OMA-DS-XXXX-TrafficReduction_UseCases
Page 35 V(25)

	[image: image1.jpg]«“+OMa

Open Mobile Alliance

	

	Traffic Reduction Use Cases

	Draft Version 1.1 – 20 Aug 2005

	Open Mobile Alliance

	OMA-DS-XXXX-TrafficReduction_UseCases

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavours to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

71.
Scope (Informative)

82.
References

82.1
Normative References

82.2
Informative References

93.
Terminology and Conventions

93.1
Conventions

93.2
Definitions

93.3
Abbreviations

104.
Introduction (Informative)

135.
Use Cases (Informative)

135.1
Simplified syntax

135.1.1
Short Description

135.1.2
Actors

135.1.3
Pre-conditions

135.1.4
Post-conditions

135.1.5
Normal Flow

135.1.6
Alternative Flow

135.1.7
Operational and Quality of Experience Requirements

145.2
Using compression algorithms

145.2.1
Short Description

145.2.2
Actors

145.2.3
Pre-conditions

145.2.4
Post-conditions

145.2.5
Normal Flow

145.2.6
Alternative Flow

145.2.7
Operational and Quality of Experience Requirements

175.3
Refresh Sync From Client Only Initialization

175.3.1
Short Description

175.3.2
Actors

175.3.3
Pre-conditions

175.3.4
Post-conditions

175.3.5
Normal Flow

185.3.6
Alternative Flow

185.3.7
Operational and Quality of Experience Requirements

185.4
Refresh Sync From Server Only Initialization

185.4.1
Short Description

185.4.2
Actors

185.4.3
Pre-conditions

185.4.4
Post-conditions

195.4.5
Normal Flow

195.4.6
Alternative Flow

195.4.7
Operational and Quality of Experience Requirements

195.5
One-Way Sync From Client Only Initialization

195.5.1
Short Description

195.5.2
Actors

205.5.3
Pre-conditions

205.5.4
Post-conditions

205.5.5
Normal Flow

205.5.6
Alternative Flow

205.5.7
Other Alternative Flow

205.5.8
Operational and Quality of Experience Requirements

205.6
One-Way Sync From Server Only Initialization

205.6.1
Short Description

215.6.2
Actors

215.6.3
Pre-conditions

215.6.4
Post-conditions

215.6.5
Normal Flow

215.6.6
Alternative Flow

215.6.7
Other Alternative Flow

225.6.8
Operational and Quality of Experience Requirements

225.7
One-Way Slow Sync From Client Only

225.7.1
Short Description

225.7.2
Actors

225.7.3
Pre-conditions

235.7.4
Post-conditions

235.7.5
Normal Flow

235.7.6
Alternative Flow

235.7.7
Operational and Quality of Experience Requirements

235.8
One-Way Slow Sync From Server Only

235.8.1
Short Description

235.8.2
Actors

245.8.3
Pre-conditions

245.8.4
Post-conditions

245.8.5
Normal Flow

245.8.6
Alternative Flow

245.8.7
Operational and Quality of Experience Requirements

255.9
Puting precise maximum size for MBCS storage PIMs

255.9.1
Short Description

255.9.2
Actors

255.9.3
Actor Specific Issues

255.9.4
Actor Specific Benefits

255.9.5
Pre-conditions

255.9.6
Post-conditions

255.9.7
Normal Flow

255.9.8
Alternative Flow

255.9.9
Operational and Quality of Experience Requirements

265.10
Alerting free server memory for Quota limited services

265.10.1
Short Description

265.10.2
Actors

265.10.3
Actor Specific Issues

265.10.4
Actor Specific Benefits

265.10.5
Pre-conditions

265.10.6
Post-conditions

265.10.7
Normal Flow

275.10.8
Alternative Flow

275.10.9
Operational and Quality of Experience Requirements

275.11
Alerting more precise free client memory for storage limited devices per message

275.11.1
Short Description

275.11.2
Actors

275.11.3
Actor Specific Issues

275.11.4
Actor Specific Benefits

285.11.5
Pre-conditions

285.11.6
Post-conditions

285.11.7
Normal Flow

285.11.8
Alternative Flow

285.11.9
Operational and Quality of Experience Requirements

285.12
Combining packages in Two-Way Sync in case of no change on client side

285.12.1
Short Description

285.12.2
Actors

295.12.3
Actor Specific Issues

295.12.4
Actor Specific Benefits

295.12.5
Pre-conditions

295.12.6
Post-conditions

295.12.7
Normal Flow

295.12.8
Alternative Flow

295.12.9
Operational and Quality of Experience Requirements

305.13
Simplifying status for efficient actions by thin client implementation

305.13.1
Short Description

305.13.2
Actors

305.13.3
Actor Specific Issues

305.13.4
Actor Specific Benefits

305.13.5
Pre-conditions

305.13.6
Post-conditions

305.13.7
Normal Flow

305.13.8
Alternative Flow

315.13.9
Operational and Quality of Experience Requirements

315.14
Putting and Getting partial device information

315.14.1
Short Description

315.14.2
Actors

315.14.3
Actor Specific Issues

315.14.4
Actor Specific Benefits

315.14.5
Pre-conditions

325.14.6
Post-conditions

325.14.7
Normal Flow

325.14.8
Alternative Flow

325.14.9
Operational and Quality of Experience Requirements

336.
Requirements (Normative)

336.1
High-Level Functional Requirements

336.1.1
Security

336.1.2
Charging

336.1.3
Administration and Configuration

346.1.4
Usability

346.1.5
Interoperability

346.1.6
Privacy

346.2
Overall System Requirements

35Appendix A.
Change History (Informative)

35A.1
Draft/Candidate Version 1.0 History

Figures

Error! Bookmark not defined.Figure 1: Example Figure

Tables

20Table 1: High-Level Functional Requirements

21Table 2: High-Level Functional Requirements – Security Items

21Table 3: High-Level Functional Requirements – Charging Items

21Table 4: High-Level Functional Requirements – Administration and Configuration Items

22Table 5: High-Level Functional Requirements – Usability Items

22Table 6: High-Level Functional Requirements – Interoperability Items

22Table 7: High-Level Functional Requirements – Privacy Items

23Table 8: High-Level System Requirements

1. Scope
(Informative)

2. References

2.1 Normative References

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[SYNCPRO]
	OMA Data Sync Protocol Specification v.1.2, http://www.openmobilealliance.org/ftp/PD/OMA-SyncML-DataSyncProtocol-V1_2-20040601-C.zip

	[DEVINF]
	SyncML Device Informationhttp://www.openmobilealliance.org/release_program/docs/DS/V1_2_C/OMA-SyncML-DevInf-V1_2-20040601-C.pdf

	
	<< Add/Remove reference rows as needed! >>

2.2 Informative References

	
	

	
	<< Add/Remove reference rows as needed! >>

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

	
	

3.3 Abbreviations

	OMA
	Open Mobile Alliance

	OMA DS
	OMA Data Synchronization

4. Introduction
(Informative)

Introduction for simplified syntax use cases:
OMA DS syntax could be simplified and disambiguated to reconcile readability and compactness. Data traffic would then be reduced and OMA DS package parsing/generation would be simplified.
Introduction for package compression use cases:

OMA DS packages are in plain text (XML) or in WBXML (carried data are in clear). Using compression would reduce the size of the exchanged packages thus reducing traffic load.

Introduction for One way slow sync use cases:
OMA Data Synchronization Protocol defines the requirements for launching a Slow Sync. But, even when these requirements are good in the two-way sync context, they might not satisfy the end-user in other (less common) context such as refresh or one-way sync. For example, if specifications are strictly applied, a refresh sync can't be performed for the very first sync, since in that case only a Slow Sync MUST be engaged. The use cases presented in this document try to underline the situations when an automatic Slow Sync launch can be avoided (because unnecessary and maybe unwanted by the end-user).

More over, if the user wishes to perform a one-way sync, and unfortunately the one-way can't be properly proceeded (since anchors mismatch, or device has lost its change logs), then there's currently two possibilities :

· either a slow sync is performed instead, but unexpected modifications may be done on one device

· either a refresh sync is performed instead, but some data may be lost on one device

Both last use cases presented in this document try to show the need for a new sync type, that would better respond to the user's expectations, in this particular one-way sync context.

Introduction for precise max size of property values use cases:

OMA DS allow client and server exchange capability by use of DevInf. Especially for max size of record property values can be exchanged with MaxSize. But this MaxSize is assumed that the data are encoded in UTF-8 (5.3.22 [DEVINF]). Most of PIM on client side stores in not UTF-8 but MBCS (such as Shift_JIS in Japanese). Most of characters in two bytes are represented n three bytes in UTF-8, but there are some set of character that are encoded in single byte in MBCS and three bytes in UTF-8 (such as hankaku-katakana in Shift_JIS). As the bottom line, client needs to put MaxSize in three times bigger. This cause client can get three times longer ASCII data without truncation.

The new requirements to the current spec are:
· To allow specify new CharSet element to Property element
Introduction for more precise dynamic memory managment use cases:

OMA DS only allows send free memory in first message of the sync package. (9.1 [SYNCPRO])
To reduce possible errors of device full (420), more precise dynamic memory management are required as follow:

· To send free memory per message by reflecting the record operation during the sync session.
· To allow server send free memory before receiving data.
In server case, free memory must be sent before pkg#3. Thus Alert element to have NumberOfChanges in pkg#2.
Introduction for package combination use cases:

OMA DS session can be separated into six packages. Some of packages can be combined by use of existing spec, such as Sync Without Separate Initialization and Caching Map on client side. Although these specs are already available, they are not commonly used because in most cases sending real data without Initialization Package (pkg#1 and pkg#2) can cause robustness and security issues (6.11.1 [SYNCPRO]) by sending real user data before finishing pkg#2. This section clarifies the use cases without these issues and requirements for sending additional information for server to decide combining packages. The s
The new requirements to the current spec are:
· To send NumberOfChanges in first request message (Allow Alert element to have NumberOfChanges instead of Sync Without Separate Initialization by use of Sync element without real user data)
· To send FreeID and FreeMem in first request message(Allow Alert element to have FreeID and FreeMem instead of Sync Without Separate Initialization by use of Sync element without real user data)
Introduction for simplified status use cases:

OMA DS messages contain bunch of statuses in body part to supply as much information as possibile for both server and client to take a next action. If much simpler status were available, some client implementation on low spec devices with less battery capacity and narrow bandwith network connection could take an action more efficiently. Possible statuses can be categorized into the following cases:
· Server layer error to be terminated or to be retried
· Database layer error for all databases to be terminated or to be retried.
· Success for all commands
· Other statues contains some of errors
Even though checking detailed statuses for all cases are useful, some implementation can ignore them and retried not by keeping the same sync session but retried from the beginning with other possible configuration. For instance, without alerting slow sync type from server, client can start slow sync as a new sync session only with refresh required status code to two way sync request.
The new requirements to the current spec are:
· To add a new SyncStatus element before SyncHdr element for taking an efficient action by thin client implementation. SyncStatus element is simplified version of Status element.
Introduction for partial device information update and query use cases:

OMA DS device information is required to send it within a single message. Although current spec indicate to send partial device information for trial cases, there is no clear description how to update and query partial device information. Without this method, syncing more datasections would require more maximum message size, and more maximum message size could hit the upper bound of network capability and device sending buffer capability. Even when only static information of a single datastore has been changed, application would be required to send all the device information.
The new requirements to the current spec are:
· To define object file and hierarchical description corresponding to device information document
· To allow client to specify the Source element hierarchical level of ./devinf12 for putting partial device information
· To allow client to specify the Target element hierarchical level of ./devinf12 for getting partial device infromation
5. Use Cases
(Informative)

5.1 Simplified syntax
5.1.1 ASK * MERGEFORMAT Short Description

Using a simplified syntax allows to reduce data traffic.
5.1.2 Actors

· Client – OMA DS client.

· Server – OMA DS server.
· User -

5.1.2.1 Actor Specific Issues

None
5.1.2.2 Actor Specific Benefits

· For the user, shorter package size implies reduced connection time thus reduced connection cost and billing.
· For the client/server implementor, a simplified syntax is less ambiguous and leads to simpler parsers/generators implementation.
· For the user, reduced synchronization duration eliminates possible user feeling that synchronization is a slow process.
5.1.3 Pre-conditions

· Both server and client support simplified syntax – described by either DTD or XML Schemas.
5.1.4 Post-conditions

· Sync is finished successfully
· Client and server are in sync

5.1.5 Normal Flow

1. Client initiates sync with a package respecting the modified syntax.
2. Server accepts the sync request.
3. Synchronization continues with packages respecting the simplified syntax.

5.1.6 Alternative Flow

None
5.1.7 Operational and Quality of Experience Requirements

None.
Using compression algorithms
5.1.8 ASK * MERGEFORMAT Short Description

Using compression techniques allows to reduce SyncML package size.
5.1.9 Actors

· Client – OMA DS client
· Server – OMA DS server

· User

5.1.9.1 Actor Specific Issues

· For the client, the compression algorithm implementation must be efficient enough in order that transmission gain compensates compression time cost.
5.1.9.2 Actor Specific Benefits

· For the user, shorter package size implies reduced connection time thus reduced connection cost and billing.

· For the user, reduced synchronization duration eliminates possible user feeling that synchronization is a slow process.
5.1.10 Pre-conditions

· Client and server have declared which compression scheme they support.

· Both server and client must support the same compression/decompression scheme.
5.1.11 Post-conditions

· Sync is finished successfully
· Client and server are in sync

5.1.12 Normal Flow

1. Client initiates a sync requesting to use a specific compression technique(which has to be common to the server and client) for exchanged packages.
2. Client and server continue the sync session exchanging compressed packages (using the chosen compression technique).

5.1.13 Alternative Flow

5.1.14 Operational and Quality of Experience Requirements

5.2 Refresh Sync From Client Only Initialization

5.2.1 ASK * MERGEFORMAT Short Description

The end-user discovers that its on-line address book service offers now the possibility to synchronize the contacts with its phone address book. He decides to subscribe to this new synchronization service and want to use it just to make punctuals backup of its phone address book on the server. The on-line address book contains obsolete contacts that end-user is not interested to keep.

He decides to perform a Refresh Sync from his phone with the on-line address book. Although it’s the very first sync between both devices, the refresh sync is performed. The end-user is satisfied, since he has now a backup of its phone address book and all obsolete contacts have been wiped away.

5.2.2 Actors

· End-user

· Client – OMA DS client implementation initiating the sync

· Server – OMA DS server implementation processing the sync request

5.2.2.1 Actor Specific Issues

· Client is a ‘thin client’, i.e. implemented as simply as possible. Client doesn’t do any complex processing or conflict resolution.

· Server is able to do complex processing and conflict resolution.

5.2.2.2 Actor Specific Benefits

· None

5.2.3 Pre-conditions

· Any of the requirements for launching a slow sync is met :
1. previous sync was not successful or did not end properly (anchors will mismatch)

2. server has lost its mapping table

3. client and server are synchronizing with each other for the very first time

4. …

5.2.4 Post-conditions

· The Refresh Sync From Client Only initiated by the end-user is effectively engaged after the initialisation phase.

5.2.5 Normal Flow

3. End-user launches a Refresh Sync From Client Only synchronization from the client interface.

4. Client initiates a Refresh Sync From Client Only.

5. Server accepts the sync request.

6. Sync is started according to client’s request (i.e. Refresh Sync From Client Only is effectively engaged)

5.2.6 Alternative Flow

· None

5.2.7 Operational and Quality of Experience Requirements

When an end-user asks a client for a Refresh Sync From Client Only, there is no technical reason not to perform a Refresh Sync From Client Only.

 So whatever the preconditions, client and server must initiate a Refresh Sync From Client Only when the user asks for it, and then avoid performing unnecessary slow-sync (and unwanted two-way sync, since slow sync is by definition a two-way sync).

5.3 Refresh Sync From Server Only Initialization

5.3.1 ASK * MERGEFORMAT Short Description

The end-user has borrowed his mobile phone to someone. When he gets his phone back, he realizes that the address book is messy and polluted with unkown contacts. He decides to perform a Refresh Sync From his on-line address book. Although last sync did not end properly, the refresh sync is performed. The end-user is satisfied, since he has recovered is address book and all unknown contacts have been wiped away.

5.3.2 Actors

· End-user

· Client – OMA DS client implementation initiating the sync

· Server – OMA DS server implementation processing the sync request

5.3.2.1 Actor Specific Issues

· Client is a ‘thin client’, i.e. implemented as simply as possible. Client doesn’t do any complex processing or conflict resolution.

· Server is able to do complex processing and conflict resolution.

5.3.2.2 Actor Specific Benefits

· None

5.3.3 Pre-conditions

· Any of the requirements for launching a slow sync is met :
1. previous sync was not successful or did not end properly (anchors will mismatch)

2. server has lost its mapping table

3. client and server are synchronizing with each other for the very first time

4. …

5.3.4 Post-conditions

· The Refresh Sync From Server Only initiated by the end-user is effectively engaged after the initialisation phase.

5.3.5 Normal Flow

7. End-user launches a Refresh Sync From Server Only synchronization from the client interface.

8. Client initiates a Refresh Sync From Server Only.

9. Server accepts the sync request.

10. Sync is started according to client’s request (i.e. Refresh Sync From Server Only is effectively engaged)

5.3.6 Alternative Flow

· None

5.3.7 Operational and Quality of Experience Requirements

When an end-user asks a client for a Refresh Sync From Server Only, there is no technical reason not to perform a Refresh Sync From Server Only.

 So whatever the preconditions, client and server must initiate a Refresh Sync From Server Only when the user asks for it, and then avoid performing unnecessary slow-sync (and unwanted two-way sync, since slow sync is by definition a two-way sync).

5.4 One-Way Sync From Client Only Initialization

5.4.1 ASK * MERGEFORMAT Short Description

The end-user is used to export his phone address book modifications on an on-line address book server. Until now, he never performed two-way synchronization, because the on-line address book contains obsolete contacts that end-user don't want to have in his phone, and might decide to delete later.

Today, he decides to perform a One-way Sync from his phone with the on-line address book. Unfortunately, last sync wasn't successful. During the synchronization, the end-user his informed of the problem and asked to choose between a complete slow sync, or a refresh sync from his phone. Since he really doesn't want to have the obsolete contacts on his phone, he prefers to perform a refresh sync from his phone.

5.4.2 Actors

· End-user

· Client – OMA DS client implementation initiating the sync

· Server – OMA DS server implementation processing the sync request

5.4.2.1 Actor Specific Issues

· Client is a ‘thin client’, i.e. implemented as simply as possible. Client doesn’t do any complex processing or conflict resolution.

· Server is able to do complex processing and conflict resolution.

5.4.2.2 Actor Specific Benefits

· None

5.4.3 Pre-conditions

· One of the following requirements for launching a slow sync is met :
1. previous sync was not successful or did not end properly (anchors will mismatch)

2. client and server are synchronizing with each other for the very first time

5.4.4 Post-conditions

· A Refresh Sync From Client Only is engaged after the initialisation phase.

5.4.5 Normal Flow

1. End-user launches a One-way Sync From Client Only synchronization from the client interface.

2. Requirements for launching a slow sync is met in the client. End-user may be informed. Client initiates a Refresh Sync From Client Only instead.

3. Server accepts the sync request.

4. A Refresh Sync From Client Only is effectively engaged.

5.4.6 Alternative Flow

1. End-user launches a One-way Sync From Client Only synchronization from the client interface.

2. Client initiates a One-way Sync From Client Only.

3. Requirements for launching a slow sync is met in the server. Server refuses the sync request.

4. End-user may be informed. Client initiates a Refresh Sync From Client Only instead.

5. A Refresh Sync From Client Only is effectively engaged.

5.4.7 Other Alternative Flow

6. End-user launches a One-way Sync From Client Only synchronization from the client interface.

7. Client initiates a One-way Sync From Client Only.

8. Requirements for launching a slow sync is met in the server. Server refuses the sync request and initiates a Refresh Sync From Client Only instead.

4. A Refresh Sync From Client Only is effectively engaged.

5.4.8 Operational and Quality of Experience Requirements

When an end-user asks a client for a One-way Sync From Client Only, and the requirements for launching a Slow Sync are met during the initialisation phase, there is no technical reason not to launch a Refresh Sync From Client Only instead.

So when these preconditions are met, the possibility to choose either Slow Sync or Refresh Sync From Client Only should be offered to the end-user or left to the server’s appreciation (but not imposed by the protocol).

5.5 One-Way Sync From Server Only Initialization

5.5.1 ASK * MERGEFORMAT Short Description

The end-user is used to import its on-line address book modifications into his phone. Until now, he never performed two-way synchronization, because his phone contains obsolete contacts that end-user don't want to have in the on-line address book, and might decide to delete later.

Today, he decides to perform a One-way Sync from his on-line address book with the phone. Unfortunately, last sync wasn't successful. During the synchronization, the end-user his informed of the problem and asked to choose between a complete slow sync, or a refresh sync from his on-line address book. Since he really doesn't want to have the obsolete contacts on his on-line address book, he prefers to perform a refresh sync from his on-line address book.

5.5.2 Actors

· End-user

· Client – OMA DS client implementation initiating the sync

· Server – OMA DS server implementation processing the sync request

5.5.2.1 Actor Specific Issues

· Client is a ‘thin client’, i.e. implemented as simply as possible. Client doesn’t do any complex processing or conflict resolution.

· Server is able to do complex processing and conflict resolution.

5.5.2.2 Actor Specific Benefits

· None

5.5.3 Pre-conditions

· One of the following requirements for launching a slow sync is met :
1. previous sync was not successful or did not end properly (anchors will mismatch)

2. client and server are synchronizing with each other for the very first time

5.5.4 Post-conditions

· A Refresh Sync From Server Only is engaged after the initialisation phase.

5.5.5 Normal Flow

1. End-user launches a One-way Sync From Server Only synchronization from the client interface.

2. Requirements for launching a slow sync is met in the client. End-user may be informed. Client initiates a Refresh Sync From Server Only instead.

3. Server accepts the sync request.

4. A Refresh Sync From Server Only is effectively engaged.

5.5.6 Alternative Flow

9. End-user launches a One-way Sync From Server Only synchronization from the client interface.

10. Client initiates a One-way Sync From Server Only.

11. Requirements for launching a slow sync is met in the server. Server refuses the sync request.

12. End-user may be informed. Client initiates a Refresh Sync From Server Only instead.

13. A Refresh Sync From Server Only is effectively engaged.

5.5.7 Other Alternative Flow

14. End-user launches a One-way Sync From Server Only synchronization from the client interface.

15. Client initiates a One-way Sync From Server Only.

16. Requirements for launching a slow sync is met in the server. Server refuses the sync request and initiates a Refresh Sync From Server Only instead.

4. A Refresh Sync From Server Only is effectively engaged.

5.5.8 Operational and Quality of Experience Requirements

When an end-user asks a client for a One-way Sync From Server Only, and the requirements for launching a Slow Sync are met during the initialisation phase, there is no technical reason not to launch a Refresh Sync From Server Only instead.

So when these preconditions are met, the possibility to choose either Slow Sync or Refresh Sync From Server Only should be offered to the end-user or left to the server’s appreciation (but not imposed by the protocol).

5.6 One-Way Slow Sync From Client Only

5.6.1 ASK * MERGEFORMAT Short Description

The end-user is used to export his phone address book modifications on an on-line address book server. He never performes two-way synchronization, because the on-line address book contains a big amount of other contacts, with whom he only communicate by email, and so he don't want to have these contacts in his phone.

Today, he decides to perform a One-way Sync from his phone with the on-line address book. Unfortunately, last sync wasn't successful. So a One-way Slow Sync From Client Only is performed instead. The end-user is satisfied, since his phone address book is not polluted with the big amount of "email contacts" and these contacts were not wiped away from its on-line address book.

5.6.2 Actors

· End-user

· Client – OMA DS client implementation initiating the sync

· Server – OMA DS server implementation processing the sync request

5.6.2.1 Actor Specific Issues

· Client is a ‘thin client’, i.e. implemented as simply as possible. Client doesn’t do any complex processing or conflict resolution.

· Server is able to do complex processing and conflict resolution.

5.6.2.2 Actor Specific Benefits

· None

5.6.3 Pre-conditions

· Any of the requirements for launching a slow sync is met :
· previous sync was not successful or did not end properly (anchors will mismatch)

· server has lost its mapping table

· client and server are synchronizing with each other for the very first time

· …

5.6.4 Post-conditions

17. The One-way Slow Sync From Client Only was performed successfully. The result of the synchronization is the one expected by the user, when he asked for a One-way Sync From Client Only.

5.6.5 Normal Flow

a. End-user launches a One-way Sync From Client Only synchronization from the client interface.

b. Requirements for launching a slow sync is met in the client, i. e. client is unable to perform a One-way Sync From Client Only properly. Client initiates a One-way Slow Sync From Client Only instead.

c. Server accepts the sync request.

d. Client sends all its data to the server

e. Server performs field by field analysis and updates its data. No modifications are sent to the client

f. Synchronization end successfully

5.6.6 Alternative Flow

g. End-user launches a One-way Sync From Client Only synchronization from the client interface.

h. Client initiates a One-way Sync From Client Only.

i. Requirements for launching a slow sync is met in the server, i. e. server is unable to perform a One-way Sync From Client Only properly. Server initiates a One-way Slow Sync From Client Only instead.

j. Client accepts the sync request and sends all its data to the server

k. Server performs field by field analysis and updates its data. No modifications are sent to the client

l. Synchronization end successfully

5.6.7 Operational and Quality of Experience Requirements

When an end-user asks a client for a One-way Sync From Client Only, and the requirements for launching a Slow Sync are met during the initialisation phase, a new "One-way Slow Sync From Client Only" type should be proposed.

This new sync type avoids unwanted modifications on the client (that would be induced by a Slow Sync) and also avoids loosing "out of sync" data on the server (that would be induced by a Refresh Sync From Client).

5.7 One-Way Slow Sync From Server Only

5.7.1 ASK * MERGEFORMAT Short Description

The end-user is used to import its on-line address book modifications into his phone. Until now, he never performed two-way synchronization, because his phone contains obsolete contacts that end-user don't want to have in the on-line address book, and might decide to delete later.

Today, he decides to perform a One-way Sync from his on-line address book with the phone. Unfortunately, last sync wasn't successful. So a One-way Slow Sync From Server Only is performed instead. The end-user is satisfied, since his on-line address book is not polluted with the obsolete contacts and these contacts were not wiped away from his phone. He will be able to sort out these obsolete contacts later.

5.7.2 Actors

1. End-user

2. Client – OMA DS client implementation initiating the sync

3. Server – OMA DS server implementation processing the sync request

5.7.2.1 Actor Specific Issues

18. Client is a ‘thin client’, i.e. implemented as simply as possible. Client doesn’t do any complex processing or conflict resolution.

19. Server is able to do complex processing and conflict resolution.

5.7.2.2 Actor Specific Benefits

20. None

5.7.3 Pre-conditions

21. Any of the requirements for launching a slow sync is met :
a. previous sync was not successful or did not end properly (anchors will mismatch)

b. server has lost its mapping table

c. client and server are synchronizing with each other for the very first time

d. …

5.7.4 Post-conditions

22. The One-way Slow Sync From Server Only was performed successfully. The result of the synchronization is the one expected by the user, when he asked for a One-way Sync From Server Only.

5.7.5 Normal Flow

a. End-user launches a One-way Sync From Server Only synchronization from the client interface.

b. Requirements for launching a slow sync is met in the client, i. e. client is unable to perform a One-way Sync From Server Only properly. Client initiates a One-way Slow Sync From Server Only instead.

c. Server accepts the sync request.

d. Client sends all its data to the server

e. Server performs field by field analysis but doesn't update its data. Modifications are sent to the client

f. Synchronization end successfully

5.7.6 Alternative Flow

g. End-user launches a One-way Sync From Server Only synchronization from the client interface.

h. Client initiates a One-way Sync From Server Only.

i. Requirements for launching a slow sync is met in the server, i. e. server is unable to perform a One-way Sync From Server Only properly. Server initiates a One-way Slow Sync From Server Only instead.

j. Client accepts the sync request and sends all its data to the server

k. Server performs field by field analysis but doesn't update its data. Modifications are sent to the client

l. Synchronization end successfully

5.7.7 Operational and Quality of Experience Requirements

When an end-user asks a client for a One-way Sync From Server Only, and the requirements for launching a Slow Sync are met during the initialisation phase, a new "One-way Slow Sync From Server Only" type should be proposed.

This new sync type avoids unwanted modifications on the server (that would be induced by a Slow Sync) and also avoids loosing "out of sync" data on the client (that would be induced by a Refresh Sync From Server).

5.8 Puting precise maximum size for MBCS storage PIMs
5.8.1 ASK * MERGEFORMAT Short Description
Sepcifying charset in MaxSize of DevInf allows server to reduce data traffic.
5.8.2 Actors

· Client – OMA DS client.

· Server – OMA DS server.

· End User
5.8.3 Actor Specific Issues

23. Client has PIM which stores record data in MBCS not in UTF-8.
24. Both Client and Server support treat MaxSize in specified CharSet.
5.8.4 Actor Specific Benefits

25. For the user, shorter package size implies reduced connection time thus reduced connection cost and billing.
5.8.5 Pre-conditions

26. Client PIM has limitation to have each property value up to 32 bytes in Shift_JIS.
27. Server has four updates.
28. Record #1 contains 100 bytes long ASCII characters in all property values.
29. Record #2 contains 100 bytes long single byte hankana Shift_JIS characters in all property values.
30. Record #3 contains 100 bytes long double byte Shift_JIS characters in all property values.
31. Record #4 contains 100 bytes long mixture characters in all property values.
5.8.6 Post-conditions

32. Sync is finished successfully with client PIM property values are properly truncated maximally fit the client PIM limitation.
33. Client and server are in sync.
5.8.7 Normal Flow
a. Client initiates Two-Way synchronization with a CharSet declaration for Property elements in DevInf
b. Server accepts the sync type.
c. Client send any update from client side.
d. Server send any updates from server side truncated based on the Charset specified in DevInf.
5.8.8 Alternative Flow
5.8.9 Operational and Quality of Experience Requirements
5.9 Alerting free server memory for Quota limited services
5.9.1 ASK * MERGEFORMAT Short Description
The end-user discovers that its on-line file storage service offers now the possibility to backup files from its phone. He decides to subscribe to this new file storage service and wants to use it for periodical automatic backup of fles in his phone.

 He decides to setup to perform One-Way Sync From Client Only periodically automatic initiated from client. Although server is full, the One-Way synchronization is performed without sending unnecessary data. The end-user is satisfied, since the fee is only charged for update data.

5.9.2 Actors

· Client – OMA DS client.

· Server – OMA DS server.

· End User
5.9.3 Actor Specific Issues

34. Server sends FreeID and FreeMem before client sends updates (pkg#1)
35. Server sends FreeID and FreeMem multiple times during client sending updates (pkg#3).
36. During pkg #3, server dynamically changes FreeID and FreeMem per message by reflecting client Delete and Replace command.
37. Client can analyse the FreeID and FreeMem value from server and decide whether send Add, delay to send Add.
38. Both server and client support Suspend and Resume.
5.9.4 Actor Specific Benefits

39. For the user, not sending more data than server Quota implies reduced connection time thus reduced connection cost and billing in case of server full.
5.9.5 Pre-conditions

40. Client has some new files or updates (delete, replace) to be uploaded afther the last successful sync
41. The client periodically launches a One-Way synchronization if it has updates to be synchronized.
5.9.6 Post-conditions

42. One-Way Sync From Client Only is intentionally suspended by client without sending add.
43. Client and server are in not sync to be resumed in next sync.
44. In next sync session, client alert Resume to re-send new files to server depending on server alert of FreeID and FreeMem
5.9.7 Normal Flow
a. Client sends One-Way From Client Only sync request.
b. In the first response message, server accepts the sync request and server alerts less FreeMem for client to detect not to send Add in the sync package.
c. Client does not send Add command.because in the first response server alerted less FreeID and FreeMem than that of new files client want to uplodad.
5.9.8 Alternative Flow
d. Client sends One-Way From Client Only sync request.
e. In the first response message, server accepts the sync request and server alerts less FreeMem for client to detect not to send Add in the sync package.
f. Client send Delete command and delay sending Add command in this first message of sync package (pkg#3) because in the first response server alerted less FreeMem than that of new files client want to uplodad.
g. Server alerts enough FreeMem for client to send Add in next message by reflecting the result of deletion from client.
h. Client sends some of Add commands that are met criteria under FreeID and FreeMem from server.
i. Server accepts the Add commands and server alerts new less FreeID and FreeMem for client to detect not to send Add in the next message.
j. Client does not send Add command.because in the last response server alerted less FreeMem than that of new files client want to uplodad.
5.9.9 Operational and Quality of Experience Requirements
5.10 Alerting more precise free client memory for storage limited devices per message
5.10.1 ASK * MERGEFORMAT Short Description
The end-user discovers that its on-line file deployment service offers now the possibility to keep important files updated for him to always track on its phone. He decides to subscribe to this new file deployment service and wants to use it for files update in his phone by triggering Server Alerted Notification from the service.

 He decides to setup to perform One-Way Sync From Server Only by Server Alerted Notification from the service. Although client was nearly device full, the One-Way synchronization is performed. The end-user is satisfied, since server send files fitting to client storage limit as much as possible.
5.10.2 Actors

· Client – OMA DS client.

· Server – OMA DS server.

· End User
5.10.3 Actor Specific Issues
45. Client does not always manage storage allocation in real time. For instance delete from server is sent but data is internally soft-deleted to be clean up at certain period. Hard delete may be executed per command in real tine, or per sync session, or per other triggers.
46. Client sends FreeID and FreeMem multiple times during server sending updates (pkg#4).
47. During pkg #3, client dynamically changes FreeID and FreeMem per message by reflecting server Delete and Replace command.
5.10.4 Actor Specific Benefits

48. For the user, reciving as much data as possible at single sync session is important.
49. For the user, not reciving more data than device limit implies reduced connection time thus reduced connection cost and billing in case of client full.
5.10.5 Pre-conditions

50. Server has some new files to be sent after the last successful sync.
51. The server periodically sends a Server Alert Notifiaction to let client start One-Way From Server Only if server has updates.
5.10.6 Post-conditions

52. One-Way Sync From Server Only is finished successfully.
53. Client and server are in not sync due to client storage limitation.
5.10.7 Normal Flow
a. Client sends One-Way From Server Only sync request.
b. Server accepts the sync request
c. Client alerts FreeID and FreeMem
d. Server sends as much data as possible estimated within free memory client reports including Delete and Replace command.
e. Client alerts more precise FreeID and FreeMem reflecting to server commands.
f. Server sends as much data as possible estimated within new free memory client reports including Delete and Replace command.
5.10.8 Alternative Flow
5.10.9 Operational and Quality of Experience Requirements
5.11 Combining packages in Two-Way Sync in case of no change on client side
5.11.1 ASK * MERGEFORMAT Short Description
The end-user discovers that its on-line email service offers now the possibility to synchronize emails with its phone. He decides to subscribe to this new synchronization service and wants to use it mostly for checking new emails although he sometimes wants to send new emails from his phone. Suppose that he or client need to continuously check new emails because the service does not offer frequent server alerted notifications or device might have limitations to receive server alerted notification.

 He decides to perform a Two-Way Sync from his phone with the on-line email service and setup to perform Two-Way Sync periodically automatic initiated from client. Although it’s the very first sync between both devices, the Two-Way synchronization is performed. The end-user is satisfied, since he can quickly take a next action by checking the emails and the connection fee is low because only a single connection is required to check if there are no or few new emails.

5.11.2 Actors

· Client – OMA DS client.

· Server – OMA DS server.

· End User
5.11.3 Actor Specific Issues

54. Both server and client support Sync Without Separate Initialization. (Pkg#2 + Pkg#4)
55. Both server and client support Map Caching. (Pkg#1 + Pkg#5)
56. Both server and client support Number Of Changes from client in Pkg#1.
5.11.4 Actor Specific Benefits

57. For the user, a single transport session with multiple packages implies reduced connection time thus reduced connection cost and billing.
58. For the user, reduced synchronization duration eliminates possible user feeling that synchronization is a slow process.
5.11.5 Pre-conditions
59. Client has no changes since last successful sync.
5.11.6 Post-conditions

60. Two-Way Sync is finished successfully.
61. Client and server are in sync but Maps are cached in client for next sync
5.11.7 Normal Flow

a. End-user launches a Two-Way synchronization from the client interface or client automatically launches the synchronization.
b. In the first request message, client sends NumberOfChanges=0 for server to send data in the first response.
c. Server accepts the sync request with authenticated result and sends new emails if any in the same response
d. Client does not send Pkg#5 by caching maps until client need to send real data to server.
5.11.8 Alternative Flow
 In case that client has changes or new email to send
e. End-user launches a Two-Way synchronization from the client interface or client automatically launches the synchronization.
f. In the first request message, client sends NumberOfChanges > 0 but no send real user data because client doesn’t want to send real user data to un-authenticated server.
g. Server accepts the sync request with authenticated result.
h. Client sends real data if authenticated and also send all maps if any before real data.
i. Server sends new emails if any in the response
5.11.9 Operational and Quality of Experience Requirements
If client alerts less free memory in the first request, server MUST not send any add to client in the first response.
If client has multiple datastore to sync, and one of datastore has NumberOfChanges > 0, then it follows alternative flow for server to send the changes for all the datastore in later messages of pkg#4.
5.12 Simplifying status for efficient actions by thin client implementation
5.12.1 ASK * MERGEFORMAT Short Description

Using a simplified status allows to reduce data traffic.

5.12.2 Actors

· Client – OMA DS client.

· Server – OMA DS server.

· User -

5.12.3 Actor Specific Issues
· Both server and client support simplified status
5.12.4 Actor Specific Benefits

· For the user, shorter package size implies reduced connection time thus reduced connection cost and billing.
· For the client/server implementor, a simplified status is less ambiguous and leads to simpler parsers/generators implementation.
· For the client implementor, the target platform of syncml client can be expanded depending on the implementatation.
· For the user, reduced synchronization duration eliminates possible user feeling that synchronization is a slow process.
5.12.5 Pre-conditions

· Success for all commands in each request message
5.12.6 Post-conditions

· Sync is finished successfully

· Client and server are in sync

5.12.7 Normal Flow

4. Client initiates sync.

5. Server accepts the sync request and send simplified status before sync header
6. Client check the simplified status with thin parser and found all commands are OK
7. Synchronization continues with simplified statuses from server

5.12.8 Alternative Flow
In case of fatal errors happened at server layer or at database layer for all databases. (i.e. server unavailable, unsupport mime type for database and etc)
8. Client initiates sync.
9. Server got some fatal error to be terminated the sync session, and send simplified status without SyncBody
10. Client terminate the sync session because client found found fatal server error by checking the simplified status. Client may display some message for user to change client configuration depending on the status code and the Item element type in the simplified Status.
In case of recoverable errors happened at server layer or database layer for all databases (i.e. auth error, refresh required and etc)
11. Client initiates sync.
12. Server got some recoverable errors to be retried by client, and send simplified status with full SyncBody as usual
13. Client terminates the sync session and starts new a syncml session without keep the same syncml session because client understand the server situation from the code and know what to do to recover the situation.
5.12.9 Operational and Quality of Experience Requirements

Even though checking detailed statuses for all cases are useful, some implementation can ignore them and retried not by keeping the same sync session but retried from the beginning with other possible configuration. For instance, without alerting slow sync type from server, client can start slow sync as a new sync session only with refresh required status code to two way sync request.
5.13 Putting and Getting partial device information
5.13.1 ASK * MERGEFORMAT Short Description

Seprating device information into messages by use of hierarchical update and query of device information allows to reduce data traffic.

5.13.2 Actors

· Client – OMA DS client.

· Server – OMA DS server.

· User -

5.13.3 Actor Specific Issues
· Both server and client support putting and getting partial device information of them by each other
5.13.4 Actor Specific Benefits

· For the user, shorter package size implies reduced connection time thus reduced connection cost and billing.
· For the user, reduced synchronization duration eliminates possible user feeling that synchronization is a slow process.
· For the user, enabling multiple datastores by putting devinfo in separate message expands more usability of services
5.13.5 Pre-conditions

· Client syncs so many datastores at a time that the datastores information cannot be packed in a single message. Client separates the information into messages. Client also queries all the server side datastore information separately.
5.13.6 Post-conditions
· Sync is finished successfully

· Client and server are in sync

5.13.7 Normal Flow

14. Client initiates sync by putting a part of multiple datastore information and getting part of server side datastore information
15. Server accepts the sync request and sends the requested server side datastore information.
16. Client put the rest of the datastore information and get rest of server side datastore information with final tag
17. Server accepts the sync request and sends the requested server side datastore information with final tag.
18. Synchronization continues normally.
5.13.8 Alternative Flow
5.13.9 Operational and Quality of Experience Requirements

6. Requirements
(Normative)

6.1 High-Level Functional Requirements

	Label
	Description
	Enabler Release

	HLF1
	Clients and servers MUST support parsing and generation of packages respecting the simplified syntax
	2.0

	HLF2
	Improved Enabler MUST declare a list of common compression/decompression techniques that all implementations SHALL support.
	

	HLF3
	Improved enabler SHOULD declare a list of additional compression/decompression techniques that all implementations SHOULD/MAY support.
	

	HLF4
	During the initialisation, client and server MUST declare which compression technique they support for package exchanges.
	

Table 1: High-Level Functional Requirements

6.1.1 Security

	Label
	Description
	Enabler Release

	
	
	

	
	
	

	
	
	

Table 2: High-Level Functional Requirements – Security Items

6.1.2 Charging

	Label
	Description
	Enabler Release

	
	
	

	
	
	

	
	
	

Table 3: High-Level Functional Requirements – Charging Items

6.1.3 Administration and Configuration

	Label
	Description
	Enabler Release

	
	
	

	
	
	

	
	
	

Table 4: High-Level Functional Requirements – Administration and Configuration Items

6.1.4 Usability

	Label
	Description
	Enabler Release

	
	
	

	
	
	

	
	
	

Table 5: High-Level Functional Requirements – Usability Items

6.1.5 Interoperability

	Label
	Description
	Enabler Release

	IOP1
	Clients and servers MUST support all compression/decompression techniques listed by the improved enabler as the minimum common set .
	

	IOP2
	Clients and servers SHOULD use one of the compression techniques listed by the enabler for their sync operations. In case one of the latters does not support any (de)compression technique the other MUST be able to exchange uncompressed data.

	

	IOP3
	During the initialisation, client and server MUST agree on the compression technique that will be used for the rest of the session.
	

	
	
	

	
	
	

Table 6: High-Level Functional Requirements – Interoperability Items

6.1.6 Privacy

	Label
	Description
	Enabler Release

	
	
	

	
	
	

	
	
	

Table 7: High-Level Functional Requirements – Privacy Items

6.2 Overall System Requirements

	Label
	Description
	Enabler Release

	
	
	

	
	
	

	
	
	

Table 8: High-Level System Requirements

Appendix A. Change History
(Informative)

A.1 Draft/Candidate Version 1.0 History

	Document Identifier
	Date
	Sections
	Description

	
	July 26, 2005
	5.1
5.2

5.3

5.4

5.5

5.6

5.7

5.8
	Drafted by Frederique

	
	Aug 20, 2005
	5.9
5.10

5.11

5.12

5.13

5.14
	Added by Yoshiaki ARAKI

(2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ReqDoc-20050506-I]
(2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ReqDoc-20050506-I]

