Doc# OMA-DRM-2009-0018-CR_Fixing_A2A_Copy_and_Move_and_Render__Security_Bugs_and_Inconsistencies.doc[image: image2.jpg]
Change Request

Doc# OMA-DRM-2009-0018-CR_Fixing_A2A_Copy_and_Move_and_Render__Security_Bugs_and_Inconsistencies.doc[image: image3.png]
Change Request

Change Request

	Title:
	Fixing A2A Copy and Move and Render: Security Bugs and Inconsistencies
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	OMA DRM WG

	Doc to Change:
	OMA-TS-SCE_A2A-V1_0-20081209-C

	Submission Date:
	25 Jan 2009

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	David Kravitz, Motorola

David.Kravitz@Motorola.com

	Replaces:
	n/a

1 Reason for Change

Prevent unauthorized RO duplication due to processing bugs in Move RO transaction and Copy RO operation: specifically, prevent completion of multiple Move RO transactions [Copy RO operations] corresponding to just a single decrement of move count value [copy count value]; replace incidences of MoveRoHandle by moveHandle for consistency. This CR, furthermore, corrects (via deletions only) the Render processing description as well as SCR tables to reflect the fact that the Render Status operation had already been removed from the A2A TS.
2 Impact on Backward Compatibility

n/a
3 Impact on Other Specifications

n/a
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

The author recommends that the OMA DRM WG agree this CR.
6 Detailed Change Proposal

Change 1: Eliminate bugs and inconsistencies in Move RO transaction and Copy RO operation (sections 9.7, 9.7.1 and 9.8). Although there are no changes to 9.7.3 it is included below in order to indicate the reason for changing step 9.e within section 9.7.
9.7 Move RO Transaction

The Move RO transaction is used by the DRM Requester to Move a Rights Object (RO) with a <move> permission to a DRM Agent. This transaction MUST take place using a SAC. This transaction MUST NOT be performed if the DRM Requester’s certificate does not have an extKeyUsage extension with oma-kp-sceDrmAgent key purpose set or the DRM Agent’s certificate does not have an extKeyUsage extension with oma-kp-sceDrmAgent key purpose set (see section A.1). The following figure illustrates the Move RO transaction.

Figure 8: Move RO Transaction
In order for this transaction to take place, the following MUST be performed:

1. The DRM Requester performs the following:

a. It checks if the RO has the <move> permission. The “allowPartial” attribute MUST be “true” if a Partial Move is to be performed. If the <move> permission is not present, the Move RO transaction is terminated. Otherwise, the following is performed:

i. If there is a <system> constraint, then it checks the <context> child element(s) of the <system> constraint. If no <context> child element identifies the SCE protocol, then the Move RO transaction is terminated.
ii. If there is a <count> constraint, then it checks the current count value in the state information of the RO. If the current move count is 0, then the Move RO transaction terminated. Otherwise, the DRM Requester decrements the current move count value in the state information of the RO.

b. It checks the entity type that created the RO. If the RO was created by an RI, the DRM Requester proceeds to step 1.c. Otherwise, the following is performed:

i. If the LRM’s certificate does not have the localRightsManagerDevice extended key purpose (see [SCE-LRM]), then the RO MUST have a <userDomain> constraint. If the constraint is not present, the Move RO transaction is terminated.
ii. If the LRM’s certificate has the localRightsManagerDevice extended key purpose, the RO MUST be a Device RO. If it is not a Device RO, the Move RO transaction is terminated.
c. It checks if the RO has a <userDomain> constraint. If the constraint is present, the DRM Requester checks its User Domain Authorization (see [SCE-DOM]). If the User Domain Authorization is expired, the Move RO transaction is terminated.

d. It marks the RO being Moved as unusable. If the RO is stateful and just a portion of the RO is being Moved (Partial Rights, see section 5.3), then that portion being Moved is marked as unsuable.

e. It generates a random moveHandle and creates a Move context with the moveHandle, the REK of the RO being Moved, and the DRM Agent ID.
2. The DRM Requester generates a MoveRoRequest with the information for the RO (or portion) being Moved to the DRM Agent and moveHandle (from step 1.e).

3. The DRM Requester sends the MoveRoRequest to the DRM Agent, applying the replay protection mechanism described in section 7.3.

4. The DRM Agent processes the request as follows:

a. It processes the request for replay as described in section 7.3.

b. It verifies the integrity of the request. If the integrity check fails, it sets MoveRoResponse.Status to IntegrityVerificationFailed and proceeds to step 5.

c. It validates the fields of the MoveRoRequest. If any field is invalid, it sets MoveRoResponse.Status to InvalidField and proceeds to step 5.

d. It verifies the signature on the RO, including the SourceCertificateChain field. If any of the verifications fails, it sets MoveRoResponse.Status to InvalidRightsObject and proceeds to step 5.

e. It checks that the RO has the <move> permission. If it does not, it sets MoveRoResponse.Status to InvalidRightsObject and proceeds to step 5.

f. If the RO is stateful, it validates that the StateInformation is consistent with the original state in the RO (see section 5.5). If any state is invalid, it sets MoveRoResponse.Status to InvalidRightsObject and proceeds to step 5.

g. It checks the entity that created the RO. If the RO was created by an RI, the DRM Requester proceeds to step 4.i.

h. If the LRM’s certificate only has the localRightsManagerDomain extended key purpose (see [SCE-LRM], then the RO MUST have a <userDomain> constraint. If the constraint is not present, the DRM Agent sets MoveRoResponse.Status to InvalidRightsObject and proceeds to step 5.

i. It checks whether the RO has a <userDomain> constraint. If not, the DRM Agent proceeds to step 4.j. Otherwise, the DRM Agent performs the following checks:

i. It checks whether the RO has a <copy> permission. If not, the DRM Agent proceeds to step 4.i.iii.

ii. It checks if it has a current record (whether installed or waiting to be installed) of an RO with the same ROID. If the duplicate RO exists, the DRM Agent sets MoveRoResponse.Status to DuplicateRightsObject and proceeds to step 5.
iii. It checks if an LRM created the RO. If an LRM created the RO, the DRM Agent checks if the LRM’s certificate has the localRightsManagerDomain extended key purpose. If the certificate does not, the DRM Agent sets MoveRoResponse.Status to InvalidRightsObject and proceeds to step 5.
iv. It validates the UserDomainAuthorization for the DRM Requester. If the validation fails, the DRM Agent sets MoveRoResponse.Status to InvalidRightsObject and proceeds to step 5. Validation MUST include the following:

a. Verifying the signature

b. User Domain Authorization is not expired

c. Entity ID of User Domain Authorization matches ID of DRM Requester
v. It checks that the User Domain Authorization of the <party> element of the RO corresponds to the RI/LRM that signed the <rights> element. If <party> element does not, the DRM Agent sets MoveRoResponse.Status to InvalidRightsObject and proceeds to step 5.
vi. It checks that the User Domain baseID of the <userDomainID> element within the User Domain Authorization in the <party> element of the RO is the same as the User Domain baseID of the <userDomainID> element within the UserDomainAuthorization field. If not, the DRM Agent sets MoveRoResponse.Status to InvalidRightsObject and proceeds to step 5.
vii. It checks that the User Domain generation of the UserDomainAuthorization field is greater than or equal to the User Domain generation of the User Domain Authorization in the <party> element of the RO. If not, the DRM Agent sets MoveRoResponse.Status to InvalidRightsObject and proceeds to step 5.

viii. If the DRM Agent is already a member of the User Domain, it checks that the User Domain generation of the UserDomainAuthorization field is greater than or equal to the User Domain generation of the User Domain Authorization in the <party> element of the RO. If not, the DRM Agent sets MoveRoResponse.Status to LowUserDomainGeneration and proceeds to step 5.
j. It checks if it has enough room to install the RO. If it does not, it sets MoveRoResponse.Status to NotEnoughSpace and proceeds to step 5.

k. It saves moveHandle and associates moveHandle with the RO (which cannot be installed yet).

l. It sets MoveRoResponse.Status to Success.
5. The DRM Agent sends the MoveRoResponse to the DRM Requester, applying the replay protection mechanism described in section 7.3.

6. The DRM Requester processes the response as follows:

a. It processes the response for replay as described in section 7.3.

b. If the integrity verification of the response fails or MoveRoResponse.Status is not Success, it determines if it can restart the Move RO transaction at step 2. If it does not restart the transaction, the DRM Requester performs the following:

i. It marks the RO (or portion) as usable.

ii. If the <move> permission had a <count> constraint, it increments the current move counter of the state information.
iii. It terminates the Move RO transaction.

c. It deletes the RO (or portion) that was Moved (but still keeps the corresponding Move context). Note: if the RO being Moved has been backed up, the Backed Up RO MUST NOT be restored.

7. The DRM Requester generates a MoveRekRequest with the data from the Move context.

8. The DRM Requester sends the MoveRekRequest to the DRM Agent, applying the replay protection mechanism described in section 7.3.

9. The DRM Agent processes the request as follows:

a. It processes the request for replay as described in section 7.3.

b. It validates the fields of the MoveRekRequest. If any field is invalid, it sets MoveRoResponse.Status to InvalidField and proceeds to step 10.
c. It verifies the integrity of the request. If the integrity check fails, it sets MoveRekResponse.Status to IntegrityVerificationFailed and proceeds to step 10.

d. It checks if it has an RO that corresponds to the moveHandle. If it does not have a corresponding RO, it sets MoveRekResponse.Status to UnknownHandle and continues with step 10.

e. It decrypts MoveRekRequest.Body.EncryptedRek. Note: if the RO is a User Domain RO with a <userDomain> constraint, and the DRM Agent is not yet a member of the User Domain (i.e. it does not have the UDK), the DRM Agent MUST join the User Domain to receive a copy of the UDK in order to fully decrypt the REK.

f. It checks whether the RO has a <contextRequired> constraint element. If not, it proceeds to step 9.h.

g. It tags the RO that corresponds to the moveHandle as ‘pending RI/LRM Context verification’, removes the moveHandle from the RO, and proceeds to step 9.i.

h. It marks the RO that corresponds to the moveHandle as usable, and removes the moveHandle from the RO.

i. It sets MoveRekResponse.Status to Success.

10. The DRM Agent sends the MoveRekResponse to the DRM Requester, applying the replay protection mechanism described in section 7.3.

11. If the RO has been tagged as ‘pending RI/LRM Context verification’, upon successful verification of an active/current Context with the RI or LRM that generated the <signature> element of the RO, the DRM Agent removes the tag and marks the RO as usable. If the RO has a ‘pending RI/LRM Context verification’ tag, the DRM Agent MUST NOT grant any permissions other than <move>.
12. The DRM Requester processes the response as follows:

a. It processes the response for replay as described in section 7.3.
b. It verifies the integrity of the response. If the integrity check failed, the DRM Requester determines if it can restart the Move RO transaction at step 7. If it does not restart the transaction, the DRM Requester MUST leave the RO marked as unusable and terminate the Move RO transaction.
c. If MoveRekResponse.Status is not Success, it determines if it can restart the Move RO transaction at step 7. If it does not restart the transaction, the DRM Requester performs the following:

i. It marks the RO (or portion) as usable.

ii. If the <move> permission had a <count> constraint, it increments the current move counter of the state information.
iii. It terminates the Move RO transaction.

d. It removes the cached corresponding Move context.

d. At this point the Move RO transaction has successfully completed.

9.7.1 MoveRoRequest

A MoveRoRequest is sent as a protected request and its body is defined as follows:
Body(){
 timeStampPresent
1
bslbf
 stateInfoPresent
1
bslbf
 udaPresent
1
bslbf
 rfu
5
bslbf
 moveHandle
64
uimsbf
 RoAlias()
 SourceAlias()
 SourceID()
 if(timeStampPresent){
 SourceTimeStamp()
 }
 RightsObjectContainer()
 if(stateInfoPresent){
 StateInformation()
 }CertificateChain()
 if(udaPresent){
 UserDomainAuthorization()
 }
}

RoAlias(){
 String80()
}

DomainAlias(){
 String80()
}

SourceAlias(){
 String80()
}

SourceID(){
 EntityID()
}

TimeStamp(){
 year
14
uimsbf

 month
4
uimsbf

 day
5
uimsbf

 hour
5
uimsbf

 minute
6
uimsbf

 second
6
uimsbf

}

UserDomainAuthorization(){
 OctetString16()
}

The fields are defined as follows:

· timeStampPresent – this is a boolean field, that if true, indicates that the source (RI or LRM) TimeStamp field is present.

· stateInfoPresent – this is a boolean field, that if true, indicates that the StateInformation field is present.

· rfu – this is a 5 bit field that is reserved for future use. When sending the request, this field MUST be set to 0. When processing this field, its value MUST be ignored.
· moveHandle – this field contains a random 64 bit unsigned integer that is used to correlate the MoveRoRequest with the MoveRekRequest.
· RoAlias – this field contains an optional alias for the RO. It is of type String80 which is defined in section 8.16.

· DomainAlias – this field contains an optional alias for the domain if the RO is a domain RO. It is of type String80 which is defined in section 8.16.

· SourceAlias – this field contains an optional alias for the Rights Issuer or LRM that created the original RO. It is of type String80 which is defined in section 8.16.

· SourceID – this field contains the identity of the Rights Issuer or LRM that created the original RO. It is of type EntityID which is defined in section 8.5.

· RightsObjectContainer – this field contains a RO as defined in section 8.19.

· StateInformation – this field, if present, contains the state information for the Rights being Moved. This field is defined in section 8.21. This field MUST be present if the RO is stateful.

· year – this field contains the year – 2000 of the timestamp. Range is 0 – 16383, corresponding to the years 2000 – 18,383.

· month – this field contains the month of the timestamp, with 0 representing January. Range is 0 – 11.

· day – this field contains the day – 1 of the month of the timestamp. Range is 0 – 30.

· hour – this field contains the hour of the timestamp. Range is 0 – 23.

· minute – this field contains the minute of the timestamp. Range is 0 – 59.

· second – this field contains the seconds of the timestamp. Range is 0 – 59.

· CertificateChain – this field contains the certificate chain for the Rights Issuer or LRM that created the original RO. This field is defined in section 8.8.
·
· UserDomainAuthorization – this field, if present, contains the User Domain Authorization for the DRM Requester. This field MUST be present if the RO being Moved has a <userDomain> constraint.
9.7.2 MoveRoResponse …
9.7.3 MoveRekRequest

A MoveRekRequest is sent as a protected request and its body is defined as follows:

Body(){
 moveHandle
64
uimsbf
 EncryptedRek()
}

EncryptedRek (){
 EncryptedData() //Contains an encrypted REK
}

Rek(){
 for(i = 0; i < 16; i++){

 byte
8
uimsbf

 }

}

The fields are defined as follows:

· moveHandle – this field contains a random 64 bit unsigned integer that is used to correlate the MoveRoRequest with the MoveRekRequest.
· EncryptedRek – this field contains an encrypted REK. If the RO has a <userDomain> constraint, the REK is first encrypted with the (current generation of the) UDK (for the User Domain) using [AES-WRAP] and then the wrapped REK is encrypted with the SK using the negotiated algorithm. If the RO does not have a <userDomain> constraint, the REK is encrypted by the SK using the negotiated algorithm. The field is of type EncryptedData which is defined in section 8.11.

· Rek – this field contains an REK.

9.7.4 MoveRekResponse …
9.8 Copy RO Operation

The Copy RO operation is only used by a DRM Requester to Copy a <userDomain>-constrained Rights Object (RO) with a <copy> permission to a DRM Agent. This operation MUST take place using a SAC. This operation MUST NOT be performed if the DRM Requester’s certificate does not have an extKeyUsage extension with oma-kp-sceDrmAgent key purpose set or the DRM Agent’s certificate does not have an extKeyUsage extension with oma-kp-sceDrmAgent key purpose set (see section A.1). The following figure illustrates the Copy RO operation.

[image: image1.png]
Figure 9: Copy RO Operation
In order for this operation to take place, the following MUST be performed:

1. The DRM Requester performs the following:

a. It checks if the RO has the <copy> permission. If the <copy> permission is not present, the Copy RO operation is terminated. Otherwise, the following is performed:

i. If there is a <system> constraint, the DRM Requester checks the <context> child element(s) of the <system> constraint. If no <context> child element identifies the SCE protocol, the Copy RO operation is terminated.
ii. If there is a <count> constraint, then it checks the current count value in the state information of the RO. If the current copy count is 0, the DRM Requester terminates the Copy RO operation. Otherwise, it decrements the current copy count value in the state information of the RO. However, when the state information is sent in the CopyRoRequest, the current copy count MUST be set to zero

b. It checks the entity type that created the RO. If an RI created the RO, the DRM Requester proceeds to step 1.d.

c. If the LRM’s certificate does not have the localRightsManagerDomain extended key purpose (see [SCE-LRM]), the Copy RO operation is terminated.
d. It checks its User Domain Authorization ([SCE-DOM]). If the User Domain Authorization is expired, the Copy RO operation is terminated.

e. It checks if the RO contains a <userDomain> constraint. If there is no <userDomain> constraint, it terminates the Copy RO operation.
2. The DRM Requester generates a CopyRoRequest with the information for the RO being Copied to the DRM Agent.

3. The DRM Requester sends the CopyRoRequest to the DRM Agent, applying the replay protection mechanism described in section 7.3.

4. The DRM Agent processes the request as follows:

a. It processes the request for replay as described in section 7.3.

b. It verifies the integrity of the request. If the integrity check fails, the DRM Agent sets CopyRoResponse.Status to IntegrityVerificationFailed and proceeds to step 5.

c. It validates the fields of the CopyRoRequest. If any field is invalid, the DRM Agent sets CopyRoResponse.Status to InvalidField and proceeds to step 5.

d. It verifies the signature on the RO, including the SourceCertificateChain field. If any of the verifications fails, the DRM Agent sets CopyRoResponse.Status to InvalidRightsObject and proceeds to step 5.

e. It checks if it has a current record (whether installed or waiting to be installed) of an RO with the same ROID. If the duplicate RO exists, the DRM Agent sets CopyRoResponse.Status to DuplicateRightsObject and proceeds to step 5.
f. It checks that the RO has the <copy> permission. If it does not, the DRM Agent sets CopyRoResponse.Status to InvalidRightsObject and proceeds to step 5.

g. It checks the entity that created the RO. If the RO was created by an RI, the DRM Requester proceeds to step 4.h.

h. If the LRM’s certificate does not have the localRightsManagerDomain extended key purpose (see [SCE-LRM]), the DRM Agent sets CopyRoResponse.Status to InvalidRightsObject and proceeds to step 5.

i. It checks if the RO has a <userDomain> constraint. If the constraint is not present, the DRM Agent sets CopyROResponse.Status to InvalidRightsObject and proceeds to step 5.
j. It validates the UserDomainAuthorization for the DRM Requester. If the validation fails, the DRM Agent sets CopyRoResponse.Status to InvalidRightsObject and proceeds to step 5. Validation MUST include the following:

a. Verifying the signature

b. User Domain Authorization is not expired

c. Entity ID of User Domain Authorization matches ID of DRM Requester
k. It checks that the User Domain Authorization of the <party> element of the RO corresponds to the RI/LRM that signed the <rights> element. If it does not, the DRM Agent sets CopyRoResponse.Status to InvalidRightsObject and proceeds to step 5.
l. It checks that the User Domain baseID of the <userDomainID> element within the User Domain Authorization in the <party> element of the RO is the same as the User Domain baseID of the <userDomainID> element within the UserDomainAuthorization field. If not, the DRM Agent sets CopyRoResponse.Status to InvalidRightsObject and proceeds to step 5.
m. If the DRM Agent is already a member of the User Domain, it checks that the User Domain generation of the UserDomainAuthorization field is greater than or equal to the User Domain generation of the User Domain Authorization in the <party> element of the RO. If not, the DRM Agent sets CopyRoResponse.Status to InvalidRightsObject and proceeds to step 5.
n. It checks if it has enough room to install the RO. If it does not, it sets CopyRoResponse.Status to NotEnoughSpace and proceeds to step 5.

o. If the DRM Agent is already a member of the User Domain, it installs the RO per [DRM-v2.1] except that the replay cache is not considered. When installed, this RO loses the <copy> permission, i.e. the DRM Agent, acting as a DRM Requester, SHALL NOT Copy the RO to another DRM Agent. Note: if the DRM Agent is not a member of the User Domain, it will not be able to decrypt the REK and install the RO until it joins the User Domain and receives a copy of the UDK.

p. It sets CopyRoResponse.Status to Success.
5. The DRM Agent sends the CopyRoResponse to the DRM Requester, applying the replay protection mechanism described in section 7.3.

6. The DRM Requester processes the response as follows:

e. It processes the response for replay as described in section 7.3.
f. It verifies the integrity of the response. If the integrity check failed, the DRM Requester MUST NOT increment the copy counter, if any, of the state information, and MUST terminate the Copy RO operation.
g. If CopyRoResponse.Status is not Success, it determines if it can restart the Copy RO operation at step 2. If it does not restart the operation, the DRM Requester performs the following:

i. If the <copy> permission had a <count> constraint, it increments the current copy counter of the state information.
ii. It terminates the Copy RO operation.

h. At this point the Copy RO operation has successfully completed.
Change 2: Delete reference to Render Status operation within body text (section 9.12.1); delete selected entries in SCR tables to reflect earlier removal of Render Status operation (Appendix B.2 and Appendix B.3).
9.9 Render Operation …
9.9.1 RenderRequest

A RenderRequest is sent as a protected request and its body is defined as follows:

Body(){
 renderHandle
32
uimsbf
 AssetID()
 EncryptedCek()
}

The fields are defined as follows:

· renderHandle – this field contains a 32 bit unsigned integer assigned by the DRM Requester to identify the rendering of the DRM Content.
· AssetID – this field contains the identification of the DRM Content that the Render Agent should render. It is defined in section 8.18.

· EncryptedCek – this field contains the Content Encryption Key (CEK) , encrypted with the SK, for decrypting the DRM Content. It is defined in section 8.12.
B.2 SCR for DRM Requester
	Item
	Function
	Reference
	Status
	Requirement

	A2A-DR-001
	Support CRLs
	5.2.1
	M
	

	A2A-DR-002
	Support replay protection.
	7.3
	M
	

	A2A-DR-003
	Support the A2A Hello operation
	9.1
	M
	

	A2A-DR-004
	Support the MAKE transaction
	9.2
	M
	A2A-DR-001

	A2A-DR-005
	Support AEA encryption
	9.2.7
	M
	A2A-DR-004

	A2A-DR-006
	Support the Change SAC operation
	9.3
	O
	

	A2A-DR-007
	Support the CRL Query operation
	9.4
	M
	A2A-DR-001

	A2A-DR-008
	Support the Put CRL operation
	9.5
	M
	A2A-DR-001

	A2A-DR-009
	Support the Get CRL operation
	9.6
	M
	A2A-DR-001

	A2A-DR-010
	Support the Move RO operation
	9.7
	M
	A2A-DR-004

	A2A-DR-011
	Support checking the oma-kp-sceDrmAgent key purpose of the DRM Agent
	9.7, 9.8, 9.9, 9.10
	M
	

	A2A-DR-012
	Support the Share RO operation
	9.8
	M
	A2A-DR-004

	A2A-DR-013
	Support the Lend RO operation
	9.9
	M
	A2A-DR-004

	A2A-DR-014
	Support the Lend Release operation
	9.10
	M
	A2A-DR-004

	A2A-DR-015
	Support the Render operation
	9.11
	O
	A2A-DR-004

	A2A-DR-016
	Support checking the oma-kp-sceRenderAgent key purpose of the Render Agent
	
	O
	

	
	
	
	
	

B.3 SCR for Render Agent

	Item
	Function
	Reference
	Status
	Requirement

	A2A-RA-001
	Support CRLs
	5.2.1
	M
	

	A2A-RA-002
	Support replay protection.
	7.3
	M
	

	A2A-RA-003
	Support the A2A Hello operation
	9.1
	M
	

	A2A-RA -004
	Support the MAKE transaction
	9.2
	M
	A2A-RA-001

	A2A-RA -005
	Support AEA encryption
	9.2.7
	M
	A2A-RA-004

	A2A-RA -006
	Support the Change SAC operation
	9.3
	O
	A2A-RA-001

	A2A-RA -007
	Support the CRL Query operation
	9.4
	M
	A2A-RA-001

	A2A-RA -008
	Support the Put CRL operation
	9.5
	M
	A2A-RA-001

	A2A-RA -009
	Support the Get CRL operation
	9.6
	M
	A2A-RA-001

	A2A-RA -010
	Support the Render operation
	9.11
	M
	A2A-RA-004

	A2A-RA -011
	Support checking the oma-kp-sceRenderSource key purpose of the DRM Requester
	9.11, 9.12
	M
	

	
	
	
	
	

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2009 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 10)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20090101-I]

© 2009 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 10)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20090101-I]

