Agent sets MoveRoResponse.Status to InvalidRightsObject and proceeds to step 5. Validation MUST include the following:

a. Verifying the signature

b. User Domain Authorization is not expired

c. Entity ID of User Domain Authorization matches ID of DRM Requester
k. It checks that the User Domain Authorization of the <party> element of the RO corresponds to the RI/LRM that signed the <rights> element. If it does not, the DRM Agent sets MoveRoResponse.Status to InvalidRightsObject and proceeds to step 5.
l. It checks that the User Domain baseID of the <userDomainID> element within the User Domain Authorization in the <party> element of the RO is the same as the User Domain baseID of the <userDomainID> element within the UserDomainAuthorization field. If not, the DRM Agent sets MoveRoResponse.Status to InvalidRightsObject and proceeds to step 5.
m. If the DRM Agent is already a member of the User Domain, it checks that the User Domain generation of the UserDomainAuthorization field is greater than or equal to the User Domain generation of the User Domain Authorization in the <party> element of the RO. If not, the DRM Agent sets MoveRoResponse.Status to InvalidRightsObject and proceeds to step 5.
n. It checks if it has enough room to install the RO. If it does not, it sets CopyRoResponse.Status to NotEnoughSpace and proceeds to step 5.

o. If the DRM Agent is already a member of the User Domain, it installs the RO per [DRM-v2.1] except that the replay cache is not considered. When installed, this RO loses the <copy> permission, i.e. the DRM Agent, acting as a DRM Requester, SHALL NOT Copy the RO to another DRM Agent.
Note 1: if the DRM Agent is not a member of the User Domain, it will not be able to decrypt the REK and install the RO until it joins the User Domain and receives a copy of the UDK.
Note 2: if the RO is afterwards moved to another Device, the <copy> permission remains lost. The information that the <copy> permission is lost is included in the State Information (via the permissionLost field associated with the <copy> permission) that is transmitted via a Move RO transaction as described in Section 9.7
. This ensures that once an RO loses the <copy> permission, that permission remains lost, even if the RO is transmitted via one or multiple Move RO transaction(s).
p. It sets CopyRoResponse.Status to Success.
5. The DRM Agent sends the CopyRoResponse to the DRM Requester, applying the replay protection mechanism described in section 7.3.

6. The DRM Requester processes the response as follows:

e. It processes the response for replay as described in section 7.3.

f. If CopyRoResponse.Status is not Success, it determines if it can restart the Copy RO operation at step 2. If it does not restart the operation, the DRM Requester performs the following:

i. If the <copy> permission had a <count> constraint, it increments the current copy counter of the state information.
ii. It terminates the Copy RO operation.

g. At this point the Copy RO operation has successfully completed.
Members may choose to mark their proposed changes as OMA Confidential. They are encouraged to describe their reasons for doing so in section 1. Members should realize that if the material in the CR is accepted for use in a publicly available document that it would likely be made public in that form.

CR should be for a single document and it should be listed here (best to use separate CRs for separate docs). More than one change may be addressed, though they should be related. The classification should reflect the highest change type presented.

�Insert cross reference

�Insert cross reference

�Insert a cross reference.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 10)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20080101-I]

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 10)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20080101-I]

