[image: image1.jpg]OMA-DS-2005-0059-always-on-usecases
Submitted to DS
07 Apr 2005
OMA-DS-2005-0059-always-on-usecases
Submitted to DS
07 Apr 2005

Input Contribution

	Title:
	Always on Use Cases; Input contribution for OMA DS1.3
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	<Data Synchronization>

	Source:
	Nina Karhuluoma, Nokia

Email: nina.Karhuluoma@nokia.com
Tel. +358 40 801 9050

Karen Momenee, IBM

Email: momenee@us.ibm.com

	Attachments:
	<list of attachments> or n/a
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	
	<att x>
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	
	<att y>
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	
	<att z>
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	Replaces:
	<previous revision DocIdent> or n/a

1 Reason for Contribution

Enhancing always-on functionality is one the key tasks in OMA DS1.3 specification work. This input contribution provides use cases for the always on functionality.
2 Summary of Contribution

This document presents five different case types regarding the always-on: normal cases that are related to the basic always-on functionality, administrator cases that cover changes in parameters, connectivity cases describe for example roaming and bearer switching features, error cases give an overview about the required functionality if connection is lost, user cancels the synchronization etc., and security use cases cover the potential security threats to always-on functionality.

3 Detailed Proposal

37.
OMA DS Always-On Use Cases

48.
Normal Cases

48.1
Full Synchronization

48.2
Incremental Synchronization

58.3
Single update from Client

58.3.1
Multiple updates from Client

68.4
Single update from Server

68.4.1
Multiple updates from Server

78.5
Turns on Always On functionality

78.6
Turns off Always On functionality

88.7
User changes the filter settings while a logical sync session is active

88.8
Conflict resolution and duplicate detection

88.9
User performs a manual sync while Always On is activated

98.10
Application functionality behaves differently if a particular application/service is running

109.
Administrator Cases

109.1
Administrator makes changes to the synchronization settings while a logical sync session is active.

109.1.1
Connectvity parameters change

109.1.2
Settings change that force a synchronization

119.1.3
Settings change that don’t force a synchronization

119.2
Administrator changes the filter settings while a logical sync session is active.

1310.
Connectivity Cases

1310.1
Roaming

1310.2
Bearer Switching (should not break a logical session)

1310.3
Local Connectivity

1411.
Error Cases

1411.1
Connectivity Loss

1411.2
Anchor Mismatch

1511.3
User cancels synchronization

1511.4
PIM/Email problems

1611.5
Authentication issues

1611.5.1
Invalid credentials

1611.5.2
Credentials changed

1711.6
Server reboot

1711.7
Client reboot

1812.
Security Cases

1812.1
Denial Of Service Attacks

1812.2
Spoofing Attacks

1812.3
Replay Attacks

1812.4
“Fat” Packets

1913.
Derived Requirements

7. OMA DS Always-On Use Cases

This document describes the use cases regarding the Always-On functionality required in OMA DS.

1. Always-On is a new feature being proposed for the OMA DS specification. It will allow the data stored on DS clients and servers to always be synchronized. Whenever changes are detected on one side, without user intervention, the system will initiate a synchronization session. This feature allows the user’s data to always be synchronized, without the user noticing how, and when all of the operations happened.

greatly enhancing the user experience.

8. Normal Cases

8.1 Full Synchronization

This use case is similar to the standard full synchronization, except that the logical session is maintained after the synchronization completes.

Preconditions: Client and server configured for synchronization with each other.

Steps:

1. Transport connection established between the client and the server.

2. Sync initialization takes place, the client and the server exchange full device information with each other; both devices indicate the synchronization types for all content to be synchronized. The logical synchronization session is now established between the client and the server, and both the client and the server are responsible of maintaining the session until the session is finalized.

3. In synchronization phase all data from the client is first sent to the server, after which the server compares the items received from the device to the items the server has, and sends the necessary items to the device. Client sends necessary status and map commands to the server.

4. Transport is disconnected.

5. Both the server and the client are in sync, and the logical session is maintained.

8.2 Incremental Synchronization

This use case is similar to the standard incremental synchronization, except that the logical session is maintained after the synchronization completes.

Preconditions: Client and server configured for synchronization with each other and have successfully performed a full synchronization.

Steps:

1. Transport connection established between the client and the server.

2. Sync initialization takes place. The client and server negotiate an incremental synchronization. The logical synchronization session is now established between the client and the server, and both the client and the server are responsible of maintaining the session until the session is finalized.

3. In synchronization phase the client first sends its updates to the server, after which the server sends its updates to the device. Client sends necessary status and map commands to the server.

4. Transport is disconnected.

5. Both the server and the client are in sync, and the logical session is maintained.

8.3 Single update from Client

The use case occurs when a single item is added, edited, or deleted on the client device. It is similar to a standard client initiated sync except that

a) we don’t need to send the full initialization and

b) the logical session is maintained after the data is transferred.

Preconditions: The client and server have a logical session open between them.

Steps:

1. The user edits an item on the device.

2. The device detects that there are modifications in the user’s datastore.

3. The client initiates an abbreviated synchronization session. The client sends the updates to the server, and the server responds with the appropriate return codes.

4. Transport is disconnected.

5. Both the server and the client are in sync, and the logical session is maintained.

8.3.1 Multiple updates from Client

This is very similar to the use case above, except that there are multiple items on the client that must be synchronized. This has been treated as a separate use case because it might be desirable to handle multiple changes separately, such as group them.

Preconditions: The client and server have a logical session open between them.

Steps:

1. The user edits multiple items on the device.

2. The device detects that there are modifications in the user’s datastore. At this point, the client can optionally wait and see if there are any other modifications before initiating a synchronization session. This is the only difference between this and the standard flow.

3. The client initiates an abbreviated synchronization session. The client sends the updates to the server, and the server responds with the appropriate return codes.

4. Transport is disconnected.

5. Both the server and the client are in sync, and the logical session is maintained.

8.4 Single update from Server

The use case occurs when a single item is added, edited, or deleted on the server. It is similar to a standard server initiated sync except that

a) the trigger message will be in a new format,

b) we don’t need to send the full initialization, and

c) the logical session is maintained after the data is transferred.

Preconditions: The client and server have a logical session open between them.

Steps:

1. The user edits an item on the server.

2. The server detects that there are modifications in the user’s datastore.

3. The server initiates an abbreviated synchronization session. It sends the updates to the client, and the client responds with the appropriate return codes.

4. Transport is disconnected.

5. Both the server and the client are in sync, and the logical session is maintained.

8.4.1 Multiple updates from Server

This is very similar to the use case above, except that there are multiple items on the server that must be synchronized. This has been treated as a separate use case because it might be desirable to handle multiple changes separately, such as group them.

Preconditions: The client and server have a logical session open between them.

Steps:

1. The user edits an item on the server.

2. The server detects that there are modifications in the user’s datastore. At this point, the server can optionally wait and see if there are any other modifications before initiating a synchronization session. This is the only difference between this and the standard flow.

3. The server initiates an abbreviated synchronization session. It sends the updates to the client, and the client responds with the appropriate return codes.

4. Transport is disconnected.

5. Both the server and the client are in sync, and the logical session is maintained.

8.5 Turns on Always On functionality

This case covers the situation when the user activates the Always On feature. In this situation, the client should initiate an incremental sync to make sure that the data is correctly synchronized. At the end of the synchronization, the logical session remains open.

Preconditions: Client and server configured for synchronization with each other.

Steps:

1. The user activates the Always-On feature of the DS client.

2. Transport connection established between the client and the server.

3. Sync initialization takes place. The client initiates an incremental synchronization session with the server. The logical synchronization session is now established between the client and the server, and both the client and the server are responsible of maintaining the session until the session is finalized.

4. In synchronization phase the client first sends its updates to the server, after which the server sends its updates to the device. Client sends necessary status and map commands to the server.

5. Transport is disconnected.

6. Both the server and the client are in sync, and the logical session is maintained.

8.6 Turns off Always On functionality

This case covers the situation when the user deactivates the Always On feature. The only action is for the client to close the logical session.

Preconditions: Client and server are configured for synchronization with each other and have an active Always-On session.

Steps:

1. The user deactivates the Always-On feature of the DS client.

2. Client informs the server about the session’s closing.

3. The client shuts down the logical session.

4. Transport is disconnected.

8.7 User changes the filter settings while a logical sync session is active

This use case covers the situation where the user changes either the server or client side filter settings. This might cause a synchronization event because the filter change could add or delete items from the filter list.

Preconditions: Client and server are configured for synchronization with each other and have an active Always-On session.

Steps:

1. The user changes the filter settings on the server.

2. The server determines if the new filter settings will generate any updates that need to be sent to the client. If so, then the server initiates an abbreviated synchronization session. It sends the updates to the client, and the client responds with the appropriate return codes.

3. Transport is disconnected.

4. Both the server and the client are in sync, and the logical session is maintained.

8.8 Conflict resolution and duplicate detection

Conflict resolution and duplicate detection will operate in exactly the same manner as a standard synchronization. One benefit of the Always On solution is that conflicts should happen must less often.

8.9 User performs a manual sync while Always On is activated

In this use case, a user performs a manual sync while Always On is activated. This should work like a normal sync except that

a) we don’t need to send the full initialization and

b) the logical session is maintained after the data is transferred.

Preconditions: Client and server are configured for synchronization with each other and have an active Always-On session.

Steps:

1. The user initiates a manual synchronization session.

2. The client initiates an abbreviated synchronization session. The client sends the updates to the server, and the server responds with the appropriate return codes.

3. Transport is disconnected.

4. Both the server and the client are in sync, and the logical session is maintained

8.10 Application functionality behaves differently if a particular application/service is running

Always on functionality in case of other applications such Instant Messaging (IM) or presence.

More like a req than an use case????

9. Administrator Cases

9.1 Administrator makes changes to the synchronization settings while a logical sync session is active.

In this use case, the administrator has made changes to settings that will affect future user’s synchronization sessions. The system’s response should depend on the settings changes, and could range from nothing, to restarting the logical synchronization setting. In fact, if we don’t want to force a synchronization, it might be useful to have a way to simply open a session.

9.1.1 Connectvity parameters change

In this example, the administrator has changed the users connectivity settings. The client will have to reconnect to the server once the new settings take effect.

Steps:

1. The administrator changes the synchronization settings.

2. The settings changes are propagated to the client. This can happen either automatically (i.e., with OMA DM) or manually. For the purposes of this use case, however, it does not matter how the change occurs.

3. The logical session and transport are broken.

4. The client re-establishes the transport connection between the client and the server.

5. Sync initialization takes place. The client initiates an incremental synchronization session with the server. The logical synchronization session is now established between the client and the server, and both the client and the server are responsible of maintaining the session until the session is finalized.

6. In synchronization phase the client first sends its updates to the server, after which the server sends its updates to the device. Client sends necessary status and map commands to the server.

7. Transport is disconnected.

8. Both the server and the client are in sync, and the logical session is maintained.

9.1.2 Settings change that force a synchronization

Steps:

1. The administrator changes the synchronization settings.

2. The settings changes are propagated to the client. This can happen either automatically (i.e., with OMA DM) or manually. For the purposes of this use case, however, it does not matter how the change occurs.

3. Both the client and server evaluate the state of the data stores. One side or the other detects that a synchronization needs to take place.

4. Sync initialization takes place. The client initiates an incremental synchronization session with the server. The logical synchronization session is now established between the client and the server, and both the client and the server are responsible of maintaining the session until the session is finalized.

5. In synchronization phase the client first sends its updates to the server, after which the server sends its updates to the device. Client sends necessary status and map commands to the server.

6. Transport is disconnected.

7. Both the server and the client are in sync, and the logical session is maintained.

9.1.3 Settings change that don’t force a synchronization

Steps:

1. The administrator changes the synchronization settings.

2. The settings changes are propagated to the client. This can happen either automatically (i.e., with OMA DM) or manually. For the purposes of this use case, however, it does not matter how the change occurs.

3. Both the client and server evaluate the state of the data stores. Neither one requires a synchronization, so nothing extra happens. Both the server and the client are in sync, and the logical session is maintained.

9.2 Administrator changes the filter settings while a logical sync session is active.

This use case is similar to the use case where the user changes filter settings, except the changes are most likely to occur on the server. This might cause a synchronization event because the filter change could add or delete items from the filter list.

Preconditions: Client and server are configured for synchronization with each other and have an active Always-On session.

Steps:

1. The user changes the filter settings on the server.

2. The server determines if the new filter settings will generate any updates that need to be sent to the client. If so, then the server initiates an abbreviated synchronization session. It sends the updates to the client, and the client responds with the appropriate return codes.

3. Transport is disconnected.

4. Both the server and the client are in sync, and the logical session is maintained.

Note that if the server does not generate any updates, it will not initiate a synchronization session.

10. Connectivity Cases

10.1 Roaming

This case covers options to handle roaming. It probably won’t affect anything in the specification itself, but it might force some requirements at the implementation level. For example, we might want to deactivate Always On when the user is roaming to reduce charges.

10.2 Bearer Switching (should not break a logical session)

This is the use case that covers bearer switching. In theory, everything should operate seamlessly, and the user should never notice. We might want to represent this as a requirement, since the real use case will really affect the implementation, not the specification.

10.3 Local Connectivity

This use case covers the situation where the user wants to use local connectivity (i.e., Bluetooth, cradle, etc.) to connect to the server. Again, this should work in a seamless fashion, and will be covered in more detail in the bindings specifications.

11. Error Cases

11.1 Connectivity Loss

In this use case, the user has Always On Synchronization activated but experiences a connectivity loss. When the connectivity is restored, the client and server should both determine if they need to do a sync and initiate one if necessary. Note that we might need to start a new logical session as well as a new physical session. We might want to expand this use case to cover all of the possible combinations.

Preconditions: Client and server are configured for synchronization with each other and have an active Always-On session.

Steps:

1. Connectivity is lost between the client and the server.

2. The client attempts to reconnect to the server but eventually fails. The details of this step are mostly implementation defined, but the important part is that the client eventually recognizes that the connection has been permanently lost.

3. The logical session is destroyed.

4. At some point in the future, the client and server re-establish connectivity.

5. Sync initialization takes place. The client initiates an incremental synchronization session with the server. The logical synchronization session is now established between the client and the server, and both the client and the server are responsible of maintaining the session until the session is finalized.

6. In synchronization phase the client first sends its updates to the server, after which the server sends its updates to the device. Client sends necessary status and map commands to the server.

7. Transport is disconnected.

8. Both the server and the client are in sync, and the logical session is maintained.

11.2 Anchor Mismatch

In this use case, there is an anchor mismatch that occurs during an attempted synchronization. The default response when this happens is to force a full synchronization, but we should explore some different options to prevent the full synchronization.

Preconditions: Client and server are configured for synchronization with each other and have an active Always-On session.

Steps:

1. The device detects that there are modifications in the user’s datastore and it must initiate a synchronization session.

2. Sync initialization takes place. The client initiates an incremental synchronization session with the server, but there is an anchor mismatch.

3. The server responds with a request for a full synchronization.

4. In synchronization phase all data from the client is first sent to the server, after which the server compares the items received from the device to the items the server has, and sends the necessary items to the device. Client sends necessary status and map commands to the server.

5. Transport is disconnected.

6. Both the server and the client are in sync, and the logical session is maintained.

Ideally, there would be some way to prevent a full synchronization, but for now we must follow the specification.

11.3 User cancels synchronization

This use case covers the situation where a user cancels a synchronization while the Always On feature is activated. The interesting question is whether the cancellation breaks logical synchronization session. If not, then the client UI would probably want to provide a separate way to do just that.

Preconditions: Client and server are configured for synchronization with each other and have an active Always-On session.

Steps:

1. The client and server are conducting a synchronization session.

2. The user cancels the session.

3. Transport is disconnected, but the logical session is maintained.

11.4 PIM/Email problems

If there is a problem with a particular PIM/Email item, both the client and server should be able to

a) complete the sync and

b) gracefully handle the error.

Note that the other side will not attempt to synchronize the “broken” item in future synchronization sessions.

Preconditions: Client and server are configured for synchronization with each other and have an active Always-On session.

Steps:

1. The client and server are conducting a synchronization session.

2. There is a problem with the data store on the client.

3. The client returns the appropriate error message to the server.

4. The synchronization session completes normally.

5. Transport is disconnected, but the logical session is maintained.

Note that the use case follows the same flow if the error occurs on the server.

11.5 Authentication issues

This use case broadly covers different authentication problems that might occur. The current standard covers the case if the user’s credentials are invalid. However, we also want to consider the situation where the user’s password changes during a logical session.

11.5.1 Invalid credentials

Preconditions: Client and server are configured for synchronization with each other.

Steps:

1. Transport connection established between the client and the server.

2. Sync initialization takes place. The server fails to authenticate the credentials sent by the client.

3. The server returns the appropriate error code and terminates the logical session.

4. Transport is disconnected.

11.5.2 Credentials changed

Preconditions: Client and server are configured for synchronization with each other. The server has some way of knowing when a user’s credentials have aged.

Steps:

1. Transport connection established between the client and the server.

2. Sync initialization takes place. The server attempts to authenticate the user, but the authentication server indicates that the user’s credentials are no longer valid.

3. The server returns the appropriate error code to the client. It does not terminate the logical session.

4. Transport is disconnected.

5. The user can then update his credentials and initiate another session.

11.6 Server reboot

If the server reboots or crashes, the client should treat the case as a standard connectivity loss scenario. At some point, the connection will fail, and the client will attempt to reconnect. When it does, it should follow the use case for “Sync After Connectivity Loss”.

11.7 Client reboot

If the client reboots, it should attempt to initiate a logical session when it reconnects to the network. When it does, it should follow the use case for “Sync After Connectivity Loss”.

12. Security Cases

12.1 Denial Of Service Attacks

This use case explores the possibility of a Denial Of Service attack.

12.2 Spoofing Attacks

This use case explores the possibility of a Spoof attack.

12.3 Replay Attacks

This use case explores the possibility of a Replay attack.

12.4 “Fat” Packets

If the trigger messages contain user data, we need a mechanism to guarantee packet security and integrity.

13. Derived Requirements

1. The user’s device is up to date without the user noticing how, and when all of the operations happened.

2. Spoofing and replay attacks require two-way authentication to prevent them. The logical session could also be closed once the authentication expires.

3. It should be possible for a user to have multiple simultaneous logical sessions open. It should also be possible to have the same account synchronized with multiple devices simultaneously. (Essentially, this means that each device must have a separate session ID.)

4. If a connection is lost, the synchronization state should be re-established in a minimal amount of time and data transfer, without user interaction.

5. A user should be able to check if the device is up to date without synchronizing the device data to the server.

6. There should be a set of well-defined filter names. The thought is that the client/user can choose these filters from a list. It will also provide a reference list of filters.

7. The client and the server should be able to re-define the filtering rules within the logical session with minimal amount of data transfer. - ?? Can this really be fulfilled?

8. The solution must allow the user to specify multiple server accounts for both PIM and Email.

9. The solution must allow the user to perform all valid actions for that data type (sending mail, receiving headers, editing PIM items, etc.).

10. Client must be able to detect that the IP address of the device has changed. (Might be covered in the bindings documents.)

11. The type of trigger mechanism used to initiate the synchronization session should not affect the flow of the operation. Also, the trigger type should be transparent to the user.
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

These use cases shall be considered to be fulfilled in OMA DS1.3 specifications.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 20)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20040305]

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 20)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20040305]

