OMA-TS-SCE_DOM-V0_6-20080314-D
Page 54 V(56)

	[image: image1.jpg]«“+OMa

Open Mobile Alliance

	

	SCE User Domains

	Draft Version 0.6 – 14 Mar 2008

	Open Mobile Alliance

	OMA-TS-SCE_DOM-V0_6-20080314-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

51.
Scope

62.
References

62.1
Normative References

62.2
Informative References

83.
Terminology and Conventions

83.1
Conventions

83.2
Definitions

83.3
Abbreviations

94.
Introduction

94.1
Acquiring User Domain RO’s

104.2
User Domain Management

104.2.1
Joining a User Domain

104.2.2
Leaving a User Domain

114.2.3
Using a User Domain

114.3
Compatibility with OMA DRM 2.1 domains.

125.
The Domain Management Protocol (SCE-2-DMP)

125.1
Overview

125.2
DMP messages

125.2.1
Notation

135.2.2
Registration Protocol

135.2.2.1
Device-DA/DEA Hello Request

135.2.2.2
Device-DA/DEA Hello Response

135.2.2.3
Device-DA/DEA Registration Request

135.2.2.4
Device-DA/DEA Registration Response

145.2.3
Domain Management

145.2.3.1
dmpJoinDomainTrigger

145.2.3.2
dmpJoinDomainRequest

165.2.3.3
dmpJoinDomainResponse

185.2.3.4
dmpLeaveDomainTrigger

185.2.3.5
dmpLeaveDomainRequest

205.2.3.6
dmpLeaveDomainResponse

216.
The Rights Issuer – Domain Authority protocol (SCE-3-RDP)

216.1
Overview

216.2
RDP messages

226.2.1
Notation

226.2.2
Registration Protocol

226.2.1.1 DA/DEA-RI Registration Trigger

226.2.1.2 DA/DEA-RI Hello Request

226.2.1.3 DA/DEA-RI Hello Response

226.2.1.4 DA/DEA-RI Registration Request

226.2.1.5 DA/DEA-RI Registration Response

236.2.3
Domain Usage

236.2.3.1
Use Domain Request

236.2.3.2
Use Domain Response

246.2.3.3
Drop Domain Request

256.2.3.4
Drop Domain Response

266.2.4
User Domain backward compatible usage

266.2.4.1
DRM2.x Device Indirectly Joins User Domain

306.2.4.2
DRM2.x Device Indirectly Leaves User Domain

346.2.4.3
DA/DEA Indirectly Triggers DRM2.x Device Join User Domain

376.2.4.4 DA/DEA Indirectly Trigger DRM2.x Device Leave User Domain

417.
User Domain RO Processing

417.1
User Domain RO format

417.2
Installing a User Domain RO

417.2.1
Ensuring User Domain membership

427.2.2
Ensuring User Domain RO validity

437.2.3
User Domain RO post-processing

438
User Domain Upgrade

448.1
Use of hash chains for Domain key management

458.
Key management

458.1
Overall key management

458.2
Shared-Key management

468.2.1
Sharing Rights with Guest DRM Agents under Shared-Key management

468.3
Pairing-Key- based User Domain management

478.3.1
DRM Agent Registration into User Domain via DEA under DA Approval and Delegation

478.3.2
Associating LRM to DEA under DA Approval

478.3.3
DEA role: Registration of DRM Agents and generation of DRM Agent Pairings

478.3.4
Method for handling secure Move of domain-size- constrained LRM-created Imported-Rights-Objects

498.3.5
Sharing Rights with Guest DRM Agents under Pairing-Key management

498.3.6
DEA-managed sharing of RI-originated Rights Objects

508.4
Key Transport Mechanisms

508.4.1
Distributing MDK and KMAC under a Device Public Key

508.4.2
Distributing KMAC and KREK under a Diversified Domain Key (DDK)

519.
User Domain related rights

519.1
Permissions model

519.1.1
Element <move>

519.1.2
Element <copy>

529.1.2.1
Attribute “mode”

529.2
Constraint model

529.2.1
Element <copy_control>

529.2.2
Element <domain>

529.3
Examples

54Appendix A.
Change History (Informative)

54A.1
Approved Version History

54A.2
Draft/Candidate Version 0.4 History

55Appendix B.
Static Conformance Requirements (Normative)

55B.1
SCR for XYZ Client

55B.2
SCR for XYZ Server

56Appendix C.
<Additional Information>

Figures

Error! Bookmark not defined.Figure 1: Example Figure

Tables

Error! Bookmark not defined.Table 1: Example Table

1. Scope

Open Mobile Alliance (OMA) specifications are the result of continuous work to define industry-wide interoperable mechanisms for developing applications and services that are deployed over wireless communication networks.

The scope of OMA “Digital Rights Management” (DRM) is to enable the distribution and consumption of digital content in a controlled manner. The content is distributed and consumed on authenticated Devices per the usage rights expressed by the content owners. OMA DRM work addresses the various technical aspects of this system by providing appropriate specifications for content formats, protocols, and a rights expression language.

A number of DRM specifications have already been defined within the OMA. The latest accepted release of the OMA DRM enabler ([OMADRM20], including [DRMDRM20], [DRMDCF20], [DRMREL20]), is referred to within this document as “OMA DRM 2.0”.

This specification defines the mechanisms and protocols necessary to implement a central domain management function, as required per [DRMRD-SCE]. More specifically, this specification will specify the interfaces SCE-2-DMP and SCE-3-RDP as defined in [DRMAD-SCE].

2. References

2.1 Normative References

	[OMADRM20]
	The OMA DRM 2.0 enabler as described in “Enabler Release Definition for DRM V2.0,
Approved Version 2.0”, OMA-TS-DRM-DRM-V2_0-20060303-A, Open Mobile AllianceTM,
URL:http://www.openmobilealliance.org/

	[DRMDRM20]
	“DRM Specification, Approved Version 2.0”,
OMA-TS-DRM-DRM-V2_0-20060303-A, Open Mobile AllianceTM,
URL:http://www.openmobilealliance.org/

	[DRMREL20]
	“DRM Rights Expression Language, Approved Version 2.0”,
OMA-TS-DRM-REL-V2_0-20060303-A, Open Mobile AllianceTM,
URL:http://www.openmobilealliance.org/

	[DRMDCF20]
	“DRM Content Format, Approved Version 2.0”,
OMA-TS-DRM-DCF-V2_0-20060303-A, Open Mobile AllianceTM,
URL:http://www.openmobilealliance.org/

	
	

	[DRMRD-SCE]
	“Secure Content Exchange Requirements, Draft Version 1.0”,
OMA-RD-SCE-V1_0-20060908-D, Open Mobile AllianceTM,
URL:http://www.openmobilealliance.org/

	[DRMAD-SCE]
	“Secure Content Exchange Architecture, Draft Version”,
OMA-AD-SCE-Vx_y-D, Open Mobile AllianceTM,
URL:http://www.openmobilealliance.org/

	[DRMDRM-SCE]
	“DRM Specification – SCE Extensions, Draft Version”,
OMA-TS-DRM-DRM-SCE-Vx_y-D, Open Mobile AllianceTM,
URL:http://www.openmobilealliance.org/

	[DRMREL-SCE]
	“DRM Rights Expression Language – SCE Extensions, Draft Version”,
OMA-TS-DRM-REL-SCE-Vx_y-D, Open Mobile AllianceTM,
URL:http://www.openmobilealliance.org/

	[DRMDCF-SCE]
	“DRM Content Format – SCE Extensions, Draft Version”,
OMA-TS-DRM-DCF-SCE-Vx_y-D, Open Mobile AllianceTM,
URL:http://www.openmobilealliance.org/

	[DRMLRM-SCE]
	 “DRM Local Rights Management, Draft Version”,
OMA-TS-DRM-LRM- SCE-Vx_y-D, Open Mobile AllianceTM,
URL:http://www.openmobilealliance.org/

	[DRMDOM-SCE]
	“DRM User Domains, Draft Version”,
OMA-TS-DRM-DOM-SCE-Vx_y-D, Open Mobile AllianceTM,
URL:http://www.openmobilealliance.org/

	[DRMA2A-SCE]
	“DRM Agent-to-Agent transfer, Draft Version”,
OMA-TS-DRM-REL- SCE-Vx_y-D, Open Mobile AllianceTM,
URL:http://www.openmobilealliance.org/

	[DRMGEN-SCE]
	"SCE Generic Mechanisms",
OMA-TS-SCE_GEN-Vx-y-D, Open Mobile AllianceTM
URL:http://www.openmobilealliance.org/

	
	

	
	

2.2 Informative References

	 [OMADICT]
	“Dictionary for OMA Specifications”, Version x.y, Open Mobile Alliance™,
OMA-ORG-Dictionary-Vx_y, URL:http://www.openmobilealliance.org/

	
	

	
	

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

	
	

	
	

	
	

3.3
Abbreviations

	OMA
	Open Mobile Alliance

	
	

	
	

4. Introduction

A User Domain is a set of DRM Agents that possess key material provisioned by a DA/DEA. DRM Agents in a User Domain can share User Domain Rights Objects and are able to consume and share any DCFs controlled by User Domain Rights Objects. DRM Agents can join multiple User Domains managed by one or more DA/DEAs.

The DA/DEA defines the User Domain, manages the key material, and controls which and how many DRM Agents are included and excluded from the User Domain. The DA/DEA also controls which entities (RIs and/or LRMs) are authorized to create User Domain ROs.

4.1 Acquiring User Domain RO’s

A DRM Agent can acquire User Domain ROs from an RI, from an LRM or from another DRM Agent. The SCE enabler defines four mechanisms to transport User Domain RO’s:

1. the SCE-1-ROAP protocol ([SCE-ROAP]) with the extensions defined in section xxx. This mechanism may be used to deliver a User Domain RO from an RI to a DRM Agent, typcially after a purchase transaction.

2. the SCE-6-LRMP protocol ([SCE-LRM]). This mechanism may be used to transport a User Domain RO from an LRM to a DRM Agent, typcially after an import process.

3. the SCE-7-A2AP protocol ([SCE-A2A]). This mechanism may be used to transport a User Domain RO from one DRM Agent to another.

4. interface SCE-8 (“out-of-band”, section xxx). This data specification enables distribution of User Domain ROs via any protocol or medium, for example inside a (P)DCF file, as a separate standalone MIME object, or as part of a MIME multipart/related message [RFC2387]. This mechanism may be used to transport User Domain ROs to a DRM Agent from any source. However this mechanism is not adequate to transport User Domain ROs that require the <copy_control> constraint to be enforced or User Domain ROs that are protected using the Paring-Key mechanism.

The DRM Agent MUST support receiving a User Domain RO in a ROAP-ROResponse message.

The DRM Agent MUST support receiving a User Domain RO as a separate object.

As a general principle, the processing rules for inbound User Domain ROs are agnostic to the origin of the User Domain RO or the mechanism by which is was transported, i.e. it does not matter whether the User Domain RO was delivered OTA from an RI using ROAP or copied from another DRM Agent using SCE-8 (in addition to for example UPnP). There is no binding to a specific transport mechanism or transport protocol.

The process of checking the validity of inbound (User Domain) RO’s is called installation of the (User Domain) RO. After the RO has been installed, a user may request the DRM Agent to grant any of the permissions related to a specific Content. This process is called consumption of the (User Domain) RO. To render the media objects inside the associated DCF the DRM Agent MUST process the User Domain RO as defined in section xyx.

4.2 User Domain Management

4.2.1 Joining a User Domain

In order to install and consume a User Domain RO, a DRM Agent needs to register with a DA/DEA that manages the User Domain that the RO refers to and join that User Domain. A DRM Agent joining a User Domain is the process of a DA/DEA authorizing a particular DRM Agent to be able to use ROs for this User Domain. The result of a successful execution of the dmpRegistrationProtocol (section Error! Reference source not found.) of a DRM Agent with a DEA, is the estabishment in the DRM Agent of a DA/DEA Context for the given DA/DEA. The dmpRegsitrationProtocol is a generic registration protocol ([GEN, section xxx], without extensions. This means that the DA/DEA Context consists only of the identities of the DRM Agent and DA/DEA and the negotiated protocols.

The result of a succesful execution of the DMP Join Domain Protocol (section Error! Reference source not found.) is the establishment in the DRM Agent of a User Domain Context for the given User Domain. The User Domain Context MAY consists of:

· User Domain Info. This consists of:

Identity of this User Domain, including the domain generation

Expiry time of the User Domain Context

The alias of the User Domain – used in communication with the user to refer to the User Domain

· Key material

In case of Shared-Key management: the Master Domain Key (MDK), or set of MDKs in case hash-chains are not used.

· User Domain Tokens. Used by the DA/DEA to authorize certain entities to perform certain tasks in relation to the User Domain. A User Domain Token consists of:

Identity of the entity

The authorized roles of the entity. An entity may be authorized to act as a RI, LRM, DEA or DRM Agent in relation to a User Domain.

Expiry date – date when the authorizaton expires.

Please not that the technical implementation (including its security) of the User Domain Context is outside of scope of this specification. A DRM Agent MAY join multiple User Domains managed by one or more DA/DEAs. Consequently the DRM Agent MAY at any time maintain several DA/DEA Contexts and also per DA/DEA Context several User Domain Contexts.

4.2.2 Leaving a User Domain

In order for a Device to leave a User Domain, it must assure the DA/DEA that it has deleted all information about the User Domain that enables it to use any ROs for the User Domain. When leaving a User Domain a Device MUST delete the associated User Domain Context, without a User Domain Context ROs issued for that User Domain will no longer be consumable. When leaving a User Domain a Device MAY, but is not required to, remove the corresponding User Domain ROs and associated DRM Content. The Device SHOULD obtain user confirmation before deleting User Domain ROs and associated DRM Content.

A Device MUST execute the Leave Domain protocol (see 5.2.3) to leave a User Domain. A Device may do this by sending a dmpLeaveDomainRequest message to the daURL as stored in the DA/DEA Context associated with the User Domain Context or as a result of receiving a dmpLeaveDomainTrigger. The daURL from the trigger MUST be used if the LeaveDomain is triggered by a dmpLeaveDomainTrigger.

Prior to sending a dmpLeaveDomainRequest, the Device MUST disable the corresponding User Domain Context. After receiving the dmpLeaveDomainResponse with ‘Success’ as the status, the Device MUST delete the corresponding User Domain Context.
4.2.3 Using a User Domain

An RI/LRM using a User Domain is the process of an DA/DEA authorizing a particular RI or LRM to be able to create ROs for this User Domain. The result of a successful execution of the rdpRegistrationProtocol (section xxx) of a RI or LRM with a DA/DEA, is the estabishment in the RI/LRM of a DA/DEA Context for the given DA/DEA. The rdpRegsitrationProtocol is a generic registration protocol ([GEN, section xxx], without extensions. This means that the DA/DEA Context consists only of the identities of the RI/LRM and DA/DEA and the negotiated protocols.

The result of a succesful execution of the rdpUseDomain protocol (see xxx.) is the establishment in the RI/LRM of a User Domain Context for the given User Domain. The User Domain Context includes key material, User Domain Identifier(s) and a User Domain Tokens. An RI/LRM MAY use multiple User Domains managed by one or more DA/DEAs.

A DEA will enforce certain limits when allowing DRM Agents to join a User Domain. It can for example enforce a maximimum on the number of concurrent members. This means it should be possible to remove a DRM Agent as member of a User Domain. Also, for reasons related to its business or to the trust management, a DA/DEA can at some point want to disable a certain RI/LRM to create RO’s for the User Domain or disable a DRM Agent to consume newly created ROs for a User Domain. For these purposes, a DA/DEA can request an RI/LRM to drop a certain User Domain (see section xxx) or request a DRM Agent to leave a User Domain (see section xxx). Alternatively a DA/DEA can upgrade the User Domain (see section xxx), which forces all DRM Agents to re-join and RI/LRM to re-do the rdpUseDomain protocol.

4.3 Compatibility with OMA DRM 2.1 domains.

The functionality provided by the domain mechanism defined in [OMA DRM 21] is subset of the functionality of the User Domain. However those User Domain RO’s that do not use any new features are still usable on OMA DRM 2.1 (or 2.0) DRM Agents. Specifically the following requirements must be met for an RO that is usable on OMA DRM 2.1 (or 2.0) DRM Agents: the User Domain RO:

1. does not contain a <copy_control> constraint

2. does not require “Pairing-Key” management

3. is signed by an RI, either after a purchase transaction or after an RI-assisted import (see [LRM], section xyz).

In this case the User Domain RO can be delivered to the 2.1 or 2.0 DRM Agent via ROAP or “out-of-band” as already defined in [OMA DRM 2.1]. The installation and consumption of this User Domain RO on the 2.0 or 2.1 DRM Agent will cause the DRM Agent to attempt to join the domain using the ROAP protocol as specified in [OMA DRM 2.1]. This will trigger the RI that signed the RO to execute the rdpProxyJoinDomain protocol (see section xxx). If this protocol is succesful, the DRM Agent will receive the information required to access the User Domain RO.

5. The Domain Management Protocol (SCE-2-DMP)

5.1 Overview

In this section, The Domain Management Protocol SCE-2-DMP messages, including their parameters, encodings and semantics are defined.
5.2 DMP messages

The Device-DA/DEA Registration Protocol is a complete security information exchange and handshake between the Device and the DA/DEA and is generally only executed at first contact, but may also be executed when there is a need to update the exchanged security information. This protocol includes negotiation of protocol parameters and protocol version, cryptographic algorithms, exchange of certificate preferences, optional exchange of certificates, mutual authentication of Device and DA/DEA, and integrity protection of protocol messages.

Successful completion of the Registration protocol results in the establishment of a DA/DEA Context in the Device containing DA/DEA-specific security related information such as agreed protocol parameters, protocol version, and certificate preferences. A DA/DEA Context is necessary for execution of the other protocols in the SCE-2-DMP suite. Figure x depicts the 4-pass Device-DA/DEA Registration Protocol.

[image: image2.emf]Device DA/DEA OCSP Responder

1

2

3

a

b

4

OCSP Request

OCSP Response

D

ev

ic

e-D

A

/D

EA

H

el

loR

e

qu

est

D

ev

ic

e-D

A

/D

EA

H

el

loR

e

spo

ns

e

D

ev

ice

-D

A/

D

EA

R

egi

str

ati

on

Re

qu

es

t

De

vi

ce

-D

A/

DE

A

Re

gi

str

ati

on

Re

sp

on

se

Figure x – The 4-pass Device-DA/DEA Registration Protocol
5.2.1 Notation

In the message parameter tables below, "M" stands for "mandatory presence" and "O" stands for "optional presence"
5.2.2 Registration Protocol

5.2.2.1 Device-DA/DEA Hello Request

The Device-DA/DEA Hello Request message is sent from the Device to the DA/DEA to initiate the 4-pass dmpRegistration protocol. This message expresses Device information and preferences and MUST be formatted as specified in 6.2 in [GEN].
Upon receipt of a Device-DA/DEA Hello Request message, the DA/DEA MUST perform the default processing, as specified in [GEN], section xxx, and MUST return a Device-DA/DEA Hello Response message.
5.2.2.2 Device-DA/DEA Hello Response

The Device-DA/DEA Hello message is sent from the DA/DEA to the Device in response to a Device-DA/DEA Hello Request message. The message expresses DA/DEA preferences and decisions based on the values supplied by the Device and MUST be formatted as specified in 6.3 in [GEN].
5.2.2.3 Device-DA/DEA Registration Request
A Device sends the Device-DA Registration Request message to a DA/DEA to request registration with the DA/DEA. The message is sent as the third message in the 4-pass dmpRegistration protocol and MUST be formatted as specified in 6.4 in [GEN].

5.2.2.4 Device-DA/DEA Registration Response
The Device-DA/DEA Registration Response message is sent from the DA/DEA to the Device in response to a Device-DA/DEA Registration Request message. This message completes the Registration protocol, and if successful, enables the Device to establish a DA/DEA Context for this DA/DEA and MUST be formatted as specified in 6.5 in [GEN].
5.2.2.5
5.2.2.6
5.2.2.7
5.2.2.8
5.2.3 Domain Management

5.2.3.1 dmpJoinDomainTrigger

A dmpJoinDomainTrigger is delivered to a DRMAgent to initiate the 2-pass DMP Join Domain Protocol. The message MUST be a <gen:drmTrigger> element as specified in [GEN], section xxx.and MUST be formatted as specified in Table 1.

	element / attribute
	usage
	value

	type
	M
	“dmpJoinDomain”

	version
	M
	“1.0”

	proxy
	O
	Default, as specified in [Gen], section xyz

	resID
	M
	Default, as specified in [Gen], section xyz

	resAlias
	O
	Default, as specified in [Gen], section xyz

	reqURL
	M
	Default, as specified in [Gen], section xyz

	nonce
	O
	Default, as specified in [Gen], section xyz

	domID
	M
	Specified below

	domainAlias
	O
	Specified below

	signature
	O
	Default, as specified in [Gen], section xyz

	encKey
	O
	Default, as specified in [Gen], section xyz

Table 1: dmpRegistrationTrigger message elements

The <body> element of the dmpJoinDomainTrigger MUST have a <domID> element:

<element name="domID" type="dom:DomainIdentifier"

simpleType name="DomainIdentifier">

<restriction base="string">

<pattern value="editor: make equal to 2.1 domainID"/>

</restriction>

</simpleType>

The <body> element of the dmpJoinDomainTrigger SHOULD have a <domainAlias> element:

<element name="domainAlias" type="String80" minOccurs=”0”/>

The <domainAlias> element contains a string value that SHALL be used by the DRM Agent whenever it refers to the domain specified by <domID> in a message to the user. The content of the <domainAlias> element SHALL be saved in the User Domain Context. The maximum length of this element SHALL be 80 bytes.

Upon receipt of a dmpJoinDomainTrigger, the DRM Agent MUST perform the default processing, as specified in [Gen], section xxx, and if successful post a dmpJoinDomainRequest.

5.2.3.2 dmpJoinDomainRequest

A dmpJoinDomainRequest message is sent from a DRMAgent to a DA/DEA as the first message of the 2-pass joinDomain protocol.

<element name="dmpJoinDomainRequest" type="gen:Request"/>

The DRM Agent MUST format the request as specified in Table 2:

	element / attribute
	usage
	value

	reqID
	M
	Default, as specified in [GEN], section xyz

	resID
	M
	Default, as specified in [GEN], section xyz

	nonce
	M
	Default, as specified in [GEN], section xyz

	time
	M
	Default, as specified in [GEN], section xyz

	certificateChain
	O
	Default, as specified in [GEN], section xyz

	reqInfo
	M
	Specified below.

	signature
	M
	Default, as specified in [GEN], section xyz

Table 2: dmpJoinDomainRequest message elements

The dmpJoinDomainRequest message MUST contain a <reqInfo> element, which MUST have the <domID> element as a child (see section 5.2.3.1). The value of the <domID> MAY be equal to the <domID> received in a dmpJoinDomainTrigger and it MAY be equal to the <domID> from a ProtectedRO that is received out-of-band. The <reqInfo> element MAY have the default extensions as defined in [Gen], xyz. . In addition it MAY contain the Hash Chain Support extension. When this extension is present, it signals that the client supports a technique of generating Master Domain Keys through hash chains, see section xxx.
<complexType name="HashChainSupport">

 <complexContent>

 <extension base="gen:Extension"/>

 </complexContent>

</complexType>
Upon receipt of a dmpJoinDomainRequest, the DA/DEA MUST perform the default processing, as specified in [Gen], section xxx, and MUST return a dmpJoinDomainResponse.

5.2.3.3 dmpJoinDomainResponse

A dmpJoinDomainResponse message is sent from a DA/DEA to a DRMAgent as the last message of the 2-pass dmpJoinDomain protocol. A dmpJoinDomainResponse message is also sent from a DA/DEA to a DRMAgent as the first message of the 1-pass dmpJoinDomain protocol.
<element name="dmpJoinDomainResponse" type="gen:Response"/>

If the dmpJoinDomainRequest is not successful, then the response MUST be formatted as specified in [GEN]. Otherwise the message MUST be formatted as specified in Table 3:

	element / attribute
	usage
	Value

	status
	M
	“Success”

	reqID
	M
	Default, as specified in [GEN], section xyz

	resID
	M
	Default, as specified in [GEN], section xyz

	nonce
	M
	Default, as specified in [GEN], section xyz

	certificateChain
	O
	Default, as specified in [GEN], section xyz

	ocspResponse
	O
	Default, as specified in [GEN], section xyz

	resInfo
	M
	Specified below.

	signature
	M
	Default, as specified in [GEN], section xyz

Table 3: dmpJoinDomainResponse message elements

The dmpJoinDomainResponse message MUST have a <resInfo> element. The <resInfo> element MUST contain a <notAfter> element as specified below, it MUST contain one or more <pMDK> elements and MAY contain any number of <udomToken> elements:

<element name=”notAfter” type=”gen:dateTimeorInfinite”/>

<element name="pMDK" type="ProtectedMasterDomainKey" />

<complexType name="ProtectedMasterDomainKey">

<sequence>

<element name="encKey" type="xenc:EncryptedKeyType"/>

<element name="daID" type="roap:Identifier"/>

<element name="mac" type="base64Binary"/>

</sequence>

</complexType>

<element name="udomToken" type="UserDomainToken" />

<complexType name="UserDomainToken">

<sequence>

<element name="body" type="gen:UserDomainTokenBody"/>

<element name="signature" type="ds:SignatureType" minOccurs="0"/>

</sequence>

</complexType>

<complexType name="UserDomainTokenBody">

<sequence>

<element name="udomID" type="dom:UserDomainIdentifier" />

<element name="subId" type="gen:Identifier"/>

<element name="isAgent" type="boolean" minOccurs="0"/>

<element name="isRI" type="boolean" minOccurs="0"/>

<element name="isLRM" type="boolean" minOccurs="0"/>

<element name="isDEA" type="boolean" minOccurs="0"/>

<element name="expires" type="dateTime" minOccurs="0"/>

<any minOccurs="0" maxOccurs="unbounded" processContents="lax"/>

</sequence>

<attribute name=”id” type=”ID” use=”required” />

</complexType>
The <notAfter> element expresses, in UTC, the expiry time of the User Domain Context. The value “Infinite” indicates infinite lifetime of the User Domain Context.

If Hash Chains are supported by both the Device and the DA/DEA, only the <pMDK> element corresponding to the most recent Domain Generation SHOULD be included, otherwise a <pMDK> element for all Domain Keys for all Domain Generations MUST be included (including their domain identifiers as “Id” attributes)
Upon receipt of a dmpJoinDomainResponse, the DRM Agent MUST perform the default processing, as specified in [Gen], section xxx. If successful it MUST update the User Domain Context (UDC) by installing the received <udomInfo> element, <notAfter> element, <pMDK> elements and <udomToken> elements, as specified below.
A <pMDK> element MUST contain an <encKey> element, a <daID> element and a <mac> element. The <encKey> element contains a MAC key (KMAC) and a Master Domain Key (MDK), wrapped as specified in section x.x. The child of the <ds:KeyInfo> element inside the <encKey> element SHALL be the <roap:X509SPKIHash> element, identifying a particular DRM Agent's public key through the hash of the subjectPublicKeyInfo value in its certificate. The <daID> and <mac> elements are necessary for key confirmation purposes. The <mac> element provides key-confirmation through a MAC on the canonical version according to Section x.x of the <pMDK> element (excluding the <mac> element itself) using the MAC key KMAC wrapped in the <encKey> element. The MAC algorithm to use is negotiated in the registration phase and stored in the DA/DEA Context. DRM Agents MUST verify that:

· The value of the <encKey> element's “Id” attribute is equal to the value of the <domID> element in the preceding dmpJoinDomainRequest message, save for the Domain Generation part.

· The value of the <daID> element is equal to the value of the <resID> element of the dmpJoinDomainResponse message itself.

· The MAC is valid.

If these verifications are positive then the DRM Agent MUST unwrap the MDK and store it as part of the User Domain Context.

A <udomToken> element provides DA-signed proof of a relation of a specific kind between a certain entity, identified by the <subId> element, and the User Domain. When interacting with a DEA or when installing User Domain Rights Objects created by a certain RI or LRM, the DRM Agent will be required to check the validity of the User Domain Tokens for that entity. A <udomToken> element MUST contain a <signature> element and a <body> element, which MUST contain a <udomID> element, a <subID> element and MAY contain an <isAgent> , <isRI>, <isLRM> or <isDEA> element, specifying the relations between the entity and the User Domain. The <signature> element is of type ds:SignatureType from [XML-DSIG]. The URI attribute of a <ds:Reference> element of the <ds:SignedInfo> child element of the <signature> SHALL reference the <body> element by having the same value as the “id” attribute of the <body> element. In compliance to the rules of canonicalisation specified in Section x.x, the <ds:Reference> element MUST contain a <ds:Transforms> element, that contains a single <ds:Transform> element that signals the use of the exclusive canonicalisation algorithm without comments. The <ds:KeyInfo> child element of the <signature> element SHALL identify the signing key. The DRM MUST verify that:

· the signing key is associated with the DA/DEA identified in the <udomID> element.

· the signature is valid

If these verifications are positive then the DRM Agent MUST store the information in the <udomToken> as part of the User Domain Context.
The <resInfo> element MAY contain the Hash Chain Support extension. When this extension is present it indicates that the DA/DEA is using the technique of generating Master Domain Keys through hash chains. The DA/DEA MUST NOT include this extension in the rdpJoinDomainResponse unless the same extension was received in the preceding rdpJoinDomainRequest. If the Device receives the Hash Chains Support extension then it needs only store the latest Master Domain Key for a given User Domain.
5.2.3.4 dmpLeaveDomainTrigger

A dmpLeaveDomainTrigger is delivered to a DRMAgent to initiate the 2-pass DMP Leave Domain Protocol. The message MUST be a <gen:drmTrigger> element as specified in [GEN], section xxx and MUST be formatted as specified in Table 4.

	element / attribute
	usage
	value

	type
	M
	“dmpLeaveDomain”

	version
	M
	“1.0”

	proxy
	O
	Default, as specified in [Gen], section xyz

	resID
	M
	Default, as specified in [Gen], section xyz

	resAlias
	O
	Default, as specified in [Gen], section xyz

	reqURL
	M
	Default, as specified in [Gen], section xyz

	nonce
	M
	Default, as specified in [Gen], section xyz

	domID
	M
	As specified in 5.2.3.1

	domainAlias
	O
	As specified in 5.2.3.1

	deviceID
	O
	Specified below

	signature
	M
	Default, as specified in [Gen], section xyz

	encKey
	M
	Default, as specified in [Gen], section xyz

Table 4: dmpLeaveDomainTrigger message elements

The <body> element of the dmpLeaveDomainTrigger MUST have a <domID> element. It SHOULD have a <domainAlias> element.

The <body> element of the dmpLeaveDomainTrigger MAY have a <deviceID> element. If the <deviceID> element is present the DRM Agent MUST verify whether the value of the <deviceID> matches the hash of the Device’s public key info, as it appears in one of the Device’s certificates (i.e. the hash of the complete DER-encoded subjectPublicKeyInfo component). If the <deviceID> does not match the hash of the Device’s public key info then the DRM Agent MUST discard the trigger.

<element name="deviceID" type="gen:Identifier"/>

Upon receipt of a dmpLeaveDomainTrigger, the DRM Agent MUST perform the default processing, as specified in [Gen], section xxx, and if successful post a dmpLeaveDomainRequest.

5.2.3.5 dmpLeaveDomainRequest

A dmpLeaveDomainRequest message is sent from a DRMAgent to a DA/DEA as the first message of the 2-pass DMP Leave Domain protocol.

<element name="dmpLeaveDomainRequest" type="gen:Request"/>

The DRM Agent MUST format the request as specified in Table 5:

	element / attribute
	usage
	value

	reqID
	M
	Default, as specified in [GEN], section xyz

	resID
	M
	Default, as specified in [GEN], section xyz

	nonce
	M
	Default, as specified in [GEN], section xyz

	time
	M
	Default, as specified in [GEN], section xyz

	certificateChain
	O
	Default, as specified in [GEN], section xyz

	reqInfo
	M
	Specified below.

	signature
	M
	Default, as specified in [GEN], section xyz

Table 5: dmpLeaveDomainRequest message elements

The dmpLeaveDomainRequest message MUST contain a <reqInfo> element, which MUST have the <domID> element as a child (see section 5.2.3.1). The <domID> identifies the User Domain the Device wishes to leave.

The <reqInfo> element MAY contain the Not a Domain Member extension. Presence of this extension indicates to the DA/DEA that the Device does not consider itself a member of this User Domain (even though it is sending a request for the DA/DEA to remove it from the User Domain). This could happen, for example, if the Device already has left the User Domain, but receives a new trigger to leave it (perhaps because the DA/DEA never received the previous dmpLeaveDomainRequest). This extension MUST be included in the request if the Device is not a member of the identified User Domain.

<complexType name="NotDomainMember">

 <complexContent>

 <extension base="gen:Extension"/>

 </complexContent>

</complexType>

Upon receipt of a dmpLeaveDomainRequest, the DA/DEA MUST perform the default processing, as specified in [Gen], section xxx, and MUST return a dmpLeaveDomainResponse.

5.2.3.6 dmpLeaveDomainResponse

A dmpLeaveDomainResponse message is sent from a DA/DEA to a DRMAgent as the last message of the 2-pass DMP Leave Domain protocol.

<element name="dmpLeaveDomainResponse" type="gen:Response"/>

If the dmpLeaveDomainRequest is not successful, then the response MUST be formatted as specified in [GEN]. Otherwise the message MUST be formatted as specified in Table 6:

	element / attribute
	usage
	value

	status
	M
	“Success”

	reqID
	M
	Default, as specified in [GEN], section xyz

	resID
	M
	Default, as specified in [GEN], section xyz

	nonce
	M
	Default, as specified in [GEN], section xyz

	resInfo
	M
	Specified below.

Table 6: dmpLeaveDomainResponse message elements

The dmpLeaveDomainResponse message MUST have a <resInfo> element. The <resInfo> element MUST contain a <domID> element as a child (see section 5.2.3.1). The <domID> identifies the User Domain from which the DA/DEA removed the Device. The Domain Generation part of the Domain Identifier SHALL be ignored.

The DA/DEA sends the dmpLeaveDomainResponse after having deleted the association of this Device to the User Domain (i.e. updated the User Domain membership status).
6. The Rights Issuer – Domain Authority protocol
(SCE-3-RDP)

6.1 Overview

In this section, The Rights Issuer – Domain Authority Protocol SCE-3-RDP messages, including their parameters, encodings and semantics are defined.
6.2 RDP messages

The DA/DEA-RI Registration Protocol is a complete security information exchange and handshake between the RI and the DA/DEA and is generally only executed at first contact, but may also be executed when there is a need to update the exchanged security information. This protocol includes negotiation of protocol parameters and protocol version, cryptographic algorithms, exchange of certificate preferences, optional exchange of certificates, mutual authentication of RI and DA/DEA, and integrity protection of protocol messages.

Successful completion of the Registration protocol results in the establishment of a DA/DEA Context in the RI/LRM containing DA/DEA-specific security related information such as agreed protocol parameters, protocol version, and certificate preferences. A DA/DEA Context is necessary for execution of the other protocols in the SCE-3-RDP suite. Figure x depicts the 4-pass DA/DEA-RI Registration Protocol.

[image: image3.emf]DA/DEA RI

1

2

3

4

D

A/

DE

A

-R

I H

el

loR

e

qu

est

DA

/D

E

A-

RI

 H

el

loR

es

po

ns

e

D

A

/D

EA

-R

I

Re

gis

tra

tio

nR

e

qu

est

D

A/

DE

A

-R

I R

e

gis

tra

tio

nR

es

po

ns

e

5

DA

/D

E

A-

RI

 R

eg

ist

rat

ion

 T

rig

ge

r

Figure x – The 4-pass DA/DEA-RI Registration Protocol
6.2.1 Notation

In the message parameter tables below, "M" stands for "mandatory presence" and "O" stands for "optional presence".

6.2.2 Registration Protocol

6.2.1.1 DA/DEA-RI Registration Trigger
A DA/DEA-RI Registration Trigger is delivered to a DA/DEA to initiate a 4-pass rdpRegistration Protocol. The message MUST be a <drmTrigger> element as specified in [GEN], section 5.6, and MUST be formatted as specified in Table x.

	element / attribute
	usage
	value

	type
	M
	“rdpRegistration”

	version
	M
	“1.0”

	resID
	M
	Default, as specified in [Gen], section xyz

	reqURL
	M
	Default, as specified in [Gen], section xyz

	nonce
	O
	Default, as specified in [Gen], section xyz

	signature
	O
	Default, as specified in [Gen], section xyz

Table x: rdpRegistrationTrigger message elements

The processing of the DA/DEA-RI Registration Trigger is default, as specified in [GET] section xxx, except for the handling of the <resID> element. The purpose of the DA/DEA-RI Registration Trigger is to trigger the rdpRegistration protocol, which will establish the DA/DEA Context for the RI. The DA/DEA Context for the RI will therefore typically not yet exist. Upon receipt of a DA/DEA-RI Registration Trigger, the DA/DEA MUST create a DA/DEA Context for the RI and store the <resID> and its own <reqID> with it.

6.2.1.2 DA/DEA-RI Hello Request
The DA/DEA-RI Hello Request message is sent from the DA/DEA to the RI to initiate the 4-pass rdpRegistration protocol. This message expresses DA information and preferences and MUST be formatted as specified in 6.2 in [GEN].

Upon receipt of a DA/DEA-RI Hello Request, the RI MUST perform the default processing, as specified in [GEN], section xxx, and MUST return a DA/DEA-RI Hello Response.
6.2.1.3 DA/DEA-RI Hello Response

The DA/DEA-RI Hello Response message is sent from the RI to the DA/DEA in response to a DA/DEA-RI Hello Request message. The message expresses RI preferences and decisions based on the values supplied by the Device and MUST be formatted as specified in 6.3 in [GEN].
6.2.1.4 DA/DEA-RI Registration Request
A DA/DEA sends the DA/DEA-RI Registration Request message to a RI to request registration with the RI. The message is sent as the third message in the 4-pass rdpRegistration protocol and MUST be formatted as specified in 6.4 in [GEN].

6.2.1.5 DA/DEA-RI Registration Response

The DA/DEA-RI Registration Response message is sent from the RI to the DA/DEA in response to a DA/DEA-RI Registration Request message. This message completes the rdpRegistration protocol, and if successful, enables the RI to establish a DA/DEA Context and MUST be formatted as specified in 6.5 in [GEN].
6.2.2.1
6.2.2.2
6.2.2.3
6.2.2.4
6.2.3 Domain Usage

6.2.3.1 Use Domain Request
The rdpUseDomainRequest message is sent from the RI to the DA/DEA to initiate the 2-pass rdpUseDomain protocol. This message expresses RI information and preferences and MUST be formatted as specified in Table x.

<element name="rdpUseDomainRequest" type="gen:Request"/>

	element / attribute
	usage
	value

	reqID
	M
	Default, as specified in [GEN], section xyz

	resID
	M
	Default, as specified in [GEN], section xyz

	nonce
	M
	Default, as specified in [GEN], section xyz

	time
	M
	Default, as specified in [GEN], section xyz

	certificateChain
	O
	Default, as specified in [GEN], section xyz

	reqInfo
	M
	Specified below.

	signature
	M
	Default, as specified in [GEN], section xyz

Table 6: Use Domain Request message elements
The rdpUseDomainRequest message MUST contain a <reqInfo> element, which MUST have the <domID> element as a child (see section 5.2.3.1).
Upon receipt of an rdpUseDomainRequest, the DA/DEA MUST return an rdpUseDomainResponse which MUST contain a Diversified Domain Key (DDK) for the User Domain and a User Domain Token for a RI.

6.2.3.2 Use Domain Response
The rdpUseDomainResponse message is sent from the DA/DEA to RI in response to an rdpUseDomainRequest message. The message expresses User Domain Info, Key material and User Domain Token, and MUST be formatted as specified in Table x.
<element name="rdpUseDomainResponse" type="gen:Response"/>

	element / attribute
	usage
	value

	status
	M
	Default, as specified in [GEN], section xyz

	reqID
	M
	Default, as specified in [GEN], section xyz

	resID
	M
	Default, as specified in [GEN], section xyz

	nonce
	M
	Default, as specified in [GEN], section xyz

	certificateChain
	O
	Default, as specified in [GEN], section xyz

	resInfo
	M
	Specified below.

	signature
	M
	Default, as specified in [GEN], section xyz

Table 7: Use Domain Response message elements
The rdpUseDomainResponse message MUST have a <resInfo> element. The <resInfo> element MUST contain a <udomInfo> element, it MUST contain a <pDDK> elements and MAY contain any number of <udomToken> elements as specified in 5.2.3.3.
<element name="udomInfo" type="dom:UserDomainInfo" />

<complexType name="UserDomainInfo">

<sequence>

<element name="udomID" type="dom:UserDomainIdentifier" />

<element name="domainAlias" type="String80" minOccurs=”0”/>

<any minOccurs="0" maxOccurs="unbounded" processContents="lax"/>

</sequence>

</complexType>
<element name="pDDK" type=" ProtectedDiversifiedDomainKey” />

<complexType name=" ProtectedDiversifiedDomainKey ">

<sequence>

<element name="encKey" type="xenc:EncryptedKeyType"/>

<element name="daID" type="roap:Identifier"/>

<element name="mac" type="base64Binary"/>

</sequence>

</complexType>

6.2.3.3
6.2.3.4
6.2.3.5 Drop Domain Request

The rdpDropDomainRequest message is sent from a RI to a DA/DEA. This message is the first message in the 2-pass rdpDropDomain protocol for disabling a certain RI to create RO's for the User Domain.
<element name="rdpDropDomainRequest" type="gen:Request"/>

DA/DEA MUST format the request as specified in Table x:
	element / attribute
	usage
	value

	reqID
	M
	Default, as specified in [GEN], section xyz

	resID
	M
	Default, as specified in [GEN], section xyz

	nonce
	M
	Default, as specified in [GEN], section xyz

	time
	M
	Default, as specified in [GEN], section xyz

	certificateChain
	O
	Default, as specified in [GEN], section xyz

	reqInfo
	M
	Specified below.

	signature
	M
	Default, as specified in [GEN], section xyz

Table 8: rdpDropDomainRequest message elements

The rdpDropDomainRequest message MUST contain a <reqInfo> element, which MUST have the <domID> element as a child (see section 5.2.3.1). The <domID> identifies the User Domain the RI wishes to disable a certain RI to create RO's for the User Domain.

The <reqInfo> element MAY contain the Unauthorized extension. Presence of this extension indicates to the DA/DEA that the RI does not have an authorization to be able to create ROs for this User Domain (even though it is sending a request for disabling a certain RI to create RO's for the User Domain). This could happen, for example, if the RI already has disabled the authorization for creating User Domain RO, but receives a new trigger to disable it (perhaps because the DA/DEA never received the previous rdpDropDomainRequest or the authorization of the RI for creating RO was already expired). This extension MUST be included in the request if the Device does not have an authorization for creating User Domain RO.
<complexType name="Unauthorized">

 <complexContent>

 <extension base="gen:Extension"/>

</complexContent>
</complexType>
6.2.3.6 Drop Domain Response
 The rdpDropDomainResponse message is sent by a DA/DEA to a RI in response to an rdpDropDomainRequest message. This message is the second message in the 2-pass rdpDropDomain protocol.

<element name="rdpDropDomainResponse" type="gen:Response"/>

If the rdpDropDomainRequest is not successful, then the response MUST be formatted as specified in [GEN]. Otherwise the message MUST be formatted as specified in Table X:
	element / attribute
	usage
	value

	status
	M
	“Success”

	reqID
	M
	Default, as specified in [GEN], section xyz

	resID
	M
	Default, as specified in [GEN], section xyz

	nonce
	M
	Default, as specified in [GEN], section xyz

	certificateChain
	O
	Default, as specified in [GEN], section xyz

	resInfo
	M
	Specified below.

	signature
	M
	Default, as specified in [GEN], section xyz

Table 59: rdpDropDomainResponse message elements
The rdpDropDomainResponse message MUST contain a <resInfo> element, which MUST have the <domID> element as a child (see section 5.2.3.1). The <domID> identifies the RI to disable to create RO’s for the User Domain. The Domain Generation part of the Domain Identifier SHALL be ignored.
The <resInfo> element MAY contain an updated <udomToken> element as specified in 5.2.3.3. The authorization for the RI in updated <udomToken> element MUST be expired.
6.2.3.7
6.2.4 User Domain backward compatible usage
A DRM2.x Device supports only DRM2.x Domain and can not interact with DA/DEA by any defined protocol. To keep compatibility, i.e. to make User Domain available for not only SCE conformant Device but also DRM2.x Device, RI can act as an intermediary to assist a DRM2.x Device to use User Domain. The following sections identify how an RI can act as such role.
6.2.4.1 DRM2.x Device Indirectly Joins User Domain

A DRM2.x Device can indirectly join a User Domain as indicated by figure xxx.

The DRM2.x Device sends the RI a JoinDomainRequest message to convey the information about the target Domain that it will join. When the RI determines that the target Domain is a User Domain, it sends the DA/DEA a ProxyJoinUserDomainRequest message to forward the DRM2.x Device’s request as indicated by the preceding JoinDomainRequest message. After some necessary process on the ProxyJoinUserDomainRequest message, the DA/DEA returns a ProxyJoinUserDomainResponse to the RI to convey its reaction to the request, and the RI subsequently returns a JoinDomainResponse to the DRM2.x Device to forward the reaction indicated by preceding ProxyJoinUserDomainResponse.

For more detail of this procedure, please refer to the following sections. Please note, the JoinDomainRequest and JoinDomainResponse messages have been described in [DRM2.x].

[image: image4.emf]DRM2.x Device

RI DA/DEA

JoinDomainRequest

ProxyJoinUserDomainRequest

ProxyJoinUserDomainResponse

JoinDomainResponse

Figure xxx Sequence Diagram – DRM2.x Device indirectly joins a User Domain
6.2.4.1.1 Proxy Join User Domain Request
<element name="proxyJoinUserDomainRequest" type="gen:Request"/>
<element name="proxyJoinUserDomainReqInfo" type="rdp:ProxyJoinDomainRequestInformation" substitutionGroup="gen:reqInfo"/>
<complexType name="ProxyJoinDomainRequestInformation">

 <complexContent>

 <extension base="gen:RequestInformation">

 <sequence>
 <element name="joinDomainRequest" type="roap:DomainRequest"/>

 <element name="deviceCertificateChain" type="roap:CertificateChain" minOccurs="0"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>
6.2.4.1.2 Proxy Join User Domain Response
<element name="proxyJoinUserDomainResponse" type="gen:Response"/>
<element name="proxyJoinUserDomainRspInfo" type="rdp:ProxyJoinDomainResponseInformation" substitutionGroup="gen:rspInfo"/>
<complexType name="ProxyJoinDomainResponseInformation">

 <complexContent>

 <extension base="gen:ResponseInformation">

 <sequence>
 <element name="domainInfo" type= "roap:DomainInfo" minOccurs="0"/>

<element name="deviceID" type="roap:Identifier" minOccurs="0"/>

 </sequence>

 </extension>

 </complexContent>
</complexType>
6.2.4.1.3 Sending ProxyJoinUserDomainRequest

Upon receipt of a JoinDomainRequest message, the RI SHOULD determine whether the target Domain indicated by the <domainID> element is a User Domain. At this point the RI MUST send a ProxyJoinUserDomainRequest message to the DA/DEA. The parameters of the ProxyJoinUserDomainRequest message are described in Table 1.

	Proxy Join User Domain Request

	Parameter
	Mandatory/Optional

	reqID
	M

	resID
	M

	nonce
	M

	joinDomainRequest
	M

	deviceCertificateChain
	O

Table 1: Proxy Join User Domain Request Message Parameters
The ProxyJoinUserDomainRequest message SHALL contain the following fields:

reqID: this field MUST contain the RI ID.

resID: this field MUST contain the DA/DEA ID.

nonce: this field MUST contain the same value as the <nonce> element in the JoinDomainRequest message.

The proxyJoinUserDomainRequest message MUST contain a <reqInfo> element (as defined in [DRMGEN-SCE]), which MUST contain a proxyJoinUserDomainReqInfo element. The proxyJoinUserDomainReqInfo element has the following subfields:
joinDomainRequest: this field MUST contain the joinDomainRequest message as received by the RI from the Device.

deviceCertificateChain: if the joinDomainRequest message does not include the <certificateChain> field, this parameter MUST be present. The value of the <deviceCertificateChain> parameter SHALL be a certificate chain including the Device's certificate. The chain SHALL not include the root certificate. The Device certificate MUST come first in the list. Each following certificate MUST directly certify the one preceding it.

6.2.4.1.4 Sending ProxyJoinUserDomainResponse
After reception of the ProxyJoinUserDomainRequest message, the DA/DEA MUST perform the default processing, as specified in [Gen], section xxx, and MUST execute the following procedure:

· Verify the validity of the Device's certificate chain. This certificate chain is contained in either the <certificateChain> element in the <joinDomainRequest> element, or in the <deviceCertificateChain> element in the <ProxyJoinUserDomainRequest> message. The certificate chain validation includes verification of the revocation status. If the certificate chain validation fails, the DA/DEA MUST send to the RI a ProxyJoinUserDomainResponse message with the <status> field set to "InvalidCertificateChain".

· Verify the signature in the <signature> element in the <joinDomainRequest> element. If the signature verification fails, the DA/DEA MUST send the RI a ProxyJoinDomainResponse message with the <status> field set to "SignatureError".

· If the UserDomainIdentifier is unknown to the DA/DEA, the DA/DEA MUST send to the RI a ProxyJoinUserDomainResponse message with the <status> field set to "InvalidDomain".

· If the Device cannot be joined to the User Domain because the User Domain has already reached the maximum number of devices, the DA/DEA MUST send to the RI a ProxyJoinUserDomainResponse message with the <status> field set to "DomainFull".

· If the DA/DEA wants to reject the Device joining the User Domain for any other reason than the ones stated above, the DA/DEA MUST send to the RI a ProxyJoinUserDomainResponse message with the <status> field set to "DomainAccessDenied".

The parameters of the ProxyJoinUserDomainResponse message are described in Table 2.

	Parameter
	Proxy Join User Domain Response

	
	Status = “Success”
	Status ≠ “Success”

	Status
	M
	M

	reqID
	M
	M

	resID
	M
	M

	nonce
	M
	M

	certificateChain
	M
	M

	signature
	M
	M

	domainInfo
	M
	-

	deviceId
	M
	-

Table 2: Proxy Join User Domain Response Message Parameters
Each ProxyJoinUserDomainResponse message MUST contain the following fields:

reqID: this field MUST contain the RI ID.

resID: this field MUST contain the DA/DEA ID.

nonce: this field MUST contain the same value as the <nonce> element in the preceding ProxyJoinUserDomainRequest message.

certificateChain: this field MUST contain the certificate chain of the DA/DEA. The value of the <certificateChain> parameter SHALL be a certificate chain including the DA/DEA's certificate. The chain SHALL not include the root certificate. The DA/DEA certificate MUST come first in the list. Each following certificate MUST directly certify the one preceding it.
signature: this element MUST contain a signature over this message. The signature method is as follows:

· The message except the Signature element is canonicalized according to Section 5.3.3 from [DRMDRM20].

· The result of the canonicalization, d, is considered as input to the signature operation.
· The signature is calculated on d in accordance with the rules of the negotiated signature algorithm.

When the DA/DEA allows the Device to join the User Domain, it MUST return a ProxyJoinUserDomainResponse message to the RI to convey the User Domain Information including the Domain Keys and the lifetime of the Domain. The DA/DEA SHOULD record the association of the Device and the User Domain and the RI. In this case, the ProxyJoinUserDomainResponse message SHALL have the <status> field set to "Success" and the DA/DEA MUST include in the ProxyJoinUserDomainResponse a <rspInfo> element (as defined in [DRMGEN-SCE]), which MUST contain a <proxyJoinUserDomainRspInfo> element. The <proxyJoinUserDomainRspInfo> element contains the following elements:

domainInfo: this field MUST contain the following subfields:

notAfter: this field expresses, in UTC, the expiry time of the User Domain Context. The value "Infinite" indicates infinite lifetime of the User Domain Context.

domainKey: this field contains the following subfields:

encKey: this element contains a MAC key, KMAC, and the DDK associated with the current generation of the User Domain, and the RI over which the ProxyJoinUserDomain protocol is performed. The keys are wrapped as specified in the Key management section 7.2.2 from [DRMDRM20], where KD is replaced by the DDK. The value of the <encKey> element's "Id" attribute MUST be equal to the value of the <domainID> element in the <joinDomainRequest> element in the ProxyJoinUserDomainRequest message, save for the Domain Generation part. All DDKs for all User Domain Generations MUST be included (including their domain identifiers as Id attributes). The child of the <ds:KeyInfo> element inside the <encKey> element SHALL be the <roap:X509SPKIHash> element, identifying the public key of the DRM agent through the hash of the subjectPublicKeyInfo in its certificate.

riID: this element MUST contain the same value as the <reqID> element in the ProxyJoinUserDomain message.

mac: this element provides key confirmation via a MAC on the canonical version according to Section 5.3.3 of [DRMDRM20] of the <domainKey> element (excluding the <mac> element itself) using the MAC key KMAC wrapped in the <encKey> element. The MAC algorithm to use is defined by the DA/DEA.
deviceID: this field MUST contain the same value as the <deviceID> field in the <joinDomainRequest> field in the ProxyJoinUserDomainRequest message.

6.2.4.1.5 Sending JoinDomainResponse

When receiving a ProxyJoinUserDomainResponse message, the RI MUST verify the included signature. If the signature verification fails, the RI MUST send a ROAP JoinDomainResponse message with only the <status> field, which is set to "DomainAccessDenied". If the <status> field in the ProxyJoinUserDomainResponse message contains "Success", and the signature verification did not fail, the RI MUST return a ROAP JoinDomainResponse to the DRM2.x Device to convey the User Domain Information in the ProxyJoinUserDomainResponse message. The JoinDomainResponse message SHALL contain the following fields;
status: this field MUST contain the value "Success".

deviceID: this field MUST contain the same value as the <deviceID> field in the ProxyJoinUserDomainResponse message.

riID: this field MUST contain the RI ID from the sending RI.

nonce: this field MUST contain the same value as the <nonce> field in the JoinDomainRequest message.

domainInfo: this field MUST contain the same value as the <domainInfo> field in the associated ProxyJoinUserDomainResponse message.

certificateChain: this parameter MUST be present unless a preceding ROAP-JoinDomainRequest message contained the Peer Key Identifier extension, the extension was not ignored by the RI, and its value identified the RI's current key. When present, the value of a Certificate Chain parameter SHALL be as described for the Certificate Chain parameter of the ROAP-RegistrationResponse message (see [DRMDRM20]).
ocspResponse: this parameter MAY be present. When present, it SHALL contain a complete set of valid OCSP responses for the RI's certificate chain. This parameter will not be sent if the Device sent the extension "No OCSP Response" in the preceding ROAP-JoinDomainRequest (and the RI did not ignore that extension).
extensions: there are currently no extensions defined that can be included in a JoinDomainReponse message for a DRM v2.x device proxy joining a User Domain. Although a DRM v2.x JoinDomainResponse message allows the use of Hash Chains, these cannot be used when a DRM v2.x device joins a DA/DEA managed User Domain. Therefore, the Hash Chain Support extension SHALL NOT be included in the JoinDomainResponse message.

signature: this field MUST contain the RI signature on this message. The signature is calculated as defined in [DRMDRM20], section 5.4.5.2.1.

If the <status> field in the ProxyJoinUserDomainResponse does not contain "Success", but the signature verification over the ProxyJoinDomainResponse did not fail, the JoinDomainResponse message SHALL only contain the <status> field, which MUST contain the same value as the <status> field in the associated ProxyJoinUserDomainResponse message.
6.2.4.1.4

6.2.4.1.5

6.2.4.2 DRM2.x Device Indirectly Leaves User Domain

A DRM2.x Device can indirectly leave via the RI a User Domain as indicated by figure xxx. When the DRM2.x Device performs this procedure, the DA/DEA deletes the association of this Device to the User Domain. However, a DRM2.x Device may have been joined to this User Domain via multiple RIs. Therefore, after successfully processing a ProxyLeaveUserDomainRequest, the DA/DEA MUST send an RDP Trigger {ProxyLeaveUserDomain} to all RIs that have a valid context for this User Domain related to this DRM2.x Device. See section 6.2.4.4 "DA/DEA Indirectly Trigger DRM2.x Device Leave User Domain" for more details. The DA/DEA SHALL NOT allow the 2.0/2.1 Device to join the User Domain over any RI as long as it has not performed the Proxy Leave User Domain protocol with the 2.0/2.1 Device over all RIs for which the 2.0/2.1 Device still has a Domain context associated with this User Domain.

To request leaving a Domain, the DRM2.x Device sends the RI a LeaveDomainRequest message to convey the information about the target Domain that it will leave. When the RI determines that the target Domain is a User Domain, it sends the DA/DEA a ProxyLeaveUserDomainRequest message to forward the DRM2.x Device request as indicated by the preceding LeaveDomainRequest message. After processing the ProxyLeaveUserDomainRequest message, the DA/DEA returns a ProxyLeaveUserDomainResponse to the RI to convey its reaction to the request. The RI subsequently returns a LeaveDomainResponse to the DRM2.x Device to forward the reaction indicated by preceding ProxyLeaveUserDomainResponse.

For more detail of this procedure, please refer to the following two sections. Please note, the LeaveDomainRequest and LeaveDomainResponse messages have been described in [DRM2.x].

[image: image6.emf]DRM2.x Device

RI DA/DEA

LeaveDomainRequest

ProxyLeaveUserDomainRequest

ProxyLeaveUserDomainResponse

LeaveDomainResponse

Figure xxx Sequence Diagram – DRM2.x Device indirectly and partially leaves a User Domain
6.2.4.2.1 Proxy Partial Leave User Domain Request

<element name="proxyLeaveUserDomainRequest" type="gen:Request"/>
<element name="proxyLeaveUserDomainReqInfo" type="rdp:ProxyLeaveDomainRequestInformation" substitutionGroup="gen:reqInfo"/>
<complexType name="ProxyLeaveDomainRequestInformation">

 <complexContent>

 <extension base="gen:RequestInformation">

 <sequence>
 <element name="leaveDomainRequest" type="roap:DomainRequest"/>

 <element name="deviceCertificateChain" type=" roap:CertificateChain " minOccurs="0"/>

 </sequence>

 </extension>

 </complexContent>
</complexType>

6.2.4.2.2 Proxy Partial Leave User Domain Response

<element name="proxyLeaveUserDomainResponse" type="gen:Response"/>
<element name="proxyLeaveUserDomainRspInfo" type="rdp:ProxyLeaveDomainResponseInformation" substitutionGroup="gen:rspInfo"/>
<complexType name="ProxyLeaveDomainResponseInformation">
 <complexContent>

 <extension base="gen:ResponseInformation">

 <sequence>
 <element name="userDomainIdentifier" type="dom:DomainIdentifier"/>
 <element name="deviceId" type="roap:Identifier"/>

 </sequence>

 </extension>

 </complexContent>
</complexType >

6.2.4.2.3 Sending ProxyLeaveUserDomainRequest
Upon receipt of a LeaveDomainRequest message, the RI SHOULD determine whether the target Domain indicated by the <domainID> element is a User Domain. If so, the RI MUST send a ProxyLeaveUserDomainRequest message to the DA/DEA.
	Parameter
	ProxyLeaveUserDomainRequest

	reqID
	M

	resID
	M

	nonce
	M

	certificateChain
	M

	leaveDomainRequest
	M

	deviceCertificateChain
	O

	signature
	-

Table x: ProxyLeaveUserDomainRequest Message Parameters

The ProxyLeaveUserDomainRequest message SHALL contain the following fields:

reqID: this field MUST contain the RI ID.

resID: this field MUST contain the DA/DEA ID.

nonce: this field MUST contain the same value as the <nonce> element in the LeaveDomainRequest message.

certificateChain: this field MUST contain the certificate chain of the RI. The value of the <certificateChain> parameter SHALL be a certificate chain including the RI's certificate. The chain SHALL not include the root certificate. The RI certificate MUST come first in the list. Each following certificate MUST directly certify the one preceding it.

The proxyLeaveUserDomainRequest message MUST contain a <reqInfo> element (as defined in [DRMGEN-SCE]), which MUST contain a proxyLeaveUserDomainReqInfo element. The proxyLeaveUserDomainReqInfo element has the following subfields:
leaveDomainRequest: this parameter MUST contain the leaveDomainRequest message as received by the RI from the Device.

deviceCertificateChain: if the leaveDomainRequest message does not include the <certificateChain> field, this parameter MUST be present. The value of the <deviceCertificateChain> parameter SHALL be a certificate chain including the Device's certificate. The chain SHALL not include the root certificate. The Device certificate MUST come first in the list. Each following certificate MUST directly certify the one preceding it.

signature: this element SHOULD NOT be included in the message for this version of the specification.
6.2.4.2.4 Sending ProxyLeaveUserDomainResponse

After reception of the ProxyLeaveUserDomainRequest message, the DA/DEA MUST perform the default processing, as specified in [Gen], section xxx, and MUST perform the following checks:
· Verify the validity of the Device's certificate chain. This certificate chain is contained in either the <certificateChain> element in the <leaveDomainRequest> element, or in the <deviceCertificateChain> element in the <ProxyLeaveUserDomainRequest> message. The certificate chain validation includes verification of the revocation status. If the certificate chain validation fails, the DA/DEA MUST send to the RI a ProxyLeaveUserDomainResponse message with the <status> field set to "InvalidCertificateChain".

· Verify the signature in the <signature> element in the <leaveDomainRequest> element. If the signature verification fails, the DA/DEA MUST send the RI a ProxyLeaveDomainResponse message with the <status> field set to "SignatureError".

· If the UserDomainIdentifier is unknown to the DA/DEA, the DA/DEA MUST send to the RI a ProxyLeaveUserDomainResponse message with the <status> field set to "InvalidDomain".

· If present, the field <signature> SHALL be ignored by the DA/DEA.
When the DA/DEA allows the Device to leave the User Domain, it MUST return a ProxyLeaveUserDomainResponse message to the RI to convey its reaction to the request. Before sending the ProxyLeaveUserDomainResponse message the DA/DEA MUST delete the association of this Device to the User Domain. The <status> field in the proxyLeaveUserDomainResponse message SHALL be set to "success".

	Parameter
	Proxy Leave User Domain Response

	
	Status = “Success”
	Status ≠ “Success”

	status
	M
	M

	reqID
	M
	M

	resID
	M
	M

	Nonce
	M
	M

	certificateChain
	O
	O

	userDomainIdentifier
	M
	-

	deviceID
	M
	-

	Signature
	M
	-

Table x: ProxyLeaveUserDomainResponse Message Parameters

Each ProxyLeaveUserDomainResponse message MUST contain the following fields:

reqID: this field MUST contain the RI ID.

resID: this field MUST contain the DA/DEA ID.

nonce: this field MUST contain the same value as the <nonce> element in the preceding ProxyLeaveUserDomainRequest message.

The DA/DEA MUST include in the proxyLeaveUserDomainResponse message a <rspInfo> element (as defined in [DRMGEN-SCE]), which MUST contain a <proxyLeaveUserDomainRspInfo> element. The <proxyLeaveUserDomainRspInfo> element contains the following fields:

userDomainIdentifier: this field MUST contain the User Domain Identifier of the User Domain from which the Device is removed.

deviceID: this field MUST contain the Device ID of the Device that is to be removed from the User Domain.

signature: this element MUST contain a signature over this message. The signature method is as follows:

· The message except the Signature element is canonicalized according to Section 5.3.3 from [DRMDRM20].

· The result of the canonicalization, d, is considered as input to the signature operation.
· The signature is calculated on d in accordance with the rules of the negotiated signature algorithm.

6.2.4.2.5 Sending LeaveDomainResponse

When receiving a ProxyLeaveUserDomainResponse, the RI MUST return a ROAP LeaveDomainResponse to the DRM2.x Device to forward the reaction from the DA/DEA.
If the <status> field in the ProxyLeaveUserDomainResponse does not contain "Success", the LeaveDomainResponse message SHALL only contain the <status> field, which MUST be set to the same value as the <status> field in the associated ProxyLeaveUserDomainResponse message.

When receiving a ProxyLeaveUserDomainResponse including the <status> field set to "Success", the RI MUST verify the included DA/DEA signature. If the signature verification fails, the RI MUST send a ROAP LeaveDomainResponse message including only the <status> field, which MUST be set to "DomainAccessDenied". If the signature verification was successful, the parameters in the ProxyLeaveUserDomainResponse message SHALL be set to the following value:

status: this field MUST contain the value "Success".

nonce: this field MUST contain the same value as the <nonce> field in the LeaveDomainRequest message.

domainIdentifier: this field MUST contain the same value as the <UserDomainIdentifier> field in the preceding ProxyLeaveUserDomainResponse message.

extensions: there are currently no extensions defined.
6.2.4.2.4

6.2.4.2.5

6.2.4.3 DA/DEA Indirectly Triggers DRM2.x Device Join User Domain

A DA/DEA can indirectly trigger a DRM2.x Device indirectly join a User Domain as indicated by Figure xxx.

The DA/DEA sends a RDP Trigger {ProxyJoinUserDomain} to the RI, so that the RI knows to trigger which Device to join which User Domain. After some necessary process on the trigger, the RI subsequently sends a ROAP Trigger {JoinDomain} to the DRM2.x Device. Then the DRM2.x Device conducts a procedure as indicated by section 6.2.4.1 to join indirectly the target User Domain.

For more detail of this procedure, please refer to the following section. Please note, the message other than the RDP Trigger {ProxyJoinUserDomain} has been described by [DRM2.x] and section 6.2.1.4 above.

[image: image7.emf]DA/DEA

DRM2.x Device

RI

RDP Trigger {ProxyJoinUserDomain}

ROAP Trigger{joinDomain}

JoinDomainRequest

JoinDomainResponse

ProxyJoinUserDomainRequest

ProxyJoinUserDomainResponse

Figure xxx Sequence Diagram – DA/DEA indirectly triggers DRM2.x Device join a User Domain

6.2.4.3.1 RDP Trigger {Proxy Join User Domain}
<element name="proxyJoinUserDomainTrigger" type="gen:DrmTrigger"/>

<element name="proxyJoinUserDomainTriggerInfo" type="rdp:ProxyJoinDomainTriggerInformation" substitutionGroup="gen:triggerInfo"/>

<element complexType name="whoJoinProxyJoinDomainTriggerInformation">

 <complexContent>

 <sequence>
 <element name="userDomainIdentifier" type= "dom:DomainIdentifier"/>
 <element name="userDomainAlias" type="string" minOccurs="0"/>

 <element name="deviceIddeviceID" type="roap:Identifier" maxOccurs="unbounded"/>

 </sequence>

 </complexContent>
</element>
	Proxy Join User Domain Trigger

	Parameter
	Mandatory/Optional

	Responder ID
	M

	Responder Alias
	-

	Nonce
	-

	Requestor URL
	M

	User Domain Identifier
	M

	User Domain Alias
	O

	Device ID
	O

Table 1: Proxy Join User Domain Trigger
The <body> element SHALL include <whoJoin> element.
The ProxyJoinUserDomainTrigger is of the gen:DrmTrigger type. This type has the following elements:

resID: this element MUST contain the DA/DEA ID.

resAlias: this element SHOULD NOT be included.

nonce: this element SHOULD NOT be included.

reqURL: this element contains an URL, which SHALL be used by the RI to post the ProxyJoinUserDomainRequest message to.

The proxyJoinUserDomainTrigger MUST contain a <triggerInfo> element (as defined in [DRMGEN-SCE]), which MUST contain a <proxyJoinUserDomainTriggerInfo> element. The <proxyJoinUserDomainTriggerInfo> element has the following subelements:

userDomainIdentifier: the User Domain ID.

userDomainAlias: if present, the <userDomainAlias> element contains a String value that will be used by the DRM Agent whenever it refers to the User Domain in a message to the user.

deviceID: this element can appear multiple times. Each <deviceID> element contains the Device ID of a Device that is to join the User Domain.
6.2.4.3.2 Sending ROAP Join Domain TriggerProcessing RDP Trigger {Proxy Join User Domain}
Upon reception of a RDP Trigger {ProxyJoinUserDomainTrigger} from the DA/DEA, the RI subsequently sends a ROAP Join Domain Trigger {JoinDomain} to the DRM2.x Devices indicated by the <deviceId> elements in the RDP ProxyJoinUserDomainTrigger {ProxyJoinUserDomain} to trigger the DRM2.x Device to join the User Domain. The <domainID> element in the ROAP Join Domain Trigger {JoinDomain} MUST be identical to the <userDomainIdentifier> element in the preceding RDP ProxyJoinUserDomainTrigger {ProxyJoinUserDomain}. When the DRM2.x Device receives the ROAP Join Domain Trigger {JoinDomain}, it indirectly joins the target User Domain as specified in section 6.2.4.1.
TBDThe elements in the ROAP Join Domain Trigger SHALL contain the following values:

riID: this element SHALL contain the RI identifier of the RI that sends the Join Domain Trigger.

riAlias: this element MAY be included. If included, it SHALL contain the RI Alias (as specified in [OMADRM20]) from the RI that sends the Join Domain Trigger.

nonce: this element SHALL only be included if the proxyJoinUserDomainTrigger contains a <nonce> element. In that case, the <nonce> element in the Join Domain Trigger SHALL contain the same value as the <nonce> element in the proxyJoinUserDomainTrigger.

roapURL: this element SHALL contain the URL which the DRM Agent is to use the when initiating the ROAP Join Domain protocol.

domainID: this element SHALL contain the same value as the <userDomainIdentifier> element in the proxyJoinUserDomainTrigger.

domainAlias: this element MUST be included if <userDomainAlias> element is included in the proxyJoinUserDomainTrigger. When included in the Join Domain Message, it MUST contain the same value as the <userDomainAlias> element in the proxyJoinUserDomainTrigger message.

version: this element SHALL be as specified in [OMADRM20].

proxy: this element SHALL be as specified in [OMADRM20].

The <signature> and <encKey> elements SHALL NOT be included in the Join Domain Trigger.

The RI MAY also initiate the Proxy Join User Domain protocol by sending a Join Domain Trigger, without receiving a Proxy Join Domain Trigger first. In this case, the elements in the Join Domain Trigger SHALL contain the same values as specified above, except for:

nonce: this element SHALL NOT be included.

domainID: this element SHALL contain the User Domain ID of the User Domain to which the Device is to join.

domainAlias: this element MAY be included. If it is included, it MUST contain the User Domain Alias associated with the User Domain to which the Device is to join.
6.2.4.4 DA/DEA Indirectly Trigger DRM2.x Device Leave User Domain

A DA/DEA can indirectly trigger a DRM2.x Device indirectly leave a User Domain as indicated by Figure xxx.

The DA/DEA sends a RDP Trigger {ProxyLeaveUserDomain} to the RI, so that the RI knows to trigger which Device to leave which User Domain. After some necessary process on the trigger, the RI subsequently sends a ROAP Trigger {LeaveDomain} to the DRM2.x Device. Then the DRM2.x Device conducts a procedure as indicated by section 6.2.4.2 to leave indirectly the target User Domain.

For more detail of this procedure, please refer to the following section. Please note, the message other than the RDP Trigger {ProxyLeaveUserDomain} has been described by [DRM2.x] and section 6.2.1.4 above.

[image: image8.emf]DRM2.x Device

RI

DA/DEA

RDP Trigger {ProxyLeaveUserDomain}

ROAP Trigger{leaveDomain}

LeaveDomainRequest

LeaveDomainResponse

ProxyLeaveUserDomainRequest

ProxyLeaveUserDomainResponse

Figure xxx Sequence Diagram – DA/DEA indirectly triggers DRM2.x Device leave a User Domain
6.2.4.4.1 RDP Trigger {Proxy Leave User Domain}

<element name="proxyLeaveUserDomainTrigger" type="gen:DrmTrigger"/>

<element name="proxyLeaveUserDomainTriggerInfo" type="rdp:ProxyLeaveDomainTriggerInformation" substitutionGroup="gen:triggerInfo"/>

<element complexType name="ProxyLeaveDomainTriggerInformationwhoLeave">

 <complexContent>

 <sequence>
 <element name="userDomainIdentifier" type= "dom:DomainIdentifier"/>

 <element name="userDomainAlias" type="string" minOccurs="0"/>

 <element name="deviceIdD" type="roap:Identifier" maxOccurs="unbounded"/>
 </sequence>

 </complexContent>
</element>
	Proxy Join User Domain Trigger

	Parameter
	Mandatory/Optional

	Responder ID
	M

	Responder Alias
	-

	Nonce
	M

	Requestor URL
	M

	User Domain Identifier
	M

	User Domain Alias
	O

	Device ID
	M

Table 1: Proxy Join User Domain Trigger
The <body> element in the <proxyLeaveUserDomainTrigger> SHALL include <whoLeave> element.

The ProxyLeaveUserDomainTrigger is of the gen:DrmTrigger type. This type has the following elements:

resID: this element MUST contain the DA/DEA ID.

resAlias: this element SHOULD not be included.

nonce: this element SHALL be included, and SHALL contain a nonce chosen by the DA/DEA.

reqURL: this element contains an URL, which SHALL be used by the RI to post the ProxyLeaveUserDomainRequest message to.

The proxyLeaveUserDomainTrigger MUST contain a <triggerInfo> element (as defined in [DRMGEN-SCE]), which MUST contain a <proxyLeaveUserDomainTriggerInfo> element. The <proxyLeaveUserDomainTriggerInfo> element has the following subelements:

userDomainIdentifier: the User Domain ID.

userDomainAlias: if present, the <domainAlias> element contains a String value that will be used by the DRM Agent whenever it refers to the User Domain in a message to the user.

deviceID: this element SHALL contain the Device ID of the 2.x Device that is to leave the User Domain.

6.2.4.4.2 SendingProcessing ROAP Leave Domain Trigger RDP Trigger {Proxy Leave User Domain}
Upon reception of a RDP Trigger {ProxyLeaveUserDomain} Trigger from the DA/DEA, the RI subsequently sends a ROAP Leave Domain Trigger {LeaveDomain} to the DRM2.x Device indicated by the <deviceId> element in the RDP Trigger {ProxyLeaveUserDomain} Trigger to trigger the DRM2.x Device to leave the User Domain. The <domainID> element in the ROAP Leave Domain Trigger {LeaveDomain} MUST be identical to the <userDomainIdentifier> element in the preceding RDP Trigger {ProxyLeaveUserDomain}. Trigger. When the DRM2.x Device receives the ROAP Leave Domain Trigger {LeaveDomain}, it indirectly leaves the target User Domain as specified in section 6.2.4.2.
The elements in the ROAP Leave Domain Trigger SHALL contain the following elements:

riID: this element SHALL contain the RI identifier of the RI that sends the Leave Domain Trigger.

riAlias: this element MAY be included. If included, it SHALL contain the RI Alias (as specified in [OMADRM20]) from the RI that sends the Leave Domain Trigger.

nonce: this element SHALL contain the same value as the <nonce> element in the <proxyLeaveUserDomainTrigger>. If the value of the triggerNonce attribute in the subsequent Leave Domain Request from the Device is not equal to the value of the <nonce> element in the Leave Domain Trigger, the RI MUST discard the received Leave Domain Request. RIs MUST follow the guidelines for nonces as expressed in Section 5.3.10 of [OMADRM20].

roapURL: this element SHALL contain the URL which the DRM Agent is to use the when initiating the ROAP Leave Domain protocol.

domainID: this element SHALL contain the same value as the <userDomainIdentifier> element in the proxyLeaveUserDomainTrigger.

domainAlias: this element MUST only be included if the <userDomainAlias> element is included in the proxyLeaveUserDomainTrigger. If included, it MUST contain the same value as the <userDomainAlias> element in the proxyLeaveUserDomainTrigger message.

version: this element SHALL be as included specified in [OMADRM20].

proxy: this element SHALL be included as specified in [OMADRM20].

enckey: TBD
this element SHALL be included and SHALL contain a MAC key wrapped with the current DDK. The value of the "Id" attribute of this element SHALL equal the value of the "URI" attribute of the <ds:RetrievalMethod> child element of the <signature> element.

signature: this element and its subelements SHALL be included as is specified for the Leave Domain Trigger in [OMADRM20].

The Leave Domain Trigger SHALL have an "Id" attribute. The value of the "Id" attribute is chosen by the RI. The value of the "URI" attribute of the <ds:RetrievalMethod> child element of the <signature> element SHALL be the same as the value of the "Id" attribute.
<element name="proxyJoinUserDomainTrigger" type="gen:DrmTrigger"/>
<element name="whoJoin">

 <complexContent>

 <sequence>
 <element name="userDomainIdentifier" type= "dom:DomainIdentifier"/>

<element name="deviceId" type="roap:Identifier" maxOccurs="unbounded"/>

 </sequence>

 </complexContent>
</element>
The <body> element SHALL include <whoJoin> element.
6.2.4.3.2

6.2.4.4

6.2.4.4.1

6.2.4.4.2

7. User Domain RO Processing

To render the protected media objects inside a DCF the DRM Agent MUST execute the following procedure:

1. Install the associated User Domain RO, as specified in section 7.2.

2. Consume the User Domain RO, as specified in section xxx.

[TBD Is this installation procedure applicable ALSO if the RO was created by an LRM?]

7.1 User Domain RO format

A User Domain RO is formatted as a <protectedRO> element as specified in [OMA DRM 2.1] and more specifically as a domainRO. This means that the <ro> element in the <protectedRO> element SHALL contain the <encKey> element, which SHALL have a child <ds:KeyInfo> element, which SHALL have a child <roap:domainID> element. Also the “domainRO”-attribute SHALL be present and set to “true”.

The RI MUST set the value of this <roap:domainID> element equal to the value of the <dom:domID> element of the <udomID> element that is received from the DA/DEA as part of the rdpUseDomain protocol (see section xxx).

RI MUST include a <dom:udomInfo> element into the <ro> element of the <protectedRO>. The contents of this element MUST equal the <udomInfo> received from the DA/DEA in the rdpUseDomain Protocol.

The RI MUST include a <party> element into the <agreement> element of the <protectedRO>. The value of the <uid> element in the <context> element of the <party> element, SHALL specify the domain to which the Rights Object is bound. The format of this value MUST be “udom:x:y” (without the quotes) where x is replaced by the DomainAuthorityID of the Domain Authority that manages the User Domain and where y is replaced by the domainID of the domain to which content is bound.
7.2 Installing a User Domain RO

To install a User Domain RO the DRM Agents MUST execute the following procedure:

1. The DRM Agent MUST ensure that it is a valid member of the User Domain to which the User Domain RO is bound, as specified in 7.2.1
2. The DRM Agent MUST ensure that the User Domain RO is valid, as specified in xxx

3. The DRM Agent SHOULD perform the post-processing as specified in xxx.

7.2.1 Ensuring User Domain membership

To ensure that the DRM Agent is a member of the User Domain to which the User Domain RO is bound, it MUST determine if it has a valid DA Context with the DA that manages the User Domain, by comparing the value of the User Domains ROs <daID> element (child of <udomInfo> element) with the DA Identifiers in all valid DA Contexts stored in the DRM Agent. If the value of the <daID> element does not match that of a DA Identifier in a valid DA Context, the DRM Agent SHALL NOT install the User Domain RO. In this case the DRM Agent MAY keep the User Domain RO and MAY send an HTTP GET to the URL specified in the <daURL> element in the <udomInfo>. An HTTP GET on this URL SHOULD return either a dmpJoinDomain Trigger or a (X)HTML page that starts an interaction with the User which may eventually lead to a dmpJoinDomain Trigger. It should be noted that in the event that a JoinDomain Trigger is returned and the DRM Agent does not have a valid DA context then the DRM Agent MUST automatically register with the DA/DEA (as specified in section Error! Reference source not found.) prior to sending a dmpJoinDomainRequest message.

Next, the DRM Agent MUST compare the <domID> element (child of <udomInfo>) within the User Domain RO with the User Domain identifiers for any valid User Domain Contexts already established with the DA that issued the User Domain RO, as identified by the <daID> element. There are three possible outcomes of this comparison:

1. The <domID> element matches a User Domain identifier in a valid User Domain Context already established with the DA. The DRM Agent MAY install the User Domain RO.

2. The User Domain baseID of the <domID> element matches the User Domain baseID of a stored User Domain identifier in a valid User Domain Context already established with the DA/DEA, but the User Domain Generation of the RO is greater than the Generation of the stored domain ID. The DRM Agent MAY attempt to upgrade the User Domain by sending a dmpJoinDomainRequest message to the daURL in the DA Context associated with the User Domain Context. If the User Domain upgrade is successful, the DRM Agent MAY install the User Domain RO. Otherwise the DRM Agent SHALL NOT install the User Domain RO.

3. The User Domain baseID of the <domID> field does not match a User Domain baseID in any valid User Domain Context already established with the DA. The DRM Agent MAY attempt to join the User Domain by sending an HTTP GET request to the URL specified in the <daURL> element of the roap:ROPayload.

At the point where the DRM Agent sends an HTTP GET request to the URL specified in the <daURL> element of the roap:ROPayload the RO installation process as specified within this section is effectively aborted, however, the installation process may be restarted as a result of subsequent user interaction, by some other DRM Agent specific means that is outside the scope of this specification or as a direct result of responding to a subsequent DRM Trigger. As a result of an HTTP GET to this URL the RI can choose (using its own criteria) whether to allow the DRM Agent to join the User Domain or not and SHOULD return either a JoinUser Domain ROAP Trigger or a (X)HTML page that starts an interaction with the User which may eventually lead to a JoinUser Domain ROAP Trigger. In the event that the RI chooses not to allow the DRM Agent to join the User Domain the RI MAY offer the user the opportunity to acquire a DRM Agent RO. [To be updated to reflect DA]

7.2.2 Ensuring User Domain RO validity

To ensure the validity of the User Domain RO the DRM Agent MUST have a valid User Domain Token that proves that the RI is authorized by the DA to create RO’s for the User Domain.

The DRM Agent MUST check that it has a User Domain Token for which:

1. The <udomID> element equals a domain identifier in a valid DA Context as described in section 7.2.1. (e.g. equal values for <daID> and <domID>, both User Domain baseID and User Domain Generation parts)

2. The <udomID> element contains

a. A <daID> element that equals the <daID> in the <udomID> element in the User Domain RO

b. A <domID> element of which the User Domain baseID equals the User Domain baseID of the <domID> element in the <udomID> element in the User Domain RO.

(In other words: the User Domain RO may be created for a different generation of the domain than the most recent)

3. The <subID> element equals the <riID> element in the User Domain RO

4. Either an <isLRM> or an <isRI> element is present.

5. If the <expires> element is present, the Current DRM Time is earlier than the value of the <expires> element

6. [TBD: Other mechanism for expiration based on number of RO’s creates instead of time]

7. The signature verification using the DA’s Public Key is succesful.

If such User Domain Token exist, than the DRM Agent MUST verify the signature of the User Domain RO using the RI public key ([TODO: Add cert-chain to User Domain Token]). Also, the DRM Agent MUST successfully verify the MAC (using the <mac> element of the roap:ProtectedRO). [TBD do we need a mac? When?]

If any of these the verifications fails the DRM Agent SHALL NOT install the User Domain RO. In this case the DRM Agent MAY request a new Rights Object by sending a HTTP GET to the RightsIssuerURL in the relevant DCF. [TBD How to deal with backed-up “old-but-once-valid” ROs from currently revoked RI’s/LRMs]

If the User Domain RO is stateful, then the DRM Agent MUST perform the replay protection related checks defined in Section Error! Reference source not found..

If the User Domain Context has expired (indicated by the User Domain Context Expiry Time) the DRM Agent MUST NOT install ROs for this User Domain.

7.2.3 User Domain RO post-processing

There are cases where a DRM Agent installs a User Domain RO that it received separately from the DCF to which it refers. In these cases, the DRM Agent SHOULD insert a copy of the User Domain RO into the corresponding DCF Error! Reference source not found. as soon as possible after installation.

In the case where the User Domain RO is received within a DCF, if the DRM Agent cannot verify the signature of the User Domain RO, the DRM Agent MAY leave the User Domain RO as is within the DCF. The DRM Agent MAY request a valid RO for the DCF as described in section Error! Reference source not found..

The DRM Agent MAY insert the User Domain RO into the DCF at a later stage, for example when the user requests to render the DCF or send it out of the DRM Agent. The DRM Agent MAY insert more than one User Domain RO into a single DCF, as long as all of the inserted RO’s are valid and correspond to a User Domain that it is a member of.

When the DRM Agent inserts a User Domain RO into a DCF, it SHOULD remove from the DCF all User Domain RO’s corresponding to User Domains that the DRM Agent is not a member of.

The DRM Agent SHOULD NOT insert a copy of the User Domain RO into the corresponding DCF if it concludes, using an algorithm not defined in this specification, that sending the installed User Domain RO to other DRM Agents does not add value for the end user, for example if the User Domain RO has expired.

If the DRM Agent finds multiple DCF instances bound to the installed User Domain RO, it SHOULD insert a copy of the User Domain RO into each one of them.

8 User Domain Upgrade

A DEA may upgrade a User Domain if, for example, a MDK has been compromised or if a Device in the User Domain has been revoked. This may be necessary to stop DRM Content from leaking out of the system in the clear.

In order to upgrade a User Domain, a DEA MUST change the MDK and MUST increment the Domain Generation by one. If the Domain Generation value reaches 999 the Domain becomes obsolete. An RI MUST NOT issue ROs for an obsolete User Domain and MUST NOT allow new Devices to join an obsolete User Domain.

A User Domain upgrade does not result in any Domain Context being deleted in any Device. After an upgrade, User Domain ROs issued before the upgrade may still be used and shared. This applies to all Devices (revoked and unrevoked) previously in the Domain, and to any new Devices added to the Domain after the upgrade.
A DEA performs a User Domain upgrade using the 2-pass dmpJoinDomain protocol with dmpJoinDomain Trigger. A DEA MAY initiate this protocol for the purposes of User Domain upgrade by sending a dmpJoinDomain trigger to a Device whose Domain membership it wishes to upgrade. If a Device receives a dmpJoinDomain trigger, it SHOULD compare the <domID> field with the domain ID for any domains already established with the DEA that sent the dmpJoinDomain trigger, with the sending DA as identified by the <resID> field. There are two possible outcomes of this comparison:

The Domain baseID of the <domID> field matches Domain baseID of a stored domain ID, but the value of the Domain Generation in the trigger is greater than the value stored by the Device. The incoming trigger represents a Domain upgrade, as described in this section. The Device SHOULD in this case silently upgrade the User Domain using the 2-pass dmpJoinDomain protocol with dmpJoinDomain Trigger.

If the Domain baseID of the <domID> field does not match Domain baseID of a stored domain ID, then the Device is not a member of the Domain. The Device MUST execute the 2-pass dmpJoinDomain protocol with dmpJoinDomain Trigger; just as if it was joining the domain for the first time.
As an alternative method, the DEA MAY execute the 1-pass dmpJoinDomain protocol to all members of the domain that are still trusted. If a Device receives a dmpJoinDomain response, it SHOULD compare the <domID> field with the domain ID for any domains already established with the DEA. A comparison procedure of the <domID> field is same as the above.
8.1 Use of hash chains for Domain key management

To avoid storage of multiple keys per Domain in the Device and in the DEA (for the purpose of using old and new Domain ROs after Domain upgrade) it is possible to have a relation between the Master Domain Keys using Hash Chains (see section x.x), as illustrated in the example below. The Device MAY support Hash Chains and the DEA MAY support Hash Chains.

Example1. Without hash chains
When generating a new User Domain, the DEA generates:

A unique Domain Identifier DI, the Domain Generation is set to 000.

A random secret Master Domain Key MDK0
At Domain upgrade the Domain Generation g is increased by 1, which is reflected in the Domain Identifier, and a new Master Domain Key MDKg is generated. The old MDK (s) must be stored in DEA and Device to allow use of ROs issued before the upgrade. When Devices join a User Domain, all MDKs of this Domain are sent in the <udomInfo> element of dmpJoinDomainResponse (see x.x).

Example 2. With Hash Chains (optional)
When generating a new User Domain, the DEA

generates a unique Domain Identifier DI, the Domain Generation is set to 000

generates an initial master domain key MDK for the User Domain

selects the maximum number of generations n for this Domain (not larger than 999)

defines a sequence of MDKs using the method described in Section x.x

Since old MDKs (with low generation value) are possible to efficiently derive from new MDKs (with higher generation value), it is only necessary to store the newest Domain Key in the Device (and corresponding Domain Identifier so the Domain Generation is known). For the DEA it is sufficient to store MDKn and the current Domain Identifier.
8. Key management

Two key management mechanisms for the User Domain are specified in this section. The “Shared-Key” mechanism is based on a common Domain Key that is shared by all members of the User Domain. This mechanism is similar to the key management for Domains as defined in OMA DRM 2.1, allows for some degree of compatibility with OMA DRM 2.1 DRM Agents, and enables some degree of content exchange via out-of-band methods (interface SCE-8). The “Pairing-Keys” mechanism is based on a set of Pairing-Keys, where (not necessarily all) couplets of domain members each share a pair-wise unique Pairing-Key. This mechanism is more secure as it allocates more control to the DA/DEA (via interface SCE-5) and requires the use of secure transfer mechanisms (interface SCE-6 or SCE-7).

The DA/DEA MAY support either key management system or both. It will signal the supported key management system(s) as part of the Domain Policy [to be detailed later].

On a per-RO basis, an RI/LRM MAY require either key management system to be used. The required key management system SHALL be signalled in the RO [to be detailed later].

Both mechanisms enable provisioning of ROs which allow User Domain member DRM Agents to share Rights with DRM Agents that are not members of the User Domain. The key management mechanism that must be used for sharing Rights with these “Guest” DRM Agents depends on the key management system that is required for the User Domain.

8.1 Overall key management

A certain device or server MAY implement several roles (DA/DEA, LRM, RI, and/or DRM Agent) defined by the SCE Enabler. In this case the same certificate MAY be used to fulfil more than one role. Especially, co-deployment of the DA/DEA with an RI or co-deployment of a DA/DEA with an LRM is anticipated.
Although the current specification does not specify the protocol between DA and DEA and therefore does not support their separate deployment, this specification does anticipate such separate deployment in the future (or using proprietary protocols based on this specification) and assumes that the DA certificate MAY be different from the DEA certificate. Consistent with this, there MAY exist multiple DA/DEA entities, where either the DA or DEA functionality in a given DA/DEA MAY be suppressed.

When joining a User Domain, the DRM Agent will receive from the DEA, DA-signed data that proves the DEA is authorized by the DA to enforce the Domain Policy on its behalf. As a prerequisite to completing the dmpJoinDomain protocol, a DRM Agent MUST successfully verify this DA-signed data identifying the DEA. A DRM Agent MAY communicate directly with a DA/DEA that is subordinate to another DA/DEA in that the latter DA/DEA is responsible for providing the aforementioned DA-signed data.

The DEA will limit, within the bounds specified by the Domain Policy, the number of concurrently joined User Domain members, and/or valid DRM Agent pairings.

8.2 Shared-Key management

When a User Domain Rights Object is secured using Shared-Key management, the <encKey> element in the <ro> element in the <protectedRO> element will contain the REK, encrypted with the Diversified Domain Key (DDK), as specified in section 8.4.2. The <protectedRO> may be distributed out of band using any mechanism to any device.

To access such an RO, the DRM Agent will join the User Domain via the dmpJoinDomain protocol and receive the Master Domain Key (MDK). The DDK can be derived from the MDK and the identity of the entity that created the RO, as specified in section 8.4.2. Provided that no permission in the <protectedRO> is constrained by a <copy_control> element, by using the DDK the DRM Agent is able to access the REK in the <protectedRO> and MAY grant any permission in the <protectedRO> provided the constraints are met.
An LRM with a dual-purpose (i.e., RI and LRM) certificate MUST NOT have access to any DDKs corresponding to entities other than itself, or to any MDK.
If any permission in the <protectedRO> is constrained by a <copy_control> constraint, then the DRM Agents will set up a SAC to securely exchange the REK. In this case, a sink DRM Agent MUST receive the REK as delivered via a SAC, since the REK is cryptographically inaccessible based solely on knowledge of the MDK and the RO. If a DRM Agent receives the REK, it MAY grant any permission in the <rights> element, taking constraints into account.

To secure a User Domain Rights Object using Shared-Key management, an RI/LRM will execute the rdpUseDomain protocol with the DA/DEA and receive the RI/LRM specific DDK and ValidationToken. Using the DDK the RI/LRM is able to create and protect the RO as specified in section xxx. As part of the <protectedRO>, using out-of-band mechanisms or the roapROResponse message, the RI/LRM will forward the ValidationToken to the DRM Agent. In the process of installing the RO, the DRM Agent MUST verify that the RI/LRM has been authorized by the DA/DEA to create ROs for the User Domain, by checking the ValidationToken as specified in section xxx. If the RI/LRM ValidationToken has expired or is otherwise invalid, it MAY be renewed by executing the dmpJoinDomain protocol with the DA/DEA. The DA/DEA MAY choose not to renew a Validation Token, for instance when an RI/LRM is suspected to be compromised or when the business relationship between the DA/DEA and RI/LRM has ended. As a condition of acceptance for further circulation, a non-compromised DRM Agent will check the validity of the ValidationToken of the RI/LRM. By not renewing the ValidationToken, the DA/DEA can prevent an RI/LRM from successfully creating new ROs for the User Domain.

If a member of the domain is known to have been compromised, it can be expelled from the domain by domain upgrade. In this process a new MDK is chosen. All members of the domain that are still trusted will re-execute the (1-pass or 2-pass) dmpJoinDomain protocol with the DA/DEA to retrieve the new MDK. All RIs/LRMs that provide ROs for the domain will re-execute the rdpUseDomain protocol with the DA/DEA to retrieve their new DDK and ValidationTokens.

8.2.1 Sharing Rights with Guest DRM Agents under Shared-Key management

8.3 Pairing-Key- based User Domain management

When a User Domain Rights Object is distributed from one DRM Agent to another using Pairing-Keys, the recipient/sink DRM Agent does not access the REK via an <encKey> element in the <ro> element in the <protectedRO> element. Therefore, in this case the REK is not communicated from the source DRM Agent to the sink DRM Agent as part of the RO, but as described below.

In the case of Pairing-Key management, it is necessary for the DEA to pair User Domain members in order to enable them to communicate with each other securely relative to User Domain Rights Objects. When a DRM Agent wants to exchange such an RO with another DRM Agent, it will request a Pairing from the DEA using the dmpPair-protocol [to be defined] if such a (currently valid) Pairing corresponding to the two DRM Agents is not already available.

A Pairing comprises a data packet that can be utilized independently by the two DRM Agents designated therein to retrieve a value, the PairingSecret, and to authenticate the origin of the PairingSecret as sourced from a specifically identified DEA. A Pairing is not usable by any other DRM Agent to retrieve the PairingSecret. The part of a Pairing that is used by the target DRM Agent rather than by the DRM Agent that makes the request for a Pairing is denoted as a PairingTicket, and the requesting DRM Agent is also denoted as a ticket-requesting DRM Agent.

A Pairing will indicate to both the ticket-requesting DRM Agent and the target DRM Agent the registration status of each of these two DRM Agents involved in that Pairing, where such status notification is authenticated as originating from the DEA. Once a DRM Agent completes the Device Registration protocol, it MAY be paired repeatedly with different DRM Agents without re-registering with the DEA.
The (pair-wise unique) PairingSecret is delivered directly from the DEA to a ticket-requesting DRM Agent in two forms: one that is directly accessible by the (registered) ticket-requesting DRM Agent and the other (i.e., a PairingTicket) that is indirectly accessible to a target DRM Agent via a ServiceKey that was established between the DEA and the target DRM Agent as a result of the Service Keys for Devices protocol involving the (registered) target Device.

When two DRM Agents exchange (under <move> or <copy> permission) a User Domain Rights Object with Pairing-Key protection, then in addition to data from the protectedRO (i.e., the <rights> element and the <signature> element), they will use the PairingSecret to set up a SAC and securely exchange the REK. A sink DRM Agent MUST, in addition to the <rights> element and <signature> element (RI-/LRM- signed), receive the REK, delivered via a SAC, which is set up based on a PairingSecret. The source DRM Agent has previously acquired access to the REK from an RI via the <encKey> element in the <ro> element in the <protectedRO> element of an RI-created RO, or via a SAC during Import from an LRM of an LRM-created Imported-Rights-Object, or via a pairing-based SAC as a recipient from another DRM Agent acting as source. If a DRM Agent receives the REK, it MAY grant any permission in the <rights> element, taking constraints into account.

8.3.1 DRM Agent Registration into User Domain via DEA under DA Approval and Delegation

DRM Agent registration via a DEA into a User Domain [details TBD] requires the DRM Agent to verify DA-signed data that is either Device-null in that it identifies the DEA but not any DRM Agents, or is Device-specific in that it identifies the DEA as well as one or more candidate User Domain Devices. In the latter case, the specific Device ID of the verifying DRM Agent MUST be present within a DA-signed data packet available for verification by the candidate Device.

8.3.2 Associating LRM to DEA under DA Approval

As a condition of Import from an LRM, a DRM Agent (in the role of Import-Recipient Device) MUST verify DA-signed data (same or different than above DA-signed Device-null or Device-specific data packet) that associates the particular LRM to a DEA with which the DRM Agent is currently registered. It is not prohibited that the association is reflexive in that the LRM and the DEA have the same entity ID. An LRM is concurrently associated with at most one DEA.

A DEA MAY be concurrently associated with multiple LRMs.

[Informative] It may be advantageous relative to the end user experience for a given DRM Agent to Import from distinct LRMs within the home network where one LRM may have access to Rights to upstream-DRM-protected content that is unavailable to one or more of the other LRMs in the home network.

8.3.3 DEA role: Registration of DRM Agents and generation of DRM Agent Pairings

A DRM Agent MUST be (currently) registered with a DEA in order to be eligible to transfer Rights to and/or from other DRM Agents registered with that DEA. Immediately upon its registration a DRM Agent is considered to be a member of the User Domain.

As a condition of eligibility to transfer Rights, a registered DRM Agent MUST furthermore be either the ticket-requesting DRM Agent or the target DRM Agent relative to a pairing request (where each pairing request identifies the intended target DRM Agent as well as the ticket-requesting DRM Agent). Devices MUST be paired with each other (with each designated as a User Domain DRM Agent) in order for Rights transfer to complete successfully.
8.3.4 Method for handling secure Move of domain-size- constrained LRM-created Imported-Rights-Objects
Based on particular Import-Ready Data, an LRM creates up to k Imported-Rights-Objects for use within the User Domain managed by the DEA corresponding to the LRM. Each such Imported-Rights-Object that contains a Move permission MAY be securely Moved independently among up to m Devices in the User Domain. The value of m may differ across such Imported-Rights-Objects.

The LRM does not need to be aware of the Domain Policy under which the DEA operates.

The DEA does not need to be aware of how many or which Imported-Rights-Objects are based on the same Import-Ready Data.

For each Imported-Rights-Object which contains a Move permission that is domain-size- constrained, the LRM indicates (within the <rights> element) the maximum number, m (where m is greater than 1), of User Domain Devices that are allowed to utilize the Rights. The DeviceID of the Import-Recipient Device corresponding to each such Imported-RO is indicated within the <rights> element over which the <signature> element is computed by the LRM. It is [TBD] whether the DeviceID of the Import-Recipient Device appears within the <rights> element as the base64 encoded SHA-1 hash over the concatenation of the ROID and the DeviceID (i.e. the SHA-1 hash of the DER-encoded subjectPublicKeyInfo value in its certificate) of the Import-Recipient Device. Domain-size- constrained ROs SHALL NOT permit Moves of Partial Rights. Move operations corresponding to domain-size- constrained ROs SHALL be allowed only between Devices that are registered with the DEA corresponding to the LRM. The Devices MUST be paired (with each identified as a User Domain Device within the pairing) in order for the Move to occur.

The Import-Recipient Device installs the Rights it receives directly from the LRM. The Rights are usable as soon as they are installed.

The first time that the Import-Recipient Device performs a Move of the Imported-RO as a Source Device, it indicates this to the Recipient Device. If the Source Device has indicated this is the initial Move of the Imported-RO, then the Recipient Device retains this fact. As part of each Move operation corresponding to a domain-size- constrained RO, the Source Device signs [Source Device ID, Date-Time, Recipient Device ID, ROID]. The Recipient Device retains the signature provided by the Source Device, the Date-Time provided by the Source Device, and the Source Device ID (as extracted by the Recipient Device from the Pairing that the Source Device and Recipient Device ID use to Move the Rights).

The Recipient Device installs the Rights in the disabled state. In order to enable the Rights, the Recipient Device MUST get an authorization from the DEA corresponding to the LRM. This authorization MAY be requested immediately upon installation of the Rights or at any subsequent time. Authorizations MAY be requested individually or in bulk for distinct ROs. The presence of the Source Device(s) is not required at the time of authorization because of the use of Source Device- generated digital signatures, as indicated above. The Recipient Device transmits as part of the authorization request the Source Device ID, Date-Time as was provided by the Source-Device, and the Source Device signature. The Recipient Device also transmits its own DeviceID, and either the ROID, or the <rights> element and <signature> element if the Source Device had indicated this was the initial Move of the Imported-RO. The authorization request is integrity protected by either keyed hash or digital signature [TBD]. The authorization response is integrity protected by either keyed hash or digital signature [TBD]. The DEA MUST determine that both the Source Device and the Recipient Device had completed registration with the DEA prior to the Date-Time that was provided by the Source Device.

If there is no prior record on the DEA of the ROID, then the DEA expects the authorization request to include the <rights> element and <signature> element, and the DEA checks the validity of the <signature> element against the <rights> element and verifies that the LRM is legitimately associated with the DEA per DA- signed data. In this case the Source Device ID in the request MUST equal the Import-Recipient Device ID within the <rights> element in order for the request to be successful. If the Import-Recipient Device ID appears within the <rights> element as the base64 encoded SHA-1 hash over the concatenation of the ROID and the Import-Recipient DeviceID, then the Source Device ID in the request MUST be likewise hashed in order to do the comparison. If there is no prior record of the ROID on the DEA, as a condition of transmitting authorization the DEA verifies the Source Device signature, checks that the requesting Device ID matches the Recipient Device ID in the Source Device- signed data, and that the Date-Time in the Source Device- signed data is earlier than the DEA’s current Date-Time. Upon successful verification/checking the DEA records the ROID, the value of m, the requesting Device ID and the Date-Time at which the DEA transmits the response that authorizes the Recipient Device to enable the Rights.

For each domain-size- constrained RO that the DEA is already aware of, it tracks the Device ID of the Device that has made the most recent successful request, as well as the Date-Time at which the DEA transmitted the response that authorized the requesting Device to enable the Rights. If the DEA already has a record of the RO, as a condition of transmitting authorization the DEA verifies the Source Device signature, checks that the Source Device ID matches the DEA record of the ID of the last requesting Device for the RO, checks that the requesting Device ID matches the Recipient Device ID in the Source Device signed data, and that the Date-Time in the Source Device- signed data is later than the Date-Time stored by the DEA for the ROID but earlier than the DEA’s current Date-Time. Upon successful completion of verification/checks the DEA updates its records for the RO with the current Date-Time and the Recipient Device ID as ID of last requesting Device.

If the value of m as indicated within the Imported-RO is less than the maximum allowable size of the User Domain per Domain Policy, then the DEA tracks the DeviceIDs of those Devices that have utilized the Imported-RO (including the Import-Recipient Device). The DEA SHALL include this list of DeviceIDs (except for the requesting Device ID) within its authorization response to the requesting Device if the length of the list including the requesting Device ID equals m, and SHALL NOT include the list otherwise. If the length of the list excluding the requesting Device ID equals m, then the authorization response indicates an error condition (in which case the requesting Device MUST NOT enable the Rights). In this case the DEA SHALL NOT modify its list of Device IDs for the RO by adding the requesting Device ID to the list, since the previously stored list already contains the maximal allowed number, m, of Device IDs for the RO and the requesting Device ID is not on this list.
If the Rights are enabled on the requesting Device based on the authorization response, then the Device MAY Move the Rights to any Device on the list included in the authorization response, or to any User Domain Device (other than itself) if the list was not included in the authorization response.
8.4

8.4.1

8.4.2

8.4.3

8.4.4

8.4.5

8.4.6 Sharing Rights with Guest DRM Agents under Pairing-Key management

8.4.7 DEA-managed sharing of RI-originated Rights Objects

DEA-managed sharing of RI-originated Rights Objects SHALL apply to only those Rights Objects that include a DEA-management constraint on Rights transfer permissions. Such a DEA constraint MAY apply to Rights transfers between User Domain Devices. Such a DEA constraint MAY apply to Rights transfers between a User Domain Device and a Guest Device.

Each Rights transfer SHALL occur over an A2A SAC. No use is made during such Rights transfers of the PairingSecrets that are distributed to Devices via Pairings. However, as a condition of the Rights transfer each Device MUST independently verify that there is a currently valid Pairing of the two Devices. The establishment of the A2A SAC that is used for the Rights transfer MUST be based on the two Device certificates that are identified by the Pairing. The designation of each of the two Devices within the Pairing as either User Domain Device or Guest Device MUST be consistent with the type of Rights transfer that is attempted.
8.5 Key Transport Mechanisms

8.5.1 Distributing MDK and KMAC under a Device Public Key

This section applies when provisioning a DRM Agent with a Master Domain Key, MDK, for a User Domain.

MDK is the symmetric key-wrapping key used when protecting KREK and KMAC in a Rights Object issued to a User Domain with Shared-Key management. MDK is a 128-bit long AES key generated randomly by the sender and shall be unique for each User Domain. KMAC is used for key confirmation of the message carrying MDK.

In this case, exactly the same procedure as in [OMA DRM 2.1] section 7.2.2 for distribution of the Domain Key KD shall be used, the only difference being the replacement of KD with MDK.

8.5.2 Distributing KMAC and KREK under a Diversified Domain Key (DDK)

This section applies when protecting a Rights Object for a User Domain with Shared-Key management.

The key-wrapping scheme AES-WRAP SHALL be used. KEK in AES-WRAP SHALL be set to DDK and K to the concatenation of KMAC and KREK, i.e.:

C = AES-WRAP(DDK, KMAC | KREK)

After receiving C, the DRM Agent decrypts C using DDK:
KMAC | KREK = AES-UNWRAP(DDK, C)

The following URI shall be used to identify this key transport scheme in <xenc:EncryptionMethod> elements:

http://www.w3.org/2001/04/xmlenc#kw-aes128
The DRM Agent can derive the DDK used by a certain source entity (RI or LRM) from the MDK by using the first 128 bits of the MAC value over the MDK using the Public Key of the source entity as the MAC-key, i.e:

DDK = first 128 bits of HMAC-SHA1(PubKeySource, MDK)

9. User Domain related rights

OMA DRM 2.1 allows Protected Rights Objects to be embedded into a (P)DCF and exchanged freely between DRM Agents, using any mechanism or protocol. This enabler builds on this functionality and adds mechanisms that provide more fine-grained control over the exchange of content in relation to a User Domain. Rights Issuers are enabled to limit the number of copies that are usable in the User Domain and the system will enforce that the limited number of usable copies are securely moved between devices in the User Domain.

The free exchange of Protected Rights Objects as enabled by OMA DRM 2.1 is also possible in SCE. However, not all ProtectedRO’s that are bound to a User Domain can be used simultaneously on all devices in the User Domain. Therefore Rights Issuers will explicitly express content exchange related rights in the Rights Object. This section specifies the syntax and semantics of content exchange related elements of the REL for Rights Objects that are bound to a User Domain. The mechanisms that must be employed to enforce these rights are specified in section xxx.

As in OMA DRM 2.1, DRM Agents will not control the exchange of the ProtectedRO itself. Instead, for those cases where more fine-grained control over the exchange of the content must be enforced by the DRM Agent, the DRM Agents will control and secure the exchange of the Access and State Information (ASI). From the rights expression in the ProtectedRO (see section 9.2.1) the DRM Agent will determine that in addition to the ProtectedRO itself, Access and State Information is required to grant any of the permissions in the ProtectedRO. The ASI will be transferred securely, using the mechanisms in as specified in section xxx.

A Rights Object is called a “Usable Rights Object for a DRM Agent” if the DRM Agent is cryptographically able to access the CEK, as embedded in the Rights Object and has received the ASI needed for this Rights Object as specified by the REL.

9.1 Permissions model

9.1.1 Element <move>

The <move> element grants permission to transfer the Access and State Information associated with a ProtectedRO to another DRM Agent, in such a way that the RO becomes Usable by the recipient DRM Agent and is no longer Usable by the source DRM Agent.

A <count> element contained in a <constraint> child element to <move> is used to specify the number of times the <move> permission may be granted.

A <domain> element contained in a <constraint> child element to <move> is used to specify that the DRM Agent is only permitted to make a Usable Rights Object available to other DRM Agents that are members of the same User Domain.

Note that a single Rights Object may contain multiple <move> and <copy> elements that are constrained in different ways.

Note that the <move> element relates to the Rights Objects and associated State Information as a whole. A DRM Agent may be allowed to “split-up” the State Information associated with a Rights Objects into multiple parts and transfer only part of the remaining rights to another device. However since this results in two Usable Rights Objects, this is considered a copy.

9.1.2 Element <copy>

The <copy> element grants permission to transfer the Access and State Information associated with a ProtectedRO to another DRM Agent, in such a way that the RO becomes Usable by the recipient DRMAgent and is still Usable by the source DRM Agent.

A <count> element contained in a <constraint> child element to <copy> is used to specify the number of times the <copy> permission may be granted.

A <domain> element contained in a <constraint> child element to <copy> is used to specify that the DRM Agent is only permitted to make a Usable Rights Object available to other DRM Agents that are members of the same User Domain.

Note that a single Rights Object may contain multiple <move> and <copy> elements that are constrained in different ways.

9.1.2.1 Attribute “mode”

When the mode attribute of the <copy> permission is equal to “statelocal”, each DRM Agent to which the Rights Object is transferred, may create and maintain its own local State Information, starting from the values as specified in the various constraints in the REL. (Similar to OMA DRM 2.1) In this case the DRM Agent will maintain an entry in the appropriate replay cache, as specified by in [DRM DRM].
When the mode attribute of the <copy> permission is equal to “stateglobal”, the DRM Agent MUST , as part of the copy operation, transfer part of the available Access and State Information associated with the constraints for all permissions in the Rights Object and MUST make sure that the accumulated state value associated with Usable Rights Objects stays constant during transfer. Please note that if a DRM Agents transfers none of its available state value during the process of copying, then this does not result in a Usable Rights Object on the recipient side – so no copy is made. And if the DRM Agents transfers all its available statevalue during the process of copying, then no Usable Rights Object remains on the sender side – so effectively the Rights Objects was moved.

The device that hosts the sending or receiving DRM Agent may interact with the user and decide how the available State Information is to be divided between the sending and receiving DRM Agent.

9.2 Constraint model

9.2.1 Element <copy_control>

The <copy_control> element indicates that the Rights Issuer has imposed restrictions on the exchange of the associated rights. Therefore the permission MUST NOT be granted if the DRM Agent has not received any Access and State Information associated with the Rights Object from either another DRM Agent or a Rights Issuer. Typically the <copy_control> element is used inside a top-level constraint.

For non-SCE DRM Agents (e.g. OMA DRM 2.0 Agents), the <copy_control> constraint is unknown, which means that these DRM Agents will not grant any permission with this constraint. The constraint can therefore also be used to indicate to non-SCE DRM Agents to disregard the Rights Object.

9.2.2 Element <domain>

The <domain> element specifies that the permission may only be granted in relation to the domain to which the Rights Object is bound. The exact semantics are specified with the permissions for which this constraint is used.

9.3 Examples

A User Domain Rights Object that allows the same usage as a OMA DRM 2.1 domainRO would, has a <copy> permission, with mode set to “statelocal” and a <domain> constraint. If a Rights Issuer would like to restrict the total number of usable copies of a piece of content in a domain, then he may add a <count> constrained to the <copy> permission and set its mode to “stateglobal”. In this case the RI should also embed a top-level <copy_control> constraint, to prevent existing OMA DRM implementation to use this Rights Object.

If a Rights Issuer would like to grant access to a piece of content an any number of domain devices simultaneously but wants to enforce an overall count on the number of times the <play> permission is granted, then he may create a User Domain Rights Object with a <count> constrained <play> permission, combined with a <domain> constrained <copy> permission, with mode set to “stateglobal”. This enables the devices in the domain to distribute the individual play permissions among them upon user demand.

If a Rights Isuer wants to enforce the usage model of a DVD, then he may issue a non-domain Rights Object with an unconstrained <move> permission. A User Domain Rights Object that enforces the intended usage model of a DVD (e.g. household use), has a <move> permission with a <domain> constraint. To prevent existing OMA DRM implementations to use this Rights Object, The Rights Issuer will embed a top-level <copy_control> constraint. If the Rights Issuer would like to enable restricted reselling or trading of the content, then he may add a second <move> permission with a <count> constraint but without the <domain> constraint.

Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

	
	
	

	
	
	

A.2 Draft/Candidate Version 0.4 History

	Document Identifier
	Date
	Sections
	Description

	OMA-TS-SCE_DOM-V0_1-20070620-D
	20 Jun 2007
	
	Initial version per 2007-0284

	OMA-TS-SCE_DOM-V0_2-20070924-D
	24 Sep 2007
	5.2.3
7
9
All
	Implemented CR 2007-398R01

Implemented CR 2007-401

Implemented CR 2007-300R03

Update of all internal cross-references

	OMA-TS-SCE_DOM-V0_3-20071025-D
	25 Oct 2007
	7.

1.

6.2.4.
	Implemented CR 2007-0488R03

Implemented CR 2007-0449R01

Implemented CR 2007-0488R01

	OMA-TS-SCE_DOM-V0_4-20071109-D
	9 Nov 2007
	8.2
	Implemented CR 2007-0485

	OMA-TS-SCE_DOM-V0_5-20080214-D
	14 Feb 2008
	
	Implemented:

2007-0533R03
2007-0537
2007-0538
2008-0021R02
2008-0022R03

	OMA-TS-SCE_DOM-V0_6-20080314-D
	14 Mar 2008
	
	Implemented:

2008-0016
2008-0029R01
2008-0030R05
2008-0038R01
2008-0050R02

2008-0051R02

2008-0052R01

2008-0073R01

2008-0089R01

	
	
	
	

Appendix B. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [SCRRULES].

The following is a model of a set of SCR tables. DELETE THIS COMMENT

B.1 SCR for XYZ Client

	Item
	Function
	Reference
	Status
	Requirement

	XYZ-C-001
	Something mandatory
	Section x.y
	M
	(XYZ-C-001 OR XYZ-C-003) AND
 XYZ-C-002

	XYZ-C-002
	Something optional
	Section x.y
	O
	

	XYZ-C-003
	Dependencies on ZYX
	Section x.y
	M
	ZYX:MCF

	XYZ-C-004
	Dependencies on ZYX
	Section x.y
	O
	ZYX:OCF

B.2 SCR for XYZ Server

	Item
	Function
	Reference
	Status
	Requirement

	XYZ-S-001
	Something mandatory
	Section x.y
	M
	XYZ-S-001 OR XYZ-S-002 OR XYZ-S-003

	XYZ-S-002
	Something optional
	Section x.y
	O
	

	XYZ-S-003
	Dependencies on ZYX
	Section x.y
	M
	ZYX:MSF

	XYZ-S-004
	Dependencies on ZYX
	Section x.y
	O
	ZYX:OSF

Appendix C. <Additional Information>

�This text was only moved...

�Text was only moved...

(2006 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20060925-I]
(2006 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20060925-I]

_1262778047.vsd
Device

DA/DEA

OCSP Responder

1

2

3

a

b

4

Device-DA/DEARegistrationResponse

Device-DA/DEAHelloResponse

Device-DA/DEARegistrationRequest

OCSP Request

OCSP Response

Device-DA/DEAHelloRequest

_1265694616.vsd
DA/DEA

RI

1

2

3

4

DA/DEA-RI RegistrationResponse

DA/DEA-RI HelloResponse

DA/DEA-RI RegistrationRequest

DA/DEA-RI HelloRequest

5

DA/DEA-RI Registration Trigger

_1253795025.vsd
�

�

DRM2.x Device

RI

DA/DEA

JoinDomainRequest

ProxyJoinUserDomainRequest

ProxyJoinUserDomainResponse

JoinDomainResponse

_1253797194.vsd
�

�

DRM2.x Device

RI

DA/DEA

LeaveDomainRequest

ProxyLeaveUserDomainRequest

ProxyLeaveUserDomainResponse

LeaveDomainResponse

_1253626959.vsd
�

�

DRM2.x Device

RI

DA/DEA

RDP Trigger {ProxyJoinUserDomain}

ROAP Trigger{joinDomain}

JoinDomainRequest

ProxyJoinUserDomainRequest

JoinDomainResponse

ProxyJoinUserDomainResponse

_1253627399.vsd
�

�

DRM2.x Device

RI

DA/DEA

RDP Trigger {ProxyLeaveUserDomain}

ROAP Trigger{leaveDomain}

LeaveDomainRequest

LeaveDomainResponse

ProxyLeaveUserDomainRequest

ProxyLeaveUserDomainResponse

